
OSGi Service Platform
Residential Specification
The OSGi Alliance

Release 4, Version 4.3
January 2012

Page i OSGi Service Platform Release 4, Version 4.3

Copyright © OSGi Alliance (2000,2012).
All Rights Reserved.

OSGi Specification License, Version 2.00
OSGi Alliance (“OSGi”) hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license
(without the right to sublicense), under OSGi’s applicable intellectual property rights to view, download, and
reproduce this OSGi Specification (“Specification”) which follows this License Agreement (“Agreement”). You are
not authorized to create any derivative work of the Specification. However, to the extent that an implementation
of the Specification would necessarily be a derivative work of the Specification, OSGi also grants you a perpetual,
non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any
applicable copyrights, to create and/or distribute an implementation of the Specification that: (i) fully implements
the Specification including all its required interfaces and functionality; (ii) does not modify, subset, superset or
otherwise extend the OSGi Name Space, or include any public or protected packages, classes, Java interfaces, fields
or methods within the OSGi Name Space other than those required and authorized by the Specification. An
implementation that does not satisfy limitations (i)-(ii) is not considered an implementation of the Specification,
does not receive the benefits of this license, and must not be described as an implementation of the Specification.
An implementation of the Specification must not claim to be a compliant implementation of the Specification
unless it passes the OSGi Compliance Tests for the Specification in accordance with OSGi processes. “OSGi Name
Space” shall mean the public class or interface declarations whose names begin with “org.osgi" or any recognized
successors or replacements thereof.
OSGi Participants (as such term is defined in the OSGi Intellectual Property Rights Policy) have made non-assert
and licensing commitments regarding patent claims necessary to implement the Specification, if any, under the
OSGi Intellectual Property Rights Policy which is available for examination on the OSGi public web site
(www.osgi.org).
No Warranties and Limitation of Liability
THE SPECIFICATION IS PROVIDED "AS IS," AND OSGi AND ANY OTHER AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR
TITLE; THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS. OSGi AND ANY OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SPECIFICATION OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.
Covenant Not to Assert
As a material condition to this license you hereby agree, to the extent that you have any patent claims which are
necessarily infringed by an implementation of the Specification, not to assert any such patent claims against the
creation, distribution or use of an implementation of the Specification.
General
The name and trademarks of OSGi or any other Authors may NOT be used in any manner, including advertising or
publicity pertaining to the Specification or its contents without specific, written prior permission. Title to
copyright in the Specification will at all times remain with OSGi.
No other rights are granted by implication, estoppel or otherwise.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi Alliance in the US and other
countries. Java is a trademark, registered trademark, or service mark of Sun Microsystems, Inc. in the
US and other countries. All other trademarks, registered trademarks, or service marks used in this
document are the property of their respective owners and are hereby recognized.

Feedback
This specification can be downloaded from the OSGi Alliance web site:

http://www.osgi.org

Comments about this specification can be raised at:

http://www.osgi.org/bugzilla/

Table Of Contents

1 Introduction 1
1.1 Overview of the Residential Specifications .. 1

1.2 Version Information ... 4

1.3 References ... 5

2 Residential Device Management Tree Specification 7
2.1 Introduction ... 7

2.2 The Residential Management Tree ... 8

2.3 Managing Bundles ... 8

2.4 Filtering .. 12

2.5 Log Access ... 13

2.6 osgi.wiring.rmt.service Namespace .. 14

2.7 Tree Summary 14

2.8 org.osgi.dmt.residential 16

2.9 org.osgi.dmt.service.log 27

2.10 References ... 28

3 TR-157 Amendment 3 Software Module Guidelines 29
3.1 Management Agent ... 29

3.2 Parameter Mapping ... 30

3.3 References ... 36

101 Log Service Specification 37
101.1 Introduction 37

101.2 The Log Service Interface .. 38

101.3 Log Level and Error Severity ... 39

101.4 Log Reader Service .. 39

101.5 Log Entry Interface .. 40

101.6 Mapping of Events ... 40

101.7 Security .. 42

101.8 org.osgi.service.log 42

102 Http Service Specification 47
102.1 Introduction 47

102.2 Registering Servlets 48

102.3 Registering Resources 49

102.4 Mapping HTTP Requests to Servlet and Resource Registrations .. 51

102.5 The Default Http Context Object 52

102.6 Multipurpose Internet Mail Extension (MIME) Types ... 53

102.7 Authentication ... 54

102.8 Security .. 55

102.9 Configuration Properties 56
OSGi Service Platform Release 4, Version 4.3 Page iv

102.10 org.osgi.service.http 56

102.11 References ..61

103 Device Access Specification 63
103.1 Introduction .. 63

103.2 Device Services ... 65

103.3 Device Category Specifications 67

103.4 Driver Services .. 69

103.5 Driver Locator Service75

103.6 The Driver Selector Service77

103.7 Device Manager ...77

103.8 Security ... 82

103.9 org.osgi.service.device 83

103.10 References ... 87

104 Configuration Admin Service Specification 89
104.1 Introduction .. 89

104.2 Configuration Targets91

104.3 The Persistent Identity .. 92

104.4 The Configuration Object 93

104.5 Managed Service ... 96

104.6 Managed Service Factory 100

104.7 Configuration Admin Service .. 104

104.8 Configuration Events107

104.9 Configuration Plugin 108

104.10 Meta Typing ... 110

104.11 Security 111

104.12 Changes .. 112

104.13 org.osgi.service.cm 113

104.14 ...128

105 Metatype Service Specification 129
105.1 Introduction ...129

105.2 Attributes Model130

105.3 Object Class Definition .. 131

105.4 Attribute Definition ... 131

105.5 Meta Type Service ... 132

105.6 Meta Type Provider Service ... 133

105.7 Using the Meta Type Resources .. 134

105.8 Object ... 140

105.9 XML Schema .. 140

105.10 Limitations ...142

105.11 Related Standards142

105.12 Changes .. 143
Page v OSGi Service Platform Release 4, Version 4.3

105.13 Security Considerations .. 143

105.14 org.osgi.service.metatype ... 143

105.15 References ... 149

107 User Admin Service Specification 151
107.1 Introduction151

107.2 Authentication ... 153

107.3 Authorization ... 155

107.4 Repository Maintenance 157

107.5 User Admin Events 157

107.6 Security .. 158

107.7 Relation to JAAS ... 159

107.8 org.osgi.service.useradmin 159

107.9 References 169

110 Initial Provisioning Specification 171
110.1 Introduction171

110.2 Procedure ... 172

110.3 Special Configurations .. 175

110.4 The Provisioning Service ... 176

110.5 Management Agent Environment 176

110.6 Mapping To File Scheme ... 177

110.7 Mapping To HTTP(S) Scheme 177

110.8 Mapping To RSH Scheme 179

110.9 Exception Handling .. 182

110.10 Security .. 183

110.11 org.osgi.service.provisioning ... 184

110.12 References ... 186

111 UPnP™ Device Service Specification 189
111.1 Introduction ... 189

111.2 UPnP Specifications ... 191

111.3 UPnP Device ... 192

111.4 Device Category .. 193

111.5 UPnPService ... 193

111.6 Working With a UPnP Device 194

111.7 Implementing a UPnP Device 194

111.8 Event API .. 195

111.9 UPnP Events and Event Admin service 196

111.10 Localization ... 196

111.11 Dates and Times 196

111.12 UPnP Exception .. 197

111.13 Configuration .. 197

111.14 Networking considerations ... 198
OSGi Service Platform Release 4, Version 4.3 Page vi

111.15 Security198

111.16 Changes ..198

111.17 org.osgi.service.upnp198

111.18 References .. 213

112 Declarative Services Specification 215
112.1 Introduction ... 215

112.2 Components ... 217

112.3 References to Services 220

112.4 Component Description ... 227

112.5 Component Life Cycle ... 234

112.6 Component Properties .. 243

112.7 Deployment .. 244

112.8 Use of the Annotations ... 245

112.9 Service Component Runtime .. 246

112.10 Security ... 248

112.11 Component Description Schema 248

112.12 Changes .. 251

112.13 org.osgi.service.component 251

112.14 org.osgi.service.component.annotations ..257

112.15 References ... 262

113 Event Admin Service Specification 265
113.1 Introduction .. 265

113.2 Event Admin Architecture 266

113.3 The Event .. 267

113.4 Event Handler .. 268

113.5 Event Publisher .. 269

113.6 Specific Events .. 270

113.7 Event Admin Service273

113.8 Reliability .. 274

113.9 Inter-operability with Native Applications ..275

113.10 Security ..275

113.11 Changes 276

113.12 org.osgi.service.event ... 276

117 Dmt Admin Service Specification 285
117.1 Introduction 285

117.2 The Device Management Model ... 288

117.3 The DMT Admin Service ... 290

117.4 Manipulating the DMT ...291

117.5 Meta Data ... 298

117.6 Plugins301

117.7 Sharing the DMT ... 307
Page vii OSGi Service Platform Release 4, Version 4.3

117.8 Access Control Lists 315

117.9 Notifications 319

117.10 Exceptions ... 320

117.11 Events .. 321

117.12 OSGi Object Modeling .. 327

117.13 Security 335

117.14 Changes ... 339

117.15 org.osgi.service.dmt 339

117.16 org.osgi.service.dmt.spi 386

117.17 org.osgi.service.dmt.notification .. 399

117.18 org.osgi.service.dmt.notification.spi 402

117.19 org.osgi.service.dmt.security 403

117.20 References ... 408

131 TR069 Connector Service Specification 409
131.1 Introduction 409

131.2 TR-069 Protocol Primer ... 410

131.3 TR069 Connector 415

131.4 RPCs ... 425

131.5 Error and Fault Codes 428

131.6 Managing the RMT .. 429

131.7 Native TR-069 Object Models ... 430

131.8 org.osgi.service.tr069todmt 431

131.9 References ... 438

701 Tracker Specification 439
701.1 Introduction ... 439

701.2 Tracking ... 440

701.3 Service Tracker .. 442

701.4 Bundle Tracker ... 444

701.5 Security .. 448

701.6 Changes ... 448

701.7 org.osgi.util.tracker 448

702 XML Parser Service Specification 459
702.1 Introduction ... 459

702.2 JAXP .. 460

702.3 XML Parser service ... 461

702.4 Properties .. 461

702.5 Getting a Parser Factory .. 461

702.6 Adapting a JAXP Parser to OSGi .. 462

702.7 Usage of JAXP .. 463

702.8 Security .. 464

702.9 org.osgi.util.xml ... 464
OSGi Service Platform Release 4, Version 4.3 Page viii

702.10 References ... 467
Page ix OSGi Service Platform Release 4, Version 4.3

Introduction Overview of the Residential Specifications
1 Introduction
When the OSGi Alliance started in 1998 the focus was in residential gateways, it actually was an acro-
nym that contained the word gateway before it became a name. Since that time, OSGi flourished in
several different markets but did not gain a wide-spread adoption in the residential markets so far.
However, some of the road blocks to this wide spread adoption have changed:

• Hardware cost of service gateways have been reduced.
• Capabilities of those small devices increased manyfold.
• The license fee for Java Virtual Machines has decreased.
• The number of devices in a house hold has increased.
• Always-on and broadband access to the Internet has become pervasive.

This specification, produced by the OSGi Residential Expert Group (REG), defines a set of new and
refined service guidelines that focus on the residential market. The REG is chartered to define the
requirements and specifications to tailor the OSGi Service Platform for fixed network connected
devices. Examples of such devices include residential gateways, building automation controllers,
white goods, consumer electronics, and many other devices.

Technical Areas addressed by the REG include the requirements, functional specifications, and APIs
for gateway devices. The REG also created a functional model for local and remote management of
gateway devices. This model resolves the requirements of inter-operation with existing management
systems and protocols, the need to remotely manage the user applications life cycles, the need for
large-scale deployments and adequate security.

The services of this Residential Specification have been designed with the residential market in
mind. Requirements and management protocols for this environment are defined in the specifica-
tions by consortias like the [3] Home Gateway Initiative, (HGI) the [6] Broadband Forum (BBF) and the [5]
UPnP™ Forum. These specifications provide requirements for execution environments in a Con-
sumer Premises Equipment (CPE) and other consumer devices, as well as protocols for the manage-
ment of residential environments. Here, the scope of management protocols span the remote
management of thousands and millions of CPE devices by a telecommunications provider as well as
local management of single consumer devices in a home or residence building.

The services guidelines of the Residential Specification have been designed to integrate with OSGi,
fulfill the requirements of the mentioned consortias and cooperate with each other. None of the
listed service specifications is mandatory; all service specifications are optional.

It is not suggested, or expected, that a solution will support all listed specifications. More likely, plat-
form providers define their specific runtime environment. It is highly recommended to choose the
mandatory and optional services defined by the [4] HG Requirements for Software Execution Environment
as a basis. The same is true for the management protocols defined by BBF and the UPnP Forum. A
solution can further include other core and compendium services that are not listed as part the Resi-
dential Specification.

1.1 Overview of the Residential Specifications

1.1.1 Remote Management
Support for remotely managing the service and their applications is essential to all systems that are
installed on customer’s premises. The specification therefore has special focus on large scale remote
management of the OSGi Service Platform. The architecture provides a solution to allow manage-
ment over different protocols although the primary focus is to allow the use Broadband Forum’s suite
of specifications on an OSGi residential gateway. This section introduces the related specifications.
OSGi Service Platform Release 4, Version 4.3 Page 1

Overview of the Residential Specifications Introduction
• Dmt Admin Service Specification – The Dmt Admin Service Specification provides an API for a
remote manager to manage the device and its diverse services running on it. The Dmt Admin pro-
vides a generic tree structure, the Device Management Tree (DMT), to a Protocol Adapter. The
nodes of those trees are implemented by the devices and services. Different Protocol Adapters can
leverage the same DMT for different protocols. The Dmt Admin service also provides guidelines
for object models that can be made available over different protocols. For more details see the Dmt
Admin Service Specification on page 285.

• Residential Device Management – This specification defines a Residential Management Tree, the
RMT. This tree provides a general Dmt Admin object model that allows browsing and managing
the OSGi Service Platform remotely over different Protocol Adapters. The RMT provides access to
the Framework and the Log service. It also provides a filter function on top of Dmt Admin. See the
Residential Device Management Tree Specification on page 7 for details.

• TR-157a3 Software Module – [6] Broadband Forum has defined a generic model for mapping
software modules in [8] TR-157 Amendment 3 Component Objects for CWMP. This specification pro-
vides a recommended mapping for the generic concepts to the OSGi Framework concepts. See TR-
157 Amendment 3 Software Module Guidelines on page 29.

• TR-069 Connector Service Specification – The Dmt Admin service and the TR-069 protocol have dif-
ferent semantics and primitives. This specification contains the TR069 Connector Service Specifi-
cation on page 409. This specification provides an API based on the TR-069 Remote Procedure Calls
concept that is implemented on top of Dmt Admin. This connector supports data conversion and
the object modeling constructs defined in the Dmt Admin service, OSGi Object Modeling on page
327.

1.1.2 Management and Configuration services
The OSGi Service Platform is unique in that it does not hide anything, all aspects are manageable
from the system itself. To locally manage the system, the following services are available:

• Conditional Permission Admin Service Specification – The Conditional Permission Admin service
allows an operator to control the Java Permissions to be granted to the bundles running on the
OSGi Service Platform using a condition based model. See chapter 50 in [2] OSGi Service Platform
Core Specification,Release 4, Version 4.3.

• Permission Admin Service Specification – The Permission Admin service allows an operator to
control the Java Permissions to be granted to the bundles running on the OSGi Service Platform
based on the bundle location. The Permission Admin has been superseded by the Conditional Per-
mission admin, but is included for backwards compatibility. See chapter 51 in [2] OSGi Service
Platform Core Specification,Release 4, Version 4.3.

• URL Handlers Service Specification – This specification standardizes the mechanism to extend the
Java run-time with new URL schemes and content handlers. Dynamically extending the URL
schemes that are supported in an OSGi Service Platform is a very powerful concept to provide
more functionality to existing applications. See chapter 51 in [2] OSGi Service Platform Core Specifi-
cation,Release 4, Version 4.3.

• User Admin Service Specification – The User Admin Service Specification provides authorization for
OSGi Service Platform actions based on authenticated users instead of using the Java code-based
permission model. See the User Admin Service Specification on page 151.

• Initial Provisioning Specification – The Initial Provisioning specification defines how a Management
Agent and other initial bundles can be deployed on an uninitialized OSGi Service Platform. It
gives a structured view of the problems and their corresponding resolution methods. The purpose
of this specification is to enable the management of a Service Platform by an operator, and
(optionally) to hand over the management of the Service Platform later to another operator. See
the Initial Provisioning Specification on page 171 for more details.

• Configuration Admin Service Specification – The Configuration Admin service allows an operator or
an application bundle developer to set the configuration information of bundles. See Configuration
Admin Service Specification on page 89.

• Metatype Service Specification – The Metatype specification defines interfaces that allow bundle
developers to describe attribute types in a computer readable form using metadata. It is mostly
Page 2 OSGi Service Platform Release 4, Version 4.3

Introduction Overview of the Residential Specifications
used in conjunction with the Configuration Admin Service. See Metatype Service Specification on
page 129 for details.

1.1.3 Component Models
Component models allow the code in bundles to remain unaware of OSGi API by using Dependency
Injection (DI) while still providing full support for the OSGi service model.

• Declarative Services Specification – The Declarative Services specification provides dependency
injection for services. It handles the service life cycle dynamics by notifying the component or
managing the components life cycle. See Declarative Services Specification on page 215.

1.1.4 HTTP and Servlets
HTTP Server and Servlets functions are often needed for the residential gateway. The Specification
contains this specification:

• Http Service Specification – Developers typically need to develop communication and user interface
solutions for standard technologies such as HTTP, HTML, XML, and servlets. See the Http Service
Specification on page 47.

1.1.5 Event models
The OSGi service model is based on synchronous APIs. Support for asynchronous invocations and
event driven interactions usually involves the definition of listeners. However, this model does not
scale well for fine grained events that must be dispatched to many different handlers. The Specifica-
tion therefore contains the Event Admin Service Specification:

• Event Admin Service Specification – The Event Admin service provides an inter-bundle communi-
cation mechanism. It is based on a event publish and subscribe model, popular in many message
based systems. See Event Admin Service Specification on page 265.

1.1.6 Other Residential Services
A residential gateway can directly attach devices, for example via a USB adaptor, through a home net-
work. There is therefore a need to have a unified device abstraction, discovery and control model. For
this purpose, this Specification contains the following services:

• Device Access Specification – The Device Access specification supports the coordination of auto-
matic detection and attachment of existing devices on an OSGi Service Platform, facilitates hot-
plugging and -unplugging of new devices, and downloads and installs device drivers on demand.
See Device Access Specification on page 63.

• UPnP™ Device Service Specification – The UPnP specification specifies how OSGi bundles can be
developed that inter-operate with UPnP (Universal Plug and Play) devices and UPnP control
points. The specification is based on[7] UPnP Device Architecture 1.0. See UPnP™ Device Service Spec-
ification on page 189.

1.1.7 Miscellaneous Supporting Services
Services providing solutions to common infrastructure requirements include:

• Log Service Specification – Provides a general purpose message logger for the OSGi Service Platform.
See the Log Service Specification on page 37.

• XML Parser Service Specification – Addresses how the classes defined in JAXP can be used in an OSGi
Service Platform. See XML Parser Service Specification on page 459.

• Tracker Specification – Simplifies tracking the life cycle of bundles and services. SeeTracker Specifi-
cation on page 439.
OSGi Service Platform Release 4, Version 4.3 Page 3

Version Information Introduction
1.2 Version Information
This document is the Residential Specification for the OSGi Service Platform Release 4, Version 4.3.
Components in this specification have their own specification version, independent of the OSGi Ser-
vice Platform, Release 4, Version 4.3 specification. The following table summarizes the packages and
specification versions for the different subjects.

* – This is not a Java package but contains DMT Types.

When a component is represented in a bundle, a version attribute is needed in the declaration of the
Import-Package or Export-Package manifest headers.

Table 1.1 Packages and versions

Item Package(s) Version

[2] OSGi Service Platform Core Specification,Release 4, Version 4.3 org.osgi . f ramework Version 1.6
org.osgi .f ramework.hooks.bundle Vers ion 1 .0
org.osgi .f ramework.hooks.resolver Vers ion 1 .0
org.osgi .f ramework.hooks.service Vers ion 1 .1
org.osgi .f ramework.hooks.weaving Vers ion 1 .0
org.osgi .f ramework. launch Version 1.0
org.osgi .f ramework.start level Vers ion 1.0
org.osgi .f ramework.wir ing Vers ion 1 .0
org.osgi .service.condpermadmin Version 1.1
org.osgi .service.ur l Version 1.0
org.osgi .service.permiss ionadmin Version 1.2

2 Residential Device Management Tree Specif icat ion org.osgi .dmt.residential* Vers ion 1 .0
101 Log Service Specif icat ion org.osgi .service. log Version 1.3
102 Http Service Specif icat ion org.osgi .service.http Vers ion 1.2
103 Device Access Specif icat ion org.osgi .service.device Vers ion 1.1
104 Configuration Admin Service Specif icat ion org.osgi .service.cm Version 1.4
105 Metatype Service Specif icat ion org.osgi .service.metatype Version 1.2
107 User Admin Service Specif icat ion org.osgi .service.useradmin Version 1.1
110 Init ia l Provis ioning Specif ication org.osgi .service.provis ioning Vers ion 1.2
111 UPnP™ Device Service Specif icat ion org.osgi .service.upnp Version 1.2
112 Declarat ive Services Specif icat ion org.osgi .serv ice.component

org.osgi .service.component.annotations
Vers ion 1 .2

113 Event Admin Service Specif ication org.osgi .serv ice.event Version 1.3
117 Dmt Admin Service Specif icat ion org.osgi .service.dmt

org.osgi .service.dmt.spi
org.osgi .service.dmt.noti f icat ion
org.osgi .service.dmt.noti f icat ion.spi
org.osgi .service .dmt.secur ity

Vers ion 2.0

131 TR069 Connector Service Specif icat ion org.osgi .serv ice.tr069todmt Version 1.0
701 Tracker Specif icat ion org.osgi .uti l . t racker Version 1.5
702 XML Parser Service Specif icat ion org.osgi .uti l .xml Version 1.0
Page 4 OSGi Service Platform Release 4, Version 4.3

Introduction References
1.3 References
[1] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels

http://www.ietf.org/rfc/rfc2119.txt, March 1997.

[2] OSGi Service Platform Core Specification,Release 4, Version 4.3
http://www.osgi.org/Specifications/HomePage

[3] Home Gateway Initiative
http://www.homegatewayinitiative.org

[4] HG Requirements for Software Execution Environment
http://www.homegatewayinitiative.org/publis/RD-008- R3.pdf

[5] UPnP™ Forum
http://upnp.org

[6] Broadband Forum
http://www.broadband-forum.org

[7] UPnP Device Architecture 1.0
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf

[8] TR-157 Amendment 3 Component Objects for CWMP
http://www.broadband-forum.org/technical/download/TR-157_Amendment-3.pdf
OSGi Service Platform Release 4, Version 4.3 Page 5

References Introduction
Page 6 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 Introduction
2 Residential Device Management
Tree Specification
Version 1.0

2.1 Introduction
The chapter defines the Device Management Tree (DMT) for residential applications called the Resi-
dential Management Tree (RMT). This RMT is based on the Dmt Admin Service Specification on page 285.
The RMT allows remote managers to manage the residential device through an abstract tree. As this
tree is an abstract representation, different management protocols can use the same underlying man-
agement components, the Dmt Admin Plugins, in the OSGi framework.

This chapter requires full understanding of the concepts in the Dmt Admin Service Specification on
page 285 and uses its terminology.

2.1.1 Essentials
The following essentials are associated with the Residential Management Tree specification:

• Complete – The RMT must cover all functionality to completely manage an OSGi Framework as
defined by the Release 4, Version 4.3 Core specification.

• Performance – The RMT runs on devices with limited resources.
• Searchable – Provide an efficient way to search the RMT remotely.
• Services – Provide efficient access to standardized services like the Log Service.

2.1.2 Entities
• Remote Manager – The entity that remotely controls an OSGi Framework.
• Management Agent – An entity running on the device that is responsible for the management of

the local OSGi Framework. It usually acts as a proxy for a Remote Manager.
• Protocol Adapter – Communicates with a Remote Manager and translates the protocol instructions

to instructions to a local Management Agent.
• DMT – The Device Management Tree. This is the general structure available through the Dmt

Admin service.
• RMT – The Residential Management Tree. This is the part of the DMT that is involved with resi-

dential management.
OSGi Service Platform Release 4, Version 4.3 Page 7

The Residential Management Tree Residential Device Management Tree Specification Version 1.0
Figure 2.1 Device Management Architecture

2.2 The Residential Management Tree
The OSGi node is the root node for OSGi specific information. This OSGi node can be placed any-
where in the Device Management Tree and acts as parent to all the top level nodes in this specifica-
tion. Therefore, in this specification the parent node of, for example, the Framework node is referred
to as $, which effectively represents the OSGi node. The description of the nodes are using the types
defined in OSGi Object Modeling on page 327.

The value of $ for a specific system can be defined with the following Framework property:

org.osgi .dmt.residentia l

For this specifications, the RMT Consists of the following top level nodes:

• Framework – Managing the local Framework
• Fi l ter – Searching nodes in the DMT
• Log – Access to the log

2.3 Managing Bundles
The Framework node provides a remote management model for managing the life cycle of bundles
and inspecting the Framework’s state.

To change the state, for example install a new bundle, requires an atomic session on at least the
Framework node. The model is constructed to reflect the requested state. When the session is com-
mitted, the underlying Plugin must effectuate these requested states into the real state.

For example, to install a bundle it is first necessary to create a new Bundle child node. The Bundle
node is a MAP node, the name of the child node is the locat ion of the bundle as given in the
instal lBundle(locat ion, input stream) method and returned from the getLocation() method.

Remote
Manager

Protocol
Adapter

Dmt Admin

Management
Admin Plugin

protocol
object models

DMT

RMT

OSGi
Framework
Page 8 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 Managing Bundles
This location should not be treated as the actual URL of the bundle, the location is better intended to
be used a management name for the bundle as the remote manager can choose it. It is normally best
to make this name a reverse domain name, for example com.acme.admin . The name " System
Bundle" is a reserved name for the system bundle. The Framework management plugin must there-
fore not treat the location as a URL.

Creating the child node has no effect as long as the session is not committed. This new Bundle node
automatically gets the members defined in the Bundle type.

The URL node should be set to the download URL, the URL used to download the JAR file from. The
URL node is used as the download URL for an install operation (after the node is created newly) or the
update location when the node is changed after the bundle had been installed in a previous session.
Creating a new Bundle node without setting the URL must generate an error when the session is com-
mitted.

To start this newly installed bundle, the manager can set the RequestedState to ACTIVE . If this bun-
dle needs to be started when the framework is restarted, then the AutoStart node can be set to true . If
there bundles to be uninstalled then their RequestedState node must be set to UNINSTALLED as it is
not possible to delete a Bundle node. The RequestedState must be applied after the bundle has been
installed or updated. An uninstalled bundle will be automatically removed from the RMT.

The RequestedState node is really the requested state, depending on start levels and other existing
conditions the bundle can either follow the requested state or have another state if, for example, its
start level is not met. The RequestedState must be stored persistently between invocations, its initial
value is INSTALLED .

The manager can create any number of new Bundle nodes to install a number of bundles at the same
time during commit. It can also change the life cycle of existing bundles. None of these changes must
have any effect until the session is committed.

If the session is finally committed, the Plugin must compare the state in the Dmt Admin tree with the
actual state and update the framework accordingly. The order in which the operations occur is up to
the implementation except for framework operations, they must always occur last. After bundles
have been installed, uninstalled, or updated, the Plugin must refresh all the packages to ensure that
the remote management system sees a consistent state.

Downloading the bundles from a remote system can take substantial time. As the commit is used
synchronously, it is sometimes advisable to download the bundles to the device before they are
installed.

If any error occurs, any changes that were made since the beginning of the last transaction point
must be rolled back. An error should be reported. The remote manager therefore gets an atomic
behavior, either all changes succeed or all fail. A manager should also be aware that if its own bundle,
or any of its dependencies, is updated it will be stopped and will not be able to properly report the
outcome to the management system, either a failure or success.

2.3.1 Bundle Life Cycle Example
For example, the following code installs my_bundle , updates up_bundle , and uninstalls old_bundle :

String $ = ... // get the OSGi node

DmtSession session = admin.getSession($ + "/Framework",

DmtSession.LOCK_TYPE_ATOMIC);

try {

 session.createInteriorNode("Bundle/my_bundle");

 session.setNodeValue("Bundle/my_bundle/URL", new DmtData(

 "http://www.example.com/bundles/my_bundle.jar"));

 session.setNodeValue("Bundle/my_bundle/AutoStart",

 DmtData.TRUE_VALUE);

 session.setNodeValue("Bundle/my_bundle/RequestedState",
OSGi Service Platform Release 4, Version 4.3 Page 9

Managing Bundles Residential Device Management Tree Specification Version 1.0
 new DmtData("ACTIVE"));

 session.setNodeValue("Bundle/up_bundle/URL", new DmtData(

 "http://www.example.com/bundles/up_bundle-2.jar"));

 session.setNodeValue("Bundle/old_bundle/RequestedState",

 new DmtData("UNINSTALLED"));

 try {

 session.commit();

 } catch (Exception e) {

 // failure ...

 log....

 }

} catch (Exception e) {

 session.rollback();

 log...

}

2.3.2 Framework Restart
There are no special operations for managing the life cycle of the Framework, these operations are
done on the System Bundle, or bundle 0. The framework can be stopped or restarted:

• Restart – Restarting is an update, requiring the URL to be set to a new URL. This must shutdown
the framework after the commit has succeeded.

• Stopping – Stopping is setting the RequestedState to INSTALLED

If the URL node has changed, the RequestedState will be ignored and the framework must only be
restarted.

Sessions that modify nodes inside the Framework sub-tree must always be atomic and opened on the
Framework node. The Data Plugin managing the Framework node is only required to handle a single
simultaneous atomic session for its whole sub-tree.

For example, the following code restarts the framework after the commit has succeeded.

DmtSession session = admin.getSession($ + "/Framework",

DmtSession.LOCK_TYPE_ATOMIC);

session.setNodeValue("Bundle/System Bundle/URL",

 new DmtData(""));

session.commit();

2.3.3 Access to Wiring
During runtime a bundle is wired to several different entities, other bundles, fragments, packages,
and services. The framework defines a general Requirement-Capability model and this model is
reflected in the Wiring API in[1] OSGi Service Platform Core Specification,Release 4, Version 4.3. The
Requirement-Capability model maps to a very generic way of describing wires between requirers and
providers that is applicable to all of the OSGi constructs.

 The Core defines namespaces for:

• osgi .wir ing.bundle – The namespace for the Require-Bundle header. It wires the bundle with the
Require-Bundle header to the bundle with the required Bundle-SymbolicName and Bundle-
Version header.

• osgi .wir ing.host – The namespace for the Fragment-Host header. It wires from bundle with the
Fragment-Host header to the bundle with the required Bundle-SymbolicName and Bundle-
Version header.
Page 10 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 Managing Bundles
• osgi.wir ing.package – The namespace for the Import/Export-Package header. It wires from
bundle with the Import-Package header to the bundle with the Export-Package header.

In the Core API, the wiring is based on the Bundle revisions. However, this specification requires that
all bundles are refreshed after a management operation to ensure a consistent wiring state. The man-
agement model therefore ignores the Bundle Revision and instead provides wiring only for bundles
since the manager is unable to see different revision of a bundle anyway. The general Requirement-
Capability model is depicted in Figure 2.2.

Figure 2.2 Requirements and Capabilities and their Wiring

The core does not specify a namespace for services. However, services can also be modeled with
requirements capabilities. The registrar is the provider and the service properties are the capability.
The getter is the requirer, its filter is the requirement. This specification therefore also defines a
namespaces for services:

osgi.wiring.rmt.service

This namespace is defined in osgi.wiring.rmt.service Namespace on page 14.

To access the wiring, each Bundle node has a Wires node. This is a MAP of LIST of Wire . The key of the
MAP node is the name of the namespace, that is, the wires are organized by namespace. This provides
convenient access to all wires of a given namespace. The value of the MAP node is a LIST node, provid-
ing sequential access to the actual wires.

A Wire node provides the following information:

• Namespace – The namespace of the wire
• Requirement – The requirement that cause the wire
• Capabil i ty – The capability that satisfied the wire
• Requirer – The location of the bundle that required the wire
• Provider – The location of the bundle that satisfied the requirement

2.3.4 Wiring Example
The following example code demonstrates how the wires can be printed out:

String prefix ="Bundle/my_bundle/Wires/osgi.wiring.package";

String [] wires = session.getChildNodeNames(prefix);

for (String wire : wires) {

 String name = session.getNodeValue(prefix + "/"

 + wire + "/Capability/Attribute/osgi.wiring.package").getString();

 String provider = session.getNodeValue(prefix + "/"

 + wire + "/Provider").getString();

 String requirer = session.getNodeValue(prefix + "/"

 + wire + "/Requirer").getString();

Capability

Requirement

Requirement/Capability

Runtime
fragmenthost

Bundle
OSGi Service Platform Release 4, Version 4.3 Page 11

Filtering Residential Device Management Tree Specification Version 1.0
 System.out.printf("%-20s %-30s %s\n", name, provider, requirer);

}

2.4 Filtering
Frequently it is necessary to search through the tree of nodes for nodes matching specific criteria.
Having to use Java to do this filtering can become cumbersome and impossible if the searching has to
happen remotely. For that reason, the RMT contains a Fi l ternode. This node allows a manager to
specify a Target and a Fi l ter . The Target is an absolute URI that defines a set of nodes that the Filter
Plugin must search. This set is defined by allowing wildcards in the target. A single asterisk (’*’
\u002A) matches a single level, the minus sign (’ - ’ \u002C) specifies any number of levels and must
not be used at the end of the URI. This implies that there is always a final node. The reason that a
minus sign must not be last is that the final node’s type would be undefined, any node on any sub-
level would match.

The Target node must be specified as an absolute URI that must always end in a slash to signify that it
represents a path to an interior node. The URI is absolute because the Filter is specified in a persistent
node. It is possible to open a session, create the filter specification, close the session, and then open a
new session, and use the earlier specified Target . As the two involved session do not have to have the
same session, the base could differ, making it hard to use relative addressing. However, the result is
always unique to a session. It is therefore possible to use relative URIs in the read out of the result.

For example, the tree in Figure 2.3 defines a sub-tree.

Figure 2.3 Example Sub-Tree

Table 2.1 shows a number of example targets on the previous sub-tree and their resulting final nodes,
assuming the result is read in a session open on . /A .

.

B C

D E

F GG

A

Table 2.1 Example Target and results on a session opened on ./A

Target Final nodes

. /A/*/ B, C

./A/*/E/*/ C/E/F, C/E/G

./A/-/G/ C/D/G, C/E/G

./A/*/*/*/ C/D/G, C/E/F, C/E/G

./A/-/*/ This is an error, . /A/-/*/ is the same as . /A/-/ , which is not allowed.

. /A/*/*/ C/D, C/E
Page 12 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 Log Access
 The Fi lter specifies a standard OSGi Filter expression that is applied to the final nodes. If no filter is
specified then all final nodes match. However, when there is a filter specified it is applied against the
final node and only the final nodes that are matching the filter as included in the result.

A node is matched against a filter by using some of its children as properties. The properties of a node
are defined by:

• Primitive child nodes, or
• LIST nodes that have primitive as child nodes. Such nodes must be treated as multi-valued prop-

erties.

The matching rules in the filter must follow the standard OSGi Filter rules. If the filter matches such
a node then it must be available as a session relative URI in the ResultUriL ist node. The relative URIs
are listed in the ResultUriL ist .

The result nodes must only include nodes that satisfy the following conditions:

• The node must match the Target node’s URI specification
• The node must be visible in the current session
• The node must not reside in the Filter sub-tree
• The node must be an interior node
• The caller must have access to the node
• It must be possible to get all the values of the child nodes that are necessary for filter matching
• The node must match the filter if a filter is specified

The result is also available as a sub-tree under the Resultnode and can be traversed as sub-tree in
Result . This tree contains all the result nodes and their sub-tree. The results under the Result node are
a snapshot and cannot be modified, they are read only. This result can be removed after the session is
closed.

2.4.1 Example
For example, the following code prints out the location of active bundles:

session.createInteriorNode("Filter/mq-1");

session.setNodeValue("Filter/mq-1/Target",

 new DmtData($+"/Framework/Bundle/*/"));

session.setNodeValue("Filter/mq-1/Filter", new DmtData("(AutoStart=true)"));

String[] autostarted = session.getChildNodeNames(

 "Filter/mq-1/Result/Framework/Bundle");

System.out.println("Auto started bundles");

for (String location : autostarted)

 System.out.println(location);

session.deleteNode("Filter/mq-1");

2.5 Log Access
The Log node provides access to the Log Service, the node contains a LIST of LogEntry nodes. The
length of this list is implementation dependent. The list is sorted in most recent first order. This
allows a manager to retrieve the latest logs. For example, the following code print out the latest 100
log entries:

DataSession session = admin.getSession($+"/Log/LogEntries");

try {

 for (int i =0; i<100; i++) {

 Date date = session.getNodeValue(i+"/Time").getDateTime();

 String message = session.getNodeValue(i+"/Message").getString();
OSGi Service Platform Release 4, Version 4.3 Page 13

osgi.wiring.rmt.service Namespace Residential Device Management Tree Specification Version 1.0
 System.out.println(date + " " + message);

 }

} finally {

 session.close();

}

2.6 osgi.wiring.rmt.service Namespace
This section defines a namespace for the Requirement-Capability model to maintain services
through the standard wiring API. A service is a capability, the Capability attributes are the service
properties. The bundle that gets the service has a requirement on that service.

The filter of the service requirement is not the original filter since this is not possible to obtain reli-
ably. Instead the filter must assert of the service. id , for example: (service. id=123) .

The resulting filter is specified as the f i l ter: directive on the Requirement. This is depicted in Figure
2.4.

Figure 2.4 Requirements and Capabilities and their Wiring

The osgi .wir ing.rmt.service attributes are defined in Table 2.2:

2.7 Tree Summary

2.7.1 Framework

$ _G__ NODE 1 P

 Framework _G__ NODE 1 P

 StartLevel _GR_ integer 1 A

 InitialBundleStartLevel _GR_ integer 1 A

 org.osgi/1.0/MAP

 Bundle _G__ MAP 1 A

 [string] AG__ NODE 0..* D

 State _G__ string 0,1 A

 StartLevel _GR_ integer 1 A

 InstanceId _G__ integer 1 A

 URL _GR_ string 1 A

 AutoStart _GR_ boolean 1 A

gettingregistering
bundle

service
service service

bundle

properties filter

Table 2.2 osgi.wiring.rmt.service namespace
Attribute Name Type Syntax Description

osgi .wir ing.rmt.service Str ing service. id The service id.

objectClass Str ing[] fqn Fully qualified name of the types under which this
service is listed

* * * Any service property
Page 14 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 Tree Summary
 FaultType _G__ integer 1 A

 FaultMessage _G__ string 1 A

 BundleId _G__ long 0,1 A

 SymbolicName _G__ string 0,1 A

 Version _G__ string 0,1 A

 org.osgi/1.0/LIST

 BundleType _G__ LIST 0,1 A

 [list] _G__ string 0..* D

 org.osgi/1.0/MAP

 Headers _G__ MAP 0,1 A

 [string] _G__ string 0..* D

 Location _G__ string 1 A

 RequestedState _GR_ string 1 A

 LastModified _G__ dateTime 0,1 A

 org.osgi/1.0/MAP

 Wires _G__ MAP 0,1 A

 org.osgi/1.0/LIST

 [string] _G__ LIST 0..* D

 [list] _G__ NODE 0..* D

 Provider _G__ string 1 A

 InstanceId _G__ integer 1 A

 Namespace _G__ string 1 A

 Requirement _G__ NODE 1 A

 Filter _G__ string 1 A

 org.osgi/1.0/MAP

 Directive _G__ MAP 1 A

 [string] _G__ string 0..* D

 org.osgi/1.0/MAP

 Attribute _G__ MAP 1 A

 [string] _G__ string 0..* D

 Capability _G__ NODE 1 A

 org.osgi/1.0/MAP

 Directive _G__ MAP 1 A

 [string] _G__ string 0..* D

 org.osgi/1.0/MAP

 Attribute _G__ MAP 1 A

 [string] _G__ string 0..* D

 Requirer _G__ string 1 A

 org.osgi/1.0/LIST

 Signers _G__ LIST 0,1 A

 [list] _G__ NODE 0..* D

 InstanceId _G__ integer 1 A

 IsTrusted _G__ boolean 1 A

 org.osgi/1.0/LIST

 CertificateChain _G__ LIST 1 A
OSGi Service Platform Release 4, Version 4.3 Page 15

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0
 [list] _G__ string 0..* D

 org.osgi/1.0/LIST

 Entries _G__ LIST 0,1 A

 [list] _G__ NODE 0..* D

 InstanceId _G__ integer 1 A

 Path _G__ string 1 A

 Content _G__ binary 1 A

 org.osgi/1.0/MAP

 Property _G__ MAP 1 A

 [string] _G__ string 0..* D

2.7.2 Filters
 org.osgi/1.0/MAP

 Filter _G__ MAP 0,1 P

 [string] AG_D NODE 0..* D

 Filter _GR_ string 1 A

 Target _GR_ string 1 A

 Limit _GR_ integer 1 A

 Result _G__ Node 1 A

 org.osgi/1.0/LIST

 ResultUriList _G__ LIST 1 A

 [list] _G__ node_uri 0..* D

 InstanceId _G__ integer 1 A

2.7.3 Log

 Log _G__ NODE 0,1 P

 org.osgi/1.0/LIST

 LogEntries _G__ LIST 1 A

 [list] _G__ NODE 0..* D

 Bundle _G__ string 1 A

 Time _G__ dateTime 1 A

 Level _G__ integer 1 A

 Message _G__ string 1 A

 Exception _G__ string 0,1 A

2.8 org.osgi.dmt.residential

2.8.1 $
$

The $ describes the root node for OSGi Residential Management. The path to this node is defined in
the system property: org.osgi .dmt.residential .
Page 16 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential
2.8.2 Bundle
Bundle

The management node for a Bundle. It provides access to the life cycle control of the bundle as well to
its metadata, resources, and wiring.

To install a new bundle an instance of this node must be created. Since many of the sub-nodes are not
yet valid as the information from the bundle is not yet available. These nodes are marked to be
optional and will only exists after the bundle has been really installed.
FRAGMENT

2.8.2.1 FRAGMENT = “FRAGMENT”

The type returned for a fragment bundle.
INSTALLED

2.8.2.2 INSTALLED = “INSTALLED”

The Bundle INSTALLED state.
RESOLVED

2.8.2.3 RESOLVED = “RESOLVED”

The Bundle RESOLVED state.
STARTING

2.8.2.4 STARTING = “STARTING”

The Bundle STARTING state.
ACTIVE

2.8.2.5 ACTIVE = “ACTIVE”

The Bundle ACTIVE state.
STOPPING

2.8.2.6 STOPPING = “STOPPING”

The Bundle STOPPING state.
UNINSTALLED

2.8.2.7 UNINSTALLED = “UNINSTALLED”

The Bundle UNINSTALLED state.

Table 2.3 Sub-tree Description for $

Name Act Type Card S Description

Fi lter
Filter

Get MAP 0,1 P The Filters node searches the nodes in a tree
that correspond to a target URI and an optional
filter expression. A new Fi lter is created by add-
ing a node to the Filters node. The name of the
node is chosen by the remote manager. If mul-
tiple managers are active they must agree on a
scheme to avoid conflicts or an atomic sessions
must be used to claim exclusiveness. Filter
nodes are persistent but an implementation
can remove the node after a suitable timeout
that should at least be 1 hour. If this function-
ality is not supported on this device then the
node is not present.

[Str ing]
Filter

Add Del
Get

F i l ter 0. .* D

Framework
Framework

Get Framework 1 P The Framework node used to manage the local
framework.

Log
Log

Get Log 0,1 P Access to the optional Log. If this functionality
is not supported on this device then the node is
not present.
OSGi Service Platform Release 4, Version 4.3 Page 17

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0
Table 2.4 Sub-tree Description for Bundle

Name Act Type Card S Description

URL
URL

Get Set str ing 1 A The URL to download the archive from for this
bundle. By default this is the empty string. In
an atomic session this URL can be replaced to a
new URL, which will trigger an update of this
bundle during commit. If this value is set it
must point to a valid JAR from which a URL
can be downloaded, unless it is the system bun-
dle. If it is the empty string no action must be
taken except when it is the system bundle. If
the URL of Bundle 0 (The system bundle) is
replaced to any value, including the empty
string, then the framework will restart. If both
a the URL node has been set the bundle must be
updated before any of the other aspects are
handled like RequestedState and StartLevel .

AutoStart
AutoStart

Get Set boolean 1 A Indicates if this Bundle must be started when
the Framework is started. If the AutoStart node
is true then this bundle is started when the
framework is started and its StartLevel is met.
If the AutoStart node is set to true and the bun-
dle is not started then it will automatically be
started if the start level permits it. If the
AutoStart node is set to fa lse then the bundle
must not be stopped immediately. If the
AutoStart value of the System Bundle is
changed then the operation must be ignored.
The default value for this node is true

FaultType
FaultType

Get integer 0,1 A The BundleException type associated with a
failure on this bundle, -1 if no fault is associated
with this bundle. If there was no Bundle Excep-
tion associated with the failure the code must
be 0 (UNSPECIFIED). The FaultMessage pro-
vides a human readable message. Only present
after the bundle is installed.

FaultMessage
FaultMessage

Get str ing 0,1 A A human readable message detailing an error
situation or an empty string if no fault is associ-
ated with this bundle. Only present after the
bundle is installed.

BundleId
BundleId

Get long 0,1 A The Bundle Id as defined by the getBundleId()
method. If there is no installed Bundle yet,
then this node is not present.

SymbolicName
SymbolicName

Get str ing 0,1 A The Bundle Symbolic Name as defined by the
Bundle getSymbol icName() method. If this
result is nul l then the value of this node must
be the empty string. If there is no installed
Bundle yet, then this node is not present.

Version
Version

Get str ing 0,1 A The Bundle’s version as defined by the Bundle
getVersion() method. If there is no installed
Bundle yet, then this node is not present.
Page 18 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential
BundleType
BundleType

Get LIST 0,1 A A list of the types of the bundle. Currently only
a single type is provided:
FRAGMENT If there is no installed Bundle yet,
then this node is not present.

[l ist]
BundleType

Get str ing 0. .* D

Headers
Headers

Get MAP 0,1 A The Bundle getHeaders() method. If there is
no installed Bundle yet, then this node is not
present.[Str ing]

Headers

Get str ing 0. .* D

Location
Location

Get str ing 1 A The Bundle’s Location as defined by the Bundle
getLocation() method. The location is speci-
fied by the management agent when the bun-
dle is installed. This location should be a
unique name for a bundle chosen by the man-
agement system. The Bundle Location is immu-
table for the Bundle’s life (it is not changed
when the Bundle is updated). The Bundle Loca-
tion is also part of the URI to this node.

State
State

Get str ing 0,1 A Return the state of the current Bundle. The val-
ues can be:
INSTALLED
RESOLVED
STARTING
ACTIVE
STOPPING If there is no installed Bundle yet,
then this node is not present. The default value
is UNINSTALLED after creation.

Table 2.4 Sub-tree Description for Bundle

Name Act Type Card S Description
OSGi Service Platform Release 4, Version 4.3 Page 19

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0
RequestedState
RequestedState

Get Set str ing 1 A Is the requested state the manager wants the
bundle to be in. Can be:
INSTALLED - Ensure the bundle is stopped and
refreshed.
RESOLVED - Ensure the bundle is resolved.
ACTIVE - Ensure the bundle is started.
UNINSTALLED - Uninstall the bundle. The
Requested State is a request. The management
agent must attempt to achieve the desired state
but there is a no guarantee that this state is
achievable. For example,a Framework can
resolve a bundle at any time or the active start
level can prevent a bundle from running. Any
errors must be reported on FaultType and
FaultMessage . If the AutoStart node is true
then the bundle must be persistently started,
otherwise it must be transiently started. If the
StartLevel is not met then the commit must
fail if AutoStart is fa lse as a Bundle cannot be
transiently started when the start level is not
met. If both a the URL node has been set as well
as the RequestedState node then this must
result in an update after which the bundle
should go to the RequestedState. The Request-
edState must be stored persistently so that it
contains the last requested state. The initial
value of the RequestedState must be
INSTALLED .

StartLevel
StartLevel

Get Set integer 1 A The Bundle’s current Start Level as defined by
the BundleStartLevel adapt interface
getStartLevel() method. Changing the
StartLevel can change the Bundle State as a
bundle can become eligible for starting or stop-
ping. If the URL node is set then a bundle must
be updated before the start level is set,

LastModif ied
LastModified

Get datet ime 0,1 A The Last Modified time of this bundle as
defined by the Bundle getlastModif ied()
method. If there is no installed Bundle yet then
this node is not present.

Table 2.4 Sub-tree Description for Bundle

Name Act Type Card S Description
Page 20 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential
2.8.3 Bundle.Certificate
Bundle.Certificate

Place holder for the Signers DN names.

Wires
Wires

Get MAP 0,1 A A MAP of name space -> to Wire. A Wire is a
relation between to bundles where the type of
the relation is defined by the name space. For
example, osgi.wir ing.package name space
defines the exporting and importing of pack-
ages. Standard osgi name spaces are:
osgi.wiring.bundle
osgi.wiring.package
osgi.wiring.host As the Core specification
allows custom name spaces this list can be
more extensive. This specification adds one
additional name space to reflect the services,
this is the osgi .wir ing.service name space. This
name space will have a wire for each time a reg-
istered service by this Bundle was gotten for the
first time by a bundle. A capability in the ser-
vice name space holds all the registered service
properties. The requirement has no attributes
and a single f i l ter directive that matches the
service id property. If there is no installed Bun-
dle yet then this node is not present.

[Str ing]
Wires

Get LIST 0. .* D

[l ist]
Wires

Get Wire 0. .* D

Signers
Signers

Get LIST 0,1 A Return all signers of the bundle. See the Bundle
getSignerCert i f icates() method with the
SIGNERS_ALL parameter. If there is no
installed Bundle yet then this node is not
present.

[l ist]
Signers

Get Cert i f icate 0. .* D

Entries
Entries

Get LIST 0,1 A An optional node providing access to the
entries in the Bundle’s JAR. This list must be
created from the Bundle getEntryPaths()
method called with an empty String. For each
found entry, an Entry object must be made
available. If there is no installed Bundle yet
then this node is not present.

[l ist]
Entries

Get Entry 0. .* D

InstanceId
InstanceId

Get integer 1 A Instance Id used by foreign protocol adapters as
a unique integer key not equal to 0. The
instance id for a bundle must be (Bundle Id %
2^32) + 1.

Table 2.4 Sub-tree Description for Bundle

Name Act Type Card S Description

Table 2.5 Sub-tree Description for Bundle.Certificate

Name Act Type Card S Description

IsTrusted
IsTrusted

Get boolean 1 A Return if this Certificate is trusted.
OSGi Service Platform Release 4, Version 4.3 Page 21

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0
2.8.4 Bundle.Entry
Bundle.Entry

An Entry describes an entry in the Bundle, it combines the path of an entry with the content. Only
entries that have content will be returned, that is, empty directories in the Bundle’s archive are not
returned.

2.8.5 Filter
Filter

A Filter node can find the nodes in a given sub-tree that correspond to a given filter expression. This
Filter node is a generic mechanism to select a part of the sub-tree (except itself).

Searching is done by treating an interior node as a map where its leaf nodes are attributes for a filter
expression. That is, an interior node matches when a filter matches on its children. The matching
nodes’ URIs are gathered under a ResultUriList node and as a virtual sub-tree under the Result node.

The Filter node can specify the Target node. The Target is an absolute URI ending in a slash, poten-
tially with wild cards. Only nodes that match the target node are included in the result.

There are two different wild cards:

• Asterisk — (\\u002A ‘*’) Specifies a wild card for one interior node name only. That is A/*/
matches an interior nodes A/B , A/C , but not A/X/Y . The asterisk wild card can be used anywhere in
the URI like A/*/C . Partial matches are not supported, that is a URI like A/xyz* is invalid.

• Minus sign (’-’ \\u002A) — Specifies a wildcard for any number of descendant nodes. This is A/-/X/
matches A/B/X , A/C/X , but also A/X . Partial matches are not supported, that is a URI like A/xyz- is
not supported. The - wild card must not be used at the last segment of a URI

The Target node selects a set of nodes N that can be viewed as a list of URIs or as a virtual sub-tree.
The Target node is the virtual sub-tree (beginning at the session base) and the ResultUriL ist is a LIST
of session relative URIs. The actual selection of the nodes must be postponed until either of these
nodes (or one of their sub-nodes) is accessed for the first time. Either nodes represent a read-only
snapshot that is valid until the end of the session.

It is possible to further refine the selection by specifying the Filter node. The Filter node is an LDAP
filter expression or a simple wild card (’*’) which selects all the nodes. As the wild card is the default,
all nodes selected by the Target are selected by default.

Cert i f icateChain
CertificateChain

Get LIST 1 A A list of signer DNs of the certificates in the
chain.

[l ist]
CertificateChain

Get str ing 0. .* D

InstanceId
InstanceId

Get integer 1 A Instance Id to allow addressing by Instance Id.

Table 2.5 Sub-tree Description for Bundle.Certificate

Name Act Type Card S Description

Table 2.6 Sub-tree Description for Bundle.Entry

Name Act Type Card S Description

Path
Path

Get str ing 1 A The path in the Bundle archive to the entry.

Content
Content

Get binary 1 A The binary content of the entry.

InstanceId
InstanceId

Get integer 1 A Instance Id to allow addressing by Instance Id.
Page 22 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential
The Filter must be applied to each of the nodes selected by target in the set N . By definition, these
nodes are interior nodes only. LDAP expressions assert values depending on their key. In this case, the
child leaf nodes of a node in set N are treated as the property on their parent node.

The attribute name in the LDAP filter can only reference a direct leaf node of the node in the set N or
an interior node with the DDF type DmtConstants.DDF_LIST with leaf nodes as children, i.e. a LIST.
A LIST of primitives must be treated in the filter as a multi valued property, any of its values satisfy
an assertion on that attribute.

Attribute names must not contains a slash, that is, it is only possible to assert values directly below
the node selected by the target .

Each of these leaf nodes and LISTs can be used in the LDAP Filter as a key/value pair. The comparison
must be done with the type used in the Dmt Data object of the compared node. That is, if the Dmt
Admin data is a number, then the comparison rules of the number must be used. The attributes given
to the filter must be converted to the Java object that represents their type.

The set N must therefore consists only of nodes where the Filter matches.

It is allowed to change the Target or the Filter node after the results are read. In that case, the Result
and ResultUriList must be cleared instantaneously and the search redone once either result node is
read.

The initial value of Target is the empty string, which indicates no target.

Table 2.7 Sub-tree Description for Filter

Name Act Type Card S Description

Target
Target

Get Set str ing 1 A A URI always ending in a slash (’/’), relative the
current session, with optional wildcards, select-
ing a set of sub-nodes N . Wildcards can be an
asterisk (* ‘*’) or a minus sign (- ‘-’). An asterisk
can be used in place of a single node name in
the URI, a minus sign stands for any number of
consecutive node names. The default value of
this node is the empty string, which indicates
that no nodes must be selected. Changing this
value must clear any existing results. If the
Result() or ResultUriL ist is read to get N then a
new search must be executed. A URI must
always end in ‘/’ to indicate that the target can
only select interior nodes.

Fi lter
Filter

Get Set str ing 1 A An optional filter expression that filters nodes
in the set N selected by Target . The filter
expression is an LDAP filter or an asterisk (’*’).
An asterisk is the default value and matches
any node in set N . If an LDAP expression is set
in the Filter node then the set N must only con-
tain nodes that match the given filter. The val-
ues the filter asserts are the immediate leafs
and LIST nodes of the nodes in set N . The name
of these child nodes is the name of the attribute
matched in the filter. The nodes can be
removed by the Filter implementation after a
timeout defined by the implementation.
OSGi Service Platform Release 4, Version 4.3 Page 23

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0
2.8.6 Framework
Framework

The Framework node represents the information about the Framework itself. The Framework node
allows manipulation of the OSGi framework, start level, framework life cycle, and bundle life cycle.

All modifications to a Framework object must occur in an atomic session. All changes to the frame-
work must occur during the commit.

The Framework node allows the manager to install (create a new child node in Bundle), to uninstall
change the state of the bundle (see Bundle.RequestedState()), update the bundle (see URL), start/stop
bundles, and update the framework. The implementation must execute these actions in the follow-
ing order during the commit of the session:

1 Create a snapshot of the current installed bundles and their state.
2 stop all bundles that will be uinstalled and updated
3 Uninstall all the to be uninstalled bundles (bundles whose RequestedState is Bundle.UNIN-

STALLED)
4 Update all bundles that have a modified URL with this URL using the Bundle

update(InputStream) method in the order that the order that the URLs were last set.
5 Install any new bundles from their URL in the order that the order that the URLs were last set.
6 Refresh all bundles that were updated and installed
7 Ensure that all the bundles have their correct start level
8 If the RequestedState was set, follow this state. Otherwise ensure that any Bundles that have the

AutoStart flag set to true are started persistently. Transiently started bundles that were stopped in
this process are not restarted. The bundle id order must be used.

9 Wait until the desired start level has been reached
10 Return from the commit without error.

If any of the above steps runs in an error (except the restart) than the actions should be undone and
the system state must be restored to the snapshot.

Limit
Limit

Get Set integer 1 A Limits the number of results to the given num-
ber. If this node is not set there is no limit. The
default value is not set, thus no limit.

Result
Result

Get NODE 1 A The Result tree is a virtual read-only tree of all
nodes that were selected by the Target and
matched the Filter, that is, all nodes in set N .
The Target contains a relative URI (with
optional wildcards) from the parent of the Fil-
ters node. The Result node acts as the parent of
this same relative path for each node in N . The
Result node is a snapshot taken the first time it
is accessed after a change in the Fi lter and/or
the Target nodes.

ResultUriList
ResultUriList

Get LIST 1 A A list of URIs of nodes in the Device Manage-
ment Tree from the node selected by the Target
that match the Filter node. All URIs are relative
to current session. The Result node is a snap-
shot taken the first time it is accessed after a
change in the Fi l ter and/or the Target nodes.

[l ist]
ResultUriList

Get node_uri 0. .* D

InstanceId
InstanceId

Get integer 1 A Instance Id to allow addressing by Instance Id.

Table 2.7 Sub-tree Description for Filter

Name Act Type Card S Description
Page 24 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential
If the System Bundle was updated (its URL) node was modified, then after the commit has returned
successfully, the OSGi Framework must be restarted.

Table 2.8 Sub-tree Description for Framework

Name Act Type Card S Description

StartLevel
StartLevel

Get Set integer 1 A The StartLevel manages the Framework’s cur-
rent Start Level. Maps to the Bundle Start Level
set/getStartLevel() methods. This node can
set the requested Framework’s StartLevel, how-
ever it doesn’t store the value. This node
returns the Framework’s StartLevel at the
moment of the call.

In it ialBundleStart
Level
InitialBundleStartLevel

Get Set integer 1 A Configures the initial bundle start level, maps
to the the FrameworkStartLevel set/
getInit ialBundleStartLevel() method.

Bundle
Bundle

Get MAP 1 A The MAP of location -> Bundle. Each Bundle is
uniquely identified by its location. The loca-
tion is a string that must be unique for each
bundle and can be chosen by the management
system. The Bundles node will be automati-
cally filled from the installed bundles, repre-
senting the actual state. New bundles can be
installed by creating a new node with a given
location. At commit, this bundle will be
installed from their Bundle.URL node. The
location of the System Bundle must be “System
Bundle” (see the Core’s
Constants.SYSTEM_BUNDLE_LOCATION), this
node cannot be uninstalled and most opera-
tions on this node have special meaning. It is
strongly recommended to use a logical name
for the location of a bundle, for example
reverse domain names or a UUID. To uninstall
a bundle, set the Bundle.RequestedState to
UNINSTALLED , the nodes in Bundle cannot be
deleted.

[Str ing]
Bundle

Add Get Bundle 0. .* D

Property
Property

Get MAP 1 A The Framework Properties. The Framework
properties come from the Bundle Context
getProperty() method. However, this method
does not provide the names of the available
properties. If the handler of this node is aware
of the framework properties then these should
be used to provide the node names. If these
properties are now known, the handler must
synthesize the names from the following
sources
System Properties (as they are backing the
Framework properties)
Launching properties as defined in the OSGi
Core specification
Properties in the residential specification
Other known properties

[Str ing]
Property

Get str ing 0. .* D
OSGi Service Platform Release 4, Version 4.3 Page 25

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0
2.8.7 Wire
Wire

A Wire is a link between two bundles where the semantics of this link is defined by the used name
space. This is closely modeled after the Wiring API in the Core Framework.

2.8.8 Wire.Capability
Wire.Capability

Describes a Capability.

Table 2.9 Sub-tree Description for Wire

Name Act Type Card S Description

Namespace
Namespace

Get str ing 1 A The name space of this wire. Can be:
osgi.wiring.bundle - Defined in the OSGi Core
osgi.wiring.package - Defined in the OSGi Core
osgi.wiring.host - Defined in the OSGi Core
osgi.wiring.rmt.service - Defined in this specifi-
cation
* - Generic name spaces The osgi.wir-
ing.rmt.service name space is not defined by
the OSGi Core as it is not part of the module
layer. The name space has the following layout:
Requirement - A filter on the service.id service
property.
Capability - All service properties as attributes.
No defined directives.
Requirer - The bundle that has gotten the ser-
vice
Provider - The bundle that has registered the
service There is a wire for each registration-get
pair. That is, if a service is registered by A and
gotten by B and C then there are two wires: B-
>A and C->A .

Requirement
Requirement

Get Requirement 1 A The Requirement that caused this wire.

Capabi l ity
Capability

Get Capabi l ity 1 A The Capability that satisfied the requirement
of this wire.

Requirer
Requirer

Get str ing 1 A The location of the Bundle that contains the
requirement for this wire.

Provider
Provider

Get str ing 1 A The location of the Bundle that provides the
capability for this wire.

InstanceId
InstanceId

Get integer 1 A Instance Id to allow addressing by Instance Id.

Table 2.10 Sub-tree Description for Wire.Capability

Name Act Type Card S Description

Directive
Directive

Get MAP 1 A The Directives for this requirement.

[Str ing]
Directive

Get str ing 0. .* D
Page 26 OSGi Service Platform Release 4, Version 4.3

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.service.log
2.8.9 Wire.Requirement
Wire.Requirement

Describes a Requirement.

2.9 org.osgi.dmt.service.log

2.9.1 Log
Log

Provides access to the Log Entries of the Log Service.

2.9.2 LogEntry
LogEntry

A Log Entry node is the representation of a LogEntry from the OSGi Log Service.

Attr ibute
Attribute

Get MAP 1 A The Attributes for this capability.

[Str ing]
Attribute

Get str ing 0. .* D

Table 2.10 Sub-tree Description for Wire.Capability

Name Act Type Card S Description

Table 2.11 Sub-tree Description for Wire.Requirement

Name Act Type Card S Description

Fi lter
Filter

Get str ing 1 A The Filter string for this requirement.

Directive
Directive

Get MAP 1 A The Directives for this requirement. These
directives must contain the filter: directive as
described by the Core. [Str ing]

Directive

Get str ing 0. .* D

Attr ibute
Attribute

Get MAP 1 A The Attributes for this requirement.

[Str ing]
Attribute

Get str ing 0. .* D

Table 2.12 Sub-tree Description for Log

Name Act Type Card S Description

LogEntries
LogEntries

Get LIST 1 A A potentially long list of Log Entries. The
length of this list is implementation depen-
dent. The order of the list is most recent event
at index 0 and later events with higher consec-
utive indexes. No new entries must be added to
the log when there is an open exclusive or
atomic session.

[l ist]
LogEntries

Get LogEntry 0. .* D
OSGi Service Platform Release 4, Version 4.3 Page 27

References Residential Device Management Tree Specification Version 1.0
2.10 References
[1] OSGi Service Platform Core Specification,Release 4, Version 4.3

http://www.osgi.org/Specifications/HomePage

Table 2.13 Sub-tree Description for LogEntry

Name Act Type Card S Description

Time
Time

Get datet ime 1 A Time of the Log Entry.

Level
Level

Get integer 1 A The severity level of the log entry. The value is
the same as the Log Service level values:
LOG_ERROR 1
LOG_WARNING 2
LOG_INFO 3
LOG_DEBUG 4 Other values are possible
because the Log Service allows custom levels.

Message
Message

Get str ing 1 A Textual, human-readable description of the log
entry.

Bundle
Bundle

Get str ing 1 A The location of the bundle that originated this
log or an empty string.

Exception
Exception

Get str ing 0,1 A Human readable information about an excep-
tion. Provides the exception information if
any, optionally including the stack trace.
Page 28 OSGi Service Platform Release 4, Version 4.3

TR-157 Amendment 3 Software Module Guidelines Management Agent
3 TR-157 Amendment 3 Software
Module Guidelines
[1] Broadband Forum (BBF) has defined an object model for managing the software modules in a CPE.
The BBF Software Modules object defines Execution Environments, Deployment Units, and Execu-
tion Units. These concepts are mapped in Table 3.1.

There can be multiple Execution Environments of the same or different types. The parent Execution
Environment is either the native environment, for example Linux, or it can be another Framework. A
BBF Deployment Unit and Execution Unit both map to a bundle since there is no need to separate
those concepts in OSGi. An implementation of this object model should have access to all the Execu-
tion Environments as the Deployment Units and Execution Units are represented in a single table.

This section is not a specification in the normal sense. The intention of this chapter is to provide
guidelines for implementers of the [4] TR-157a3 Internet Gateway Device Software Modules on an OSGi
Service Platform.

3.1 Management Agent
The Broadband Forum TR-157 Software Modules standard provides a uniform view of the different
execution environments that are available in a device. Execution Environments can model the
underlying operating system, an OSGi framework, or other environments that support managing the
execution of code.

Most parameters in the Software Modules object model map very well to their OSGi counter parts.
However, there are a number of issues that require support from a management agent. This manage-
ment agent must maintain state to implement the contract implied by the Software Modules stan-
dard. For example, the OSGi Framework does not have an Initial Start Level, an OSGi Framework
always starts at an environment property defined start level. However, the standard requires that a
Framework must start at a given level after it is launched.

There are many other actions that require a management agent to provide the functionality required
by TR-157 that is not build into the OSGi Framework since the standard requires a view that covers
the whole device, not just the OSGi environment. The assumed architecture is depicted in Figure 3.1.

Table 3.1 Mapping of concepts

Software Modules Concept OSGi Concept

Execution Environment OSGi Framework

Deployment Unit Bundle

Execution Unit Bundle
OSGi Service Platform Release 4, Version 4.3 Page 29

Parameter Mapping TR-157 Amendment 3 Software Module Guidelines
Figure 3.1 Management Agent Architecture

3.2 Parameter Mapping
Table 3.2 provides OSGi specific information for the different parameters in the Software Modules
object model.

ACS TR-069
Protocol Adapter

TR-069
Management
Agent

Other Exec Envs
Mngmt

OSGi Exec Env
Mngmt

Framework

Bundle

ExecEnv.{i}

DeploymentUnit.{i}
ExecutionUnit.{i}

JARs1

0..n

1..n

1

Table 3.2 OSGi Specific Information for the BBF Software Modules object model

TR-069 Software Module
Object Parameter

Mapping in case of OSGi

Device.SoftwareModules.

 ExecEnvNumberOfEntr ies

 DeploymentUnitNumberOfEntr ies

 ExecutionUnitNumberOfEntr ies

Device.SoftwareModules.ExecEnv.{i} .

 Enable Indicates whether or not this OSGi Framework is enabled. Disabling an
enabled OSGi Framework must stop it, while enabling a disabled OSGi
Framework must launch it. When an Execution Environment is disabled,
Bundles installed in that OSGi Framework will be unaffected, but any Bun-
dles on that OSGi Framework are automatically made inactive. When an
OSGi Framework is disabled it is impossible to make changes to the
installed bundles, install new bundles, or query any information about the
bundles. Disabling the OSGi Framework could place the device in a non-
manageable state. For example, if the OSGi Framework runs the Protocol
Adapter or has a management agent then it is possible that the device can
no longer be restarted.

 Status Indicates the status of the OSGi Framework. Enumeration of:
• Up – The OSGi Framework is up and running.
• Error – The OSGi Framework could not be launched.
• Disabled – The OSGi Framework is not enabled
Page 30 OSGi Service Platform Release 4, Version 4.3

TR-157 Amendment 3 Software Module Guidelines Parameter Mapping
 Reset Setting this parameter to true causes this OSGi Framework to revert back to
the state it was in when the device last issued a 0 BOOTSTRAP Inform event
(bootstrap). The following requirements dictate what must happen for the
reset to be complete:
• The system must restore the set of bundles that were present at the last

bootstrap event. That means that installed bundles since that moment
must be uninstalled, updated bundles rolled back, and uninstalled
bundles re-installed.

• The OSGi Framework must roll back to the version it had during the
previous rollback.

• The OSGi Framework must be restarted after the previous requirements
have been met.

The value of this parameter is not part of the device configuration and is
always false when read.

 Al ias A non-volatile handle used to reference this instance for alias based
addressing.

 Name A Name that adequately distinguishes this OSGi Framework from all other
OSGi Frameworks. This must be the OSGi Framework UUID as stored in
the org.osgi . framework.uuid property.

 Type Indicates the complete type and specification version of this ExecEnv . For
an OSGi Framework it must be:

OSGi <version>

Where the <version> is the value of the framework property
org.osgi . f ramework.vers ion

 Init ialRunLevel The run level that this ExecEnv will be in upon startup (whether that is
caused by a CPE Boot or the Execution Environment starting). Run levels
map to directly OSGi start levels. However, the OSGi Framework has no
concept of an initial start level, it can use the
org.osgi . f ramework.start level .beginning environment property but this
requires a management to control it. A management agent must therefore
handle this value and instruct the OSGi Framework to move to this start
level after a reboot.
If the value of CurrentRunLevel is set to -1, then the value of this parameter
is irrelevant when read. Setting its value to -1 must have no impact on the
start level of this OSGi Framework.

 RequestedRunLevel Sets the start level of this OSGi Framework, meaning that altering this
parameter's value will change the value of the CurrentRunLevel asynchro-
nously. Start levels dictate which Bundles will be started. Setting this value
when CurrentRunLevel is -1 must have no impact on the start Level of this
OSGi Framework. The value of this parameter is not part of the device con-
figuration and must always be -1 when read.

 CurrentRunLevel The start level that this OSGi Framework is currently operating in. This
value is altered by changing the RequestedRunLevel parameter. Upon star-
tup (whether that is caused by a CPE Boot or the Execution Environment
starting) CurrentRunLevel must be set equal to In it ia lRunLevel by some
management agent.
If Run Levels are not supported by this OSGi Framework then
CurrentRunLevel must be -1.

Table 3.2 OSGi Specific Information for the BBF Software Modules object model

TR-069 Software Module
Object Parameter

Mapping in case of OSGi
OSGi Service Platform Release 4, Version 4.3 Page 31

Parameter Mapping TR-157 Amendment 3 Software Module Guidelines
 Version The Version of this OSGi Framework as specified by its Vendor. This is not
the version of its specification. Must be the value of the System Bundle’s
getVersion() method.

 Vendor The vendor that produced this OSGi Framework, the value of the
org.osgi . framework.vendor Framework property.

 ParentExecEnv The value must be the path name of a row in the ExecEnv table, it can either
be the operating system or another OSGi Framework if the framework is
nested. If the referenced object is deleted, the parameter value must be set
to an empty string. If this value is an empty string then this is the Primary
Execution Environment.

 Al locatedDiskSpace Implementation specific.
 Avai lableDiskSpace Implementation specific.
 Al locatedMemory Implementation specific.
 Avai lableMemory Implementation specific.
 ProcessorRefList Comma-separated list of paths into the DeviceInfo.Processor table. If the

referenced object is deleted, the corresponding item must be removed from
the list. Represents the processors that this OSGi Framework has available
to it.

 Act iveExecutionUnits Comma-separated list of paths into the ExecutionUnit table. If the refer-
enced object is deleted, the corresponding item must be removed from the
list. Represents the Bundles currently active on this OSGi Framework.

Device.SoftwareModules.
 DeploymentUnit .{ i} .

This table serves as the Bundles inventory and contains status information
about each Bundle. A new instance of this table gets created during the
installation of a Bundle.

 UUID A Universally Unique Identifier either provided by the ACS, or generated
by the CPE, at the time of Deployment Unit Installation. The format of this
value is defined by [2] RFC 4122 A Universally Unique IDentifier (UUID) URN
Namespace Version 3 (Name-Based) and [5] TR-069a3 CPE WAN Manage-
ment Protocol. This value must not be altered when the Bundle is updated. A
management agent should use the UUID as the bundle location since the
location plays the same role.

 DUID The Bundle id from the getBundleId() method.
 Al ias A non-volatile handle used to reference this instance.
 Name Indicates the Bundle Symbolic Name of this Bundle. The value of this

parameter is used in the generation of the UUID based on the rules defined
in [5] TR-069a3 CPE WAN Management Protocol.

Table 3.2 OSGi Specific Information for the BBF Software Modules object model

TR-069 Software Module
Object Parameter

Mapping in case of OSGi
Page 32 OSGi Service Platform Release 4, Version 4.3

TR-157 Amendment 3 Software Module Guidelines Parameter Mapping
 Status Indicates the status of this Bundle. Enumeration of:
• Instal l ing – This bundle is in the process of being Installed and should

transition to the Installed state. This state will never be visible in an
OSGi Framework.

• Instal led – This bundle has been successfully installed.This maps to the
Bundle INSTALLED or RESOLVED state.

• Updating – This bundle is in the process of being updated and should
transition to the Installed state. This state will never be visible in an
OSGi Framework.

• Uninstal l ing – This bundle is in the process of being uninstalled and
should transition to the uninstalled state.This state will never be visible
in an OSGi Framework.

• Uninstal led – This bundle has been successfully uninstalled. This state
will never be visible in an OSGi Framework.

 Resolved Indicates whether or not this DeploymentUnit has resolved all of its depen-
dencies. Must be true if this Bundle’s state is ACTIVE , STARTING , STOPPING ,
or RESOLVED . Otherwise it must be false .

 URL Contains the URL used by the most recent ChangeDUState RPC to either
Install or Update this Bundle. This must be remembered by a management
agent since this information is not available in a Bundle.

 Descr ipt ion Textual description of this Bundle, must be the value of the Bundle-Descrip-
tion manifest header or an empty string if not present.

 Vendor The author of this DeploymentUnit formatted as a domain name. The value
of this parameter is used in the generation of the UUID based on the rules
defined in [5] TR-069a3 CPE WAN Management Protocol. The recommended
value is the value of the Bundle-Vendor header.

 Version Version of this Bundle, it mist be he value of the geVersion() method.
 VendorLogList Empty String
 VendorConfigList Empty String
 ExecutionUnitList A path into the ExecutionUnit table for the corresponding ExecutionUnit

for this Bundle, which is also the bundle since the relation is 1:1.
 ExecutionEnvRef The value must be the path name of a row in the ExecEnv table of the corre-

sponding OSGi Framework.
Device.SoftwareModules.
 ExecutionUnit .{ i}.

This table serves as the Execution Unit inventory and contains both status
information about each Execution Unit as well as configurable parameters
for each Execution Unit. This list contains all the bundles since in an OSGi
Framework Deployment Unit and Execution Unit are mapped to Bundles.

 EUID Table wide identifier for a bundle chosen by the OSGi Framework during
installation of the associated DeploymentUnit . The value must be unique
across ExecEnv instances. It is recommended that this be a combination of
the ExecEnv.{i} .Name and an OSGi Framework local unique value. The
unique value for an OSGi framework should be the Bundle Location.

 Al ias A non-volatile handle used to reference this instance.
 Name The name should be unique across all Bundles instances contained within

its associated DeploymentUnit . As the Deployment Unit and the Execution
Unit are the same the value must be the Bundle Symbolic Name.

Table 3.2 OSGi Specific Information for the BBF Software Modules object model

TR-069 Software Module
Object Parameter

Mapping in case of OSGi
OSGi Service Platform Release 4, Version 4.3 Page 33

Parameter Mapping TR-157 Amendment 3 Software Module Guidelines
 ExecEnvLabel The name must be unique across all Bundles contained within a specific
OSGi Framework. This must therefore be the Bundle Id.

 AutoStart If true and the proper start level is met, then this Bundle will be automati-
cally started by the device after its OSGi Framework’s start level is met. If
false this Bundle must not be started after launch until it is explicitly com-
manded to do so.
An OSGi bundle is persistently started or transiently started. It is not possi-
ble to change this state without affecting the active state of the bundle.
Therefore, if the AutoStart is set to true , the bundle must be started persis-
tently, even if it is already started. This will record the persistent start state.
If the AutoStart is set to false , the bundle must be stopped. Therefore, in an
OSGi Framework setting the AutoStart flag to true has the side effect that
the bundle is started if it was not active; setting it to fa lse will stop the bun-
dle.

 RunLevel Determines when this Bundle will be started. If AutoStart is true and the
CurrentRunLevel is greater than or equal to this RunLevel , then this
ExecutionUnit must be started, if run levels are enabled. This maps directly
to the Bundles start level.

 Status Indicates the status of this ExecutionUnit . Enumeration of:
• Id le – This Bundle is in an Idle state and not running. This maps to the

Bundle INSTALLED or Bundle RESOLVED state.
• Start ing – This Bundle is in the process of starting and should transition

to the Active state. This maps to the STARTING state in OSGi. In an OSGi
Framework, lazily activated bundles can remain in the STARTING state
for a long time.

• Active – This instance is currently running. This maps to the Bundle
ACTIVE state.

• Stopping – This instance is in the process of stopping and should tran-
sition to the Idle state.

 RequestedState Indicates the state transition that the ACS is requesting for this Bundle.
Enumeration of:
• Id le – If this Bundle is currently in STARTING or ACTIVE state then the

CPE must attempt to stop the Bundle; otherwise this requested state is
ignored.

• Active – If this Bundle is currently in the INSTALLED or RESOLVED state
the management agent must attempt to start the Bundle. If this Execu-
tionUnit is in the STOPPING state the request is rejected and a fault
raised. Otherwise this requested state is ignored.

If this Bundle is disabled and an attempt is made to alter this value, then a
CWMP Fault must be generated. The value of this parameter is not part of
the device configuration and is always an empty string when read. Bundles
must be started transiently when the AutoStart is fa lse , otherwise persis-
tently.

Table 3.2 OSGi Specific Information for the BBF Software Modules object model

TR-069 Software Module
Object Parameter

Mapping in case of OSGi
Page 34 OSGi Service Platform Release 4, Version 4.3

TR-157 Amendment 3 Software Module Guidelines Parameter Mapping
 ExecutionFaultCode If while running or transitioning between states this Bundle raises an
Exception then this parameter embodies the problem. Enumeration of:

• NoFault – No fault, default value.
• Fai lureOnStart – Threw an exception when started.
• Fai lureOnAutoStart – Failed to be started by the framework, this must

be intercepted by the management agent because this is a Framework
Error event.

• Fai lureOnStop – Raised an exception while stopping
• Fai lureWhileActive – Raised when a bundle cannot be restarted after a

background operation of the Framework, for example refreshing.
• DependencyFai lure – Failed to resolve
• UnStartable – Cannot be raised in OSGi since this is the same error as

Fai lureOnStart .
For fault codes not included in this list, the vendor can include vendor-spe-
cific values, which must use the format defined in Section 3.3 of [6] TR-
106a4 Data Model Template for TR-069-Enabled Devices.

 ExecutionFaultMessage If while running or transitioning between states this Bundle identifies a
fault this parameter provides a more detailed explanation of the problem
enumerated in the ExecutionFaultCode .
If ExecutionFaultCode has the value of NoFault then the value of this
parameter must be an empty string and ignored. This message must be the
message value of the exception thrown by the Bundle.

 Vendor Vendor of this Bundle. The value of the Bundle-Vendor manifest header
 Descr ipt ion Textual description of this Bundle. The value of the Bundle-Description

manifest header
 Version Version of the Bundle. The value of the getVersion() method.
 VendorLogList Empty string.
 VendorConfigList Empty string.
 DiskSpaceInUse Implementation defined
 MemoryInUse Implementation defined
 References Empty String
 AssociatedProcessList Empty String as an OSGi bundle reuses the process of the VM.
 SupportedDataModelList Comma-separated list of strings. Each list item must be the path name of a

row in the DeviceInfo.SupportedDataModel table. If the referenced object
is deleted, the corresponding item must be removed from the list. Repre-
sents the CWMP-DT schema instances that have been introduced to this
device because of the existence of this ExecutionUnit . In OSGi this is imple-
mentation defined.

 ExecutionEnvRef The path to the OSGi Framework that hosts this bundle in the ExecEnv
table.

Device.SoftwareModules.
 ExecutionUnit .{ i} .Extensions.

This object proposes a general location for vendor extensions specific to
this Execution Unit, which allows multiple Execution Units to expose
parameters without the concern of conflicting parameter names. This part
is not used in OSGi.

Table 3.2 OSGi Specific Information for the BBF Software Modules object model

TR-069 Software Module
Object Parameter

Mapping in case of OSGi
OSGi Service Platform Release 4, Version 4.3 Page 35

References TR-157 Amendment 3 Software Module Guidelines
3.3 References
[1] Broadband Forum

http://www.broadband-forum.org

[2] RFC 4122 A Universally Unique IDentifier (UUID) URN Namespace
http://tools.ietf.org/html/rfc4122

[3] TR-157a3 Component Objects for CWMP
http://www.broadband-forum.org/technical/download/TR-157_Amendment-3.pdf

[4] TR-157a3 Internet Gateway Device Software Modules
http://www.broadband-forum.org/cwmp/
 tr-157-1-3-0-igd.html#D.InternetGatewayDevice.SoftwareModules

[5] TR-069a3 CPE WAN Management Protocol
http://www.broadband-forum.org/technical/download/TR-069_Amendment-3.pdf

[6] TR-106a4 Data Model Template for TR-069-Enabled Devices
http://www.broadband-forum.org/technical/download/TR-106_Amendment-4.pdf
Page 36 OSGi Service Platform Release 4, Version 4.3

Log Service Specification Version 1.3 Introduction
101 Log Service Specification
Version 1.3

101.1 Introduction
The Log Service provides a general purpose message logger for the OSGi Service Platform. It consists
of two services, one for logging information and another for retrieving current or previously recorded
log information.

This specification defines the methods and semantics of interfaces which bundle developers can use
to log entries and to retrieve log entries.

Bundles can use the Log Service to log information for the Operator. Other bundles, oriented toward
management of the environment, can use the Log Reader Service to retrieve Log Entry objects that
were recorded recently or to receive Log Entry objects as they are logged by other bundles.

101.1.1 Entities
• LogService – The service interface that allows a bundle to log information, including a message, a

level, an exception, a ServiceReference object, and a Bundle object.
• LogEntry - An interface that allows access to a log entry in the log. It includes all the information

that can be logged through the Log Service and a time stamp.
• LogReaderService - A service interface that allows access to a list of recent LogEntry objects, and

allows the registration of a LogListener object that receives LogEntry objects as they are created.
• LogListener - The interface for the listener to LogEntry objects. Must be registered with the Log

Reader Service.

Figure 101.1 Log Service Class Diagram org.osgi.service.log package

<<interface>>
LogService

<<interface>>
LogReader
Service

<<interface>>
LogEntry

<<interface>>
LogListener

a Log Reader
Service impl.

LogEntry impl

a Log user bundle

a Log Service
impl

a Log reader user

Log a
message

Store a message in the log for retrieval

message log

send new log entry

retrieve log

1 1

1

0..n (impl dependent maximum)

1

0..n

LogEntry has references to
ServiceReference,
Throwable and Bundle

or register
listener

Bundle using
Log Service

Bundle using
Log Reader
Service

Log implementation bundle
OSGi Service Platform Release 4, Version 4.3 Page 37

The Log Service Interface Log Service Specification Version 1.3
101.2 The Log Service Interface
The LogService interface allows bundle developers to log messages that can be distributed to other
bundles, which in turn can forward the logged entries to a file system, remote system, or some other
destination.

The LogService interface allows the bundle developer to:

• Specify a message and/or exception to be logged.
• Supply a log level representing the severity of the message being logged. This should be one of the

levels defined in the LogService interface but it may be any integer that is interpreted in a user-
defined way.

• Specify the Service associated with the log requests.

By obtaining a LogService object from the Framework service registry, a bundle can start logging
messages to the LogService object by calling one of the LogService methods. A Log Service object can
log any message, but it is primarily intended for reporting events and error conditions.

The LogService interface defines these methods for logging messages:

• log(int, Str ing) – This method logs a simple message at a given log level.
• log(int, Str ing, Throwable) – This method logs a message with an exception at a given log level.
• log(Serv iceReference, int , Str ing) – This method logs a message associated with a specific

service.
• log(Serv iceReference, int , Str ing, Throwable) – This method logs a message with an exception

associated with a specific service.

While it is possible for a bundle to call one of the log methods without providing a ServiceReference
object, it is recommended that the caller supply the ServiceReference argument whenever appropri-
ate, because it provides important context information to the operator in the event of problems.

The following example demonstrates the use of a log method to write a message into the log.

logService.log(

myServiceReference,

LogService.LOG_INFO,

"myService is up and running"

);

In the example, the myServiceReference parameter identifies the service associated with the log
request. The specified level, LogService.LOG_INFO , indicates that this message is informational.

The following example code records error conditions as log messages.

try {

FileInputStream fis = new FileInputStream("myFile");

int b;

while ((b = fis.read()) != -1) {

...

}

fis.close();

}

catch (IOException exception) {

logService.log(

myServiceReference,

LogService.LOG_ERROR,

"Cannot access file",

exception);

}

Page 38 OSGi Service Platform Release 4, Version 4.3

Log Service Specification Version 1.3 Log Level and Error Severity
Notice that in addition to the error message, the exception itself is also logged. Providing this infor-
mation can significantly simplify problem determination by the Operator.

101.3 Log Level and Error Severity
The log methods expect a log level indicating error severity, which can be used to filter log messages
when they are retrieved. The severity levels are defined in the LogService interface.

Callers must supply the log levels that they deem appropriate when making log requests. The follow-

ing table lists the log levels.

101.4 Log Reader Service
The Log Reader Service maintains a list of LogEntry objects called the log. The Log Reader Service is a
service that bundle developers can use to retrieve information contained in this log, and receive noti-
fications about LogEntry objects when they are created through the Log Service.

The size of the log is implementation-specific, and it determines how far into the past the log entries
go. Additionally, some log entries may not be recorded in the log in order to save space. In particular,
LOG_DEBUG log entries may not be recorded. Note that this rule is implementation-dependent. Some
implementations may allow a configurable policy to ignore certain LogEntry object types.

The LogReaderService interface defines these methods for retrieving log entries.

• getLog() – This method retrieves past log entries as an enumeration with the most recent entry
first.

• addLogListener(LogListener) – This method is used to subscribe to the Log Reader Service in
order to receive log messages as they occur. Unlike the previously recorded log entries, all log mes-
sages must be sent to subscribers of the Log Reader Service as they are recorded.
A subscriber to the Log Reader Service must implement the LogListener interface.
After a subscription to the Log Reader Service has been started, the subscriber's
LogListener. logged method must be called with a Log Entry object for the message each time a
message is logged.

The LogListener interface defines the following method:

• logged(LogEntry) – This method is called for each Log Entry object created. A Log Reader Service
implementation must not filter entries to the LogListener interface as it is allowed to do for its log.
A LogListener object should see all LogEntry objects that are created.

The delivery of LogEntry objects to the LogListener object should be done asynchronously.

Table 101.1 Log Levels
Level Descriptions
LOG_DEBUG Used for problem determination and may be irrelevant to anyone but the

bundle developer.
LOG_ERROR Indicates the bundle or service may not be functional. Action should be

taken to correct this situation.
LOG_INFO May be the result of any change in the bundle or service and does not indi-

cate a problem.
LOG_WARNING Indicates a bundle or service is still functioning but may experience prob-

lems in the future because of the warning condition.
OSGi Service Platform Release 4, Version 4.3 Page 39

Log Entry Interface Log Service Specification Version 1.3
101.5 Log Entry Interface
The LogEntry interface abstracts a log entry. It is a record of the information that was passed when an
event was logged, and consists of a superset of information which can be passed through the
LogService methods. The LogEntry interface defines these methods to retrieve information related
to Log Entry objects:

• getBundle() – This method returns the Bundle object related to a Log Entry object.
• getException() – This method returns the exception related to a Log Entry object. In some imple-

mentations, the returned exception may not be the original exception. To avoid references to a
bundle defined exception class, thus preventing an uninstalled bundle from being garbage col-
lected, the Log Service may return an exception object of an implementation defined Throwable
subclass. This object will attempt to return as much information as possible, such as the message
and stack trace, from the original exception object .

• getLevel() – This method returns the severity level related to a Log Entry object.
• getMessage() – This method returns the message related to a Log Entry object.
• getServiceReference() –This method returns the ServiceReference object of the service related to

a Log Entry object.
• getTime() – This method returns the time that the log entry was created.

101.6 Mapping of Events
Implementations of a Log Service must log Framework-generated events and map the information to
LogEntry objects in a consistent way. Framework events must be treated exactly the same as other
logged events and distributed to all LogListener objects that are associated with the Log Reader Ser-
vice. The following sections define the mapping for the three different event types: Bundle, Service,
and Framework.

101.6.1 Bundle Events Mapping
A Bundle Event is mapped to a LogEntry object according to Table 101.2, “Mapping of Bundle Events
to Log Entries,” on page 40.

Table 101.2 Mapping of Bundle Events to Log Entries
Log Entry method Information about Bundle Event
getLevel() LOG_INFO
getBundle() Identifies the bundle to which the event happened. In other words, it

identifies the bundle that was installed, started, stopped, updated, or
uninstalled. This identification is obtained by calling getBundle()
on the BundleEvent object.

getException() nul l
getServiceReference() nul l
getMessage() The message depends on the event type:

• INSTALLED – "BundleEvent INSTALLED"
• STARTED – "BundleEvent STARTED"
• STOPPED – "BundleEvent STOPPED"
• UPDATED – "BundleEvent UPDATED"
• UNINSTALLED – "BundleEvent UNINSTALLED"
• RESOLVED – "BundleEvent RESOLVED"
• UNRESOLVED – "BundleEvent UNRESOLVED"
Page 40 OSGi Service Platform Release 4, Version 4.3

Log Service Specification Version 1.3 Mapping of Events
101.6.2 Service Events Mapping
A Service Event is mapped to a LogEntry object according to Table 101.3, “Mapping of Service Events
to Log Entries,” on page 41.

101.6.3 Framework Events Mapping
A Framework Event is mapped to a LogEntry object according to Table 101.4, “Mapping of Frame-
work Event to Log Entries,” on page 41.

101.6.4 Log Events
Log events must be delivered by the Log Service implementation to the Event Admin service (if
present) asynchronously under the topic:

Table 101.3 Mapping of Service Events to Log Entries
Log Entry method Information about Service Event
getLevel() LOG_INFO , except for the ServiceEvent.MODIFIED event. This

event can happen frequently and contains relatively little informa-
tion. It must be logged with a level of LOG_DEBUG .

getBundle() Identifies the bundle that registered the service associated with
this event. It is obtained by calling
getServiceReference() .getBundle() on the ServiceEvent object.

getException() nul l
getServiceReference() Identifies a reference to the service associated with the event. It is

obtained by calling getServiceReference() on the ServiceEvent
object.

getMessage() This message depends on the actual event type. The messages are
mapped as follows:

• REGISTERED – "ServiceEvent REGISTERED"
• MODIFIED – "ServiceEvent MODIFIED"
• UNREGISTERING – "ServiceEvent UNREGISTERING"

Table 101.4 Mapping of Framework Event to Log Entries
Log Entry method Information about Framework Event
getLevel() LOG_INFO , except for the FrameworkEvent.ERROR event. This event

represents an error and is logged with a level of LOG_ERROR.
getBundle() Identifies the bundle associated with the event. This may be the sys-

tem bundle. It is obtained by calling getBundle() on the
FrameworkEvent object.

getException() Identifies the exception associated with the error. This will be null
for event types other than ERROR. It is obtained by calling
getThrowable() on the FrameworkEvent object.

getServiceReference() nul l
getMessage() This message depends on the actual event type. The messages are

mapped as follows:

• STARTED – "FrameworkEvent STARTED"
• ERROR – "FrameworkEvent ERROR"
• PACKAGES_REFRESHED – "FrameworkEvent PACKAGES

REFRESHED"
• STARTLEVEL_CHANGED – "FrameworkEvent STARTLEVEL

CHANGED"
• WARNING – "FrameworkEvent WARNING"
• INFO – "FrameworkEvent INFO"
OSGi Service Platform Release 4, Version 4.3 Page 41

Security Log Service Specification Version 1.3
org/osgi/service/log/LogEntry/<event type>

The logging level is used as event type:

LOG_ERROR

LOG_WARNING

LOG_INFO

LOG_DEBUG

LOG_OTHER (when event is not recognized)

The properties of a log event are:

• bundle. id – (Long) The source bundle's id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name. Only set if not null .
• bundle – (Bundle) The source bundle.
• log. level – (Integer) The log level.
• message – (Str ing) The log message.
• t imestamp – (Long) The log entry's timestamp.
• log.entry – (LogEntry) The LogEntry object.

If the log entry has an associated Exception:

• exception.class – (Str ing) The fully-qualified class name of the attached exception. Only set if the
getExceptionmethod returns a non-nul l value.

• exception.message – (Str ing) The message of the attached Exception. Only set if the Exception
message is not nul l .

• exception – (Throwable) The Exception returned by the getException method.

If the getServiceReference method returns a non-nul l value:

• service – (ServiceReference) The result of the getServiceReference method.
• service. id – (Long) The id of the service.
• service.pid – (Str ing) The service's persistent identity. Only set if the serv ice.pid service property

is not nul l .
• service.objectClass – (Str ing[]) The object class of the service object.

101.7 Security
The Log Service should only be implemented by trusted bundles. This bundle requires
ServicePermission[LogService|LogReaderService, REGISTER] . Virtually all bundles should get
ServicePermission[LogService, GET] . The ServicePermission[LogReaderService, GET] should only
be assigned to trusted bundles.

101.8 org.osgi.service.log
Log Service Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. log; version=”[1.3 ,2.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. log; version=”[1.3 ,1.4)”
Page 42 OSGi Service Platform Release 4, Version 4.3

Log Service Specification Version 1.3 org.osgi.service.log
101.8.1 Summary
• LogEntry – Provides methods to access the information contained in an individual Log Service log

entry.
• LogListener – Subscribes to LogEntry objects from the LogReaderService .
• LogReaderService – Provides methods to retrieve LogEntry objects from the log.
• LogService – Provides methods for bundles to write messages to the log.

101.8.2 Permissions
LogEntry

101.8.3 public interface LogEntry
Provides methods to access the information contained in an individual Log Service log entry.

A LogEntry object may be acquired from the LogReaderServ ice.getLog method or by registering a
LogListener object.

See Also LogReaderService.getLog , LogListener

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface
getBundle()

101.8.3.1 public Bundle getBundle ()

 Returns the bundle that created this LogEntry object.

Returns The bundle that created this LogEntry object; nul l if no bundle is associated with this LogEntry object.
getException()

101.8.3.2 public Throwable getException ()

 Returns the exception object associated with this LogEntry object.

In some implementations, the returned exception may not be the original exception. To avoid refer-
ences to a bundle defined exception class, thus preventing an uninstalled bundle from being garbage
collected, the Log Service may return an exception object of an implementation defined Throwable
subclass. The returned object will attempt to provide as much information as possible from the origi-
nal exception object such as the message and stack trace.

Returns Throwable object of the exception associated with this LogEntry ;nul l if no exception is associated with
this LogEntry object.
getLevel()

101.8.3.3 public int getLevel ()

 Returns the severity level of this LogEntry object.

This is one of the severity levels defined by the LogService interface.

Returns Severity level of this LogEntry object.

See Also LogService.LOG_ERROR , LogService.LOG_WARNING , LogService.LOG_INFO ,
LogService.LOG_DEBUG
getMessage()

101.8.3.4 public String getMessage ()

 Returns the human readable message associated with this LogEntry object.

Returns Str ing containing the message associated with this LogEntry object.
getServiceReference()

101.8.3.5 public ServiceReference getServiceReference ()

 Returns the ServiceReference object for the service associated with this LogEntry object.

Returns ServiceReference object for the service associated with this LogEntry object; nul l if no
ServiceReference object was provided.
getTime()

101.8.3.6 public long getTime ()

 Returns the value of currentTimeMil l is() at the time this LogEntry object was created.
OSGi Service Platform Release 4, Version 4.3 Page 43

org.osgi.service.log Log Service Specification Version 1.3
Returns The system time in milliseconds when this LogEntry object was created.

See Also System.currentTimeMillis()
LogListener

101.8.4 public interface LogListener
extends EventListener
Subscribes to LogEntry objects from the LogReaderService .

A LogListener object may be registered with the Log Reader Service using the
LogReaderService.addLogListener method. After the listener is registered, the logged method will be
called for each LogEntry object created. The LogListener object may be unregistered by calling the
LogReaderService.removeLogListener method.

See Also LogReaderService , LogEntry , LogReaderService.addLogListener(LogListener) ,
LogReaderService.removeLogListener(LogListener)

Concurrency Thread-safe
logged(LogEntry)

101.8.4.1 public void logged (LogEntry entry)

entry A LogEntry object containing log information.

 Listener method called for each LogEntry object created.

As with all event listeners, this method should return to its caller as soon as possible.

See Also LogEntry
LogReaderService

101.8.5 public interface LogReaderService
Provides methods to retrieve LogEntry objects from the log.

There are two ways to retrieve LogEntry objects:

• The primary way to retrieve LogEntry objects is to register a LogListener object whose
LogListener. logged method will be called for each entry added to the log.

• To retrieve past LogEntry objects, the getLog method can be called which will return an
Enumeration of all LogEntry objects in the log.

See Also LogEntry , LogListener , LogListener.logged(LogEntry)

Concurrency Thread-safe
addLogListener(LogListener)

101.8.5.1 public void addLogListener (LogListener listener)

listener A LogListener object to register; the LogListener object is used to receive LogEntry objects.

 Subscribes to LogEntry objects.

This method registers a LogListener object with the Log Reader Service. The
LogListener. logged(LogEntry) method will be called for each LogEntry object placed into the log.

When a bundle which registers a LogListener object is stopped or otherwise releases the Log Reader
Service, the Log Reader Service must remove all of the bundle’s listeners.

If this Log Reader Service’s list of listeners already contains a listener l such that (l==l istener) , this
method does nothing.

See Also LogListener , LogEntry , LogListener.logged(LogEntry)
getLog()

101.8.5.2 public Enumeration getLog ()

 Returns an Enumeration of all LogEntry objects in the log.
Page 44 OSGi Service Platform Release 4, Version 4.3

Log Service Specification Version 1.3 org.osgi.service.log
Each element of the enumeration is a LogEntry object, ordered with the most recent entry first.
Whether the enumeration is of all LogEntry objects since the Log Service was started or some recent
past is implementation-specific. Also implementation-specific is whether informational and debug
LogEntry objects are included in the enumeration.

Returns An Enumerat ion of all LogEntry objects in the log.
removeLogListener(LogListener)

101.8.5.3 public void removeLogListener (LogListener listener)

listener A LogListener object to unregister.

 Unsubscribes to LogEntry objects.

This method unregisters a LogListener object from the Log Reader Service.

If l istener is not contained in this Log Reader Service’s list of listeners, this method does nothing.

See Also LogListener
LogService

101.8.6 public interface LogService
Provides methods for bundles to write messages to the log.

LogService methods are provided to log messages; optionally with a ServiceReference object or an
exception.

Bundles must log messages in the OSGi environment with a severity level according to the following
hierarchy:

1 LOG_ERROR
2 LOG_WARNING
3 LOG_INFO
4 LOG_DEBUG

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface
LOG_DEBUG

101.8.6.1 public static final int LOG_DEBUG = 4

A debugging message (Value 4).

This log entry is used for problem determination and may be irrelevant to anyone but the bundle
developer.
LOG_ERROR

101.8.6.2 public static final int LOG_ERROR = 1

An error message (Value 1).

This log entry indicates the bundle or service may not be functional.
LOG_INFO

101.8.6.3 public static final int LOG_INFO = 3

An informational message (Value 3).

This log entry may be the result of any change in the bundle or service and does not indicate a prob-
lem.
LOG_WARNING

101.8.6.4 public static final int LOG_WARNING = 2

A warning message (Value 2).

This log entry indicates a bundle or service is still functioning but may experience problems in the
future because of the warning condition.
log(int,String)
OSGi Service Platform Release 4, Version 4.3 Page 45

org.osgi.service.log Log Service Specification Version 1.3
101.8.6.5 public void log (int level , String message)

level The severity of the message. This should be one of the defined log levels but may be any integer that is
interpreted in a user defined way.

message Human readable string describing the condition or nul l .

 Logs a message.

The ServiceReference field and the Throwable field of the LogEntry object will be set to nul l .

See Also LOG_ERROR , LOG_WARNING , LOG_INFO , LOG_DEBUG
log(int,String,Throwable)

101.8.6.6 public void log (int level , String message , Throwable exception)

level The severity of the message. This should be one of the defined log levels but may be any integer that is
interpreted in a user defined way.

message The human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

 Logs a message with an exception.

The ServiceReference field of the LogEntry object will be set to nul l .

See Also LOG_ERROR , LOG_WARNING , LOG_INFO , LOG_DEBUG
log(ServiceReference,int,String)

101.8.6.7 public void log (ServiceReference sr , int level , String message)

sr The ServiceReference object of the service that this message is associated with or nul l .

level The severity of the message. This should be one of the defined log levels but may be any integer that is
interpreted in a user defined way.

message Human readable string describing the condition or nul l .

 Logs a message associated with a specific ServiceReference object.

The Throwable field of the LogEntry will be set to null .

See Also LOG_ERROR , LOG_WARNING , LOG_INFO , LOG_DEBUG
log(ServiceReference,int,String,Throwable)

101.8.6.8 public void log (ServiceReference sr , int level , String message , Throwable exception)

sr The ServiceReference object of the service that this message is associated with.

level The severity of the message. This should be one of the defined log levels but may be any integer that is
interpreted in a user defined way.

message Human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

 Logs a message with an exception associated and a ServiceReference object.

See Also LOG_ERROR , LOG_WARNING , LOG_INFO , LOG_DEBUG
Page 46 OSGi Service Platform Release 4, Version 4.3

Http Service Specification Version 1.2 Introduction
102 Http Service Specification
Version 1.2

102.1 Introduction
An OSGi Service Platform normally provides users with access to services on the Internet and other
networks. This access allows users to remotely retrieve information from, and send control to, ser-
vices in an OSGi Service Platform using a standard web browser.

Bundle developers typically need to develop communication and user interface solutions for stan-
dard technologies such as HTTP, HTML, XML, and servlets.

The Http Service supports two standard techniques for this purpose:

• Registering servlets – A servlet is a Java object which implements the Java Servlet API. Registering a
servlet in the Framework gives it control over some part of the Http Service URI name-space.

• Registering resources – Registering a resource allows HTML files, image files, and other static
resources to be made visible in the Http Service URI name-space by the requesting bundle.

Implementations of the Http Service can be based on:

• [1] HTTP 1.0 Specification RFC-1945
• [2] HTTP 1.1 Specification RFC-2616

Alternatively, implementations of this service can support other protocols if these protocols can con-
form to the semantics of the javax.servlet API. This additional support is necessary because the Http
Service is closely related to [3] Java Servlet Technology. Http Service implementations must support at
least version 2.1 of the Java Servlet API.

102.1.1 Entities
This specification defines the following interfaces which a bundle developer can implement collec-
tively as an Http Service or use individually:

• HttpContext – Allows bundles to provide information for a servlet or resource registration.
• HttpService – Allows other bundles in the Framework to dynamically register and unregister

resources and servlets into the Http Service URI name-space.
• NamespaceException – Is thrown to indicate an error with the caller's request to register a servlet

or resource into the Http Service URI name-space.
OSGi Service Platform Release 4, Version 4.3 Page 47

Registering Servlets Http Service Specification Version 1.2
Figure 102.1 Http Service Overview Diagram

102.2 Registering Servlets
javax.servlet .Servlet objects can be registered with the Http Service by using the HttpService inter-
face. For this purpose, the HttpService interface defines the method registerServlet(Str ing,
javax.servlet .Serv let ,Dict ionary,HttpContext) .

For example, if the Http Service implementation is listening to port 80 on the machine
www.acme.com and the Servlet object is registered with the name "/servlet" , then the Servlet
object’s service method is called when the following URL is used from a web browser:

http://www.acme.com/servletname=bugs

All Servlet objects and resource registrations share the same name-space. If an attempt is made to reg-
ister a resource or Servlet object under the same name as a currently registered resource or Servlet
object, a NamespaceException is thrown. See Mapping HTTP Requests to Servlet and Resource Registra-
tions on page 51 for more information about the handling of the Http Service name-space.

Each Servlet registration must be accompanied with an HttpContext object. This object provides the
handling of resources, media typing, and a method to handle authentication of remote requests. See
Authentication on page 54.

For convenience, a default HttpContext object is provided by the Http Service and can be obtained
with createDefaultHttpContext() . Passing a nul l parameter to the registration method achieves the
same effect.

Servlet objects require a ServletContext object. This object provides a number of functions to access
the Http Service Java Servlet environment. It is created by the implementation of the Http Service for
each unique HttpContext object with which a Servlet object is registered. Thus, Servlet objects regis-
tered with the same HttpContext object must also share the same ServletContext object.

Servlet objects are initialized by the Http Service when they are registered and bound to that specific
Http Service. The initialization is done by calling the Servlet object’s Servlet. in it(ServletConfig)
method. The ServletConfig parameter provides access to the initialization parameters specified
when the Servlet object was registered.

<<interface>>
HttpService

javax.servlet.
Servlet

javax.servlet.http
HttpServlet
Request

javax.servlet.http
HttpServlet
Response

an Http service
implementation

<<interface>>
HttpContext

servlet
registration

resource
registration

implementation of
Servlet

implementation of
HttpContext

default impl. of
HttpContext

Bundles main
code

1

0..n1

1

1

1

register servlet
or resources

request
resource

service
request

Name-space
alias

Bundle implementing
Http Service

Bundle using
Http Service

Namespace
Exception
Page 48 OSGi Service Platform Release 4, Version 4.3

Http Service Specification Version 1.2 Registering Resources
Therefore, the same Servlet instance must not be reused for registration with another Http Service,
nor can it be registered under multiple names. Unique instances are required for each registration.

The following example code demonstrates the use of the registerServlet method:

Hashtable initparams = new Hashtable();

initparams.put("name", "value");

Servlet myServlet = new HttpServlet() {

String name = "<not set>";

public void init(ServletConfig config) {

this.name = (String)

config.getInitParameter("name");

}

public void doGet(

HttpServletRequest req,

HttpServletResponse rsp

) throws IOException {

rsp.setContentType("text/plain");

req.getWriter().println(this.name);

}

};

getHttpService().registerServlet(

"/servletAlias",

myServlet,

initparams,

null // use default context

);

// myServlet has been registered

// and its init method has been called. Remote

// requests are now handled and forwarded to

// the servlet.

...

getHttpService().unregister("/servletAlias");

// myServlet has been unregistered and its

// destroy method has been called

This example registers the servlet, myServlet , at alias: /servletAl ias . Future requests for http://
www.acme.com/servletAl ias maps to the servlet, myServlet , whose service method is called to pro-
cess the request. (The service method is called in the HttpServlet base class and dispatched to a
doGet , doPut , doPost , doOptions , doTrace, or doDelete call depending on the HTTP request method
used.)

102.3 Registering Resources
A resource is a file containing images, static HTML pages, sounds, movies, applets, etc. Resources do
not require any handling from the bundle. They are transferred directly from their source--usually
the JAR file that contains the code for the bundle--to the requestor using HTTP.
OSGi Service Platform Release 4, Version 4.3 Page 49

Registering Resources Http Service Specification Version 1.2
Resources could be handled by Servlet objects as explained in Registering Servlets on page 48. Transfer-
ring a resource over HTTP, however, would require very similar Servlet objects for each bundle. To
prevent this redundancy, resources can be registered directly with the Http Service via the
HttpService interface. This HttpService interface defines the registerResources(Str ing,Str ing,
HttpContext)method for registering a resource into the Http Service URI name-space.

The first parameter is the external alias under which the resource is registered with the Http Service.
The second parameter is an internal prefix to map this resource to the bundle’s name-space. When a
request is received, the HttpService object must remove the external alias from the URI, replace it
with the internal prefix, and call the getResource(Str ing) method with this new name on the associ-
ated HttpContext object. The HttpContext object is further used to get the MIME type of the resource
and to authenticate the request.

Resources are returned as a java.net.URL object. The Http Service must read from this URL object and
transfer the content to the initiator of the HTTP request.

This return type was chosen because it matches the return type of the
java. lang.Class.getResource(Str ing resource) method. This method can retrieve resources directly
from the same place as the one from which the class was loaded – often a package directory in the JAR
file of the bundle. This method makes it very convenient to retrieve resources from the bundle that
are contained in the package.

The following example code demonstrates the use of the register
Resources method:

package com.acme;

...

HttpContext context = new HttpContext() {

public boolean handleSecurity(

HttpServletRequest request,

 HttpServletResponse response

) throws IOException {

return true;

}

public URL getResource(String name) {

return getClass().getResource(name);

}

public String getMimeType(String name) {

return null;

}

};

getHttpService().registerResources (

"/files",

"www",

context

);

...

getHttpService().unregister("/files");

This example registers the alias /files on the Http Service. Requests for resources below this name-
space are transferred to the HttpContext object with an internal name of www/<name> . This exam-
ple uses the Class.get
Resource(Str ing) method. Because the internal name does not start with a
Page 50 OSGi Service Platform Release 4, Version 4.3

Http Service Specification Version 1.2 Mapping HTTP Requests to Servlet and Resource Registrations
"/", it must map to a resource in the "com/acme/www" directory of the JAR file. If the internal name
did start with a "/", the package name would not have to be prefixed and the JAR file would be
searched from the root. Consult the java. lang.Class.getResource(Str ing) method for more informa-
tion.

In the example, a request for http://www.acme.com/f i les/myfi le .html must map to the name "com/
acme/www/myfi le .html" which is in the bundle’s JAR file.

More sophisticated implementations of the getResource(Str ing) method could filter the input name,
restricting the resources that may be returned or map the input name onto the file system (if the
security implications of this action are acceptable).

Alternatively, the resource registration could have used a default HttpContext object, as demon-
strated in the following call to registerResources :

getHttpService().registerResources(

"/files",

"/com/acme/www",

null

);

In this case, the Http Service implementation would call the
createDefaultHttpContext() method and use its return value as the HttpContext argument for the
registerResources method. The default implementation must map the resource request to the bun-
dle’s resource, using
Bundle.getResource(Str ing) . In the case of the previous example, however, the internal name must
now specify the full path to the directory containing the resource files in the JAR file. No automatic
prefixing of the package name is done.

The getMimeType(Str ing) implementation of the default HttpContext object should rely on the
default mapping provided by the Http Service by returning null. Its
handleSecurity(HttpServletRequest,HttpServletResponse) may implement an authentication
mechanism that is implementation-dependent.

102.4 Mapping HTTP Requests to Servlet and Resource
Registrations
When an HTTP request comes in from a client, the Http Service checks to see if the requested URI
matches any registered aliases. A URI matches only if the path part of the URI is exactly the same
string. Matching is case sensitive.

If it does match, a matching registration takes place, which is processed as follows:

1. If the registration corresponds to a servlet, the authorization is verified by calling the
handleSecurity method of the associated HttpContext object. See Authentication on page 54. If the
request is authorized, the servlet must be called by its service method to complete the HTTP
request.

2. If the registration corresponds to a resource, the authorization is verified by calling the
handleSecurity method of the associated HttpContext object. See Authentication on page 54. If the
request is authorized, a target resource name is constructed from the requested URI by substitut-
ing the alias from the registration with the internal name from the registration if the alias is not "/
". If the alias is "/", then the target resource name is constructed by prefixing the requested URI
with the internal name. An internal name of "/" is considered to have the value of the empty
string ("") during this process.

3. The target resource name must be passed to the getResource method of the associated
HttpContext object.
OSGi Service Platform Release 4, Version 4.3 Page 51

The Default Http Context Object Http Service Specification Version 1.2
4. If the returned URL object is not nul l , the Http Service must return the contents of the URL to the
client completing the HTTP request. The translated target name, as opposed to the original
requested URI, must also be used as the argument to HttpContext .getMimeType .

5. If the returned URL object is nul l , the Http Service continues as if there was no match.

6. If there is no match, the Http Service must attempt to match sub-strings of the requested URI to
registered aliases. The sub-strings of the requested URI are selected by removing the last "/" and
everything to the right of the last "/".

The Http Service must repeat this process until either a match is found or the sub-string is an empty
string. If the sub-string is empty and the alias "/" is registered, the request is considered to match the
alias "/" . Otherwise, the Http Service must return HttpServletResponse.SC_NOT_FOUND(404) to
the client.

For example, an HTTP request comes in with a request URI of "/fudd/bugs/foo.txt" , and the only reg-
istered alias is "/fudd" . A search for "/ fudd/bugs/foo.txt" will not match an alias. Therefore, the Http
Service will search for the alias "/fudd/bugs" and the alias "/ fudd" . The latter search will result in a
match and the matched alias registration must be used.

Registrations for identical aliases are not allowed. If a bundle registers the alias "/fudd" , and another
bundle tries to register the exactly the same alias, the second caller must receive a
NamespaceException and its resource or servlet must not be registered. It could, however, register a
similar alias – for example, "/ fudd/bugs" , as long as no other registration for this alias already exists.

The following table shows some examples of the usage of the name-space.

102.5 The Default Http Context Object
The HttpContext object in the first example demonstrates simple implementations of the
HttpContext interface methods. Alternatively, the example could have used a default HttpContext
object, as demonstrated in the following call to registerServlet :

getHttpService().registerServlet(

"/servletAlias",

myServlet,

initparams,

null

);

In this case, the Http Service implementation must call createDefault
HttpContext and use the return value as the HttpContext argument.

Table 102.1 Examples of Name-space Mapping

Alias Internal Name URI getResource Parameter

/ (empty str ing) /fudd/bugs /fudd/bugs
/ / /fudd/bugs /fudd/bugs
/ /tmp /fudd/bugs /tmp/fudd/bugs
/fudd (empty str ing) /fudd/bugs /bugs
/fudd / /fudd/bugs /bugs
/fudd /tmp /fudd/bugs /tmp/bugs
/fudd tmp /fudd/bugs/x.gif tmp/bugs/x.gif
/fudd/bugs/x.gif tmp/y.gi f /fudd/bugs/x.gif tmp/y.gi f
Page 52 OSGi Service Platform Release 4, Version 4.3

Http Service Specification Version 1.2 Multipurpose Internet Mail Extension (MIME) Types
If the default HttpContext object, and thus the ServletContext object, is to be shared by multiple
servlet registrations, the previous servlet registration example code needs to be changed to use the
same default HttpContext object. This change is demonstrated in the next example:

HttpContext defaultContext =

getHttpService().createDefaultHttpContext();

getHttpService().registerServlet(

"/servletAlias",

myServlet,

initparams,

defaultContext

);

// defaultContext can be reused

// for further servlet registrations

102.6 Multipurpose Internet Mail Extension (MIME)
Types
MIME defines an extensive set of headers and procedures to encode binary messages in US-ASCII
mails. For an overview of all the related RFCs, consult [4] MIME Multipurpose Internet Mail Extension.

An important aspect of this extension is the type (file format) mechanism of the binary messages.
The type is defined by a string containing a general category (text, application, image, audio and
video, multipart, and message) followed by a "/" and a specific media type, as in the example, "text/
html" for HTML formatted text files. A MIME type string can be followed by additional specifiers by
separating key=value pairs with a ’;’. These specifiers can be used, for example, to define character
sets as follows:

text/plain ; charset=iso-8859-1

The Internet Assigned Number Authority (IANA) maintains a set of defined MIME media types. This
list can be found at [5] Assigned MIME Media Types. MIME media types are extendable, and when any
part of the type starts with the prefix "x-" , it is assumed to be vendor-specific and can be used for test-
ing. New types can be registered as described in [6] Registration Procedures for new MIME media types.

HTTP bases its media typing on the MIME RFCs. The "Content-Type" header should contain a MIME
media type so that the browser can recognize the type and format the content correctly.

The source of the data must define the MIME media type for each transfer. Most operating systems do
not support types for files, but use conventions based on file names, such as the last part of the file
name after the last ".". This extension is then mapped to a media type.

Implementations of the Http Service should have a reasonable default of mapping common exten-
sions to media types based on file extensions.

Table 102.2 Sample Extension to MIME Media Mapping

Extension MIME media type Description

. jpg . jpeg image/jpeg JPEG Files

.g i f image/gif GIF Files

.css text/css Cascading Style Sheet Files

. txt text/pla in Text Files

.wml text/vnd.wap.wml Wireless Access Protocol (WAP) Mark Language
OSGi Service Platform Release 4, Version 4.3 Page 53

Authentication Http Service Specification Version 1.2
Only the bundle developer, however, knows exactly which files have what media type. The
HttpContext interface can therefore be used to map this knowledge to the media type. The
HttpContext class has the following method for this: getMimeType(Str ing) .

The implementation of this method should inspect the file name and use its internal knowledge to
map this name to a MIME media type.

Simple implementations can extract the extension and look up this extension in a table.

Returning nul l from this method allows the Http Service implementation to use its default mapping
mechanism.

102.7 Authentication
The Http Service has separated the authentication and authorization of a request from the execution
of the request. This separation allows bundles to use available Servlet sub-classes while still provid-
ing bundle specific authentication and authorization of the requests.

Prior to servicing each incoming request, the Http Service calls the
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
method on the HttpContext object that is associated with the request URI. This method controls
whether the request is processed in the normal manner or an authentication error is returned.

If an implementation wants to authenticate the request, it can use the authentication mechanisms of
HTTP. See [7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. These mechanisms
normally interpret the headers and decide if the user identity is available, and if it is, whether that
user has authenticated itself correctly.

There are many different ways of authenticating users, and the handleSecurity method on the
HttpContext object can use whatever method it requires. If the method returns true , the request
must continue to be processed using the potentially modified HttpServletRequest and
HttpServletResponse objects. If the method returns false , the request must not be processed.

A common standard for HTTP is the basic authentication scheme that is not secure when used with
HTTP. Basic authentication passes the password in base 64 encoded strings that are trivial to decode
into clear text. Secure transport protocols like HTTPS use SSL to hide this information. With these
protocols basic authentication is secure.

Using basic authentication requires the following steps:

1. If no Authorizat ion header is set in the request, the method should set the WWW-Authenticate
header in the response. This header indicates the desired authentication mechanism and the
realm. For example, WWW-Authenticate: Basic realm="ACME".
The header should be set with the response object that is given as a parameter to the
handleSecurity method. The handleSecurity method should set the status to
HttpServletResponse.SC_UNAUTHORIZED (401) and return false .

2. Secure connections can be verified with the ServletRequest.getScheme() method. This method
returns, for example, "https" for an SSL connection; the handleSecurity method can use this and
other information to decide if the connection’s security level is acceptable. If not, the
handleSecurity method should set the status to HttpServletResponse.SC_FORBIDDEN (403) and
return fa lse .

.htm .html text/html Hyper Text Markup Language

.wbmp image/vnd.wap.wbmp Bitmaps for WAP

Table 102.2 Sample Extension to MIME Media Mapping

Extension MIME media type Description
Page 54 OSGi Service Platform Release 4, Version 4.3

Http Service Specification Version 1.2 Security
3. Next, the request must be authenticated. When basic authentication is used, the Authorizat ion
header is available in the request and should be parsed to find the user and password. See [7] RFC
2617: HTTP Authentication: Basic and Digest Access Authentication for more information.
If the user cannot be authenticated, the status of the response object should be set to
HttpServletResponse.SC_UNAUTHORIZED (401) and return false .

4. The authentication mechanism that is actually used and the identity of the authenticated user
can be of interest to the Servlet object. Therefore, the implementation of the handleSecurity
method should set this information in the request object using the ServletRequest .setAttr ibute
method. This specification has defined a number of OSGi-specific attribute names for this pur-
pose:
• AUTHENTICATION_TYPE - Specifies the scheme used in authentication. A Servlet may retrieve

the value of this attribute by calling the HttpServletRequest.getAuthType method. This
attribute name is org.osgi .service.http.authenticat ion.type .

• REMOTE_USER - Specifies the name of the authenticated user. A Servlet may retrieve the value
of this attribute by calling the HttpServletRequest .getRemoteUser method. This attribute
name is org .osgi .service.http.authenticat ion.remote.user .

• AUTHORIZATION - If a User Admin service is available in the environment, then the
handleSecurity method should set this attribute with the Authorizat ion object obtained from
the User Admin service. Such an object encapsulates the authentication of its remote user. A
Servlet may retrieve the value of this attribute by calling
ServletRequest .getAttr ibute(HttpContext .AUTHORIZATION) . This header name is
org.osgi .service.useradmin.authorization .

5. Once the request is authenticated and any attributes are set, the handleSecurity method should
return true . This return indicates to the Http Service that the request is authorized and processing
may continue. If the request is for a Servlet, the Http Service must then call the service method on
the Servlet object.

102.8 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

102.8.1 Accessing Resources with the Default Http Context
The Http Service must be granted AdminPermission[*,RESOURCE] so that bundles may use a default
HttpContext object. This is necessary because the implementation of the default HttpContext object
must call Bundle.getResource to access the resources of a bundle and this method requires the caller
to have AdminPermission[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling Class.getResource . This operation is
privileged. The resulting URL object may then be passed to the Http Service as the result of a
HttpContext .getResource call. No further permission checks are performed when accessing bundle
resource URL objects, so the Http Service does not need to be granted any additional permissions.

102.8.2 Accessing Other Types of Resources
In order to access resources that were not registered using the default HttpContext object, the Http
Service must be granted sufficient privileges to access these resources. For example, if the
getResource method of the registered HttpContext object returns a file URL, the Http Service
requires the corresponding Fi lePermission to read the file. Similarly, if the getResource method of
the registered HttpContext object returns an HTTP URL, the Http Service requires the corresponding
SocketPermission to connect to the resource.
OSGi Service Platform Release 4, Version 4.3 Page 55

Configuration Properties Http Service Specification Version 1.2
Therefore, in most cases, the Http Service should be a privileged service that is granted sufficient per-
mission to serve any bundle's resources, no matter where these resources are located. Therefore, the
Http Service must capture the AccessControlContext object of the bundle registering resources or a
servlet, and then use the captured AccessControlContext object when accessing resources returned
by the registered HttpContext object. This situation prevents a bundle from registering resources
that it does not have permission to access.

Therefore, the Http Service should follow a scheme like the following example. When a resource or
servlet is registered, it should capture the context.

AccessControlContext acc =

AccessController.getContext();

When a URL returned by the getResource method of the associated HttpContext object is called, the
Http Service must call the getResource method in a doPriv i leged construct using the
AccessControlContext object of the registering bundle:

AccessController.doPrivileged(

new PrivilegedExceptionAction() {

public Object run() throws Exception {

...

}

}, acc);

The Http Service must only use the captured AccessControlContext when accessing resource URL
objects.

102.8.3 Servlet and HttpContext objects
This specification does not require that the Http Service is granted All Permission or wraps calls to
the Servlet and Http Context objects in a doPriv i leged block. Therefore, it is the responsibility of the
Servlet and Http Context implementations to use a doPriv i leged block when performing privileged
operations.

102.9 Configuration Properties
If the Http Service does not have its port values configured through some other means, the Http Ser-
vice implementation should use the following properties to determine the port values upon which to
listen.

The following OSGi environment properties are used to specify default HTTP ports:

• org.osgi .service.http.port – This property specifies the port used for servlets and resources acces-
sible via HTTP. The default value for this property is 80.

• org.osgi .service.http.port .secure – This property specifies the port used for servlets and
resources accessible via HTTPS. The default value for this property is 443.

102.10 org.osgi.service.http
Http Service Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http; version=”[1.2,2.0)”
Page 56 OSGi Service Platform Release 4, Version 4.3

Http Service Specification Version 1.2 org.osgi.service.http
Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http; vers ion=”[1.2,1.3)”

102.10.1 Summary
• HttpContext – This interface defines methods that the Http Service may call to get information

about a registration.
• HttpService – The Http Service allows other bundles in the OSGi environment to dynamically

register resources and servlets into the URI namespace of Http Service.
• NamespaceException – A NamespaceException is thrown to indicate an error with the caller’s

request to register a servlet or resources into the URI namespace of the Http Service.

102.10.2 Permissions
HttpContext

102.10.3 public interface HttpContext
This interface defines methods that the Http Service may call to get information about a registration.

Servlets and resources may be registered with an HttpContext object; if no HttpContext object is
specified, a default HttpContext object is used. Servlets that are registered using the same
HttpContext object will share the same ServletContext object.

This interface is implemented by users of the HttpService .
AUTHENTICATION_TYPE

102.10.3.1 public static final String AUTHENTICATION_TYPE = “org.osgi.service.http.authentication.type”

HttpServletRequest attribute specifying the scheme used in authentication. The value of the
attribute can be retrieved by HttpServletRequest .getAuthType . This attribute name is
org.osgi .service.http.authenticat ion.type .

Since 1.1
AUTHORIZATION

102.10.3.2 public static final String AUTHORIZATION = “org.osgi.service.useradmin.authorization”

HttpServletRequest attribute specifying the Authorization object obtained from the
org.osgi .service.useradmin.UserAdmin service. The value of the attribute can be retrieved by
HttpServletRequest .getAttr ibute(HttpContext.AUTHORIZATION) . This attribute name is
org.osgi .service.useradmin.authorization .

Since 1.1
REMOTE_USER

102.10.3.3 public static final String REMOTE_USER = “org.osgi.service.http.authentication.remote.user”

HttpServletRequest attribute specifying the name of the authenticated user. The value of the
attribute can be retrieved by HttpServletRequest .getRemoteUser . This attribute name is
org.osgi .service.http.authenticat ion.remote.user .

Since 1.1
getMimeType(String)

102.10.3.4 public String getMimeType (String name)

name determine the MIME type for this name.

 Maps a name to a MIME type. Called by the Http Service to determine the MIME type for the name.
For servlet registrations, the Http Service will call this method to support the ServletContext method
getMimeType . For resource registrations, the Http Service will call this method to determine the
MIME type for the Content-Type header in the response.

Returns MIME type (e.g. text/html) of the name or null to indicate that the Http Service should determine the
MIME type itself.
getResource(String)

102.10.3.5 public URL getResource (String name)

name the name of the requested resource
OSGi Service Platform Release 4, Version 4.3 Page 57

org.osgi.service.http Http Service Specification Version 1.2
 Maps a resource name to a URL.

Called by the Http Service to map a resource name to a URL. For servlet registrations, Http Service
will call this method to support the ServletContext methods getResource and
getResourceAsStream . For resource registrations, Http Service will call this method to locate the
named resource. The context can control from where resources come. For example, the resource can
be mapped to a file in the bundle’s persistent storage area via
bundleContext .getDataFi le(name).toURL() or to a resource in the context’s bundle via
getClass() .getResource(name)

Returns URL that Http Service can use to read the resource or nul l if the resource does not exist.
handleSecurity(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

102.10.3.6 public boolean handleSecurity (HttpServletRequest request , HttpServletResponse response)
throws IOException

request the HTTP request

response the HTTP response

 Handles security for the specified request.

The Http Service calls this method prior to servicing the specified request. This method controls
whether the request is processed in the normal manner or an error is returned.

If the request requires authentication and the Authorization header in the request is missing or not
acceptable, then this method should set the WWW-Authenticate header in the response object, set
the status in the response object to Unauthorized(401) and return false . See also RFC 2617: HTTP
Authentication: Basic and Digest Access Authentication (available at http://www.ietf.org/rfc/rfc2617.txt).

If the request requires a secure connection and the getScheme method in the request does not return
‘https’ or some other acceptable secure protocol, then this method should set the status in the
response object to Forbidden(403) and return false .

When this method returns false , the Http Service will send the response back to the client, thereby
completing the request. When this method returns true , the Http Service will proceed with servicing
the request.

If the specified request has been authenticated, this method must set the AUTHENTICATION_TYPE
request attribute to the type of authentication used, and the REMOTE_USER request attribute to the
remote user (request attributes are set using the setAttr ibute method on the request). If this method
does not perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this method must set the
AUTHORIZATION request attribute to the Authorization object obtained from the
org.osgi .serv ice.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the authentication type and
remote user by calling the getAuthType and getRemoteUser methods, respectively, on the request.

Returns true if the request should be serviced, false if the request should not be serviced and Http Service will
send the response back to the client.

Throws IOException – may be thrown by this method. If this occurs, the Http Service will terminate the re-
quest and close the socket.
HttpService

102.10.4 public interface HttpService
The Http Service allows other bundles in the OSGi environment to dynamically register resources
and servlets into the URI namespace of Http Service. A bundle may later unregister its resources or
servlets.

See Also HttpContext

No Implement Consumers of this API must not implement this interface
createDefaultHttpContext()
Page 58 OSGi Service Platform Release 4, Version 4.3

Http Service Specification Version 1.2 org.osgi.service.http
102.10.4.1 public HttpContext createDefaultHttpContext ()

 Creates a default HttpContext for registering servlets or resources with the HttpService, a new
HttpContext object is created each time this method is called.

The behavior of the methods on the default HttpContext is defined as follows:

• getMimeType - Does not define any customized MIME types for the Content-Type header in the
response, and always returns nul l .

• handleSecurity - Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the context bundle; this method calls the context

bundle’s Bundle.getResource method, and returns the appropriate URL to access the resource. On
a Java runtime environment that supports permissions, the Http Service needs to be granted
org.osgi . f ramework.AdminPermission[*,RESOURCE] .

Returns a default HttpContext object.

Since 1.1
registerResources(String,String,HttpContext)

102.10.4.2 public void registerResources (String alias , String name , HttpContext context) throws
NamespaceException

alias name in the URI namespace at which the resources are registered

name the base name of the resources that will be registered

context the HttpContext object for the registered resources, or nul l if a default HttpContext is to be created and
used.

 Registers resources into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped. An alias must begin with slash (’/’) and must not end with slash (’/’), with the exception that
an alias of the form “/” is used to denote the root alias. The name parameter must also not end with
slash (’/’) with the exception that a name of the form “/” is used to denote the root of the bundle. See
the specification text for details on how HTTP requests are mapped to servlet and resource registra-
tions.

For example, suppose the resource name /tmp is registered to the alias /files. A request for /files/
foo.txt will map to the resource name /tmp/foo.txt.

httpservice.registerResources(”/files”, “/tmp”, context);

The Http Service will call the HttpContext argument to map resource names to URLs and MIME
types and to handle security for requests. If the HttpContext argument is nul l , a default HttpContext
is used (see createDefaultHttpContext()).

Throws NamespaceException – if the registration fails because the alias is already in use.

IllegalArgumentException – if any of the parameters are invalid
registerServlet(String,javax.servlet.Servlet,Dictionary,HttpContext)

102.10.4.3 public void registerServlet (String alias , Servlet servlet , Dictionary initparams , HttpContext
context) throws ServletException , NamespaceException

alias name in the URI namespace at which the servlet is registered

servlet the servlet object to register

initparams initialization arguments for the servlet or nul l if there are none. This argument is used by the servlet’s
ServletConfig object.

context the HttpContext object for the registered servlet, or nul l if a default HttpContext is to be created and
used.

 Registers a servlet into the URI namespace.
OSGi Service Platform Release 4, Version 4.3 Page 59

org.osgi.service.http Http Service Specification Version 1.2
The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped.

An alias must begin with slash (’/’) and must not end with slash (’/’), with the exception that an alias
of the form “/” is used to denote the root alias. See the specification text for details on how HTTP
requests are mapped to servlet and resource registrations.

The Http Service will call the servlet’s in it method before returning.

httpService.registerServlet(”/myservlet”, servlet, initparams, context);

Servlets registered with the same HttpContext object will share the same ServletContext . The Http
Service will call the context argument to support the ServletContext methods getResource ,
getResourceAsStream and getMimeType , and to handle security for requests. If the context argu-
ment is nul l , a default HttpContext object is used (see createDefaultHttpContext()).

Throws NamespaceException – if the registration fails because the alias is already in use.

javax.servlet.ServletException – if the servlet’s in it method throws an exception, or the given
servlet object has already been registered at a different alias.

IllegalArgumentException – if any of the arguments are invalid
unregister(String)

102.10.4.4 public void unregister (String alias)

alias name in the URI name-space of the registration to unregister

 Unregisters a previous registration done by registerServlet or registerResources methods.

After this call, the registered alias in the URI name-space will no longer be available. If the registra-
tion was for a servlet, the Http Service must call the destroy method of the servlet before returning.

If the bundle which performed the registration is stopped or otherwise “unget”s the Http Service
without calling unregister(Str ing) then Http Service must automatically unregister the registration.
However, if the registration was for a servlet, the destroy method of the servlet will not be called in
this case since the bundle may be stopped. unregister(Str ing) must be explicitly called to cause the
destroy method of the servlet to be called. This can be done in the BundleActivator.stop method of
the bundle registering the servlet.

Throws IllegalArgumentException – if there is no registration for the alias or the calling bundle was not the
bundle which registered the alias.
NamespaceException

102.10.5 public class NamespaceException
extends Exception
A NamespaceException is thrown to indicate an error with the caller’s request to register a servlet or
resources into the URI namespace of the Http Service. This exception indicates that the requested
alias already is in use.
NamespaceException(String)

102.10.5.1 public NamespaceException (String message)

message the detail message

 Construct a NamespaceException object with a detail message.
NamespaceException(String,Throwable)

102.10.5.2 public NamespaceException (String message , Throwable cause)

message The detail message.

cause The nested exception.

 Construct a NamespaceException object with a detail message and a nested exception.
getCause()
Page 60 OSGi Service Platform Release 4, Version 4.3

Http Service Specification Version 1.2 References
102.10.5.3 public Throwable getCause ()

 Returns the cause of this exception or null if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2
getException()

102.10.5.4 public Throwable getException ()

 Returns the nested exception.

This method predates the general purpose exception chaining mechanism. The getCause() method
is now the preferred means of obtaining this information.

Returns The result of calling getCause() .
initCause(Throwable)

102.10.5.5 public Throwable initCause (Throwable cause)

cause The cause of this exception.

 Initializes the cause of this exception to the specified value.

Returns This exception.

Throws IllegalArgumentException – If the specified cause is this exception.

IllegalStateException – If the cause of this exception has already been set.

Since 1.2

102.11 References
[1] HTTP 1.0 Specification RFC-1945

http://www.ietf.org/rfc/rfc1945.txt, May 1996

[2] HTTP 1.1 Specification RFC-2616
http://www.ietf.org/rfc/rfc2616.txt, June 1999

[3] Java Servlet Technology
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

[4] MIME Multipurpose Internet Mail Extension
http://www.mhonarc.org/~ehood/MIME/MIME.html

[5] Assigned MIME Media Types
http://www.iana.org/assignments/media-types

[6] Registration Procedures for new MIME media types
http://www.ietf.org/rfc/rfc2048.txt

[7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt
OSGi Service Platform Release 4, Version 4.3 Page 61

References Http Service Specification Version 1.2
Page 62 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 Introduction
103 Device Access Specification
Version 1.1

103.1 Introduction
A Service Platform is a meeting point for services and devices from many different vendors: a meeting
point where users add and cancel service subscriptions, newly installed services find their corre-
sponding input and output devices, and device drivers connect to their hardware.

In an OSGi Service Platform, these activities will dynamically take place while the Framework is run-
ning. Technologies such as USB and IEEE 1394 explicitly support plugging and unplugging devices at
any time, and wireless technologies are even more dynamic.

This flexibility makes it hard to configure all aspects of an OSGi Service Platform, particularly those
relating to devices. When all of the possible services and device requirements are factored in, each
OSGi Service Platform will be unique. Therefore, automated mechanisms are needed that can be
extended and customized, in order to minimize the configuration needs of the OSGi environment.

The Device Access specification supports the coordination of automatic detection and attachment of
existing devices on an OSGi Service Platform, facilitates hot-plugging and -unplugging of new
devices, and downloads and installs device drivers on demand.

This specification, however, deliberately does not prescribe any particular device or network technol-
ogy, and mentioned technologies are used as examples only. Nor does it specify a particular device
discovery method. Rather, this specification focuses on the attachment of devices supplied by differ-
ent vendors. It emphasizes the development of standardized device interfaces to be defined in device
categories, although no such device categories are defined in this specification.

103.1.1 Essentials
• Embedded Devices – OSGi bundles will likely run in embedded devices. This environment implies

limited possibility for user interaction, and low-end devices will probably have resource limita-
tions.

• Remote Administration – OSGi environments must support administration by a remote service pro-
vider.

• Vendor Neutrality – OSGi-compliant driver bundles will be supplied by different vendors; each
driver bundle must be well-defined, documented, and replaceable.

• Continuous Operation – OSGi environments will be running for extended periods without being
restarted, possibly continuously, requiring stable operation and stable resource consumption.

• Dynamic Updates – As much as possible, driver bundles must be individually replaceable without
affecting unrelated bundles. In particular, the process of updating a bundle should not require a
restart of the whole OSGi Service Platform or disrupt operation of connected devices.

A number of requirements must be satisfied by Device Access implementations in order for them to
be OSGi-compliant. Implementations must support the following capabilities:

• Hot-Plugging – Plugging and unplugging of devices at any time if the underlying hardware and
drivers allow it.

• Legacy Systems – Device technologies which do not implement the automatic detection of plugged
and unplugged devices.

• Dynamic Device Driver Loading – Loading new driver bundles on demand with no prior device-spe-
cific knowledge of the Device service.
OSGi Service Platform Release 4, Version 4.3 Page 63

Introduction Device Access Specification Version 1.1
• Multiple Device Representations – Devices to be accessed from multiple levels of abstraction.
• Deep Trees – Connections of devices in a tree of mixed network technologies of arbitrary depth.
• Topology Independence – Separation of the interfaces of a device from where and how it is attached.
• Complex Devices – Multifunction devices and devices that have multiple configurations.

103.1.2 Operation
This specification defines the behavior of a device manager (which is not a service as might be
expected). This device manager detects registration of Device services and is responsible for associat-
ing these devices with an appropriate Driver service. These tasks are done with the help of Driver
Locator services and the Driver Selector service that allow a device manager to find a Driver bundle
and install it.

103.1.3 Entities
The main entities of the Device Access specification are:

• Device Manager – The bundle that controls the initiation of the attachment process behind the
scenes.

• Device Category – Defines how a Driver service and a Device service can cooperate.
• Driver – Competes for attaching Device services of its recognized device category. See Driver Ser-

vices on page 69.
• Device – A representation of a physical device or other entity that can be attached by a Driver

service. See Device Services on page 65.
• DriverLocator – Assists in locating bundles that provide a Driver service. See Driver Locator Service

on page 75.
• DriverSelector – Assists in selecting which Driver service is best suited to a Device service. See The

Driver Selector Service on page 77.

Figure 103.1 show the classes and their relationships.
Page 64 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 Device Services
Figure 103.1 Device Access Class Overview

103.2 Device Services
A Device service represents some form of a device. It can represent a hardware device, but that is not a
requirement. Device services differ widely: some represent individual physical devices and others
represent complete networks. Several Device services can even simultaneously represent the same
physical device at different levels of abstraction. For example:

• A USB network.
• A device attached on the USB network.
• The same device recognized as a USB to Ethernet bridge.
• A device discovered on the Ethernet using Salutation.
• The same device recognized as a simple printer.
• The same printer refined to a PostScript printer.

A device can also be represented in different ways. For example, a USB mouse can be considered as:

• A USB device which delivers information over the USB bus.
• A mouse device which delivers x and y coordinates and information about the state of its buttons.

Each representation has specific implications:

• That a particular device is a mouse is irrelevant to an application which provides management of
USB devices.

• That a mouse is attached to a USB bus or a serial port would be inconsequential to applications
that respond to mouse-like input.

Device Manager
impl

Device
or Device_
Category set

<<interface>>
Driver
Locator

<<interface>>
Driver
Selector

a Driver impl

<<interface>>
Driver

a Driver
Locator impl

<<interface>>
Match

a Driver
Selector impl

a Device impl
0..n1

1

1

1

0..n

listens to all
device registrations

collects all drivers
and matches them
to devices

0..n

1

attaches device and
possible refines 0..n

0,1

0..n

1 1

0,1

 driver located by

associates
driver with

match value
for device

refines or uses external

best driver

device driver
bundle

Driver Selector
bundle

Driver Locator
bundle

device manager

downloads
a bundle1

1

(provided by application or
vendor specific)

(provided by vendor)

(provided by operator)

selected by
OSGi Service Platform Release 4, Version 4.3 Page 65

Device Services Device Access Specification Version 1.1
Device services must belong to a defined device category, or else they can implement a generic ser-
vice which models a particular device, independent of its underlying technology. Examples of this
type of implementation could be Sensor or Actuator services.

A device category specifies the methods for communicating with a Device service, and enables inter-
operability between bundles that are based on the same underlying technology. Generic Device ser-
vices will allow inter-operability between bundles that are not coupled to specific device technolo-
gies.

For example, a device category is required for the USB, so that Driver bundles can be written that
communicate to the devices that are attached to the USB. If a printer is attached, it should also be
available as a generic Printer service defined in a Printer service specification, indistinguishable from
a Printer service attached to a parallel port. Generic categories, such as a Printer service, should also
be described in a Device Category.

It is expected that most Device service objects will actually represent a physical device in some form,
but that is not a requirement of this specification. A Device service is represented as a normal service
in the OSGi Framework and all coordination and activities are performed upon Framework services.
This specification does not limit a bundle developer from using Framework mechanisms for services
that are not related to physical devices.

103.2.1 Device Service Registration
A Device service is defined as a normal service registered with the Framework that either:

• Registers a service object under the interface org.osgi .service.Device with the Framework, or
• Sets the DEVICE_CATEGORY property in the registration. The value of DEVICE_CATEGORY is an

array of Str ing objects of all the device categories that the device belongs to. These strings are
defined in the associated device category.

If this document mentions a Device service, it is meant to refer to services registered with the name
org.osgi .serv ice.device.Device or services registered with the DEVICE_CATEGORY property set.

When a Device service is registered, additional properties may be set that describe the device to the
device manager and potentially to the end users. The following properties have their semantics
defined in this specification:

• DEVICE_CATEGORY – A marker property indicating that this service must be regarded as a Device
service by the device manager. Its value is of type Str ing[] , and its meaning is defined in the asso-
ciated device category specification.

• DEVICE_DESCRIPTION – Describes the device to an end user. Its value is of type Str ing .
• DEVICE_SERIAL – A unique serial number for this device. If the device hardware contains a serial

number, the driver bundle is encouraged to specify it as this property. Different Device services
representing the same physical hardware at different abstraction levels should set the same
DEVICE_SERIAL, thus simplifying identification. Its value is of type Str ing .

• service.pid – Service Persistent ID (PID), defined in org.osgi . framework.Constants . Device ser-
vices should set this property. It must be unique among all registered services. Even different
abstraction levels of the same device must use different PIDs. The service PIDs must be repro-
ducible, so that every time the same hardware is plugged in, the same PIDs are used.

103.2.2 Device Service Attachment
When a Device service is registered with the Framework, the device manager is responsible for find-
ing a suitable Driver service and instructing it to attach to the newly registered Device service. The
Device service itself is passive: it only registers a Device service with the Framework and then waits
until it is called.
Page 66 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 Device Category Specifications
The actual communication with the underlying physical device is not defined in the Device interface
because it differs significantly between different types of devices. The Driver service is responsible for
attaching the device in a device type-specific manner. The rules and interfaces for this process must
be defined in the appropriate device category.

If the device manager is unable to find a suitable Driver service, the Device service remains unat-
tached. In that case, if the service object implements the Device interface, it must receive a call to the
noDriverFound() method. The Device service can wait until a new driver is installed, or it can unreg-
ister and attempt to register again with different properties that describe a more generic device or try
a different configuration.

103.2.2.1 Idle Device Service

The main purpose of the device manager is to try to attach drivers to idle devices. For this purpose, a
Device service is considered idle if no bundle that itself has registered a Driver service is using the
Device service.

103.2.2.2 Device Service Unregistration

When a Device service is unregistered, no immediate action is required by the device manager. The
normal service of unregistering events, provided by the Framework, takes care of propagating the
unregistration information to affected drivers. Drivers must take the appropriate action to release
this Device service and perform any necessary cleanup, as described in their device category specifi-
cation.

The device manager may, however, take a device unregistration as an indication that driver bundles
may have become idle and are thus eligible for removal. It is therefore important for Device services
to unregister their service object when the underlying entity becomes unavailable.

103.3 Device Category Specifications
A device category specifies the rules and interfaces needed for the communication between a Device
service and a Driver service. Only Device services and Driver services of the same device category can
communicate and cooperate.

The Device Access service specification is limited to the attachment of Device services by Driver ser-
vices, and does not enumerate different device categories.

Other specifications must specify a number of device categories before this specification can be made
operational. Without a set of defined device categories, no inter-operability can be achieved.

Device categories are related to a specific device technology, such as USB, IEEE 1394, JINI, UPnP, Salu-
tation, CEBus, Lonworks, and others. The purpose of a device category specification is to make all
Device services of that category conform to an agreed interface, so that, for example, a USB Driver ser-
vice of vendor A can control Device services from vendor B attached to a USB bus.

This specification is limited to defining the guidelines for device category definitions only. Device
categories may be defined by the OSGi organization or by external specification bodies – for example,
when these bodies are associated with a specific device technology.

103.3.1 Device Category Guidelines
A device category definition comprises the following elements:

• An interface that all devices belonging to this category must implement. This interface should lay
out the rules of how to communicate with the underlying device. The specification body may
define its own device interfaces (or classes) or leverage existing ones. For example, a serial port
device category could use the javax.comm.SerialPort interface which is defined in [1] Java Commu-
nications API.
OSGi Service Platform Release 4, Version 4.3 Page 67

Device Category Specifications Device Access Specification Version 1.1
When registering a device belonging to this category with the Framework, the interface or class
name for this category must be included in the registration.

• A set of service registration properties, their data types, and semantics, each of which must be
declared as either MANDATORY or OPTIONAL for this device category.

• A range of match values specific to this device category. Matching is explained later in The Device
Attachment Algorithm on page 78.

103.3.2 Sample Device Category Specification
The following is a partial example of a fictitious device category:

public interface /* com.acme.widget.*/ WidgetDevice {

int MATCH_SERIAL = 10;

int MATCH_VERSION = 8;

int MATCH_MODEL = 6;

int MATCH_MAKE = 4;

int MATCH_CLASS = 2;

void sendPacket(byte [] data);

byte [] receivePacket(long timeout);

}

Devices in this category must implement the interface com.acme.widget.WidgetDevice to receive
attachments from Driver services in this category.

Device properties for this fictitious category are defined in table Table 103.1.

103.3.3 Match Example
Driver services and Device services are connected via a matching process that is explained in The
Device Attachment Algorithm on page 78. The Driver service plays a pivotal role in this matching pro-
cess. It must inspect the Device service (from its ServiceReference object) that has just been regis-
tered and decide if it potentially could cooperate with this Device service.

It must be able to answer a value indicating the quality of the match. The scale of this match value
must be defined in the device category so as to allow Driver services to match on a fair basis. The scale
must start at least at 1 and go upwards.

Table 103.1 Example Device Category Properties, M=Mandatory, O=Optional

Property name M/O Type Value

DEVICE_CATEGORY M String[] {"Widget"}
com.acme.class M String A class description of this device. For

example "audio", "video", "seria l", etc. An
actual device category specification
should contain an exhaustive list and
define a process to add new classes.

com.acme.model M String A definition of the model. This is usually
vendor specific. For example "Mouse".

com.acme.manufacturer M String Manufacturer of this device, for example
"ACME Widget Division".

com.acme.revis ion O String Revision number. For example, "42".
com.acme.seria l O String A serial number. For example

"SN6751293-12-2112/A".
Page 68 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 Driver Services
Driver services for this sample device category must return one of the match codes defined in the
com.acme.widget.WidgetDevice interface or Device.MATCH_NONE if the Device service is not rec-
ognized. The device category must define the exact rules for the match codes in the device category
specification. In this example, a small range from 2 to 10 (MATCH_NONE is 0) is defined for
WidgetDevice devices. They are named in the WidgetDevice interface for convenience and have the
following semantics.

A Driver service should use the constants to return when it decides how closely the Device service
matches its suitability. For example, if it matches the exact serial number, it should return
MATCH_SERIAL .

103.4 Driver Services
A Driver service is responsible for attaching to suitable Device services under control of the device
manager. Before it can attach a Device service, however, it must compete with other Driver services
for control.

If a Driver service wins the competition, it must attach the device in a device category-specific way.
After that, it can perform its intended functionality. This functionality is not defined here nor in the
device category; this specification only describes the behavior of the Device service, not how the
Driver service uses it to implement its intended functionality. A Driver service may register one or
more new Device services of another device category or a generic service which models a more
refined form of the device.

Both refined Device services as well as generic services should be defined in a Device Category. See
Device Category Specifications on page 67.

103.4.1 Driver Bundles
A Driver service is, like all services, implemented in a bundle, and is recognized by the device man-
ager by registering one or more Driver service objects with the Framework.

Such bundles containing one or more Driver services are called driver bundles. The device manager
must be aware of the fact that the cardinality of the relationship between bundles and Driver services
is 1:1...*.

A driver bundle must register at least one Driver service in its BundleActivator .start implementation.

103.4.2 Driver Taxonomy
Device Drivers may belong to one of the following categories:

• Base Drivers (Discovery, Pure Discovery and Normal)
• Refining Drivers
• Network Drivers
• Composite Drivers
• Referring Drivers
• Bridging Drivers

Table 103.2 Sample Device Category Match Scale

Match name Value Description

MATCH_SERIAL 10 An exact match, including the serial number.
MATCH_VERSION 8 Matches the right class, make model, and version.
MATCH_MODEL 6 Matches the right class and make model.
MATCH_MAKE 4 Matches the make.
MATCH_CLASS 2 Only matches the class.
OSGi Service Platform Release 4, Version 4.3 Page 69

Driver Services Device Access Specification Version 1.1
• Multiplexing Drivers
• Pure Consuming Drivers

This list is not definitive, and a Driver service is not required to fit into one of these categories. The
purpose of this taxonomy is to show the different topologies that have been considered for the Device
Access service specification.

Figure 103.2 Legend for Device Driver Services Taxonomy

103.4.2.1 Base Drivers

The first category of device drivers are called base drivers because they provide the lowest-level repre-
sentation of a physical device. The distinguishing factor is that they are not registered as Driver ser-
vices because they do not have to compete for access to their underlying technology.

Figure 103.3 Base Driver Types

Base drivers discover physical devices using code not specified here (for example, through notifica-
tions from a device driver in native code) and then register corresponding Device services.

When the hardware supports a discovery mechanism and reports a physical device, a Device service
is then registered. Drivers supporting a discovery mechanism are called discovery base drivers.

An example of a discovery base driver is a USB driver. Discovered USB devices are registered with the
Framework as a generic USB Device service. The USB specification (see [2] USB Specification) defines a
tightly integrated discovery method. Further, devices are individually addressed; no provision exists
for broadcasting a message to all devices attached to the USB bus. Therefore, there is no reason to
expose the USB network itself; instead, a discovery base driver can register the individual devices as
they are discovered.

Not all technologies support a discovery mechanism. For example, most serial ports do not support
detection, and it is often not even possible to detect whether a device is attached to a serial port.

Although each driver bundle should perform discovery on its own, a driver for a non-discoverable
serial port requires external help – either through a user interface or by allowing the Configuration
Admin service to configure it.

It is possible for the driver bundle to combine automatic discovery of Plug and Play-compliant
devices with manual configuration when non-compliant devices are plugged in.

bold

plain

Device service

Hardware

Driver

Association

Key part

Illustrative

Network

Parallel port service

Physical

Base driver

Printer service

JINI, Salutation,

Pure Discovery

hardware SLP, UPnP

Printer service

Hardware with

 Discovery
 Base driver

discovery: USB,
IEEE 1394,

Base driver
Page 70 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 Driver Services
103.4.2.2 Refining Drivers

The second category of device drivers are called refining drivers. Refining drivers provide a refined
view of a physical device that is already represented by another Device service registered with the
Framework. Refining drivers register a Driver service with the Framework. This Driver service is used
by the device manager to attach the refining driver to a less refined Device service that is registered as
a result of events within the Framework itself.

Figure 103.4 Refining Driver Diagram

An example of a refining driver is a mouse driver, which is attached to the generic USB Device service
representing a physical mouse. It then registers a new Device service which represents it as a Mouse
service, defined elsewhere.

The majority of drivers fall into the refining driver type.

103.4.2.3 Network Drivers

An Internet Protocol (IP) capable network such as Ethernet supports individually addressable devices
and allows broadcasts, but does not define an intrinsic discovery protocol. In this case, the entire net-
work should be exposed as a single Device service.

Figure 103.5 Network Driver diagram

103.4.2.4 Composite Drivers

Complex devices can often be broken down into several parts. Drivers that attach to a single service
and then register multiple Device services are called composite drivers. For example, a USB speaker
containing software-accessible buttons can be registered by its driver as two separate Device services:
an Audio Device service and a Button Device service.

Mouse service

USB Device

Base driver

Refining driver

IP Network driver

drivers and other services
that use the network service

network

Associated with

to discover devices

(also for other
devices)
OSGi Service Platform Release 4, Version 4.3 Page 71

Driver Services Device Access Specification Version 1.1
Figure 103.6 Composite Driver structure

This approach can greatly reduce the number of interfaces needed, as well as enhance reusability.

103.4.2.5 Referring Drivers

A referring driver is actually not a driver in the sense that it controls Device services. Instead, it acts as
an intermediary to help locate the correct driver bundle. This process is explained in detail in The
Device Attachment Algorithm on page 78.

A referring driver implements the call to the attach method to inspect the Device service, and decides
which Driver bundle would be able to attach to the device. This process can actually involve connect-
ing to the physical device and communicating with it. The attach method then returns a Str ing
object that indicates the DRIVER_ID of another driver bundle. This process is called a referral.

For example, a vendor ACME can implement one driver bundle that specializes in recognizing all of
the devices the vendor produces. The referring driver bundle does not contain code to control the
device – it contains only sufficient logic to recognize the assortment of devices. This referring driver
can be small, yet can still identify a large product line. This approach can drastically reduce the
amount of downloading and matching needed to find the correct driver bundle.

103.4.2.6 Bridging Drivers

A bridging driver registers a Device service from one device category but attaches it to a Device ser-
vice from another device category.

Figure 103.7 Bridging Driver Structure

For example, USB to Ethernet bridges exist that allow connection to an Ethernet network through a
USB device. In this case, the top level of the USB part of the Device service stack would be an Ethernet
Device service. But the same Ethernet Device service can also be the bottom layer of an Ethernet layer
of the Device service stack. A few layers up, a bridge could connect into yet another network.

The stacking depth of Device services has no limit, and the same drivers could in fact appear at differ-
ent levels in the same Device service stack. The graph of drivers-to-Device services roughly mirrors
the hardware connections.

103.4.2.7 Multiplexing Drivers

A multiplexing driver attaches a number of Device services and aggregates them in a new Device ser-
vice.

Audio Device

USB Device

Physical USB bus

Base driver

Composite driver

Button Device

Ethernet Device

USB device

Bridging driver

Ethernet device drivers
Page 72 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 Driver Services
Figure 103.8 Multiplexing Driver Structure

For example, assume that a system has a mouse on USB, a graphic tablet on a serial port, and a remote
control facility. Each of these would be registered as a service with the Framework. A multiplexing
driver can attach all three, and can merge the different positions in a central Cursor Position service.

103.4.2.8 Pure Consuming Drivers

A pure consuming driver bundle will attach to devices without registering a refined version.

Figure 103.9 Pure Consuming Driver Structure

For example, one driver bundle could decide to handle all serial ports through javax.comm instead of
registering them as services. When a USB serial port is plugged in, one or more Driver services are
attached, resulting in a Device service stack with a Serial Port Device service. A pure consuming
driver may then attach to the Serial Port Device service and register a new serial port with the
javax.comm.* registry instead of the Framework service registry. This registration effectively trans-
fers the device from the OSGi environment into another environment.

103.4.2.9 Other Driver Types

It should be noted that any bundle installed in the OSGi environment may get and use a Device ser-
vice without having to register a Driver service.

The following functionality is offered to those bundles that do register a Driver service and conform
to the this specification:

• The bundles can be installed and uninstalled on demand.
• Attachment to the Device service is only initiated after the winning the competition with other

drivers.

103.4.3 Driver Service Registration
Drivers are recognized by registering a Driver service with the Framework. This event makes the
device manager aware of the existence of the Driver service. A Driver service registration must have a
DRIVER_ID property whose value is a Str ing object, uniquely identifying the driver to the device man-
ager. The device manager must use the DRIVER_ID to prevent the installation of duplicate copies of
the same driver bundle.

Therefore, this DRIVER_ID must:

 USB Mouse

Multiplexing Driver

Cursor Position

 Remote
Control

Graphic Tablet

USB Network Serial Port

Pure Consuming Driver

USB Serial Port

USB Base Driver

USB Network
OSGi Service Platform Release 4, Version 4.3 Page 73

Driver Services Device Access Specification Version 1.1
• Depend only on the specific behavior of the driver, and thus be independent of unrelated aspects
like its location or mechanism of downloading.

• Start with the reversed form of the domain name of the company that implements it: for example,
com.acme.widget.1 .1.

• Differ from the DRIVER_ID of drivers with different behavior. Thus, it must also be different for
each revision of the same driver bundle so they may be distinguished.

When a new Driver service is registered, the Device Attachment Algorithm must be applied to each
idle Device service. This requirement gives the new Driver service a chance to compete with other
Driver services for attaching to idle devices. The techniques outlined in Optimizations on page 81 can
provide significant shortcuts for this situation.

As a result, the Driver service object can receive match and attach requests before the method which
registered the service has returned.

This specification does not define any method for new Driver services to steal already attached
devices. Once a Device service has been attached by a Driver service, it can only be released by the
Driver service itself.

103.4.4 Driver Service Unregistration
When a Driver service is unregistered, it must release all Device services to which it is attached. Thus,
all its attached Device services become idle. The device manager must gather all of these idle Device
services and try to re-attach them. This condition gives other Driver services a chance to take over the
refinement of devices after the unregistering driver. The techniques outlined in Optimizations on
page 81 can provide significant shortcuts for this situation.

A Driver service that is installed by the device manager must remain registered as long as the driver
bundle is active. Therefore, a Driver service should only be unregistered if the driver bundle is stop-
ping, an occurrence which may precede its being uninstalled or updated. Driver services should thus
not unregister in an attempt to minimize resource consumption. Such optimizations can easily intro-
duce race conditions with the device manager.

103.4.5 Driver Service Methods
The Driver interface consists of the following methods:

• match(ServiceReference) – This method is called by the device manager to find out how well this
Driver service matches the Device service as indicated by the ServiceReference argument. The
value returned here is specific for a device category. If this Device service is of another device cat-
egory, the value Device.MATCH_NONE must be returned. Higher values indicate a better match.
For the exact matching algorithm, see The Device Attachment Algorithm on page 78.
Driver match values and referrals must be deterministic, in that repeated calls for the same Device
service must return the same results so that results can be cached by the device manager.

• attach(ServiceReference) – If the device manager decides that a Driver service should be attached
to a Device service, it must call this method on the Driver service object. Once this method is
called, the Device service is regarded as attached to that Driver service, and no other Driver service
must be called to attach to the Device service. The Device service must remain owned by the
Driver service until the Driver bundle is stopped. No unattach method exists.
The attach method should return nul l when the Device service is correctly attached. A referring
driver (see Referring Drivers on page 72) can return a Str ing object that specifies the DRIVER_ID of a
driver that can handle this Device service. In this case, the Device service is not attached and the
device manager must attempt to install a Driver service with the same DRIVER_ID via a Driver
Locator service. The attach method must be deterministic as described in the previous method.
Page 74 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 Driver Locator Service
103.4.6 Idle Driver Bundles
An idle Driver bundle is a bundle with a registered Driver service, and is not attached to any Device
service. Idle Driver bundles are consuming resources in the OSGi Service Platform. The device man-
ager should uninstall bundles that it has installed and which are idle.

103.5 Driver Locator Service
The device manager must automatically install Driver bundles, which are obtained from Driver Loca-
tor services, when new Device services are registered.

A Driver Locator service encapsulates the knowledge of how to fetch the Driver bundles needed for a
specific Device service. This selection is made on the properties that are registered with a device: for
example, DEVICE_CATEGORY and any other properties registered with the Device service registra-
tion.

The purpose of the Driver Locator service is to separate the mechanism from the policy. The decision
to install a new bundle is made by the device manager (the mechanism), but a Driver Locator service
decides which bundle to install and from where the bundle is downloaded (the policy).

Installing bundles has many consequences for the security of the system, and this process is also sen-
sitive to network setup and other configuration details. Using Driver Locator services allows the
Operator to choose a strategy that best fits its needs.

Driver services are identified by the DRIVER_ID property. Driver Locator services use this particular
ID to identify the bundles that can be installed. Driver ID properties have uniqueness requirements
as specified in Device Service Registration on page 66. This uniqueness allows the device manager to
maintain a list of Driver services and prevent unnecessary installs.

An OSGi Service Platform can have several different Driver Locator services installed. The device
manager must consult all of them and use the combined result set, after pruning duplicates based on
the DRIVER_ID values.

103.5.1 The DriverLocator Interface
The DriverLocator interface allows suitable driver bundles to be located, downloaded, and installed
on demand, even when completely unknown devices are detected.

It has the following methods:

• f indDrivers(Dict ionary) – This method returns an array of driver IDs that potentially match a
service described by the properties in the Dictionary object. A driver ID is the Str ing object that is
registered by a Driver service under the DRIVER_ID property.

• loadDriver(Str ing) – This method returns an InputStream object that can be used to download
the bundle containing the Driver service as specified by the driver ID argument. If the Driver
Locator service cannot download such a bundle, it should return nul l . Once this bundle is down-
loaded and installed in the Framework, it must register a Driver service with the DRIVER_ID
property set to the value of the Str ing argument.

103.5.2 A Driver Example
The following example shows a very minimal Driver service implementation. It consists of two
classes. The first class is SerialWidget . This class tracks a single WidgetDevice from Sample Device
Category Specification on page 68. It registers a javax.comm.SerialPort service, which is a general serial
port specification that could also be implemented from other device categories like USB, a COM port,
etc. It is created when the SerialWidgetDriver object is requested to attach a WidgetDevice by the
device manager. It registers a new javax.comm.SerialPort service in its constructor.
OSGi Service Platform Release 4, Version 4.3 Page 75

Driver Locator Service Device Access Specification Version 1.1
The org.osgi .uti l . t racker.ServiceTracker is extended to handle the Framework events that are
needed to simplify tracking this service. The removedService method of this class is overridden to
unregister the SerialPort when the underlying WidgetDevice is unregistered.

package com.acme.widget;

import org.osgi.service.device.*;

import org.osgi.framework.*;

import org.osgi.util.tracker.*;

class SerialWidget extends ServiceTracker

implements javax.comm.SerialPort,

org.osgi.service.device.Constants {

ServiceRegistration registration;

SerialWidget(BundleContext c, ServiceReference r) {

super(c, r, null);

open();

}

public Object addingService(ServiceReference ref) {

WidgetDevice dev = (WidgetDevice)

context.getService(ref);

registration = context.registerService(

javax.comm.SerialPort.class.getName(),

this,

null);

return dev;

}

public void removedService(ServiceReference ref,

Object service) {

registration.unregister();

context.ungetService(ref);

}

... methods for javax.comm.SerialPort that are

... converted to underlying WidgetDevice

}

A SerialWidgetDriverobject is registered with the Framework in the Bundle Activator start method
under the Driver interface. The device manager must call the match method for each idle Device ser-
vice that is registered. If it is chosen by the device manager to control this Device service, a new
Seria lWidget is created that offers serial port functionality to other bundles.

public class SerialWidgetDriver implements Driver {

BundleContext context;

String spec =

 "(&"

+" (objectclass=com.acme.widget.WidgetDevice)"

+" (DEVICE_CATEGORY=WidgetDevice)"

+" (com.acme.class=Serial)"

+ ")";

Filter filter;
Page 76 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 The Driver Selector Service
SerialWidgetDriver(BundleContext context)

throws Exception {

this.context = context;

filter = context.createFilter(spec);

}

public int match(ServiceReference d) {

if (filter.match(d))

return WidgetDevice.MATCH_CLASS;

else

return Device.MATCH_NONE;

}

public synchronized String attach(ServiceReference r){

new SerialWidget(context, r);

}

}

103.6 The Driver Selector Service
The purpose of the Driver Selector service is to customize the selection of the best Driver service from
a set of suitable Driver bundles. The device manager has a default algorithm as described in The Device
Attachment Algorithm on page 78. When this algorithm is not sufficient and requires customizing by
the operator, a bundle providing a Driver Selector service can be installed in the Framework. This ser-
vice must be used by the device manager as the final arbiter when selecting the best match for a
Device service.

The Driver Selector service is a singleton; only one such service is recognized by the device manager.
The Framework method BundleContext.getServiceReference must be used to obtain a Driver Selec-
tor service. In the erroneous case that multiple Driver Selector services are registered, the
service.ranking property will thus define which service is actually used.

A device manager implementation must invoke the method select(ServiceReference,Match[]) . This
method receives a Service Reference to the Device service and an array of Match objects. Each Match
object contains a link to the ServiceReference object of a Driver service and the result of the match
value returned from a previous call to Driver.match . The Driver Selector service should inspect the
array of Match objects and use some means to decide which Driver service is best suited. The index of
the best match should be returned. If none of the Match objects describe a possible Driver service, the
implementation must return DriverSelector .SELECT_NONE (-1) .

103.7 Device Manager
Device Access is controlled by the device manager in the background. The device manager is respon-
sible for initiating all actions in response to the registration, modification, and unregistration of
Device services and Driver services, using Driver Locator services and a Driver Selector service as
helpers.

The device manager detects the registration of Device services and coordinates their attachment with
a suitable Driver service. Potential Driver services do not have to be active in the Framework to be eli-
gible. The device manager must use Driver Locator services to find bundles that might be suitable for
the detected Device service and that are not currently installed. This selection is done via a
DRIVER_ID property that is unique for each Driver service.
OSGi Service Platform Release 4, Version 4.3 Page 77

Device Manager Device Access Specification Version 1.1
The device manager must install and start these bundles with the help of a Driver Locator service.
This activity must result in the registration of one or more Driver services. All available Driver ser-
vices, installed by the device manager and also others, then participate in a bidding process. The
Driver service can inspect the Device service through its ServiceReference object to find out how
well this Driver service matches the Device service.

If a Driver Selector service is available in the Framework service registry, it is used to decide which of
the eligible Driver services is the best match.

If no Driver Selector service is available, the highest bidder must win, with tie breaks defined on the
service.ranking and service. id properties. The selected Driver service is then asked to attach the
Device service.

If no Driver service is suitable, the Device service remains idle. When new Driver bundles are
installed, these idle Device services must be reattached.

The device manager must reattach a Device service if, at a later time, a Driver service is unregistered
due to an uninstallation or update. At the same time, however, it should prevent superfluous and
non-optimal reattachments. The device manager should also garbage-collect driver bundles it
installed which are no longer used.

The device manager is a singleton. Only one device manager may exist, and it must have no public
interface.

103.7.1 Device Manager Startup
To prevent race conditions during Framework startup, the device manager must monitor the state of
Device services and Driver services immediately when it is started. The device manager must not,
however, begin attaching Device services until the Framework has been fully started, to prevent
superfluous or non-optimal attachments.

The Framework has completed starting when the FrameworkEvent.STARTED event has been pub-
lished. Publication of that event indicates that Framework has finished all its initialization and all
bundles are started. If the device manager is started after the Framework has been initialized, it
should detect the state of the Framework by examining the state of the system bundle.

103.7.2 The Device Attachment Algorithm
A key responsibility of the device manager is to attach refining drivers to idle devices. The following
diagram illustrates the device attachment algorithm.
Page 78 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 Device Manager
Figure 103.10 Device Attachment Algorithm

Idle Device

For each DriverLocator

findDriversA

For each DRIVER ID

Try to loadBFor each Driver not excluded

C match

Nothing

Selector

Try selector
D

Attach completed Nothing attached

Default selection

Attach

Cleanup

Try to load

Add the driver to
the exclusion list

Device

noDriverFound

Cleanup

E

F

K

I

K

G

H

OSGi Service Platform Release 4, Version 4.3 Page 79

Device Manager Device Access Specification Version 1.1
103.7.3 Legend
Table 103.3 Driver attachment algorithm

Step Description

A DriverLocator. f indDrivers is called for each registered Driver Locator ser-
vice, passing the properties of the newly detected Device service. Each
method call returns zero or more DRIVER_ID values (identifiers of particular
driver bundles).

If the f indDrivers method throws an exception, it is ignored, and processing
continues with the next Driver Locator service. See Optimizations on page 81
for further guidance on handling exceptions.

B For each found DRIVER_ID that does not correspond to an already registered
Driver service, the device manager calls DriverLocator. loadDriver to return
an InputStream containing the driver bundle. Each call to loadDriver is
directed to one of the Driver Locator services that mentioned the DRIVER_ID
in step A. If the loadDriver method fails, the other Driver Locator objects are
tried. If they all fail, the driver bundle is ignored.

If this method succeeds, the device manager installs and starts the driver
bundle. Driver bundles must register their Driver services synchronously
during bundle activation.

C For each Driver service, except those on the exclusion list, call its
Driver.match method, passing the ServiceReference object to the Device
service.

Collect all successful matches – that is, those whose return values are greater
than Device.MATCH_NONE – in a list of active matches. A match call that
throws an exception is considered unsuccessful and is not added to the list.

D If there is a Driver Selector service, the device manager calls the
DriverSelector .select method, passing the array of active Match objects.

If the Driver Selector service returns the index of one of the Match objects
from the array, its associated Driver service is selected for attaching the
Device service. If the Driver Selector service returns
DriverSelector .SELECT_NONE , no Driver service must be considered for
attaching the Device service.

If the Driver Selector service throws an exception or returns an invalid
result, the default selection algorithm is used.

Only one Driver Selector service is used, even if there is more than one regis-
tered in the Framework. See The Driver Selector Service on page 77.

E The winner is the one with the highest match value. Tie breakers are respec-
tively:

• Highest serv ice.ranking property.
• Lowest service. id property.

F The selected Driver service’s attach method is called. If the attach method
returns nul l , the Device service has been successfully attached. If the attach
method returns a Str ing object, it is interpreted as a referral to another
Driver service and processing continues at G. See Referring Drivers on page
72.

If an exception is thrown, the Driver service has failed, and the algorithm
proceeds to try another Driver service after excluding this one from further
consideration at Step H.
Page 80 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 Device Manager
103.7.4 Optimizations
Optimizations are explicitly allowed and even recommended for an implementation of a device man-
ager. Implementations may use the following assumptions:

• Driver match values and referrals must be deterministic, in that repeated calls for the same Device
service must return the same results.

• The device manager may cache match values and referrals. Therefore, optimizations in the device
attachment algorithm based on this assumption are allowed.

• The device manager may delay loading a driver bundle until it is needed. For example, a delay
could occur when that DRIVER_ID ’s match values are cached.

• The results of calls to DriverLocator and DriverSelector methods are not required to be determin-
istic, and must not be cached by the device manager.

• Thrown exceptions must not be cached. Exceptions are considered transient failures, and the
device manager must always retry a method call even if it has thrown an exception on a previous
invocation with the same arguments.

103.7.5 Driver Bundle Reclamation
The device manager may remove driver bundles it has installed at any time, provided that all the
Driver services in that bundle are idle. This recommended practice prevents unused driver bundles
from accumulating over time. Removing driver bundles too soon, however, may cause unnecessary
installs and associated delays when driver bundles are needed again.

If a device manager implements driver bundle reclamation, the specified matching algorithm is not
guaranteed to terminate unless the device manager takes reclamation into account.

G The device manager attempts to load the referred driver bundle in a manner
similar to Step B, except that it is unknown which Driver Locator service to
use. Therefore, the loadDriver method must be called on each Driver Locator
service until one succeeds (or they all fail). If one succeeds, the device man-
ager installs and starts the driver bundle. The driver bundle must register a
Driver service during its activation which must be added to the list of Driver
services in this algorithm.

H The referring driver bundle is added to the exclusion list. Because each new
referral adds an entry to the exclusion list, which in turn disqualifies another
driver from further matching, the algorithm cannot loop indefinitely. This
list is maintained for the duration of this algorithm. The next time a new
Device service is processed, the exclusion list starts out empty.

I If no Driver service attached the Device service, the Device service is checked
to see whether it implements the Device interface. If so, the noDriverFound
method is called. Note that this action may cause the Device service to
unregister and possibly a new Device service (or services) to be registered in
its place. Each new Device service registration must restart the algorithm
from the beginning.

K Whether an attachment was successful or not, the algorithm may have
installed a number of driver bundles. The device manager should remove
any idle driver bundles that it installed.

Table 103.3 Driver attachment algorithm

Step Description
OSGi Service Platform Release 4, Version 4.3 Page 81

Security Device Access Specification Version 1.1
For example, assume that a new Device service triggers the attachment algorithm. A driver bundle
recommended by a Driver Locator service is loaded. It does not match, so the Device service remains
idle. The device manager is eager to reclaim space, and unloads the driver bundle. The disappearance
of the Driver service causes the device manager to reattach idle devices. Because it has not kept a
record of its previous activities, it tries to reattach the same device, which closes the loop.

On systems where the device manager implements driver bundle reclamation, all refining drivers
should be loaded through Driver Locator services. This recommendation is intended to prevent the
device manager from erroneously uninstalling pre-installed driver bundles that cannot later be rein-
stalled when needed.

The device manager can be updated or restarted. It cannot, however, rely on previously stored infor-
mation to determine which driver bundles were pre-installed and which were dynamically installed
and thus are eligible for removal. The device manager may persistently store cachable information
for optimization, but must be able to cold start without any persistent information and still be able to
manage an existing connection state, satisfying all of the requirements in this specification.

103.7.6 Handling Driver Bundle Updates
It is not straightforward to determine whether a driver bundle is being updated when the
UNREGISTER event for a Driver service is received. In order to facilitate this distinction, the device
manager should wait for a period of time after the unregistration for one of the following events to
occur:

• A BundleEvent.UNINSTALLED event for the driver bundle.
• A ServiceEvent.REGISTERED event for another Driver service registered by the driver bundle.

If the driver bundle is uninstalled, or if neither of the above events are received within the allotted
time period, the driver is assumed to be inactive. The appropriate waiting period is implementation-
dependent and will vary for different installations. As a general rule, this period should be long
enough to allow a driver to be stopped, updated, and restarted under normal conditions, and short
enough not to cause unnecessary delays in reattaching devices. The actual time should be config-
urable.

103.7.7 Simultaneous Device Service and Driver Service Registration
The device attachment algorithm may discover new driver bundles that were installed outside its
direct control, which requires executing the device attachment algorithm recursively. However, in
this case, the appearance of the new driver bundles should be queued until completion of the current
device attachment algorithm.

Only one device attachment algorithm may be in progress at any moment in time.

The following example sequence illustrates this process when a Driver service is registered:

• Collect the set of all idle devices.
• Apply the device attachment algorithm to each device in the set.
• If no Driver services were registered during the execution of the device attachment algorithm,

processing terminates.
• Otherwise, restart this process.

103.8 Security
The device manager is the only privileged bundle in the Device Access specification and requires the
org.osgi . framework.AdminPermission with the LIFECYCLE action to install and uninstall driver bun-
dles.
Page 82 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 org.osgi.service.device
The device manager itself should be free from any knowledge of policies and should not actively set
bundle permissions. Rather, if permissions must be set, it is up to the Management Agent to listen to
synchronous bundle events and set the appropriate permissions.

Driver Locator services can trigger the download of any bundle, because they deliver the content of a
bundle to the privileged device manager and could potentially insert a Trojan horse into the environ-
ment. Therefore, Driver Locator bundles need the ServicePermission[DriverLocator, REGISTER] to
register Driver Locator services, and the operator should exercise prudence in assigning this
ServicePermission .

Bundles with Driver Selector services only require ServicePermission[DriverSelector, REGISTER] to
register the DriverSelector service. The Driver Selector service can play a crucial role in the selection
of a suitable Driver service, but it has no means to define a specific bundle itself.

103.9 org.osgi.service.device
Device Access Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.device; version=”[1.1 ,2.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.device; vers ion=”[1.1 ,1 .2)”

103.9.1 Summary
• Constants – This interface defines standard names for property keys associated with Device and

Driver services.
• Device – Interface for identifying device services.
• Driver – A Driver service object must be registered by each Driver bundle wishing to attach to

Device services provided by other drivers.
• DriverLocator – A Driver Locator service can find and load device driver bundles given a property

set.
• DriverSelector – When the device manager detects a new Device service, it calls all registered

Driver services to determine if anyone matches the Device service.
• Match – Instances of Match are used in the DriverSelector.select(ServiceReference, Match[])

method to identify Driver services matching a Device service.

103.9.2 Permissions
Constants

103.9.3 public interface Constants
This interface defines standard names for property keys associated with Device and Driver services.

The values associated with these keys are of type java. lang.Str ing , unless otherwise stated.

See Also Device , Driver

Since 1.1

No Implement Consumers of this API must not implement this interface
DEVICE_CATEGORY

103.9.3.1 public static final String DEVICE_CATEGORY = “DEVICE_CATEGORY”

Property (named “DEVICE_CATEGORY”) containing a human readable description of the device cat-
egories implemented by a device. This property is of type Str ing[]
OSGi Service Platform Release 4, Version 4.3 Page 83

org.osgi.service.device Device Access Specification Version 1.1
Services registered with this property will be treated as devices and discovered by the device manager
DEVICE_DESCRIPTION

103.9.3.2 public static final String DEVICE_DESCRIPTION = “DEVICE_DESCRIPTION”

Property (named “DEVICE_DESCRIPTION”) containing a human readable string describing the
actual hardware device.
DEVICE_SERIAL

103.9.3.3 public static final String DEVICE_SERIAL = “DEVICE_SERIAL”

Property (named “DEVICE_SERIAL”) specifying a device’s serial number.
DRIVER_ID

103.9.3.4 public static final String DRIVER_ID = “DRIVER_ID”

Property (named “DRIVER_ID”) identifying a driver.

A DRIVER_ID should start with the reversed domain name of the company that implemented the
driver (e.g., com.acme), and must meet the following requirements:

• It must be independent of the location from where it is obtained.
• It must be independent of the DriverLocator service that downloaded it.
• It must be unique.
• It must be different for different revisions of the same driver.

This property is mandatory, i.e., every Driver service must be registered with it.
Device

103.9.4 public interface Device
Interface for identifying device services.

A service must implement this interface or use the Constants.DEVICE_CATEGORY registration prop-
erty to indicate that it is a device. Any services implementing this interface or registered with the
DEVICE_CATEGORY property will be discovered by the device manager.

Device services implementing this interface give the device manager the opportunity to indicate to
the device that no drivers were found that could (further) refine it. In this case, the device manager
calls the noDriverFound() method on the Device object.

Specialized device implementations will extend this interface by adding methods appropriate to
their device category to it.

See Also Driver

Concurrency Thread-safe
MATCH_NONE

103.9.4.1 public static final int MATCH_NONE = 0

Return value from Driver.match(ServiceReference) indicating that the driver cannot refine the
device presented to it by the device manager. The value is zero.
noDriverFound()

103.9.4.2 public void noDriverFound ()

 Indicates to this Device object that the device manager has failed to attach any drivers to it.

If this Device object can be configured differently, the driver that registered this Device object may
unregister it and register a different Device service instead.
Driver

103.9.5 public interface Driver
A Driver service object must be registered by each Driver bundle wishing to attach to Device services
provided by other drivers. For each newly discovered Device object, the device manager enters a bid-
ding phase. The Driver object whose match(ServiceReference) method bids the highest for a particu-
lar Device object will be instructed by the device manager to attach to the Device object.

See Also Device , DriverLocator
Page 84 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 org.osgi.service.device
Concurrency Thread-safe
attach(ServiceReference)

103.9.5.1 public String attach (ServiceReference reference) throws Exception

reference the ServiceReference object of the device to attach to

 Attaches this Driver service to the Device service represented by the given ServiceReference object.

A return value of nul l indicates that this Driver service has successfully attached to the given Device
service. If this Driver service is unable to attach to the given Device service, but knows of a more suit-
able Driver service, it must return the DRIVER_ID of that Driver service. This allows for the imple-
mentation of referring drivers whose only purpose is to refer to other drivers capable of handling a
given Device service.

After having attached to the Device service, this driver may register the underlying device as a new
service exposing driver-specific functionality.

This method is called by the device manager.

Returns null if this Driver service has successfully attached to the given Device service, or the DRIVER_ID of a
more suitable driver

Throws Exception – if the driver cannot attach to the given device and does not know of a more suitable driv-
er
match(ServiceReference)

103.9.5.2 public int match (ServiceReference reference) throws Exception

reference the ServiceReference object of the device to match

 Checks whether this Driver service can be attached to the Device service. The Device service is repre-
sented by the given ServiceReference and returns a value indicating how well this driver can support
the given Device service, or Device.MATCH_NONE if it cannot support the given Device service at all.

The return value must be one of the possible match values defined in the device category definition
for the given Device service, or Device.MATCH_NONE if the category of the Device service is not rec-
ognized.

In order to make its decision, this Driver service may examine the properties associated with the
given Device service, or may get the referenced service object (representing the actual physical
device) to talk to it, as long as it ungets the service and returns the physical device to a normal state
before this method returns.

A Driver service must always return the same match code whenever it is presented with the same
Device service.

The match function is called by the device manager during the matching process.

Returns value indicating how well this driver can support the given Device service, or Device.MATCH_NONE
if it cannot support the Device service at all

Throws Exception – if this Driver service cannot examine the Device service
DriverLocator

103.9.6 public interface DriverLocator
A Driver Locator service can find and load device driver bundles given a property set. Each driver is
represented by a unique DRIVER_ID .

Driver Locator services provide the mechanism for dynamically downloading new device driver bun-
dles into an OSGi environment. They are supplied by providers and encapsulate all provider-specific
details related to the location and acquisition of driver bundles.

See Also Driver

Concurrency Thread-safe
findDrivers(Dictionary)
OSGi Service Platform Release 4, Version 4.3 Page 85

org.osgi.service.device Device Access Specification Version 1.1
103.9.6.1 public String[] findDrivers (Dictionary props)

props the properties of the device for which a driver is sought

 Returns an array of DRIVER_ID strings of drivers capable of attaching to a device with the given prop-
erties.

The property keys in the specified Dictionary objects are case-insensitive.

Returns array of driver DRIVER_ID strings of drivers capable of attaching to a Device service with the given
properties, or nul l if this Driver Locator service does not know of any such drivers
loadDriver(String)

103.9.6.2 public InputStream loadDriver (String id) throws IOException

id the DRIVER_ID of the driver that needs to be installed.

 Get an InputStream from which the driver bundle providing a driver with the giving DRIVER_ID can
be installed.

Returns An InputStream object from which the driver bundle can be installed or nul l if the driver with the giv-
en ID cannot be located

Throws IOException – the input stream for the bundle cannot be created
DriverSelector

103.9.7 public interface DriverSelector
When the device manager detects a new Device service, it calls all registered Driver services to deter-
mine if anyone matches the Device service. If at least one Driver service matches, the device manager
must choose one. If there is a Driver Selector service registered with the Framework, the device man-
ager will ask it to make the selection. If there is no Driver Selector service, or if it returns an invalid
result, or throws an Exception , the device manager uses the default selection strategy.

Since 1.1

Concurrency Thread-safe
SELECT_NONE

103.9.7.1 public static final int SELECT_NONE = -1

Return value from DriverSelector .select , if no Driver service should be attached to the Device ser-
vice. The value is -1.
select(ServiceReference,Match[])

103.9.7.2 public int select (ServiceReference reference , Match[] matches)

reference the ServiceReference object of the Device service.

matches the array of all non-zero matches.

 Select one of the matching Driver services. The device manager calls this method if there is at least
one driver bidding for a device. Only Driver services that have responded with nonzero (not
Device.MATCH_NONE) match values will be included in the list.

Returns index into the array of Match objects, or SELECT_NONE if no Driver service should be attached
Match

103.9.8 public interface Match
Instances of Match are used in the DriverSelector.select(ServiceReference, Match[]) method to
identify Driver services matching a Device service.

See Also DriverSelector

Since 1.1

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface
getDriver()
Page 86 OSGi Service Platform Release 4, Version 4.3

Device Access Specification Version 1.1 References
103.9.8.1 public ServiceReference getDriver ()

 Return the reference to a Driver service.

Returns ServiceReference object to a Driver service.
getMatchValue()

103.9.8.2 public int getMatchValue ()

 Return the match value of this object.

Returns the match value returned by this Driver service.

103.10 References
[1] Java Communications API

http://www.oracle.com/technetwork/java/index-jsp-141752.html

[2] USB Specification
http://www.usb.org

[3] Universal Plug and Play
http://www.upnp.org

[4] Jini, Service Discovery and Usage
http://en.wikipedia.org/wiki/Jini
OSGi Service Platform Release 4, Version 4.3 Page 87

References Device Access Specification Version 1.1
Page 88 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Introduction
104 Configuration Admin Service
Specification
Version 1.4

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment of an OSGi Service Plat-
form. It allows an Operator to configure deployed bundles. Configuring is the process of defining the
configuration data for bundles and assuring that those bundles receive that data when they are active
in the OSGi Service Platform.

Figure 104.1 Configuration Admin Service Overview

104.1.1 Essentials
The following requirements and patterns are associated with the Configuration Admin service speci-
fication:

• Local Configuration – The Configuration Admin service must support bundles that have their own
user interface to change their configurations.

• Reflection – The Configuration Admin service must be able to deduce the names and types of the
needed configuration data.

• Legacy – The Configuration Admin service must support configuration data of existing entities
(such as devices).

• Object Oriented – The Configuration Admin service must support the creation and deletion of
instances of configuration information so that a bundle can create the appropriate number of ser-
vices under the control of the Configuration Admin service.

• Embedded Devices – The Configuration Admin service must be deployable on a wide range of plat-
forms. This requirement means that the interface should not assume file storage on the platform.
The choice to use file storage should be left to the implementation of the Configuration Admin
service.

• Remote versus Local Management – The Configuration Admin service must allow for a remotely
managed OSGi Service Platform, and must not assume that configuration information is stored
locally. Nor should it assume that the Configuration Admin service is always done remotely. Both
implementation approaches should be viable.

port=
secure=

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration

Configuration
Admin

data
OSGi Service Platform Release 4, Version 4.3 Page 89

Introduction Configuration Admin Service Specification Version 1.4
• Availability – The OSGi environment is a dynamic environment that must run continuously (24/
7/365). Configuration updates must happen dynamically and should not require restarting of the
system or bundles.

• Immediate Response – Changes in configuration should be reflected immediately.
• Execution Environment – The Configuration Admin service will not require more than an envi-

ronment that fulfills the minimal execution requirements.
• Communications – The Configuration Admin service should not assume “always-on” connectivity,

so the API is also applicable for mobile applications in cars, phones, or boats.
• Extendability – The Configuration Admin service should expose the process of configuration to

other bundles. This exposure should at a minimum encompass initiating an update, removing
certain configuration properties, adding properties, and modifying the value of properties poten-
tially based on existing property or service values.

• Complexity Trade-offs – Bundles in need of configuration data should have a simple way of
obtaining it. Most bundles have this need and the code to accept this data. Additionally, updates
should be simple from the perspective of the receiver.
Trade-offs in simplicity should be made at the expense of the bundle implementing the Configu-
ration Admin service and in favor of bundles that need configuration information. The reason for
this choice is that normal bundles will outnumber Configuration Admin bundles.

• Regions – It should be possible to create groups of bundles and a manager in a single system that
share configuration data that is not accessible outside the region.

• Shared Information – It should be possible to share configuration data between bundles.

104.1.2 Entities
• Configuration information – The information needed by a bundle before it can provide its intended

functionality.
• Configuration dictionary – The configuration information when it is passed to the target service. It

consists of a Dictionary object with a number of properties and identifiers.
• Configuring Bundle – A bundle that modifies the configuration information through the Configu-

ration Admin service. This bundle is either a management bundle or the bundle for which the
configuration information is intended.

• Configuration Target – The target service that will receive the configuration information. For ser-
vices, there are two types of targets: ManagedServiceFactory or ManagedService objects.

• Configuration Admin Service – This service is responsible for supplying configuration target
bundles with their configuration information. It maintains a database with configuration infor-
mation, keyed on the service.pid of configuration target services. These services receive their con-
figuration dictionary/dictionaries when they are registered with the Framework. Configurations
can be modified or extended using Configuration Plugin services before they reach the target
bundle.

• Managed Service – A Managed Service represents a client of the Configuration Admin service, and
is thus a configuration target. Bundles should register a Managed Service to receive the configu-
ration data from the Configuration Admin service. A Managed Service adds one or more unique
service.pid service properties as a primary key for the configuration information.

• Managed Service Factory – A Managed Service Factory can receive a number of configuration dic-
tionaries from the Configuration Admin service, and is thus also a configuration target service. It
should register with one or more service.pid strings and receives zero or more configuration dic-
tionaries. Each dictionary has its own PID that is distinct from the factory PID.

• Configuration Object – Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service
Factory. These objects are manipulated by configuring bundles.

• Configuration Plugin Services – Configuration Plugin services are called before the configuration
dictionary is given to the configuration targets. The plug-in can modify the configuration dic-
tionary, which is passed to the Configuration Target.
Page 90 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Configuration Targets
Figure 104.2 Overall Service Diagram

104.1.3 Synopsis
This specification is based on the concept of a Configuration Admin service that manages the config-
uration of an OSGi Service Platform. It maintains a database of Configurat ion objects, locally or
remotely. This service monitors the service registry and provides configuration information to ser-
vices that are registered with a service.pid property, the Persistent IDentity (PID), and implement
one of the following interfaces:

• Managed Service – A service registered with this interface receives its configuration dictionary from
the database or receives nul l when no such configuration exists.

• Managed Service Factory – Services registered with this interface can receive several configuration
dictionaries when registered. The database contains zero or more configuration dictionaries for
this service. Each configuration dictionary is given sequentially to the service.

The database can be manipulated either by the Management Agent or bundles that configure them-
selves. Other parties can provide Configuration Plugin services. Such services participate in the con-
figuration process. They can inspect the configuration dictionary and modify it before it reaches the
target service.

104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle distinction between the
ManagedService and ManagedServiceFactory classes. Both receive configuration information from
the Configuration Admin service and are treated similarly in most respects. Therefore, this specifica-
tion refers to configuration targets or simply targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the configuration dictionary. A
Managed Service is used when an existing entity needs a configuration dictionary. Thus, a one-to-one
relationship always exists between the configuration dictionary and the configurable entity in the
Managed Service. There can be multiple Managed Service targets registered with the same PID but a
Managed Service can only configure a single entity in each given Managed Service.

A Managed Service Factory is used when part of the configuration is to define how many instances are
required for a given Managed Service Factory. A management bundle can create, modify, and delete
any number of instances for a Managed Service Factory through the Configuration Admin service.
Each instance is configured by a single Configurat ion object. Therefore, a Managed Service Factory
can have multiple associated Configurat ion objects.

Configuration
Admin Impl.Configuration

Configuration
Listener

Managed
Service

Managed
Service Factory

Admin

Configuration
Plugin
OSGi Service Platform Release 4, Version 4.3 Page 91

The Persistent Identity Configuration Admin Service Specification Version 1.4
Figure 104.3 Differentiation of ManagedService and ManagedServiceFactory Classes

A Configuration target updates the target when the underlying Configuration object is created,
updated, or deleted. However, it is not called back when the Configuration Admin service is shut-
down or the service is ungotten.

To summarize:

• A Managed Service must receive a single configuration dictionary when it is registered or when its
configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dictionaries when it registers,
depending on the current configuration. The Managed Service Factory is informed of configu-
ration dictionary changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the Persistent IDentity (PID) as
defined in the Framework’s service layer. Its purpose is to act as a primary key for objects that need a
configuration dictionary. The name of the service property for PID is defined in the Framework in
org.osgi . framework.Constants.SERVICE_PID .

The Configuration Admin service requires the use of one or more PIDs with Managed Service and
Managed Service Factory registrations because it associates its configuration data with PIDs.

A service can register with multiple PIDs and PIDs can be shared between multiple targets (both
Managed Service and Managed Service Factory targets) to receive the same information. If PIDs are to
be shared between Bundles then the location of the Configuration must be a multi-location, see Loca-
tion Binding on page 93.

The Configuration Admin must track the configuration targets on their actual PID. That is, if the
service.pid service property is modified then the Configuration Admin must treat it as if the service
was unregistered and then re-registered with the new PID.

104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes the user is confronted with
a PID. For example, when installing an alarm system, the user needs to identify the different compo-
nents to a wiring application. This type of application exposes the PID to end users.

PIDs should follow the symbolic-name syntax, which uses a very restricted character set. The follow-
ing sections define some schemes for common cases. These schemes are not required, but bundle
developers are urged to use them to achieve consistency.

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a full stop (’ . ’ \u002D) are
reserved for a bundle. As an example, a PID of "65.536" would belong to the bundle with a bundle
identity of 65.

Framework Service

ManagedService ManagedServiceFactory

Management layer

Service layer

Registry
Page 92 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 The Configuration Object
104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package name they own as the PID
(the reverse domain name scheme) as long as they do not use characters outside the basic ASCII set.
As an example, the PID named com.acme.watchdog would represent a Watchdog service from the
ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device, such as a unique serial
number or an address, is a good component of a PID. The format of the serial number should be the
same as that printed on the housing or box, to aid in recognition.

104.4 The Configuration Object
A Configurat ion object contains the configuration dictionary, which is a set of properties that config-
ure an aspect of a bundle. A bundle can receive Configurat ion objects by registering a configuration
target service with a PID service property. See The Persistent Identity on page 92 for more information
about PIDs.

During registration, the Configuration Admin service must detect these configuration target services
and hand over their configuration dictionary via a callback. If this configuration dictionary is subse-
quently modified, the modified dictionary is handed over to the configuration target with the same
callback.

The Configuration object is primarily a set of properties that can be updated by a Management Agent,
user interfaces on the OSGi Service Platform, or other applications. Configuration changes are first
made persistent, and then passed to the target service via a call to the updated method in the
ManagedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or Managed Service Factory.
This implies that a bundle must not register a Managed Service Factory with a PID that is the same as
the PID given to a Managed Service.

104.4.1 Location Binding
When a Configuration object is created with either getConfiguration(String) or
createFactoryConfigurat ion(Str ing) , it becomes bound to the location of the calling bundle. This
location is obtained with the getBundleLocation() method.

Location binding is a security feature that assures that only management bundles can modify config-
uration data, and other bundles can only modify their own configuration data. A Security Exception
is thrown if a bundle does not have Configurat ionPermission[location, CONFIGURE] .

Table 104.1 Schemes for Device-Oriented PID Names

Bus Example Format Description

USB USB.0123-0002-
9909873

idVendor (hex 4)
idProduct (hex 4)
iSer ia lNumber (decimal)

Universal Ser ial Bus. Use the
standard device descr iptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with: separators IEEE 802 MAC address (Token

Ring, Ethernet, . . .)
ONE ONE.06-00000021E461 Family (hex 2) and ser ial number

including CRC (hex 6)
1-wire bus of Dal las Semiconduc-
tor

COM COM.krups-brewer-
12323

serial number or type name of
device

Serial ports
OSGi Service Platform Release 4, Version 4.3 Page 93

The Configuration Object Configuration Admin Service Specification Version 1.4
The two argument versions of getConfigurat ion(Str ing,Str ing) and
createFactoryConfigurat ion(Str ing,Str ing) take a location Str ing as their second argument. These
methods require the correct permission, and they create Configurat ion objects bound to the specified
location.

Locations can be specified for a specific Bundle or use multi-locations. For a specific location the Con-
figuration location must exactly match the location of the target’s Bundle. A multi-location is any
location that has the following syntax:

multi-location ::= ’?’ symbolic-name?

For example

?com.acme

The path after the question mark is the multi-location name, the multi-location name can be empty if
only a question mark is specified. Configurations with a multi-location are dispatched to any target
that has visibility to the Configuration. The visibility for a given Configuration c depends on the fol-
lowing rules:

• Single-Location – If c. locat ion is not a multi-location then a Bundle only has visibility if the
Bundle’s location exactly matches c. location . In this case there is never a security check.

• Multi-Location – If c. locat ion is a multi-location (that is, starts with a question mark):
• Security Off – The Bundle always has visibility
• Security On – The target’s Bundle must have Configurat ionPermission[c. location,TARGET] as

defined by the Bundle’s hasPermiss ion method. The resource name of the permission must
include the question mark.

The permission matches on the whole name, including any leading ? . The TARGET action is only
applicable in the multi-location scenario since the security is not checked for a single-location. There
is therefore no point in granting a Bundle a permission with TARGET action for anything but a multi-
location (starting with a ?).

It is therefore possible to register services with the same PID from different bundles. If a multi-loca-
tion is used then each bundle will be evaluated for a corresponding configuration update. If the bun-
dle has visibility then it is updated, otherwise it is not.

If multiple targets must be updated then the order of updating is the ranking order of their services.

If a target loses visibility because the Configuration’s location changes then it must immediately be
deleted from the perspective of that target. That is, the target must see a deletion (Managed Service
Factory) or an update with nul l (Managed Service). If a configuration target gains visibility then the
target must see a new update with the proper configuration dictionary. However, the associated
events must not be sent as the underlying Configuration is not actually deleted nor modified.

Changes in the permissions must not initiate a recalculation of the visibility. If the permissions are
changed this will not become visible until one of the other events happen that cause a recalculation
of the visibility.

If the location is changed then the Configuration Admin must send a CM_LOCATION_CHANGED
event to signal that the location has changed. It is up to the Configuration Listeners to update their
state appropriately.

104.4.2 Dynamic Binding
Dynamic binding is available for backward compatibility with earlier versions. It is recommended
that management agents explicitly set the location to a ? (a multi-location) to allow multiple bundles
to share PIDs and not use the dynamic binding facility. If a management agent uses ?, it must at least
have Configurat ionPermiss ion[?,CONFIGURE] when security is on, it is also possible to use
Configurat ionPermission[?*,CONFIGURE] to not limit the management agent. See Regions on page
106 for some examples of using the locations in isolation scenarios.
Page 94 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 The Configuration Object
A null location parameter can be used to create Configuration objects that are not yet bound. In this
case, the Configuration becomes bound to a specific location the first time that it is compared to a
Bundle’s location. If a bundle becomes dynamically bound to a Configuration then a
CM_LOCATION_CHANGED event must be dispatched.

When this dynamically bound Bundle is subsequently uninstalled, configurations that are bound to
this bundle must be released. That means that for such Configurat ion object’s the bundle location
must be set to nul l again so it can be bound again to another bundle.

104.4.3 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary object. The value of the prop-
erty must be the same type as the set of types specified in the OSGi Core Specification in Figure 3.1 Pri-
mary property types.

The name or key of a property must always be a Str ing object, and is not case-sensitive during look
up, but must preserve the original case. The format of a property name should be:

property-name ::= public | private

public ::= symbolic-name // See 1.3.2

private ::= ’.’ symbolic-name

Properties can be used in other subsystems that have restrictions on the character set that can be
used. The symbolic-name production uses a very minimal character set.

Bundles must not use nested vectors or arrays, nor must they use mixed types. Using mixed types or
nesting makes it impossible to use the meta typing specification. See Metatype Service Specification on
page 129.

104.4.4 Property Propagation
A configuration target should copy the public configuration properties (properties whose name does
not start with a ’ . ’ or \u002E) of the Dictionary object argument in updated(Dict ionary) into the ser-
vice properties on any resulting service registration.

This propagation allows the development of applications that leverage the Framework service regis-
try more extensively, so compliance with this mechanism is advised.

A configuration target may ignore any configuration properties it does not recognize, or it may
change the values of the configuration properties before these properties are registered as service
properties. Configuration properties in the Framework service registry are not strictly related to the
configuration information.

Bundles that follow this recommendation to propagate public configuration properties can partici-
pate in horizontal applications. For example, an application that maintains physical location infor-
mation in the Framework service registry could find out where a particular device is located in the
house or car. This service could use a property dedicated to the physical location and provide func-
tions that leverage this property, such as a graphic user interface that displays these locations.

Bundles performing service registrations on behalf of other bundles (e.g. OSGi Declarative Services)
should propagate all public configuration properties and not propagate private configuration proper-
ties.

104.4.5 Automatic Properties
The Configuration Admin service must automatically add a number of properties to the configura-
tion dictionary. If these properties are also set by a configuring bundle or a plug-in, they must always
be overridden before they are given to the target service, see Configuration Plugin on page 108. There-
fore, the receiving bundle or plug-in can assume that the following properties are defined by the Con-
figuration Admin service and not by the configuring bundle:

• service.pid – Set to the PID of the associated Configurat ion object.
OSGi Service Platform Release 4, Version 4.3 Page 95

Managed Service Configuration Admin Service Specification Version 1.4
• service.factoryPid – Only set for a Managed Service Factory. It is then set to the PID of the asso-
ciated Managed Service Factory.

• service.bundleLocation – Set to the location of the Configuration object. This property can only
be used for searching, it may not appear in the configuration dictionary returned from the
getPropert ies method due to security reasons, nor may it be used when the target is updated.

Constants for some of these properties can be found in org.osgi . f ramework.Constants and the
Configurat ionAdmin interface. These service properties are all of type Str ing .

104.4.6 Equality
Two different Configurat ion objects can actually represent the same underlying configuration. This
means that a Configuration object must implement the equals and hashCode methods in such a way
that two Configuration objects are equal when their PID is equal.

104.5 Managed Service
A Managed Service is used by a bundle that needs one or more configuration dictionaries. It therefore
registers the Managed Service with one or more PIDs and is thus associated with one Configurat ion
object in the Configuration Admin service for each registered PID. A bundle can register any number
of ManagedService objects, but each must be identified with its own PID or PIDs.

A bundle should use a Managed Service when it needs configuration information for the following:

• A Singleton – A single entity in the bundle that needs to be configured.
• Externally Detected Devices – Each device that is detected causes a registration of an associated

ManagedService object. The PID of this object is related to the identity of the device, such as the
address or serial number.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A singleton requires a single
configuration dictionary. Bundles may implement several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and presence of services in
the Framework service registry. Only one instance of a Watchdog service is needed, so only a single
configuration dictionary is required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi Environment, it must be
detected in some manner. The Configuration Admin service cannot know the identity and the num-
ber of instances of the device without assistance. When a device is detected, it still needs configura-
tion information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are attached and removed.
When it detects a temperature sensor, it could register a Sensor service with the Framework service
registry. This Sensor service needs configuration information specifically for that sensor, such as
which lamps should be turned on, at what temperature the sensor is triggered, what timer should be
started, in what zone it resides, and so on. One bundle could potentially have hundreds of these sen-
sors and actuators, and each needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with a PID related to the
physical sensor (such as the address) to receive configuration information.
Page 96 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Managed Service
Other examples are services discovered on networks with protocols like Jini, UPnP, and Salutation.
They can usually be represented in the Framework service registry. A network printer, for example,
could be detected via UPnP. Once in the service registry, these services usually require local configu-
ration information. A Printer service needs to be configured for its local role: location, access list, and
so on.

This information needs to be available in the Framework service registry whenever that particular
Printer service is registered. Therefore, the Configuration Admin service must remember the configu-
ration information for this Printer service.

This type of service should register with the Framework as a Managed Service in order to receive
appropriate configuration information.

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more ManagedService objects
with a PID service property. If it has a default set of properties for its configuration, it may include
them as service properties of the Managed Service. These properties may be used as a configuration
template when a Configurat ion object is created for the first time. A Managed Service optionally
implements the MetaTypeProvider interface to provide information about the property types. See
Meta Typing on page 110.

When this registration is detected by the Configuration Admin service, the following steps must
occur:

• The configuration stored for the registered PID must be retrieved. If there is a Configurat ion
object for this PID and the configuration is visible for the associated bundle then it is sent to the
Managed Service with updated(Dict ionary) .

• If a Managed Service is registered and no configuration information is available or the configu-
ration is not visible then the Configuration Admin service must call updated(Dict ionary) with a
null parameter.

• If the Configuration Admin service starts after a Managed Service is registered, it must call
updated(Dict ionary) on this service as soon as possible according to the prior rules. For this
reason, a Managed Service must always get a callback when it registers and the Configuration
Admin service is started.

Multiple Managed Services can register with the same PID, they are all updated as long as they have
visibility to the configuration as defined by the location, see Location Binding on page 93.

The updated(Dict ionary) callback from the Configuration Admin service to the Managed Service
must take place asynchronously. This requirement allows the Managed Service to finish its initializa-
tion in a synchronized method without interference from the Configuration Admin service callback.
Care should be taken not to cause deadlocks by calling the Framework within a synchronized
method.
OSGi Service Platform Release 4, Version 4.3 Page 97

Managed Service Configuration Admin Service Specification Version 1.4
Figure 104.4 Managed Service Configuration Action Diagram

The updated method may throw a ConfigurationException . This object must describe the problem
and what property caused the exception.

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in the service registry for
a short period before they are replaced by the properties of the actual configuration dictionary. Care
should be taken that this visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must be split into two pieces:
an object performing the actual service and a Managed Service. First, the Managed Service is regis-
tered, the configuration is received, and the actual service object is registered. In such cases, the use of
a Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services are registered under the
ManagedService interface, each with a different PID.

Figure 104.5 PIDs and External Associations

The Configuration Admin service has a database containing a configuration record for each PID.
When the Managed Service with service.pid = com.acme is registered, the Configuration Admin ser-
vice will retrieve the properties name=Elmer and size=42 from its database. The properties are stored
in a Dictionary object and then given to the Managed Service with the updated(Dict ionary) method.

Client Bundle Framework Admin

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread

Configuration

Configuration
Admin Impl

16.1

com.

name=Erica

name=Elmer

database pid=com.acme

4.102 name=Christer
size=2

Managed Service

size=8

acme size=42

PID configuration

pid=4.102

no associated PID registered
Page 98 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Managed Service
104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet connection. It is a single-
ton, so it uses a ManagedService object to get its configuration information: the port and the network
name on which it should register.

class SampleManagedService implements ManagedService {

Dictionary properties;

ServiceRegistration registration;

Console console;

public void start(

BundleContext context) throws Exception {

properties = new Hashtable();

properties.put(Constants.SERVICE_PID,

"com.acme.console");

registration = context.registerService(

ManagedService.class.getName(),

this,

properties

);

}

public synchronized void updated(Dictionary np) {

if (np != null) {

properties = np;

properties.put(

Constants.SERVICE_PID, "com.acme.console");

}

if (console == null)

console = new Console();

int port = ((Integer)properties.get("port"))

.intValue();

String network = (String) properties.get("network");

console.setPort(port, network);

registration.setProperties(properties);

}

... further methods

}

104.5.6 Deletion
When a Configurat ion object for a Managed Service is deleted, the Configuration Admin service
must call updated(Dict ionary) with a null argument on a thread that is different from that on which
the Configurat ion.delete was executed. This deletion must send out a Configuration Event
CM_DELETED asynchronously to any registered Configuration Listener services after the updated
method is called with a null .
OSGi Service Platform Release 4, Version 4.3 Page 99

Managed Service Factory Configuration Admin Service Specification Version 1.4
104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is needed for a service that can
be instantiated multiple times. When a Managed Service Factory is registered with the Framework,
the Configuration Admin service consults its database and calls updated(Str ing,Dict ionary) for each
associated and visible Configurat ion object that matches the PIDs on the registration. It passes the
identifier of the Configuration instance, which can be used as a PID, as well as a Dictionary object
with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functionality a number of times,
each time with different configuration dictionaries. In this situation, the Managed Service Factory
acts like a class and the Configuration Admin service can use this Managed Service Factory to instanti-
ate instances for that class.

In the next section, the word factory refers to this concept of creating instances of a function defined by
a bundle that registers a Managed Service Factory.

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an internal or external
entity associated with the configuration information but can potentially be instantiated multiple
times.

104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has – a function likely to be
required for different users. This function could be viewed as a class that needs to be instantiated for
each user. Each instance requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a ManagedServiceFactory object. In
this way, the Configuration Admin service can define the configuration information for each user
separately. The Email Fetcher service will only receive a configuration dictionary for each required
instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that receives a temperature and,
depending on settings, can turn an actuator on and off. This service would need to be instantiated
many times depending on where it is needed. Each instance would require its own configuration
information for the following:

• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a ManagedServiceFactory interface.
A configuration program can then use this Managed Service Factory to create instances as needed.
For example, this program could use a Graphic User Interface (GUI) to create such a component and
configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification implementations. Some
environments have no means to identify available serial ports, and a device on a serial port cannot
always provide information about its type.
Page 100 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Managed Service Factory
Therefore, each serial port requires a description of the device that is connected. The bundle manag-
ing the serial ports would need to instantiate a number of serial ports under the control of the Config-
uration Admin service, with the appropriate DEVICE_CATEGORY property to allow it to participate
in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should register a Managed Ser-
vice Factory. The Configuration Admin service can then, with the help of a configuration program,
define configuration information for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration dictionary for a Managed
Service Factory is identified by a PID. The Managed Service Factory, however, also has a factory PID,
which is the PID of the associated Managed Service Factory. It is used to group all Managed Service
Factory configuration dictionaries together.

When a Configurat ion object for a Managed Service Factory is created
(Configurat ionAdmin.createFactoryConfiguration(String,Str ing) or
createFactoryConfigurat ion(Str ing)), a new unique PID is created for this object by the Configura-
tion Admin service. The scheme used for this PID is defined by the Configuration Admin service and
is unrelated to the factory PID, which is chosen by the registering bundle.

When the Configuration Admin service detects the registration of a Managed Service Factory, it must
find all visible configuration dictionaries for this factory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configuration dictionary. The first
argument is the PID of the Configuration object (the one created by the Configuration Admin ser-
vice) and the second argument contains the configuration properties.

The Managed Service Factory should then create any artifacts associated with that factory. Using the
PID given in the Configurat ion object, the bundle may register new services (other than a Managed
Service) with the Framework, but this is not required. This may be necessary when the PID is useful
in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this would force two Configu-
ration objects to have the same PID. If a bundle attempts to do this, the Configuration Admin service
should log an error and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions exist between initializa-
tion, updates, and deletions.

Figure 104.6 Managed Service Factory Action Diagram

A Managed Service Factory has only one update method: updated(Str ing,Dict ionary) . This method
can be called any number of times as Configuration objects are created or updated.

Client bundle Framework Admin

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementer of
ManagedServiceFactory

set the
configuration

get pid

for each found pidfor a new
instance

MUST be on another thread

Configuration
OSGi Service Platform Release 4, Version 4.3 Page 101

Managed Service Factory Configuration Admin Service Specification Version 1.4
The Managed Service Factory must detect whether a PID is being used for the first time, in which case
it should create a new instance, or a subsequent time, in which case it should update an existing
instance.

The Configuration Admin service must call updated(Str ing,Dict ionary) on a thread that is different
from the one that executed the registration. This requirement allows an implementation of a Man-
aged Service Factory to use a synchronized method to assure that the callbacks do not interfere with
the Managed Service Factory registration.

The updated(String,Dict ionary) method may throw a ConfigurationException object. This object
describes the problem and what property caused the problem. These exceptions should be logged by
a Configuration Admin service.

Multiple Managed Service Factory services can be registered with the same PID. Each of those ser-
vices that have visibility to the corresponding configuration will be updated in service ranking order.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the deleted(String) method
is called. The argument is the PID for this instance. The implementation of the Managed Service Fac-
tory must remove all information and stop any behavior associated with that PID. If a service was reg-
istered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED to all registered Config-
uration Listener services.

104.6.4 Managed Service Factory Example
Figure 104.7 highlights the differences between a Managed Service and a Managed Service Factory. It
shows how a Managed Service Factory implementation receives configuration information that was
created before it was registered.

• A bundle implements an EMail Fetcher service. It registers a ManagedServiceFactory object with
PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults its database. It finds three
Configurat ion objects for which the factory PID is equal to com.acme.email . It must call
updated(Str ing,Dictionary) for each of these Configurat ion objects on the newly registered
ManagedServiceFactory object.

• For each configuration dictionary received, the factory should create a new instance of a
EMai lFetcher object, one for erica (PID=16.1), one for anna (PID=16.3), and one for elmer
(PID=16.2).

• The EMai lFetcher objects are registered under the Topic interface so their results can be viewed by
an online display.
If the EMailFetcher object is registered, it may safely use the PID of the Configurat ion object
because the Configuration Admin service must guarantee its suitability for this purpose.
Page 102 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Managed Service Factory
Figure 104.7 Managed Service Factory Example

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own port and interface can run
simultaneously. This approach is very similar to the example for the Managed Service, but highlights
the difference by allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory {

Hashtable consoles = new Hashtable();

BundleContext context;

public void start(BundleContext context)

throws Exception {

this.context = context;

Hashtable local = new Hashtable();

local.put(Constants.SERVICE_PID,"com.acme.console");

context.registerService(

ManagedServiceFactory.class.getName(),

this,

local);

}

public void updated(String pid, Dictionary config){

Console console = (Console) consoles.get(pid);

if (console == null) {

console = new Console(context);

consoles.put(pid, console);

}

int port = getInt(config, "port", 2011);

String network = getString(

config,

"network",

null /*all*/

);

console.setPort(port, network);

}

Configuration
Admin

MailFetchFactory
pid=
com.acme.email

pid=16.1
name=erica

OSGi Service
registration
events

pid=16.1

pid=16.2
name=erica

name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service

factory pid
= com.acme

Registry

Factory

factory pid
= eric.mf

.email
OSGi Service Platform Release 4, Version 4.3 Page 103

Configuration Admin Service Configuration Admin Service Specification Version 1.4
public void deleted(String pid) {

Console console = (Console) consoles.get(pid);

if (console != null) {

consoles.remove(pid);

console.close();

}

}

}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configuration data in an OSGi
environment. This configuration information is defined by a number of Configuration objects associ-
ated with specific configuration targets. Configurat ion objects can be created, listed, modified, and
deleted through this interface. Either a remote management system or the bundles configuring their
own configuration information may perform these operations.

The Configurat ionAdmin interface has methods for creating and accessing Configurat ion objects for
a Managed Service, as well as methods for managing new Configuration objects for a Managed Ser-
vice Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Configurat ion object with
Configurat ionAdmin.getConfigurat ion . No create method is offered because doing so could intro-
duce race conditions between different bundles trying to create a Configurat ion object for the same
Managed Service. The getConfiguration method must atomically create and persistently store an
object if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) – This method is used by a bundle with a given location to configure its
own ManagedService objects. The argument specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) – This method is used by a management bundle to configure
another bundle. Therefore, this management bundle needs the right permission. The first
argument is the PID and the second argument is the location identifier of the targeted
ManagedService object.

All Configurat ion objects have a method, getFactoryPid() , which in this case must return nul l
because the Configurat ion object is associated with a Managed Service.

Creating a new Configuration object must not initiate a callback to the Managed Service updated
method until the properties are set in the Configuration with the update method.

104.7.2 Creating a Managed Service Factory Configuration Object
The Configurat ionAdmin class provides two methods to create a new instance of a Managed Service
Factory:

• createFactoryConfigurat ion(Str ing) – This method is used by a bundle with a given location to
configure its own ManagedServiceFactory objects. The argument specifies the PID of the targeted
ManagedServiceFactory object. This factory PID can be obtained from the returned Configurat ion
object with the getFactoryPid() method.

• createFactoryConfigurat ion(Str ing,Str ing)– This method is used by a management bundle to
configure another bundle’s ManagedServiceFactory object. The first argument is the PID and the
second is the location identifier of the targeted ManagedServiceFactory object. The factory PID
can be obtained from the returned Configurat ion object with getFactoryPid method.
Page 104 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Configuration Admin Service
Creating a new factory configuration must not initiate a callback to the Managed Service Factory
updated method until the properties are set in the Configuration object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l istConfigurat ions(String) . The argument
is a Str ing object with a filter expression. This filter expression has the same syntax as the Framework
Fi l ter class. For example:

(&(size=42)(service.factoryPid=*osgi*))

The Configuration Admin service must only return Configurations that are visible to the calling bun-
dle, see Location Binding on page 93.

A single Configuration object is identified with a PID and can be obtained with
l istConfigurat ions(String) if it is visible. nul l is returned in both cases when there are no visible
Configurat ion objects.

104.7.3.1 Updating a Configuration

The process of updating a Configuration object is the same for Managed Services and Managed Ser-
vice Factories. First, l istConfigurat ions(Str ing) or getConfigurat ion(Str ing) should be used to get a
Configurat ion object. The properties can be obtained with Configurat ion.getPropert ies . When no
update has occurred since this object was created, getPropert ies returns nul l .

New properties can be set by calling Configurat ion.update . The Configuration Admin service must
first store the configuration information and then call all configuration targets that have visibility
with the updated method: either the ManagedService.updated(Dict ionary) or
ManagedServiceFactory.updated(Str ing,Dict ionary) method. If a target service is not registered, the
fresh configuration information must be given to the target when the configuration target service
registers and it has visibility.

The update method calls in Configuration objects are not executed synchronously with the related
target services updated method. The updated method must be called asynchronously. The Configu-
ration Admin service, however, must have updated the persistent storage before the update method
returns.

The update method must also asynchronously send out a Configuration Event CM_UPDATED to all
registered Configuration Listeners.

104.7.4 Using Multi-Locations
Sharing configuration between different bundles can be done using multi-locations, see Location Bind-
ing on page 93. A multi-location for a Configuration enables this Configuration to be delivered to any
bundle that has visibility to that configuration. It is also possible that Bundles are interested in multi-
ple PIDs for one target service, for this reason they can register multiple PIDs for one service.

For example, a number of bundles require access to the URL of a remote host, associated with the PID
com.acme.host . A manager, aware that this PID is used by different bundles, would need to specify a
location for the Configuration that allows delivery to any bundle. A multi-location, any location
starting with a question mark achieves this. The part after the question mark has only use if the sys-
tem runs with security, it allows the implementation of regions, see Regions on page 106. In this
example a single question mark is used because any Bundle can receive this Configuration. The man-
ager’s code could look like:

Configuration c = admin.getConfiguration("com.acme.host", "?");

Hashtable ht = new Hashtable();

ht.put("host", hostURL);

c.update(ht);

A Bundle interested in the host configuration would register a Managed Service with the following
properties:
OSGi Service Platform Release 4, Version 4.3 Page 105

Configuration Admin Service Configuration Admin Service Specification Version 1.4
service.pid = ["com.acme.host", "com.acme.system"]

The Bundle would be called back for both the com.acme.host and com.acme.system PID and must
therefore discriminate between these two cases. This Managed Service therefore would have a call-
back like:

volatile URL url;

public void updated(Dictionary d) {

 if (d.get("service.pid").equals("com.acme.host"))

 this.url = new URL(d.get("host"));

 if (d.get("service.pid").equals("com.acme.system"))

....

}

104.7.5 Regions
In certain cases it is necessary to isolate bundles from each other. This will require that the configura-
tion can be separated in regions. Each region can then be configured by a separate manager that is
only allowed to manage bundles in its own region. Bundles can then only see configurations from
their own region. Such a region based system can only be achieved with Java security as this is the
only way to place bundles in a sandbox. This section describes how the Configuration’s location
binding can be used to implement regions if Java security is active.

Regions are groups of bundles that share location information among each other but are not willing
to share this information with others. Using the multi-locations, see Location Binding on page 93, and
security it is possible to limit access to a Configuration by using a location name. A Bundle can only
receive a Configuration when it has Configurat ionPermission[location name,TARGET] . It is there-
fore possible to create region by choosing a region name for the location. A management agent then
requires Configurat ionPermission[?region-name,CONFIGURE] and a Bundle in the region requires
Configurat ionPermiss ion[?region-name,TARGET].

To implement regions, the management agent is required to use multi-locations; without the ques-
tion mark a Configuration is only visible to a Bundle that has the exact location of the Configuration.
With a multi-location, the Configuration is delivered to any bundle that has the appropriate permis-
sion. Therefore, if regions are used, no manager should have ConfigurationPermiss ion[*,
CONFIGURE] because it would be able to configure anybody. This permission would enable the man-
ager to set the location to any region or set the location to nul l . All managers must be restricted to a
permission like ConfigurationPermission[?com.acme.region.*,CONFIGURE]. The resource name
for a Configuration Permission uses substring matching as in the OSGi Filter, this facility can be used
to simplify the administrative setup and implement more complex sharing schemes.

For example, a management agent works for the region com.acme . It has the following permission:

Configurat ionPermiss ion[?com.acme.*,CONFIGURE]

The manager requires multi-location updates for com.acme.* (the last period is required in this wild-
carding). For the CONFIGURE action the question mark must be specified in the resource name. The
bundles in the region have the permission:

Configurat ionPermiss ion["?com.acme.alpha" ,TARGET]

The question mark must be specified for the TARGET permission. A management agent that needs to
configure Bundles in a region must then do this as follows:

Configuration c = admin.getConfiguration("com.acme.host", "?com.acme.alpha");

Hashtable ht = new Hashtable();

ht.put("host", hostURL);

c.update(ht);

Another, similar, example with two regions:

• system
Page 106 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Configuration Events
• applicat ion

There is only one manager that manages all bundles. Its permissions look like:

ConfigurationPermission[?system,CONFIGURE]
ConfigurationPermission[?application,CONFIGURE]

A Bundle in the appl icat ion region can have the following permissions:

ConfigurationPermission[?application,TARGET]

This managed bundle therefore has only visibility to configurations in the appl ication region.

104.7.6 Deletion
A Configurat ion object that is no longer needed can be deleted with Configurat ion.delete , which
removes the Configurat ion object from the database. The database must be updated before the target
service’s updated or deleted method is called. Only services that have received the configuration dic-
tionary before must be called.

If the target service is a Managed Service Factory, the factory is informed of the deleted Configurat ion
object by a call to ManagedServiceFactory .deleted(Str ing) method. It should then remove the asso-
ciated instance. The ManagedServiceFactory.deleted(Str ing) call must be done asynchronously with
respect to Configurat ion.delete() .

When a Configurat ion object of a Managed Service is deleted, ManagedService.updated is called
with nul l for the propert ies argument. This method may be used for clean-up, to revert to default val-
ues, or to unregister a service. This method is called asynchronously from the delete method.

The update method must also asynchronously send out a Configuration Event CM_DELETED to all
registered Configuration Listeners.

104.7.7 Updating a Bundle’s Own Configuration
The Configuration Admin service specification does not distinguish between updates via a Manage-
ment Agent and a bundle updating its own configuration information (as defined by its location).
Even if a bundle updates its own configuration information, the Configuration Admin service must
callback the associated target service’s updated method.

As a rule, to update its own configuration, a bundle’s user interface should only update the configura-
tion information and never its internal structures directly. This rule has the advantage that the
events, from the bundle implementation’s perspective, appear similar for internal updates, remote
management updates, and initialization.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its repository. The model is based
on the white board pattern where a Configuration Listener service is registered with the service regis-
try. The Configuration Listener service will receive ConfigurationEvent objects if important changes
take place. The Configuration Admin service must call the Configurat ionListener.
configurationEvent(ConfigurationEvent) method with such an event. This method should be called
asynchronously, and on another thread, than the call that caused the event. Configuration Events
must be delivered in order for each listener as they are generated. The way events must be delivered is
the same as described in Delivering Events on page 106 of the Core specification.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a PID (getPid()). If the fac-
tory PID is null , the event is related to a Managed Service Configurat ion object, else the event is
related to a Managed Service Factory Configuration object.

The Configurat ionEvent object can deliver the following events from the getType() method:

• CM_DELETED – The Configuration object is deleted.
OSGi Service Platform Release 4, Version 4.3 Page 107

Configuration Plugin Configuration Admin Service Specification Version 1.4
• CM_UPDATED – The Configurat ion object is updated.
• CM_LOCATION_CHANGED – The location of the Configuration object changed.

The Configuration Event also carries the ServiceReference object of the Configuration Admin ser-
vice that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events must be delivered asynchronously by the Configuration Admin implementa-
tion, if present. The topic of a configuration event must be:

org/osgi/service/cm/ConfigurationEvent/<event type>

The <event type> can be any of the following:

CM_DELETED
CM_UPDATED
CM_LOCATION_CHANGED

The properties of a configuration event are:

• cm.factoryPid – (Str ing) The factory PID of the associated Configurat ion object, if the target is a
Managed Service Factory. Otherwise not set.

• cm.pid – (Str ing) The PID of the associated Configuration object.
• service – (ServiceReference) The Service Reference of the Configuration Admin service.
• service. id – (Long) The Configuration Admin service's ID.
• service.objectClass – (Str ing[]) The Configuration Admin service's object class (which must

include org.osgi .service.cm.Configurat ionAdmin)
• service.pid – (Str ing) The Configuration Admin service's persistent identity, if set.

104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to participate in the configuration
process. Bundles that register a service object under a Configurat ionPlugin interface can process the
configuration dictionary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dictionaries just before they
must be passed to the intended Managed Service or Managed Service Factory but after the properties
are stored. The changes the plug-in makes are dynamic and must not be stored. The plug-in must only
be called when an update takes place while it is registered and there is a valid dictionary. The plugin
is not called when a configuration is deleted.

The Configurat ionPlugin interface has only one method: modifyConfigurat ion(ServiceReference,
Dict ionary) . This method inspects or modifies configuration data.

All plug-ins in the service registry must be traversed and called before the properties are passed to the
configuration target service. Each Configuration Plugin object gets a chance to inspect the existing
data, look at the target object, which can be a ManagedService object or a ManagedServiceFactory
object, and modify the properties of the configuration dictionary. The changes made by a plug-in
must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to the configuration proper-
ties of the target service unless the implications are understood. This functionality is mainly
intended to provide functions that leverage the Framework service registry. The changes made by the
plugin should normally not be validated. However, the Configuration Admin must ignore changes to
the automatic properties as described in Automatic Properties on page 95.
Page 108 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Configuration Plugin
For example, a Configuration Plugin service may add a physical location property to a service. This
property can be leveraged by applications that want to know where a service is physically located.
This scenario could be carried out without any further support of the service itself, except for the gen-
eral requirement that the service should propagate the public properties it receives from the Configu-
ration Admin service to the service registry.

Figure 104.8 Order of Configuration Plugin Services

104.9.1 Limiting The Targets
A Configurat ionPlugin object may optionally specify a cm.target registration property. This value is
the PID of the configuration target whose configuration updates the Configurat ionPlugin object
wants to intercept.

The Configurat ionPlugin object must then only be called with updates for the configuration target
service with the specified PID. For a factory target service, the factory PID is used and the plugin will
see all instances of the factory. Omitting the cm.target registration property means that it is called
for all configuration updates.

104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to with the value
(objectclass=com.acme.Alarm). When the Configuration Admin service sets this property on the
target service, a ConfigurationPlugin object may replace the (objectclass=com.acme.Alarm) filter
with an array of existing alarm systems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with serv ice.pid=343 is registered, requiring that the list of the target service be
updated. The bundle which registered the Configuration Plugin service, therefore, wants to set the
service.to registration property on the target service. It does not do this by calling
ManagedService.updated directly for several reasons:

• In a securely configured system, it should not have the permission to make this call or even obtain
the target service.

• It could get into race conditions with the Configuration Admin service if it had the permissions in
the previous bullet. Both services would compete for access simultaneously.

Instead, it must get the Configurat ion object from the Configuration Admin service and call the
update method on it.

The Configuration Admin service must schedule a new update cycle on another thread, and some-
time in the future must call Configurat ionPlugin.modifyPropert ies . The ConfigurationPlugin object
could then set the service.to property to [32434,232,12421,1212, 343] . After that, the Configuration
Admin service must call updated on the target service with the new serv ice.to list.

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

update() modifyConfiguration()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object
OSGi Service Platform Release 4, Version 4.3 Page 109

Meta Typing Configuration Admin Service Specification Version 1.4
104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of the Configuration Admin
service, which must determine whether to accept the changes, hide critical variables, or deny the
changes for other reasons.

The ConfigurationPlugin interface must also allow plugins to detect configuration updates to the ser-
vice via the callback. This ability allows them to synchronize the configuration updates with tran-
sient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it must fetch the appropri-
ate Configurat ion object from the Configuration Admin service and call the update() method (the no
parameter version) on this object. This call forces an update with the current configuration dictio-
nary so that all applicable plug-ins get called again.

104.9.5 Calling Order
The order in which the Configurat ionPlugin objects are called must depend on the
service.cmRanking configuration property of the Configurat ionPlugin object. Table 104.2 shows the
usage of the service.cmRanking property for the order of calling the Configuration Plugin services.

104.10 Meta Typing
This section discusses how the Metatype specification is used in the context of a Configuration
Admin service.

When a Managed Service or Managed Service Factory is registered, the service object may also imple-
ment the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the MetaTypeProvider inter-
face, a management bundle may assume that the associated ObjectClassDefinit ion object can be
used to configure the service.

The ObjectClassDefinit ion and Attr ibuteDefinit ion objects contain sufficient information to auto-
matically build simple user interfaces. They can also be used to augment dedicated interfaces with
accurate validations.

When the Metatype specification is used, care should be taken to match the capabilities of the
metatype package to the capabilities of the Configuration Admin service specification. Specifically:

• The metatype specification cannot describe nested arrays and vectors or arrays/vectors of mixed
type.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description

< 0 The Configuration Plugin service should not modify
properties and must be called before any modifica-
tions are made.

>= 0 && <= 1000 The Configuration Plugin service modifies the config-
uration data. The calling order should be based on the
value of the service.cmRanking property.

> 1000 The Configuration Plugin service should not modify
data and is called after all modifications are made.
Page 110 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 Security
This specification does not address how the metatype is made available to a management system due
to the many open issues regarding remote management.

104.11 Security

104.11.1 Configuration Permission
Every bundle has the implicit right to receive and configure configurations with a location that
exactly matches the Bundle’s location or that is nul l . For all other situations the Configuration
Admin must verify that the configuring and to be updated bundles have a Configuration Permission
that matches the Configuration’s location.

The resource name of this permission maps to the location of the Configuration, the location can
control the visibility of a Configuration for a bundle. The resource name is compared with the actual
configuration location using the OSGi Filter sub-string matching. The question mark for multi-loca-
tions is part of the given resource name. The Configure Permission has the following actions:

• CONFIGURE – Can manage matching configurations
• TARGET – Can be updated with a matching configuration

To be able to set the location to nul l requires a ConfigurationPermission[*,CONFIGURE] .

It is possible to deny bundles the use of multi-locations by using Conditional Permission Admin’s
deny model.

104.11.2 Permissions Summary
Configuration Admin service security is implemented using Service Permission and Configuration
Permission. The following table summarizes the permissions needed by the Configuration Admin
bundle itself, as well as the typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]

ServicePermission[..ManagedService, GET]

ServicePermission[..ManagedServiceFactory, GET]

ServicePermission[..ConfigurationPlugin, GET]

ConfigurationPermission[*, CONFIGURE]

AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]

ServicePermission[..ManagedService, REGISTER]

ConfigurationPermission[... , TARGET]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]

ServicePermission[..ManagedServiceFactory, REGISTER]

ConfigurationPermission[... , TARGET]

Configuration Plugin:

ServicePermission[..ConfigurationPlugin, REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener, REGISTER]
OSGi Service Platform Release 4, Version 4.3 Page 111

Changes Configuration Admin Service Specification Version 1.4
The Configuration Admin service must have ServicePermiss ion[Configurat ionAdmin, REGISTER] .
It will also be the only bundle that needs the ServicePermission[ManagedService |
ManagedServiceFactory |ConfigurationPlugin, GET] . No other bundle should be allowed to have
GET permission for these interfaces. The Configuration Admin bundle must also hold
Configurat ionPermission[*,CONFIGURE] .

Bundles that can be configured must have the ServicePermission[ManagedService |
ManagedServiceFactory, REGISTER] . Bundles registering Configurat ionPlugin objects must have
ServicePermiss ion[Conf igurat ionPlugin, REGISTER] . The Configuration Admin service must trust
all services registered with the Configurat ionPlugin interface. Only the Configuration Admin service
should have ServicePermission[Conf igurat ionPlugin, GET] .

If a Managed Service or Managed Service Factory is implemented by an object that is also registered
under another interface, it is possible, although inappropriate, for a bundle other than the Configura-
tion Admin service implementation to call the updated method. Security-aware bundles can avoid
this problem by having their updated methods check that the caller has ConfigurationPermiss ion[*,
CONFIGURE] .

Bundles that want to change their own configuration need ServicePermiss ion[ConfigurationAdmin,
GET] . A bundle with Configurat ionPermission[*,CONFIGURE]is allowed to access and modify any
Configurat ion object.

Pre-configuration of bundles requires Configurat ionPermission[location,CONFIGURE] (location can
use the sub-string matching rules of the Filter) because the methods that specify a location require
this permission.

104.11.3 Configuration and Permission Administration
Configuration information has a direct influence on the permissions needed by a bundle. For exam-
ple, when the Configuration Admin Bundle orders a bundle to use port 2011 for a console, that bun-
dle also needs permission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of permissions that do not define
specific values but allow a range of values. For example, a bundle could listen to ports above 1024
freely. All these ports could then be used for configuration.

The other solution is more complicated. In an environment where there is very strong security, the
bundle would only be allowed access to a specific port. This situation requires an atomic update of
both the configuration data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did not match the configura-
tion.

The following scenario can be used to update a configuration and the security permissions:

1 Stop the bundle.
2 Update the appropriate Configurat ion object via the Configuration Admin service.
3 Update the permissions in the Framework.
4 Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

104.12 Changes
• Removed the remote management section.
• Allow multiple bundles to register with the same PID to access to the same configuration, see

Location Binding on page 93.
• Extended Configuration Permission with a location name so that it can be used to prevent access

to Configurations marked with a certain location, enabling regions, see Regions on page 106.
Page 112 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 org.osgi.service.cm
• Removed the reference to Configurable

104.13 org.osgi.service.cm
Configuration Admin Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cm; version=”[1.4,2.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cm; version=”[1.4,1.5)”

104.13.1 Summary
• Configurat ion – The configuration information for a ManagedService or

ManagedServiceFactory object.
• Configurat ionAdmin – Service for administering configuration data.
• Configurat ionEvent – A Configuration Event.
• Configurat ionException – An Exception class to inform the Configuration Admin service of

problems with configuration data.
• Configurat ionListener – Listener for Configuration Events.
• Configurat ionPermission – Indicates a bundle’s authority to configure bundles or be updated by

Configuration Admin.
• Configurat ionPlugin – A service interface for processing configuration dictionary before the

update.
• ManagedService – A service that can receive configuration data from a Configuration Admin

service.
• ManagedServiceFactory – Manage multiple service instances.

104.13.2 Permissions
104.13.2.1 ManagedServiceFactory

• updated(Str ing,Dictionary)
• Configurat ionPermission[c. location,TARGET] – Required by the bundle that registered this

service

104.13.2.2 ManagedService
• updated(Dict ionary)

• Configurat ionPermission[c. location,TARGET] – Required by the bundle that registered this
service

104.13.2.3 Configurat ionAdmin
• createFactoryConfigurat ion(Str ing,Str ing)

• Configurat ionPermission[location,CONFIGURE] – if location is not null
• Configurat ionPermission[”*”,CONFIGURE] – if location is null

• getConfiguration(String,Str ing)
• Configurat ionPermission[*,CONFIGURE] – if location is null or if the returned configuration

c already exists and c.location is null
• Configurat ionPermission[location,CONFIGURE] – if location is not null
• Configurat ionPermission[c. location,CONFIGURE] – if the returned configuration c already

exists and c.location is not null
• getConfiguration(String)
OSGi Service Platform Release 4, Version 4.3 Page 113

org.osgi.service.cm Configuration Admin Service Specification Version 1.4
• Configurat ionPermission[c. locat ion,CONFIGURE] – If the configuration c already exists and
c.location is not null

• l istConfigurations(Str ing)
• Configurat ionPermission[c. locat ion,CONFIGURE] – Only configurations c are returned for

which the caller has this permission

104.13.2.4 Configurat ion
• setBundleLocat ion(Str ing)

• Configurat ionPermission[this. locat ion,CONFIGURE] – if this.location is not null
• Configurat ionPermission[locat ion,CONFIGURE] – if location is not null
• Configurat ionPermission[”*”,CONFIGURE] – if this.location is null or if location is null

• getBundleLocat ion()
• Configurat ionPermission[this. locat ion,CONFIGURE] – if this.location is not null
• Configurat ionPermission[”*”,CONFIGURE] – if this.location is null

Configuration

104.13.3 public interface Configuration
The configuration information for a ManagedService or ManagedServiceFactory object. The Config-
uration Admin service uses this interface to represent the configuration information for a
ManagedService or for a service instance of a ManagedServiceFactory .

A Configurat ion object contains a configuration dictionary and allows the properties to be updated
via this object. Bundles wishing to receive configuration dictionaries do not need to use this class -
they register a ManagedService or ManagedServiceFactory . Only administrative bundles, and bun-
dles wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive Str ing objects as keys. However,
case must be preserved from the last set key/value.

A configuration can be bound to a specific bundle or to a region of bundles using the location. In its
simplest form the location is the location of the target bundle that registered a Managed Service or a
Managed Service Factory. However, if the location starts with ? then the location indicates multiple
delivery. In such a case the configuration must be delivered to all targets. If security is on, the Config-
uration Permission can be used to restrict the targets that receive updates. The Configuration Admin
must only update a target when the configuration location matches the location of the target’s bun-
dle or the target bundle has a Configuration Permission with the action ConfigurationPermis-
sion.TARGET and a name that matches the configuration location. The name in the permission may
contain wildcards (‘*’) to match the location using the same substring matching rules as Fi l ter . Bun-
dles can always create, manipulate, and be updated from configurations that have a location that
matches their bundle location.

If a configuration’s location is nul l , it is not yet bound to a location. It will become bound to the loca-
tion of the first bundle that registers a ManagedService or ManagedServiceFactory object with the
corresponding PID.

The same Configurat ion object is used for configuring both a Managed Service Factory and a Man-
aged Service. When it is important to differentiate between these two the term “factory configura-
tion” is used.

No Implement Consumers of this API must not implement this interface
delete()

104.13.3.1 public void delete () throws IOException

 Delete this Configuration object. Removes this configuration object from the persistent store. Notify
asynchronously the corresponding Managed Service or Managed Service Factory. A ManagedService
object is notified by a call to its updated method with a nul l properties argument. A ManagedSer-
viceFactory object is notified by a call to its deleted method.

Also initiates an asynchronous call to all ConfigurationListeners with a Configurat ion-
Event.CM_DELETED event.
Page 114 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 org.osgi.service.cm
Throws IOException – If delete fails.

IllegalStateException – If this configuration has been deleted.
equals(Object)

104.13.3.2 public boolean equals (Object other)

other Configurat ion object to compare against

 Equality is defined to have equal PIDs Two Configuration objects are equal when their PIDs are
equal.

Returns true if equal, fa lse if not a Configurat ion object or one with a different PID.
getBundleLocation()

104.13.3.3 public String getBundleLocation ()

 Get the bundle location. Returns the bundle location or region to which this configuration is bound,
or null if it is not yet bound to a bundle location or region. If the location starts with ? then the config-
uration is delivered to all targets and not restricted to a single bundle.

Returns location to which this configuration is bound, or nul l .

Throws IllegalStateException – If this configuration has been deleted.

SecurityException – when the required permissions are not available

Security ConfigurationPermission[this.location,CONFIGURE] – if this.location is not nul l

ConfigurationPermission[”*”,CONFIGURE] – if this.location is nul l
getFactoryPid()

104.13.3.4 public String getFactoryPid ()

 For a factory configuration return the PID of the corresponding Managed Service Factory, else return
null .

Returns factory PID or nul l

Throws IllegalStateException – If this configuration has been deleted.
getPid()

104.13.3.5 public String getPid ()

 Get the PID for this Configurat ion object.

Returns the PID for this Configurat ion object.

Throws IllegalStateException – if this configuration has been deleted
getProperties()

104.13.3.6 public Dictionary<String,Object> getProperties ()

 Return the properties of this Configurat ion object. The Dict ionary object returned is a private copy
for the caller and may be changed without influencing the stored configuration. The keys in the
returned dictionary are case insensitive and are always of type Str ing .

If called just after the configuration is created and before update has been called, this method returns
null .

Returns A private copy of the properties for the caller or nul l . These properties must not contain the “serv-
ice.bundleLocation” property. The value of this property may be obtained from the getBundleLoca-
tion() method.

Throws IllegalStateException – If this configuration has been deleted.
hashCode()

104.13.3.7 public int hashCode ()

 Hash code is based on PID. The hash code for two Configuration objects must be the same when the
Configuration PID’s are the same.

Returns hash code for this Configuration object
setBundleLocation(String)

104.13.3.8 public void setBundleLocation (String location)

location a location, region, or nul l
OSGi Service Platform Release 4, Version 4.3 Page 115

org.osgi.service.cm Configuration Admin Service Specification Version 1.4
 Bind this Configurat ion object to the specified location. If the location parameter is nul l then the
Configurat ion object will not be bound to a location/region. It will be set to the bundle’s location
before the first time a Managed Service/Managed Service Factory receives this Configurat ion object
via the updated method and before any plugins are called. The bundle location or region will be set
persistently.

If the location starts with ? then all targets registered with the given PID must be updated.

If the location is changed then existing targets must be informed. If they can no longer see this con-
figuration, the configuration must be deleted or updated with nul l . If this configuration becomes vis-
ible then they must be updated with this configuration.

Also initiates an asynchronous call to all ConfigurationListeners with a Configurat ion-
Event.CM_LOCATION_CHANGED event.

Throws IllegalStateException – If this configuration has been deleted.

SecurityException – when the required permissions are not available

SecurityException – when the required permissions are not available

Security ConfigurationPermission[this.location,CONFIGURE] – if this.location is not nul l

ConfigurationPermission[location,CONFIGURE] – if location is not nul l

ConfigurationPermission[”*”,CONFIGURE] – if this.location is nul l or if location is nul l
update(Dictionary)

104.13.3.9 public void update (Dictionary<String,?> properties) throws IOException

properties the new set of properties for this configuration

 Update the properties of this Configuration object. Stores the properties in persistent storage after
adding or overwriting the following properties:

• “service.pid” : is set to be the PID of this configuration.
• “service.factoryPid” : if this is a factory configuration it is set to the factory PID else it is not set.

These system properties are all of type Str ing .

If the corresponding Managed Service/Managed Service Factory is registered, its updated method
must be called asynchronously. Else, this callback is delayed until aforementioned registration
occurs.

Also initiates an asynchronous call to all ConfigurationListeners with a Configurat ion-
Event.CM_UPDATED event.

Throws IOException – if update cannot be made persistent

IllegalArgumentException – if the Dictionary object contains invalid configuration types or con-
tains case variants of the same key name.

IllegalStateException – If this configuration has been deleted.
update()

104.13.3.10 public void update () throws IOException

 Update the Configuration object with the current properties. Initiate the updated callback to the
Managed Service or Managed Service Factory with the current properties asynchronously.

This is the only way for a bundle that uses a Configuration Plugin service to initiate a callback. For
example, when that bundle detects a change that requires an update of the Managed Service or Man-
aged Service Factory via its ConfigurationPlugin object.

Throws IOException – if update cannot access the properties in persistent storage

IllegalStateException – If this configuration has been deleted.

See Also ConfigurationPlugin
ConfigurationAdmin
Page 116 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 org.osgi.service.cm
104.13.4 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data persistently. This informa-
tion is represented in Configuration objects. The actual configuration data is a Dict ionary of proper-
ties inside a Configurat ion object.

There are two principally different ways to manage configurations. First there is the concept of a
Managed Service, where configuration data is uniquely associated with an object registered with the
service registry.

Next, there is the concept of a factory where the Configuration Admin service will maintain 0 or
more Configurat ion objects for a Managed Service Factory that is registered with the Framework.

The first concept is intended for configuration data about “things/services” whose existence is
defined externally, e.g. a specific printer. Factories are intended for “things/services” that can be cre-
ated any number of times, e.g. a configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a Managed Service Factory
in the service registry. A registration property named service.pid (persistent identifier or PID) must
be used to identify this Managed Service or Managed Service Factory to the Configuration Admin ser-
vice.

When the ConfigurationAdmin detects the registration of a Managed Service, it checks its persistent
storage for a configuration object whose service.pid property matches the PID service property (
service.pid) of the Managed Service. If found, it calls ManagedService.updated(Dict ionary) method
with the new properties. The implementation of a Configuration Admin service must run these call-
backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory registration, it checks its
storage for configuration objects whose service.factoryPid property matches the PID service prop-
erty of the Managed Service Factory. For each such Configuration objects, it calls the
ManagedServiceFactory.updated method asynchronously with the new properties. The calls to the
updated method of a ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin service can only access and
modify their own configuration information. Accessing or modifying the configuration of other bun-
dles requires Configurat ionPermiss ion[location,CONFIGURE] , where location is the configuration
location.

Configurat ion objects can be bound to a specified bundle location or to a region (configuration loca-
tion starts with ?). If a location is not set, it will be learned the first time a target is registered. If the
location is learned this way, the Configuration Admin service must detect if the bundle correspond-
ing to the location is uninstalled. If this occurs, the Configurat ion object must be unbound, that is its
location field is set back to null .

If target’s bundle location matches the configuration location it is always updated.

If the configuration location starts with ? , that is, the location is a region, then the configuration
must be delivered to all targets registered with the given PID. If security is on, the target bundle must
have Configuration Permission[location,TARGET], where location matches given the configuration
location with wildcards as in the Filter substring match. The security must be verified using the
org.osgi . f ramework.Bundle.hasPermission(Object) method on the target bundle.

If a target cannot be updated because the location does not match or it has no permission and secu-
rity is active then the Configuration Admin service must not do the normal callback.
OSGi Service Platform Release 4, Version 4.3 Page 117

org.osgi.service.cm Configuration Admin Service Specification Version 1.4
The method descriptions of this class refer to a concept of “the calling bundle”. This is a loose way of
referring to the bundle which obtained the Configuration Admin service from the service registry.
Implementations of Configurat ionAdmin must use a org.osgi . f ramework.ServiceFactory to support
this concept.

No Implement Consumers of this API must not implement this interface
SERVICE_BUNDLELOCATION

104.13.4.1 public static final String SERVICE_BUNDLELOCATION = “service.bundleLocation”

Configuration property naming the location of the bundle that is associated with a a Configurat ion
object. This property can be searched for but must not appear in the configuration dictionary for
security reason. The property’s value is of type Str ing .

Since 1.1
SERVICE_FACTORYPID

104.13.4.2 public static final String SERVICE_FACTORYPID = “service.factoryPid”

Configuration property naming the Factory PID in the configuration dictionary. The property’s value
is of type Str ing .

Since 1.1
createFactoryConfiguration(String)

104.13.4.3 public Configuration createFactoryConfiguration (String factoryPid) throws IOException

factoryPid PID of factory (not nul l).

 Create a new factory Configurat ion object with a new PID. The properties of the new Configuration
object are nul l until the first time that its Configurat ion.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion object is bound to the location of the calling bundle. It is possible that the same
factoryPid has associated configurations that are bound to different bundles. Bundles should only see
the factory configurations that they are bound to or have the proper permission.

Returns A new Configurat ion object.

Throws IOException – if access to persistent storage fails.
createFactoryConfiguration(String,String)

104.13.4.4 public Configuration createFactoryConfiguration (String factoryPid , String location) throws
IOException

factoryPid PID of factory (not nul l).

location A bundle location string, or nul l .

 Create a new factory Configurat ion object with a new PID. The properties of the new Configuration
object are nul l until the first time that its Configurat ion.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion is bound to the location specified. If this location is null it will be bound to the
location of the first bundle that registers a Managed Service Factory with a corresponding PID. It is
possible that the same factoryPid has associated configurations that are bound to different bundles.
Bundles should only see the factory configurations that they are bound to or have the proper permis-
sion.

If the location starts with ? then the configuration must be delivered to all targets with the corre-
sponding PID.

Returns a new Configurat ion object.

Throws IOException – if access to persistent storage fails.

SecurityException – when the require permissions are not available

Security ConfigurationPermission[location,CONFIGURE] – if location is not nul l

ConfigurationPermission[”*”,CONFIGURE] – if location is null
Page 118 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 org.osgi.service.cm
getConfiguration(String,String)

104.13.4.5 public Configuration getConfiguration (String pid , String location) throws IOException

pid Persistent identifier.

location The bundle location string, or nul l .

 Get an existing Configurat ion object from the persistent store, or create a new Configurat ion object.

If a Configuration with this PID already exists in Configuration Admin service return it. The location
parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the corre-
sponding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException – if access to persistent storage fails.

SecurityException – when the require permissions are not available

Security ConfigurationPermission[*,CONFIGURE] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

ConfigurationPermission[location,CONFIGURE] – if location is not nul l

ConfigurationPermission[c.location,CONFIGURE] – if the returned configuration c already exists
and c.location is not nul l
getConfiguration(String)

104.13.4.6 public Configuration getConfiguration (String pid) throws IOException

pid persistent identifier.

 Get an existing or new Configurat ion object from the persistent store. If the Configurat ion object for
this PID does not exist, create a new Configurat ion object for that PID, where properties are nul l . Bind
its location to the calling bundle’s location.

Otherwise, if the location of the existing Configurat ion object is null , set it to the calling bundle’s
location.

Returns an existing or new Configurat ion matching the PID.

Throws IOException – if access to persistent storage fails.

SecurityException – when the required permission is not available

Security ConfigurationPermission[c.location,CONFIGURE] – If the configuration c already exists and c.lo-
cation is not nul l
listConfigurations(String)

104.13.4.7 public Configuration[] listConfigurations (String filter) throws IOException ,
InvalidSyntaxException

filter A filter string, or nul l to retrieve all Configurat ion objects.

 List the current Configurat ion objects which match the filter.

Only Configurat ion objects with non- null properties are considered current. That is,
Configurat ion.getPropert ies() is guaranteed not to return nul l for each of the returned
Configurat ion objects.

When there is no security on then all configurations can be returned. If security is on, the caller must
have ConfigurationPermission[location,CONFIGURE].

The syntax of the filter string is as defined in the Fi l ter class. The filter can test any configuration
properties including the following:

• service.pid - the persistent identity
• service.factoryPid - the factory PID, if applicable
OSGi Service Platform Release 4, Version 4.3 Page 119

org.osgi.service.cm Configuration Admin Service Specification Version 1.4
• service.bundleLocation - the bundle location

The filter can also be nul l , meaning that all Configuration objects should be returned.

Returns All matching Configurat ion objects, or nul l if there aren’t any.

Throws IOException – if access to persistent storage fails

InvalidSyntaxException – if the filter string is invalid

Security ConfigurationPermission[c.location,CONFIGURE] – Only configurations c are returned for
which the caller has this permission
ConfigurationEvent

104.13.5 public class ConfigurationEvent
A Configuration Event.

Configurat ionEvent objects are delivered to all registered Configurat ionListener service objects. Con-
figurationEvents must be asynchronously delivered in chronological order with respect to each lis-
tener.

A type code is used to identify the type of event. The following event types are defined:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Additional event types may be defined in the future.

Security Considerations. Configurat ionEvent objects do not provide Configurat ion objects, so no sen-
sitive configuration information is available from the event. If the listener wants to locate the
Configurat ion object for the specified pid, it must use Configurat ionAdmin .

See Also ConfigurationListener

Since 1.2

Concurrency Immutable
CM_DELETED

104.13.5.1 public static final int CM_DELETED = 2

A Configurat ion has been deleted.

This ConfigurationEvent type that indicates that a Configurat ion object has been deleted. An event
is fired when a call to Configurat ion.delete() successfully deletes a configuration.
CM_LOCATION_CHANGED

104.13.5.2 public static final int CM_LOCATION_CHANGED = 3

The location of a Configurat ion has been changed.

This ConfigurationEvent type that indicates that the location of a Configuration object has been
changed. An event is fired when a call to Configurat ion.setBundleLocation(String) successfully
changes the location.

Since 1.4
CM_UPDATED

104.13.5.3 public static final int CM_UPDATED = 1

A Configurat ion has been updated.

This ConfigurationEvent type that indicates that a Configurat ion object has been updated with new
properties. An event is fired when a call to Configurat ion.update(Dict ionary) successfully changes a
configuration.
ConfigurationEvent(ServiceReference,int,String,String)

104.13.5.4 public ConfigurationEvent (ServiceReference<ConfigurationAdmin> reference , int type , String
factoryPid , String pid)

reference The ServiceReference object of the Configuration Admin service that created this event.
Page 120 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 org.osgi.service.cm
type The event type. See getType() .

factoryPid The factory pid of the associated configuration if the target of the configuration is a ManagedService-
Factory. Otherwise nul l if the target of the configuration is a ManagedService.

pid The pid of the associated configuration.

 Constructs a ConfigurationEvent object from the given ServiceReference object, event type, and
pids.
getFactoryPid()

104.13.5.5 public String getFactoryPid ()

 Returns the factory pid of the associated configuration.

Returns Returns the factory pid of the associated configuration if the target of the configuration is a Managed-
ServiceFactory. Otherwise nul l if the target of the configuration is a ManagedService.
getPid()

104.13.5.6 public String getPid ()

 Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.
getReference()

104.13.5.7 public ServiceReference<ConfigurationAdmin> getReference ()

 Return the ServiceReference object of the Configuration Admin service that created this event.

Returns The ServiceReference object for the Configuration Admin service that created this event.
getType()

104.13.5.8 public int getType ()

 Return the type of this event.

The type values are:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Returns The type of this event.
ConfigurationException

104.13.6 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems with configuration data.
ConfigurationException(String,String)

104.13.6.1 public ConfigurationException (String property , String reason)

property name of the property that caused the problem, null if no specific property was the cause

reason reason for failure

 Create a ConfigurationException object.
ConfigurationException(String,String,Throwable)

104.13.6.2 public ConfigurationException (String property , String reason , Throwable cause)

property name of the property that caused the problem, null if no specific property was the cause

reason reason for failure

cause The cause of this exception.

 Create a ConfigurationException object.

Since 1.2
getCause()

104.13.6.3 public Throwable getCause ()

 Returns the cause of this exception or null if no cause was set.
OSGi Service Platform Release 4, Version 4.3 Page 121

org.osgi.service.cm Configuration Admin Service Specification Version 1.4
Returns The cause of this exception or nul l if no cause was set.

Since 1.2
getProperty()

104.13.6.4 public String getProperty ()

 Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem
getReason()

104.13.6.5 public String getReason ()

 Return the reason for this exception.

Returns reason of the failure
initCause(Throwable)

104.13.6.6 public Throwable initCause (Throwable cause)

cause The cause of this exception.

 Initializes the cause of this exception to the specified value.

Returns This exception.

Throws IllegalArgumentException – If the specified cause is this exception.

IllegalStateException – If the cause of this exception has already been set.

Since 1.2
ConfigurationListener

104.13.7 public interface ConfigurationListener
Listener for Configuration Events. When a Configurat ionEvent is fired, it is asynchronously deliv-
ered to a Configurat ionListener .

Configurat ionListener objects are registered with the Framework service registry and are notified
with a Configurat ionEvent object when an event is fired.

Configurat ionListener objects can inspect the received Configurat ionEvent object to determine its
type, the pid of the Configuration object with which it is associated, and the Configuration Admin
service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events will require
ServicePermiss ion[Conf igurat ionListener,REGISTER] to register a ConfigurationListener service.

Since 1.2
configurationEvent(ConfigurationEvent)

104.13.7.1 public void configurationEvent (ConfigurationEvent event)

event The Configurat ionEvent .

 Receives notification of a Configuration that has changed.
ConfigurationPermission

104.13.8 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle’s authority to configure bundles or be updated by Configuration Admin.

Since 1.2

Concurrency Thread-safe
CONFIGURE

104.13.8.1 public static final String CONFIGURE = “configure”

Provides permission to create new configurations for other bundles as well as manipulate them. The
action string configure.
TARGET
Page 122 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 org.osgi.service.cm
104.13.8.2 public static final String TARGET = “target”

The permission to be updated, that is, act as a Managed Service or Managed Service Factory. The
action string target.

Since 1.4
ConfigurationPermission(String,String)

104.13.8.3 public ConfigurationPermission (String name , String actions)

name Name of the permission. Wildcards (‘* ’) are allowed in the name. During impl ies(Permission) , the
name is matched to the requested permission using the substring matching rules used by Fi l ters.

actions Comma separated list of CONFIGURE , TARGET (case insensitive).

 Create a new ConfigurationPermission.
equals(Object)

104.13.8.4 public boolean equals (Object obj)

obj The object being compared for equality with this object.

 Determines the equality of two ConfigurationPermiss ion objects.

Two Configurat ionPermission objects are equal.

Returns true if obj is equivalent to this Configurat ionPermiss ion ; fa lse otherwise.
getActions()

104.13.8.5 public String getActions ()

 Returns the canonical string representation of the Configurat ionPermission actions.

Always returns present ConfigurationPermission actions in the following order: configure, target

Returns Canonical string representation of the Configurat ionPermiss ion actions.
hashCode()

104.13.8.6 public int hashCode ()

 Returns the hash code value for this object.

Returns Hash code value for this object.
implies(Permission)

104.13.8.7 public boolean implies (Permission p)

p The target permission to check.

 Determines if a Configurat ionPermission object “implies” the specified permission.

Returns true if the specified permission is implied by this object; false otherwise.
newPermissionCollection()

104.13.8.8 public PermissionCollection newPermissionCollection ()

 Returns a new PermissionCol lect ion object suitable for storing Configurat ionPermiss ions.

Returns A new Permiss ionCollect ion object.
ConfigurationPlugin

104.13.9 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the update.

A bundle registers a Configurat ionPlugin object in order to process configuration updates before they
reach the Managed Service or Managed Service Factory. The Configuration Admin service will detect
registrations of Configuration Plugin services and must call these services every time before it calls
the ManagedService or ManagedServiceFactoryupdated method. The Configuration Plugin service
thus has the opportunity to view and modify the properties before they are passed to the Managed
Service or Managed Service Factory.

Configuration Plugin (plugin) services have full read/write access to all configuration information
that passes through them.
OSGi Service Platform Release 4, Version 4.3 Page 123

org.osgi.service.cm Configuration Admin Service Specification Version 1.4
The Integerservice.cmRanking registration property may be specified. Not specifying this registra-
tion property, or setting it to something other than an Integer , is the same as setting it to the Integer
zero. The service.cmRanking property determines the order in which plugins are invoked. Lower
ranked plugins are called before higher ranked ones. In the event of more than one plugin having the
same value of service.cmRanking , then the Configuration Admin service arbitrarily chooses the
order in which they are called.

By convention, plugins with serv ice.cmRanking< 0 or service.cmRanking > 1000 should not make
modifications to the properties.

The Configuration Admin service has the right to hide properties from plugins, or to ignore some or
all the changes that they make. This might be done for security reasons. Any such behavior is entirely
implementation defined.

A plugin may optionally specify a cm.target registration property whose value is the PID of the Man-
aged Service or Managed Service Factory whose configuration updates the plugin is intended to inter-
cept. The plugin will then only be called with configuration updates that are targeted at the Managed
Service or Managed Service Factory with the specified PID. Omitting the cm.target registration prop-
erty means that the plugin is called for all configuration updates.
CM_RANKING

104.13.9.1 public static final String CM_RANKING = “service.cmRanking”

A service property to specify the order in which plugins are invoked. This property contains an
Integer ranking of the plugin. Not specifying this registration property, or setting it to something
other than an Integer , is the same as setting it to the Integer zero. This property determines the order
in which plugins are invoked. Lower ranked plugins are called before higher ranked ones.

Since 1.2
CM_TARGET

104.13.9.2 public static final String CM_TARGET = “cm.target”

A service property to limit the Managed Service or Managed Service Factory configuration dictionar-
ies a Configuration Plugin service receives. This property contains a Str ing[] of PIDs. A Configura-
tion Admin service must call a Configuration Plugin service only when this property is not set, or the
target service’s PID is listed in this property.
modifyConfiguration(ServiceReference,Dictionary)

104.13.9.3 public void modifyConfiguration (ServiceReference<?> reference , Dictionary<String,Object>
properties)

reference reference to the Managed Service or Managed Service Factory

properties The configuration properties. This argument must not contain the “service.bundleLocation” property.
The value of this property may be obtained from the Configurat ion.getBundleLocation method.

 View and possibly modify the a set of configuration properties before they are sent to the Managed
Service or the Managed Service Factory. The Configuration Plugin services are called in increasing
order of their service.cmRanking property. If this property is undefined or is a non- Integer type, 0 is
used.

This method should not modify the properties unless the service.cmRanking of this plugin is in the
range 0 <= service.cmRanking <= 1000 .

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

A Configuration Plugin will only be called for properties from configurations that have a location for
which the Configuration Plugin has permission when security is active. When security is not active,
no filtering is done.
ManagedService

104.13.10 public interface ManagedService
A service that can receive configuration data from a Configuration Admin service.
Page 124 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 org.osgi.service.cm
A Managed Service is a service that needs configuration data. Such an object should be registered
with the Framework registry with the service.pid property set to some unique identifier called a PID.

If the Configuration Admin service has a Configuration object corresponding to this PID, it will call-
back the updated() method of the ManagedService object, passing the properties of that
Configurat ion object.

If it has no such Configuration object, then it calls back with a nul l properties argument. Registering
a Managed Service will always result in a callback to the updated() method provided the Configura-
tion Admin service is, or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Configurat ion object, the
ManagedService.updated() method with the new properties is called. If the delete() method is
called on that Configurat ion object, ManagedService.updated() is called with a nul l for the proper-
ties parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port depending on configura-
tion information.

class SerialPort implements ManagedService {

ServiceRegistration registration;

Hashtable configuration;

CommPortIdentifier id;

synchronized void open(CommPortIdentifier id,

BundleContext context) {

this.id = id;

registration = context.registerService(

ManagedService.class.getName(),

this,

getDefaults()

);

}

Hashtable getDefaults() {

Hashtable defaults = new Hashtable();

defaults.put(“port”, id.getName());

defaults.put(“product”, “unknown”);

defaults.put(“baud”, “9600”);

defaults.put(Constants.SERVICE_PID,

“com.acme.serialport.” + id.getName());

return defaults;

}

public synchronized void updated(

Dictionary configuration) {

if (configuration == null)

registration.setProperties(getDefaults());

else {

setSpeed(configuration.get(”baud”));

registration.setProperties(configuration);

}

}

...

}

OSGi Service Platform Release 4, Version 4.3 Page 125

org.osgi.service.cm Configuration Admin Service Specification Version 1.4
As a convention, it is recommended that when a Managed Service is updated, it should copy all the
properties it does not recognize into the service registration properties. This will allow the Configu-
ration Admin service to set properties on services which can then be used by other applications.

Normally, a single Managed Service for a given PID is given the configuration dictionary, this is the
configuration that is bound to the location of the registering bundle. However, when security is on, a
Managed Service can have Configuration Permission to also be updated for other locations.
updated(Dictionary)

104.13.10.1 public void updated (Dictionary<String,?> properties) throws ConfigurationException

properties A copy of the Configuration properties, or nul l . This argument must not contain the “service.bundle-
Location” property. The value of this property may be obtained from the
Configurat ion.getBundleLocation method.

 Update the configuration for a Managed Service.

When the implementation of updated(Dictionary) detects any kind of error in the configuration
properties, it should create a new Configurat ionException which describes the problem. This can
allow a management system to provide useful information to a human administrator.

If this method throws any other Exception , the Configuration Admin service must catch it and
should log it.

The Configuration Admin service must call this method asynchronously with the method that initi-
ated the callback. This implies that implementors of Managed Service can be assured that the call-
back will not take place during registration when they execute the registration in a synchronized
method.

If the the location allows multiple managed services to be called back for a single configuration then
the callbacks must occur in service ranking order. Changes in the location must be reflected by delet-
ing the configuration if the configuration is no longer visible and updating when it becomes visible.

If no configuration exists for the corresponding PID, or the bundle has no access to the configuration,
then the bundle must be called back with a nul l to signal that CM is active but there is no data.

Throws ConfigurationException – when the update fails

Security ConfigurationPermission[c.location,TARGET] – Required by the bundle that registered this serv-
ice
ManagedServiceFactory

104.13.11 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are giving the Configuration
Admin service the ability to create and configure a number of instances of a service that the imple-
menting bundle can provide. For example, a bundle implementing a DHCP server could be instanti-
ated multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the Configuration Admin ser-
vice, by a factory Configurat ion object that has a PID. When such a Configurat ion is updated, the
Configuration Admin service calls the ManagedServiceFactory updated method with the new prop-
erties. When updated is called with a new PID, the Managed Service Factory should create a new fac-
tory instance based on these configuration properties. When called with a PID that it has seen before,
it should update that existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will maintain a data structure that
maps PIDs to the factory instances that it has created. The semantics of a factory instance are defined
by the Managed Service Factory. However, if the factory instance is registered as a service object with
the service registry, its PID should match the PID of the corresponding Configuration object (but it
should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports under command of the
Configuration Admin service.
Page 126 OSGi Service Platform Release 4, Version 4.3

Configuration Admin Service Specification Version 1.4 org.osgi.service.cm
class SerialPortFactory

implements ManagedServiceFactory {

ServiceRegistration registration;

Hashtable ports;

void start(BundleContext context) {

Hashtable properties = new Hashtable();

properties.put(Constants.SERVICE_PID,

“com.acme.serialportfactory”);

registration = context.registerService(

ManagedServiceFactory.class.getName(),

this,

properties

);

}

public void updated(String pid,

Dictionary properties) {

String portName = (String) properties.get(”port”);

SerialPortService port =

(SerialPort) ports.get(pid);

if (port == null) {

port = new SerialPortService();

ports.put(pid, port);

port.open();

}

if (port.getPortName().equals(portName))

return;

port.setPortName(portName);

}

public void deleted(String pid) {

SerialPortService port =

(SerialPort) ports.get(pid);

port.close();

ports.remove(pid);

}

...

}
deleted(String)

104.13.11.1 public void deleted (String pid)

pid the PID of the service to be removed

 Remove a factory instance. Remove the factory instance associated with the PID. If the instance was
registered with the service registry, it should be unregistered. The Configuration Admin must call
deleted for each instance it received in updated(Str ing, Dictionary) .

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

The Configuration Admin service must call this method asynchronously.
getName()

104.13.11.2 public String getName ()

 Return a descriptive name of this factory.

Returns the name for the factory, which might be localized
updated(String,Dictionary)

104.13.11.3 public void updated (String pid , Dictionary<String,?> properties) throws
OSGi Service Platform Release 4, Version 4.3 Page 127

 Configuration Admin Service Specification Version 1.4
ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the service.bundleLocation”
property. The value of this property may be obtained from the Configurat ion.getBundleLocation
method.

 Create a new instance, or update the configuration of an existing instance. If the PID of the
Configurat ion object is new for the Managed Service Factory, then create a new factory instance,
using the configuration propert ies provided. Else, update the service instance with the provided
propert ies .

If the factory instance is registered with the Framework, then the configuration propert ies should be
copied to its registry properties. This is not mandatory and security sensitive properties should obvi-
ously not be copied.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

When the implementation of updated detects any kind of error in the configuration properties, it
should create a new Configurat ionException which describes the problem.

The Configuration Admin service must call this method asynchronously. This implies that imple-
mentors of the ManagedServiceFactory class can be assured that the callback will not take place dur-
ing registration when they execute the registration in a synchronized method.

If the security allows multiple managed service factories to be called back for a single configuration
then the callbacks must occur in service ranking order.

It is valid to create multiple factory instances that are bound to different locations. Managed Service
Factory services must only be updated with configurations that are bound to their location or that
start with the ? prefix and for which they have permission. Changes in the location must be reflected
by deleting the corresponding configuration if the configuration is no longer visible or updating
when it becomes visible.

Throws ConfigurationException – when the configuration properties are invalid.

Security ConfigurationPermission[c.location,TARGET] – Required by the bundle that registered this serv-
ice

104.14
Page 128 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 Introduction
105 Metatype Service Specification
Version 1.2

105.1 Introduction
The Metatype specification defines interfaces that allow bundle developers to describe attribute
types in a computer readable form using so-called metadata.

The purpose of this specification is to allow services to specify the type information of data that they
can use as arguments. The data is based on attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the choice of using the language
constructs to exchange data or using a technique based on attributes/properties that are based on
key/value pairs. Attributes provide an escape from the rigid type-safety requirements of modern pro-
gramming languages.

Type-safety works very well for software development environments in which multiple program-
mers work together on large applications or systems, but often lacks the flexibility needed to receive
structured data from the outside world.

The attribute paradigm has several characteristics that make this approach suitable when data needs
to be communicated between different entities which “speak” different languages. Attributes are
uncomplicated, resilient to change, and allow the receiver to dynamically adapt to different types of
data.

As an example, the OSGi Service Platform Specifications define several attribute types which are used
in a Framework implementation, but which are also used and referenced by other OSGi specifica-
tions such as the Configuration Admin Service Specification on page 89. A Configuration Admin service
implementation deploys attributes (key/value pairs) as configuration properties.

The Meta Type Service provides a unified access point to the Meta Type information that is associ-
ated with bundles. This Meta Type information can be defined by an XML resource in a bundle
(OSGI-INF/metatype directories must be scanned for any XML resources), it can come from the Meta
Type Provider service, or it can be obtained from Managed Service or Managed Service Factory ser-
vices.

105.1.1 Essentials
• Conceptual model – The specification must have a conceptual model for how classes and attributes

are organized.
• Standards – The specification should be aligned with appropriate standards, and explained in situ-

ations where the specification is not aligned with, or cannot be mapped to, standards.
• Remote Management – Remote management should be taken into account.
• Size – Minimal overhead in size for a bundle using this specification is required.
• Localization – It must be possible to use this specification with different languages at the same

time. This ability allows servlets to serve information in the language selected in the browser.
• Type information – The definition of an attribute should contain the name (if it is required), the car-

dinality, a label, a description, labels for enumerated values, and the Java class that should be used
for the values.

• Validation – It should be possible to validate the values of the attributes.

105.1.2 Entities
• Meta Type Service – A service that provides a unified access point for meta type information.
OSGi Service Platform Release 4, Version 4.3 Page 129

Attributes Model Metatype Service Specification Version 1.2
• Attribute – A key/value pair.
• PID – A unique persistent ID, defined in configuration management.
• Attribute Definition – Defines a description, name, help text, and type information of an attribute.
• Object Class Definition – Defines the type of a datum. It contains a description and name of the type

plus a set of AttributeDefinit ion objects.
• Meta Type Provider – Provides access to the object classes that are available for this object. Access

uses the PID and a locale to find the best ObjectClassDefinit ion object.
• Meta Type Information – Provides meta type information for a bundle.

Figure 105.1 Class Diagram Meta Type Service, org.osgi.service.metatype

105.1.3 Operation
The Meta Type service defines a rich dynamic typing system for properties. The purpose of the type
system is to allow reasonable User Interfaces to be constructed dynamically.

The type information is normally carried by the bundles themselves. Either by implementing the
MetaTypeProvider interface on the Managed Service or Managed Service Factory, by carrying one or
more XML resources that define a number of Meta Types in the OSGI-INF/metatype directories, or
registering a Meta Type Provider as a service. Additionally, a Meta Type service could have other
sources that are not defined in this specification.

The Meta Type Service provides unified access to Meta Types that are carried by the resident bundles.
The Meta Type Service collects this information from the bundles and provides uniform access to it.
A client can requests the Meta Type Information associated with a particular bundle. The
MetaTypeInformation object provides a list of ObjectClassDefinit ion objects for a bundle. These
objects define all the information for a specific object class. An object class is a some descriptive infor-
mation and a set of named attributes (which are key/value pairs).

Access to Object Class Definitions is qualified by a locale and a Persistent IDentity (PID). This specifi-
cation does not specify what the PID means. One application is OSGi Configuration Management
where a PID is used by the Managed Service and Managed Service Factory services. In general, a PID
should be regarded as the name of a variable where an Object Class Definition defines its type.

105.2 Attributes Model
The Framework uses the LDAP filter syntax for searching the Framework registry. The usage of the
attributes in this specification and the Framework specification closely resemble the LDAP attribute
model. Therefore, the names used in this specification have been aligned with LDAP. Consequently,
the interfaces which are defined by this Specification are:

• AttributeDefinit ion

Any bundleMeta Type Client

Meta Type
Service Impl

Metatype
xml resources

Any bundle

Meta Type
Service

Meta Type
Provider

Any bundle

Managed
Service
(Factory)

metatype.pid=...
metatype.factory.pid=...
Page 130 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 Object Class Definition
• ObjectClassDefinit ion
• MetaTypeProvider

These names correspond to the LDAP attribute model. For further information on ASN.1-defined
attributes and X.500 object classes and attributes, see [2] Understanding and Deploying LDAP Directory
services.

The LDAP attribute model assumes a global name-space for attributes, and object classes consist of a
number of attributes. So, if an object class inherits the same attribute from different parents, only one
copy of the attribute must become part of the object class definition. This name-space implies that a
given attribute, for example cn , should always be the common name and the type must always be a
Str ing . An attribute cn cannot be an Integer in another object class definition. In this respect, the
OSGi approach towards attribute definitions is comparable with the LDAP attribute model.

105.3 Object Class Definition
The ObjectClassDefinit ion interface is used to group the attributes which are defined in
Attr ibuteDefinit ion objects.

An ObjectClassDefinit ion object contains the information about the overall set of attributes and has
the following elements:

• A name which can be returned in different locales.
• A global name-space in the registry, which is the same condition as LDAP/X.500 object classes. In

these standards the OSI Object Identifier (OID) is used to uniquely identify object classes. If such
an OID exists, (which can be requested at several standard organizations, and many companies
already have a node in the tree) it can be returned here. Otherwise, a unique id should be returned.
This id can be a Java class name (reverse domain name) or can be generated with a GUID algo-
rithm. All LDAP-defined object classes already have an associated OID. It is strongly advised to
define the object classes from existing LDAP schemes which provide many preexisting OIDs.
Many such schemes exist ranging from postal addresses to DHCP parameters.

• A human-readable description of the class.
• A list of attribute definitions which can be filtered as required, or optional. Note that in X.500 the

mandatory or required status of an attribute is part of the object class definition and not of the
attribute definition.

• An icon, in different sizes.

105.4 Attribute Definition
The Attr ibuteDefinit ion interface provides the means to describe the data type of attributes.

The Attr ibuteDefinit ion interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the Framework for the attributes,
called the syntax in OSI terms, which can be obtained with the getType() method.

• Attr ibuteDefinit ion objects should use an ID that is similar to the OID as described in the ID field
for ObjectClassDefinit ion .

• A localized name intended to be used in user interfaces.
• A localized description that defines the semantics of the attribute and possible constraints, which

should be usable for tooltips.
• An indication if this attribute should be stored as a unique value, a Vector , or an array of values, as

well as the maximum cardinality of the type.
• The data type, as limited by the Framework service registry attribute types.
• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in GUIs, allowing the user

to choose from a set.
OSGi Service Platform Release 4, Version 4.3 Page 131

Meta Type Service Metatype Service Specification Version 1.2
• A default value (String[]). The return depends on the following cases:
• not specified – Return nul l if this attribute is not specified.
• cardinality = 0 – Return an array with one element.
• otherwise – Return an array with less or equal than the absolute value of cardinality, possibly

empty if the value is an empty string.

105.5 Meta Type Service
The Meta Type Service provides unified access to Meta Type information that is associated with a
Bundle. It can get this information through the following means:

• Meta Type Resource – A bundle can provide one or more XML resources that are contained in its
JAR file. These resources contain an XML definition of meta types as well as to what PIDs these
Meta Types apply. These XML resources must reside in the OSGI-INF/metatype directories of the
bundle (including any fragments).

• ManagedService[Factory] objects – As defined in the configuration management specification,
ManagedService and ManagedServiceFactory service objects can optionally implement the
MetaTypeProvider interface. The Meta Type Service will only search for MetaTypeProvider
objects if no meta type resources are found in the bundle.

• Meta Type Provider service – Bundles can register Meta Type Provider services to dynamically
provide meta types for PIDs and factory PIDs.

Figure 105.2 Sources for Meta Types

This model is depicted in Figure 105.2.

The Meta Type Service can therefore be used to retrieve meta type information for bundles which
contain Meta Type resources or which provide their own MetaTypeProvider objects. The
MetaTypeService interface has a single method:

• getMetaTypeInformation(Bundle) – Given a bundle, it must return the Meta Type Information
for that bundle, even if there is no meta type information available at the moment of the call.

The returned MetaTypeInformation object maintains a map of PID to ObjectClassDefinit ion objects.
The map is keyed by locale and PID. The list of maintained PIDs is available from the
MetaTypeInformation object with the following methods:

• getPids() – PIDs for which Meta Types are available.
• getFactoryPids() – PIDs associated with Managed Service Factory services.

These methods and their interaction with the Meta Type resource are described in Use of the Designate
Element on page 138.

The MetaTypeInformation interface extends the MetaTypeProvider interface. The
MetaTypeProvider interface is used to access meta type information. It supports locale dependent
information so that the text used in AttributeDefinit ion and ObjectClassDefinit ion objects can be
adapted to different locales.

<<service>>
MetaType
Service

<<service>>
Meta Type
Provider

<<service>>
Managed Service
(Factory)

OSGI-INF/metatype
xml resource

... alternative
meta type
sources
Page 132 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 Meta Type Provider Service
Which locales are supported by the MetaTypeProvider object are defined by the implementer or the
meta type resources.The list of available locales can be obtained from the MetaTypeProvider object.

The MetaTypeProvider interface provides the following methods:

• getObjectClassDefinit ion(Str ing,Str ing) – Get access to an ObjectClassDefinition object for the
given PID. The second parameter defines the locale.

• getLocales() – List the locales that are available.

Locale objects are represented in Str ing objects because not all profiles support Locale. The Str ing
holds the standard Locale presentation of:

locale = language (’_’ country (’_’ variation))

language ::= < defined by ISO 3166 >

country ::= < defined by ISO 639 >

For example, en , nl_BE , en_CA_posix are valid locales. The use of null for locale indicates that
java.ut i l .Locale.getDefault() must be used.

The Meta Type Service implementation class is the main class. It registers the
org.osgi .service.metatype.MetaTypeService service and has a method to get a
MetaTypeInformation object for a bundle.

Following is some sample code demonstrating how to print out all the Object Class Definitions and
Attribute Definitions contained in a bundle:

void printMetaTypes(MetaTypeService mts, Bundle b) {

MetaTypeInformation mti =

mts.getMetaTypeInformation(b);

String [] pids = mti.getPids();

String [] locales = mti.getLocales();

for (int locale = 0; locale<locales.length; locale++) {

System.out.println("Locale " + locales[locale]);

for (int i=0; i< pids.length; i++) {

 ObjectClassDefinition ocd =

mti.getObjectClassDefinition(pids[i], null);

 AttributeDefinition[] ads =

ocd.getAttributeDefinitions(

ObjectClassDefinition.ALL);

 for (int j=0; j< ads.length; j++) {

 System.out.println("OCD="+ocd.getName()

+ "AD="+ads[j].getName());

 }

}

}

}

105.6 Meta Type Provider Service
A Meta Type Provider service allows third party contributions to the internal Object Class Definition
repository. A Meta Type Provider can contribute multiple PIDs, both factory and singleton PIDs. A
Meta Type Provider service must register with both or one of the following service properties:

• METATYPE_PID – (Str ing+) Provides a list of PIDs that this Meta Type Provider can provide Object
Class Definitions for. The listed PIDs are intended to be used as normal singleton PIDs used by
Managed Services.
OSGi Service Platform Release 4, Version 4.3 Page 133

Using the Meta Type Resources Metatype Service Specification Version 1.2
• METATYPE_FACTORY_PID – (Str ing+) Provides a list of factory PIDs that this Meta Type Provider
can provide Object Class Definitions for. The listed PIDs are intended to be used as factory PIDs
used by Managed Service Factories.

The Object Class Definitions must originate from the bundle that registered the Meta Type Provider
service. Third party extenders should therefore use the bundle of their extendee. A Meta Type Service
must report these Object Class Definitions on the Meta Type Information of the registering bundle,
merged with any other information from that bundle.

The Meta Type Service must track these Meta Type Provider services and make their Meta Types
available as if they were provided on the Managed Service (Factory) services. The Meta Types must
become unavailable when the Meta Type Provider service is unregistered.

105.7 Using the Meta Type Resources
A bundle that wants to provide meta type resources must place these resources in the OSGI-INF/
metatype directory. The name of the resource must be a valid JAR path. All resources in that direc-
tory must be meta type documents. Fragments can contain additional meta type resources in the
same directory and they must be taken into account when the meta type resources are searched. A
meta type resource must be encoded in UTF-8.

The MetaType Service must support localization of the

• name
• icon
• description
• label attributes

The localization mechanism must be identical using the same mechanism as described in the Core
module layer, section Localization on page 64, using the same property resource. However, it is possi-
ble to override the property resource in the meta type definition resources with the local ization
attribute of the MetaData element.

The Meta Type Service must examine the bundle and its fragments to locate all localization resources
for the localization base name. From that list, the Meta Type Service derives the list of locales which
are available for the meta type information. This list can then be returned by
MetaTypeInformation.getLocales method. This list can change at any time because the bundle could
be refreshed. Clients should be prepared that this list changes after they received it.

105.7.1 XML Schema of a Meta Type Resource
This section describes the schema of the meta type resource. This schema is not intended to be used
during runtime for validating meta type resources. The schema is intended to be used by tools and
external management systems.

The XML namespace for meta type documents must be:

http://www.osgi.org/xmlns/metatype/v1.2.0

The namespace abbreviation should be metatype . I.e. the following header should be:

<metatype:MetaData

xmlns:metatype=

"http://www.osgi.org/xmlns/metatype/v1.2.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

The file can be found in the osgi.jar file that can be downloaded from the www.osgi.org web site.
Page 134 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 Using the Meta Type Resources
Figure 105.3 XML Schema Instance Structure (Type name = Element name)

The element structure of the XML file is:

MetaData ::= OCD* Designate*

OCD ::= AD+ Icon

AD ::= Option*

Designate ::= Object

Object ::= Attribute *

Attribute ::= Value *

The different elements are described in Table 105.1.

MetaData

OCD

AD

Designate

Option

Icon

1

*
Object

Attribute

1

*

1 *

1 *

1

1

1

1..n

1

0..n

1

1..n

1

*

Value

1

0..n

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description

MetaData Top Element

local izat ion str ing Points to the Properties file that can
localize this XML. See Localization on
page 64 of the Core book.

OCD Object Class Definition

name <> str ing getName() A human readable name that can be
localized.

descr ipt ion getDescr iption() A human readable description of the
Object Class Definition that can be
localized.

id <> getID() A unique id, cannot be localized.
OSGi Service Platform Release 4, Version 4.3 Page 135

Using the Meta Type Resources Metatype Service Specification Version 1.2
Designate An association between one PID and an
Object Class Definition. This element
designates a PID to be of a certain type.

pid <> str ing The PID that is associated with an OCD .
This can be a reference to a factory or
singleton configuration object. Either
pid or factoryPid must be specified. See
Use of the Designate Element on page 138.

factoryPid str ing If the factoryPid attribute is set, this
Designate element defines a factory
configuration for the given factory, if it
is not set or empty, it designates a sin-
gleton configuration. Either pid or
factoryPid must be specified. See Use of
the Designate Element on page 138.

bundle str ing Location of the bundle that implements
the PID. This binds the PID to the bun-
dle. I.e. no other bundle using the same
PID may use this designation. In a Meta
Type resource this field may be set to an
wildcard (\u002A, "*") to indicate the
bundle where the resource comes from.
This is an optional attribute but can be
mandatory in certain usage schemes,
for example the Autoconf Resource Pro-
cessor.

optional fa lse boolean If true , then this Designate element is
optional, errors during processing must
be ignored.

merge false boolean If the PID refers to an existing variable,
then merge the properties with the
existing properties if this attribute is
true . Otherwise, replace the properties.

AD Attribute Definition

name str ing getName() A localizable name for the Attribute
Definition. descr iption

descr ipt ion str ing getDescr ipt ion() A localizable description for the
Attribute Definition.

id getID() The unique ID of the Attribute Defini-
tion.

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
Page 136 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 Using the Meta Type Resources
type str ing getType() The type of an attribute is an enumera-
tion of the different scalar types. The
string is mapped to one of the constants
on the AttributeDefinition interface.
Valid values, which are defined in the
Scalar type, are:

String STRING
Long LONG
Double DOUBLE
Float FLOAT
Integer INTEGER
Byte BYTE
Char CHARACTER
Boolean BOOLEAN
Short SHORT
Password PASSWORD

cardinal i ty 0 getCardinal i ty() The number of elements an instance
can take. Positive numbers describe an
array ([]) and negative numbers
describe a Vector object.

min string val idate(Str ing) A validation value. This value is not
directly available from the
AttributeDefinit ion interface. How-
ever, the val idate(Str ing) method must
verify this. The semantics of this field
depend on the type of this Attribute
Definition.

max string val idate(Str ing) A validation value. Similar to the min
field.

default str ing getDefaultValue() The default value. A default is an array
of Str ing objects. The XML attribute
must contain a comma delimited list.
The default value is trimmed and
escaped in the same way as described in
the val idate(Str ing) method. The
empty string is a valid value. If the
empty string specifies the default for an
attribute with cardinality != 0 then it
must be seen as an empty Vector or
array.

required true boolean Required attribute. The required
attribute indicates whether or not the
attribute key must appear
within the configuration dictionary to
be valid.

Option One option label/value for the options
in an AD .

label <> str ing getOptionLabels() The label

value <> str ing getOptionValues() The value

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
OSGi Service Platform Release 4, Version 4.3 Page 137

Using the Meta Type Resources Metatype Service Specification Version 1.2
105.7.2 Use of the Designate Element
For the MetaType Service, the Designate definition is used to declare the available PIDs and factory
PIDs; the Attribute elements are never used by the MetaType service.

The getPids() method returns an array of PIDs that were specified in the pid attribute of the Object
elements. The getFactoryPids() method returns an array of the factoryPid attributes. For factories,
the related pid attribute is ignored because all instances of a factory must share the same meta type.

The following example shows a metatype reference to a singleton configuration and a factory config-
uration.

<Designate pid="com.acme.designate.1">

<Object ocdref="com.acme.designate"./>

</Designate>

<Designate factoryPid="com.acme.designate.factory"

bundle="*">

<Object ocdref="com.acme.designate"/>

</Designate>

Other schemes can embed the Object element in the Designate element to define actual instances
for the Configuration Admin service. In that case the pid attribute must be used together with the
factoryPid attribute. However, in that case an aliasing model is required because the Configuration
Admin service does not allow the creator to choose the Configurat ion object’s PID.

Icon An icon definition.

resource <> str ing getIcon(int) The resource is a URL. The base URL is
assumed to be the XML file with the def-
inition. I.e. if the XML is a resource in
the JAR file, then this URL can reference
another resource in that JAR file using a
relative URL.

size <> str ing getIcon(int) The number of pixels of the icon, maps
to the size parameter of the getIcon(int)
method.

Object A definition of an instance.

ocdref <> str ing A reference to the id attribute of an
OCD element. I.e. this attribute defines
the OCD type of this object.

Attr ibute A value for an attribute of an object.

adref <> str ing A reference to the id of the AD in the
OCD as referenced by the parent
Object .

content str ing The content of the attributes. If this is
an array, the content must be separated
by commas (’,’ \u002C). Commas must
be escaped as described at the default
attribute of the AD element. See default
on page 137.

Value Holds a single value. This element can
be repeated multiple times under an
Attribute

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
Page 138 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 Using the Meta Type Resources
105.7.3 Example Metadata File
This example defines a meta type file for a Person record, based on ISO attribute types. The ids that
are used are derived from ISO attributes.

<xml version="1.0" encoding="UTF-8">

<MetaData

xmlns=

"http://www.osgi.org/xmlns/metatype/v1.2.0"

 localization="person">

 <OCD name="%person" id="2.5.6.6"

description="%Person Record">

 <AD name="%sex" id="2.5.4.12" type="Integer">

 <Option label="%male" value="1"/>

 <Option label="%Female" value="0"/>

 </AD>

 <AD name="%sn" id="2.5.4.4" type="String"/>

 <AD name="%cn" id="2.5.4.3" type="String"/>

 <AD name="%seeAlso" id="2.5.4.34" type="String"

 cardinality="8" default="http://www.google.com,

http://www.yahoo.com"/>

 <AD name="%telNumber" id="2.5.4.20" type="String"/>

 </OCD>

 <Designate pid="com.acme.addressbook">

 <Object ocdref="2.5.6.6"/>

 </Designate>

</MetaData>

Translations for this file, as indicated by the localization attribute must be stored in the root directory
(e.g. person_du_NL.propert ies). The default localization base name for the properties is OSGI-INF/
l10n/bundle , but can be overridden by the manifest Bundle-Localization header and the local izat ion
attribute of the Meta Data element. The property files have the base name of person . The Dutch,
French and English translations could look like:

person_du_NL.properties:

person=Persoon

person\ record=Persoons beschrijving

cn=Naam

sn=Voornaam

seeAlso=Zie ook

telNumber=Tel. Nummer

sex=Geslacht

male=Mannelijk

female=Vrouwelijk

person_fr.properties

person=Personne

person\ record=Description de la personne

cn=Nom

sn=Surnom

seeAlso=Reference

telNumber=Tel.

sex=Sexe

male=Homme

female=Femme
OSGi Service Platform Release 4, Version 4.3 Page 139

Object Metatype Service Specification Version 1.2
person_en_US.properties

person=Person

person\ record=Person Record

cn=Name

sn=Sur Name

seeAlso=See Also

telNumber=Tel.

sex=Sex

male=Male

female=Female

105.8 Object
The OCD element can be used to describe the possible contents of a Dict ionary object. In this case, the
attribute name is the key. The Object element can be used to assign a value to a Dictionary object.

For example:

<Designate pid="com.acme.b">

 <Object ocdref="b">

 <Attribute adref="foo" content="Zaphod Beeblebrox"/>

 <Attribute adref="bar">

 <Value>1</Value>

 <Value>2</Value>

 <Value>3</Value>

 <Value>4</Value>

 <Value>5</Value>

 </Attribute>

 </Object>

 </Designate>

105.9 XML Schema
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.2.0"
targetNamespace="http://www.osgi.org/xmlns/metatype/v1.2.0"
version="1.2.0">

<element name="MetaData" type="metatype:Tmetadata" />

<complexType name="Tmetadata">
<sequence>

<element name="OCD" type="metatype:Tocd" minOccurs="0"
maxOccurs="unbounded" />

<element name="Designate" type="metatype:Tdesignate"
minOccurs="0" maxOccurs="unbounded" />

<!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->

<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="localization" type="string" use="optional" />
<anyAttribute />

</complexType>

<complexType name="Tocd">
<sequence>

<element name="AD" type="metatype:Tad" minOccurs="1"
maxOccurs="unbounded" />

<element name="Icon" type="metatype:Ticon" minOccurs="0"
maxOccurs="unbounded" />

<!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
Page 140 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 XML Schema
to use namespace="##any" below. -->
<any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="name" type="string" use="required" />
<attribute name="description" type="string" use="optional" />
<attribute name="id" type="string" use="required" />
<anyAttribute />

</complexType>

<complexType name="Tad">
<sequence>

<element name="Option" type="metatype:Toption" minOccurs="0"
maxOccurs="unbounded" />

<!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->

<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="name" type="string" use="optional" />
<attribute name="description" type="string" use="optional" />
<attribute name="id" type="string" use="required" />
<attribute name="type" type="metatype:Tscalar" use="required" />
<attribute name="cardinality" type="int" use="optional"

default="0" />
<attribute name="min" type="string" use="optional" />
<attribute name="max" type="string" use="optional" />
<attribute name="default" type="string" use="optional" />
<attribute name="required" type="boolean" use="optional"

default="true" />
<anyAttribute />

</complexType>

<complexType name="Tobject">
<sequence>

<element name="Attribute" type="metatype:Tattribute"
minOccurs="0" maxOccurs="unbounded" />

<!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->

<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="ocdref" type="string" use="required" />
<anyAttribute />

</complexType>

<complexType name="Tattribute">
<sequence>

<element name="Value" type="string" minOccurs="0"
maxOccurs="unbounded" />

<!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->

<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="adref" type="string" use="required" />
<attribute name="content" type="string" use="optional" />
<anyAttribute />

</complexType>

<complexType name="Tdesignate">
<sequence>

<element name="Object" type="metatype:Tobject" minOccurs="1"
maxOccurs="1" />

<any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="pid" type="string" use="optional" />
<attribute name="factoryPid" type="string" use="optional" />
<attribute name="bundle" type="string" use="optional" />
<attribute name="optional" type="boolean" default="false"

use="optional" />
<attribute name="merge" type="boolean" default="false"

use="optional" />
<anyAttribute />
OSGi Service Platform Release 4, Version 4.3 Page 141

Limitations Metatype Service Specification Version 1.2
</complexType>

<simpleType name="Tscalar">
<restriction base="string">

<enumeration value="String" />
<enumeration value="Long" />
<enumeration value="Double" />
<enumeration value="Float" />
<enumeration value="Integer" />
<enumeration value="Byte" />
<enumeration value="Char" />
<enumeration value="Boolean" />
<enumeration value="Short" />
<enumeration value="Password" />

</restriction>
</simpleType>

<complexType name="Toption">
<sequence>

<any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="label" type="string" use="required" />
<attribute name="value" type="string" use="required" />
<anyAttribute />

</complexType>

<complexType name="Ticon">
<sequence>

<any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="resource" type="string" use="required" />
<attribute name="size" type="positiveInteger" use="required" />
<anyAttribute />

</complexType>

<attribute name="must-understand" type="boolean">
<annotation>

<documentation xml:lang="en">
This attribute should be used by extensions to documents
to require that the document consumer understand the
extension.

</documentation>
</annotation>

</attribute>
</schema>

105.10 Limitations
The OSGi MetaType specification is intended to be used for simple applications. It does not, there-
fore, support recursive data types, mixed types in arrays/vectors, or nested arrays/vectors.

105.11 Related Standards
One of the primary goals of this specification is to make metatype information available at run-time
with minimal overhead. Many related standards are applicable to metatypes; except for Java beans,
however, all other metatype standards are based on document formats (e.g. XML). In the OSGi Service
Platform, document format standards are deemed unsuitable due to the overhead required in the exe-
cution environment (they require a parser during run-time).

Another consideration is the applicability of these standards. Most of these standards were developed
for management systems on platforms where resources are not necessarily a concern. In this case, a
metatype standard is normally used to describe the data structures needed to control some other
computer via a network. This other computer, however, does not require the metatype information
as it is implementing this information.
Page 142 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 Changes
In some traditional cases, a management system uses the metatype information to control objects in
an OSGi Service Platform. Therefore, the concepts and the syntax of the metatype information must
be mappable to these popular standards. Clearly, then, these standards must be able to describe
objects in an OSGi Service Platform. This ability is usually not a problem, because the metatype lan-
guages used by current management systems are very powerful.

105.12 Changes
• Added the possibility to dynamically add meta types with the Meta Type Provider service, see

Meta Type Provider Service on page 133.
• Added a PASSWORD type.
• Added METATYPE_PID and METATYPE_FACTORY_PID constants to the MetaTypProvider class.

105.13 Security Considerations
Special security issues are not applicable for this specification.

105.14 org.osgi.service.metatype
Metatype Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.metatype; vers ion=”[1.2,2.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.metatype; vers ion=”[1.2,1 .3)”

105.14.1 Summary
• Attr ibuteDefinit ion – An interface to describe an attribute.
• MetaTypeInformation – A MetaType Information object is created by the MetaTypeService to

return meta type information for a specific bundle.
• MetaTypeProvider – Provides access to metatypes.
• MetaTypeService – The MetaType Service can be used to obtain meta type information for a

bundle.
• ObjectClassDefinit ion – Description for the data type information of an objectclass.

105.14.2 Permissions
AttributeDefinition

105.14.3 public interface AttributeDefinition
An interface to describe an attribute.

An Attr ibuteDefinit ion object defines a description of the data type of a property/attribute.

Concurrency Thread-safe
BIGDECIMAL

105.14.3.1 public static final int BIGDECIMAL = 10

The BIGDECIMAL (10) type. Attributes of this type should be stored as BigDecimal , Vector with
BigDecimal or BigDecimal[] objects depending on getCardinal ity() .

Deprecated As of 1.1.
BIGINTEGER
OSGi Service Platform Release 4, Version 4.3 Page 143

org.osgi.service.metatype Metatype Service Specification Version 1.2
105.14.3.2 public static final int BIGINTEGER = 9

The BIGINTEGER (9) type. Attributes of this type should be stored as BigInteger , Vector with
BigInteger or BigInteger[] objects, depending on the getCardinal i ty() value.

Deprecated As of 1.1.
BOOLEAN

105.14.3.3 public static final int BOOLEAN = 11

The BOOLEAN (11) type. Attributes of this type should be stored as Boolean , Vector with Boolean or
boolean[] objects depending on getCardinal i ty() .
BYTE

105.14.3.4 public static final int BYTE = 6

The BYTE (6) type. Attributes of this type should be stored as Byte , Vector with Byte or byte[] objects,
depending on the getCardinal i ty() value.
CHARACTER

105.14.3.5 public static final int CHARACTER = 5

The CHARACTER (5) type. Attributes of this type should be stored as Character , Vector with
Character or char[] objects, depending on the getCardinal i ty() value.
DOUBLE

105.14.3.6 public static final int DOUBLE = 7

The DOUBLE (7) type. Attributes of this type should be stored as Double , Vector with Double or
double[] objects, depending on the getCardinal i ty() value.
FLOAT

105.14.3.7 public static final int FLOAT = 8

The FLOAT (8) type. Attributes of this type should be stored as Float , Vector with Float or f loat[]
objects, depending on the getCardinal i ty() value.
INTEGER

105.14.3.8 public static final int INTEGER = 3

The INTEGER (3) type. Attributes of this type should be stored as Integer , Vector with Integer or int[]
objects, depending on the getCardinal i ty() value.
LONG

105.14.3.9 public static final int LONG = 2

The LONG (2) type. Attributes of this type should be stored as Long , Vector with Long or long[]
objects, depending on the getCardinal i ty() value.
PASSWORD

105.14.3.10 public static final int PASSWORD = 12

The PASSWORD (12) type. Attributes of this type must be stored as Str ing , Vector with Str ing or
Str ing[] objects depending on {link getCardinality()}. A PASSWORD must be treated as a string but
the type can be used to disguise the information when displayed to a user to prevent others from see-
ing it.

Since 1.2
SHORT

105.14.3.11 public static final int SHORT = 4

The SHORT (4) type. Attributes of this type should be stored as Short , Vector with Short or short[]
objects, depending on the getCardinal i ty() value.
STRING

105.14.3.12 public static final int STRING = 1

The STRING (1) type.

Attributes of this type should be stored as Str ing , Vector with Str ing or Str ing[] objects, depending
on the getCardinal ity() value.
getCardinality()
Page 144 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 org.osgi.service.metatype
105.14.3.13 public int getCardinality ()

 Return the cardinality of this attribute. The OSGi environment handles multi valued attributes in
arrays ([]) or in Vector objects. The return value is defined as follows:

x = Integer.MIN_VALUE no limit, but use Vector

x < 0 -x = max occurrences, store in Vector

x > 0 x = max occurrences, store in array []

x = Integer.MAX_VALUE no limit, but use array []

x = 0 1 occurrence required

Returns The cardinality of this attribute.
getDefaultValue()

105.14.3.14 public String[] getDefaultValue ()

 Return a default for this attribute. The object must be of the appropriate type as defined by the cardi-
nality and getType() . The return type is a list of Str ing objects that can be converted to the appropri-
ate type. The cardinality of the return array must follow the absolute cardinality of this type. E.g. if
the cardinality = 0, the array must contain 1 element. If the cardinality is 1, it must contain 0 or 1 ele-
ments. If it is -5, it must contain from 0 to max 5 elements. Note that the special case of a 0 cardinality,
meaning a single value, does not allow arrays or vectors of 0 elements.

Returns Return a default value or nul l if no default exists.
getDescription()

105.14.3.15 public String getDescription ()

 Return a description of this attribute. The description may be localized and must describe the seman-
tics of this type and any constraints.

Returns The localized description of the definition.
getID()

105.14.3.16 public String getID ()

 Unique identity for this attribute. Attributes share a global namespace in the registry. E.g. an
attribute cn or commonName must always be a Str ing and the semantics are always a name of some
object. They share this aspect with LDAP/X.500 attributes. In these standards the OSI Object Identi-
fier (OID) is used to uniquely identify an attribute. If such an OID exists, (which can be requested at
several standard organisations and many companies already have a node in the tree) it can be
returned here. Otherwise, a unique id should be returned which can be a Java class name (reverse
domain name) or generated with a GUID algorithm. Note that all LDAP defined attributes already
have an OID. It is strongly advised to define the attributes from existing LDAP schemes which will
give the OID. Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id or oid
getName()

105.14.3.17 public String getName ()

 Get the name of the attribute. This name may be localized.

Returns The localized name of the definition.
getOptionLabels()

105.14.3.18 public String[] getOptionLabels ()

 Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is associated with
getOptionValues . The labels returned here are ordered in the same way as the values in that method.

If the function returns nul l , there are no option labels available.

This list must be in the same sequence as the getOptionValues() method. I.e. for each index i in
getOptionLabels , i in getOptionValues() should be the associated value.

For example, if an attribute can have the value male, female, unknown, this list can return (for dutch)
new Str ing[] { “Man”, “Vrouw”, “Onbekend” } .
OSGi Service Platform Release 4, Version 4.3 Page 145

org.osgi.service.metatype Metatype Service Specification Version 1.2
Returns A list values
getOptionValues()

105.14.3.19 public String[] getOptionValues ()

 Return a list of option values that this attribute can take.

If the function returns nul l , there are no option values available.

Each value must be acceptable to validate() (return “”) and must be a Str ing object that can be con-
verted to the data type defined by getType() for this attribute.

This list must be in the same sequence as getOptionLabels() . I.e. for each index i in getOptionValues ,
i in getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this list can return new
Str ing[] { “male”, “female”, “unknown” }.

Returns A list values
getType()

105.14.3.20 public int getType ()

 Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type. STRING ,LONG ,INTEGER ,
CHAR , BYTE ,DOUBLE ,FLOAT , BOOLEAN .

Returns The type for this attribute.
validate(String)

105.14.3.21 public String validate (String value)

value The value before turning it into the basic data type. If the cardinality indicates a multi valued attribute
then the given string must be escap

 Validate an attribute in Str ing form. An attribute might be further constrained in value. This method
will attempt to validate the attribute according to these constraints. It can return three different val-
ues:

null No validation present

“” No problems detected

“...” A localized description of why the value is wrong

If the cardinality of this attribute is multi-valued then this string must be interpreted as a comma
delimited string. The complete value must be trimmed from white space as well as spaces around
commas. Commas (’,’ ,) and spaces (’ ‘) and back-slashes (’\’ \) can be escaped with another back-slash.
Escaped spaces must not be trimmed. For example:

value=” a\,b,b\,c,\ c\\,d “ => [“a,b”, “b,c”, “ c\”, “d”]

Returns nul l , “”, or another string
MetaTypeInformation

105.14.4 public interface MetaTypeInformation
extends MetaTypeProvider
A MetaType Information object is created by the MetaTypeService to return meta type information
for a specific bundle.

Since 1.1

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface
getBundle()

105.14.4.1 public Bundle getBundle ()

 Return the bundle for which this object provides meta type information.

Returns Bundle for which this object provides meta type information.
getFactoryPids()
Page 146 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 org.osgi.service.metatype
105.14.4.2 public String[] getFactoryPids ()

 Return the Factory PIDs (for ManagedServiceFactories) for which ObjectClassDefinition information
is available.

Returns Array of Factory PIDs.
getPids()

105.14.4.3 public String[] getPids ()

 Return the PIDs (for ManagedServices) for which ObjectClassDefinition information is available.

Returns Array of PIDs.
MetaTypeProvider

105.14.5 public interface MetaTypeProvider
Provides access to metatypes. This interface can be implemented on a Managed Service or Managed
Service Factory as well as registered as a service. When registered as a service, it must be registered
with a METATYPE_FACTORY_PID or METATYPE_PID service property (or both). Any PID mentioned
in either of these factories must be a valid argument to the getObjectClassDefinit ion(Str ing, Str ing)
method.

Concurrency Thread-safe
METATYPE_FACTORY_PID

105.14.5.1 public static final String METATYPE_FACTORY_PID = “metatype.factory.pid”

Service property to signal that this service has ObjectClassDefinit ion objects for the given factory
PIDs. The type of this service property is Str ing+ .

Since 1.2
METATYPE_PID

105.14.5.2 public static final String METATYPE_PID = “metatype.pid”

Service property to signal that this service has ObjectClassDefinit ion objects for the given PIDs. The
type of this service property is Str ing+ .

Since 1.2
getLocales()

105.14.5.3 public String[] getLocales ()

 Return a list of available locales. The results must be names that consists of language [_ country [_
variation]] as is customary in the Locale class.

Returns An array of locale strings or nul l if there is no locale specific localization can be found.
getObjectClassDefinition(String,String)

105.14.5.4 public ObjectClassDefinition getObjectClassDefinition (String id , String locale)

id The ID of the requested object class. This can be a pid or factory pid returned by getPids or getFactoryP-
ids.

locale The locale of the definition or null for default locale.

 Returns an object class definition for the specified id localized to the specified locale.

The locale parameter must be a name that consists of language [“_” country [“_” var iat ion]] as is cus-
tomary in the Locale class. This Locale class is not used because certain profiles do not contain it.

Returns A ObjectClassDefinit ion object.

Throws IllegalArgumentException – If the id or locale arguments are not valid
MetaTypeService

105.14.6 public interface MetaTypeService
The MetaType Service can be used to obtain meta type information for a bundle. The MetaType Ser-
vice will examine the specified bundle for meta type documents to create the returned
MetaTypeInformation object.
OSGi Service Platform Release 4, Version 4.3 Page 147

org.osgi.service.metatype Metatype Service Specification Version 1.2
If the specified bundle does not contain any meta type documents, then a MetaTypeInformation
object will be returned that wrappers any ManagedService or ManagedServiceFactory services regis-
tered by the specified bundle that implement MetaTypeProvider . Thus the MetaType Service can be
used to retrieve meta type information for bundles which contain a meta type documents or which
provide their own MetaTypeProvider objects.

Since 1.1

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface
METATYPE_DOCUMENTS_LOCATION

105.14.6.1 public static final String METATYPE_DOCUMENTS_LOCATION = “OSGI-INF/metatype”

Location of meta type documents. The MetaType Service will process each entry in the meta type
documents directory.
getMetaTypeInformation(Bundle)

105.14.6.2 public MetaTypeInformation getMetaTypeInformation (Bundle bundle)

bundle The bundle for which meta type information is requested.

 Return the MetaType information for the specified bundle.

Returns A MetaTypeInformation object for the specified bundle.
ObjectClassDefinition

105.14.7 public interface ObjectClassDefinition
Description for the data type information of an objectclass.

Concurrency Thread-safe
ALL

105.14.7.1 public static final int ALL = -1

Argument for getAttr ibuteDefinit ions(int) .

ALL indicates that all the definitions are returned. The value is -1.
OPTIONAL

105.14.7.2 public static final int OPTIONAL = 2

Argument for getAttr ibuteDefinit ions(int) .

OPTIONAL indicates that only the optional definitions are returned. The value is 2.
REQUIRED

105.14.7.3 public static final int REQUIRED = 1

Argument for getAttr ibuteDefinit ions(int) .

REQUIRED indicates that only the required definitions are returned. The value is 1.
getAttributeDefinitions(int)

105.14.7.4 public AttributeDefinition[] getAttributeDefinitions (int filter)

filter ALL ,REQUIRED ,OPTIONAL

 Return the attribute definitions for this object class.

Return a set of attributes. The filter parameter can distinguish between ALL ,REQUIRED or the
OPTIONAL attributes.

Returns An array of attribute definitions or nul l if no attributes are selected
getDescription()

105.14.7.5 public String getDescription ()

 Return a description of this object class. The description may be localized.

Returns The description of this object class.
getIcon(int)

105.14.7.6 public InputStream getIcon (int size) throws IOException

size Requested size of an icon, e.g. a 16x16 pixels icon then size = 16
Page 148 OSGi Service Platform Release 4, Version 4.3

Metatype Service Specification Version 1.2 References
 Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The returned icon maybe
larger or smaller than the indicated size.

The icon may depend on the localization.

Returns An InputStream representing an icon or nul l

Throws IOException – If the InputStream cannot be returned.
getID()

105.14.7.7 public String getID ()

 Return the id of this object class.

ObjectDefint ion objects share a global namespace in the registry. They share this aspect with LDAP/
X.500 attributes. In these standards the OSI Object Identifier (OID) is used to uniquely identify object
classes. If such an OID exists, (which can be requested at several standard organisations and many
companies already have a node in the tree) it can be returned here. Otherwise, a unique id should be
returned which can be a java class name (reverse domain name) or generated with a GUID algorithm.
Note that all LDAP defined object classes already have an OID associated. It is strongly advised to
define the object classes from existing LDAP schemes which will give the OID for free. Many such
schemes exist ranging from postal addresses to DHCP parameters.

Returns The id of this object class.
getName()

105.14.7.8 public String getName ()

 Return the name of this object class. The name may be localized.

Returns The name of this object class.

105.15 References
[1] LDAP.

http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

[2] Understanding and Deploying LDAP Directory services
Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical publishing.
OSGi Service Platform Release 4, Version 4.3 Page 149

References Metatype Service Specification Version 1.2
Page 150 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 Introduction
107 User Admin Service
Specification
Version 1.1

107.1 Introduction
OSGi Service Platforms are often used in places where end users or devices initiate actions. These
kinds of actions inevitably create a need for authenticating the initiator. Authenticating can be done
in many different ways, including with passwords, one-time token cards, bio-metrics, and certificates.

Once the initiator is authenticated, it is necessary to verify that this principal is authorized to per-
form the requested action. This authorization can only be decided by the operator of the OSGi envi-
ronment, and thus requires administration.

The User Admin service provides this type of functionality. Bundles can use the User Admin service
to authenticate an initiator and represent this authentication as an Authorizat ion object. Bundles
that execute actions on behalf of this user can use the Authorizat ion object to verify if that user is
authorized.

The User Admin service provides authorization based on who runs the code, instead of using the Java
code-based permission model. See [1] The Java Security Architecture for JDK 1.2. It performs a role simi-
lar to [2] Java Authentication and Authorization Service.

107.1.1 Essentials
• Authentication – A large number of authentication schemes already exist, and more will be

developed. The User Admin service must be flexible enough to adapt to the many different
authentication schemes that can be run on a computer system.

• Authorization – All bundles should use the User Admin service to authenticate users and to find
out if those users are authorized. It is therefore paramount that a bundle can find out authori-
zation information with little effort.

• Security – Detailed security, based on the Framework security model, is needed to provide safe
access to the User Admin service. It should allow limited access to the credentials and other prop-
erties.

• Extensibility – Other bundles should be able to build on the User Admin service. It should be pos-
sible to examine the information from this service and get real-time notifications of changes.

• Properties – The User Admin service must maintain a persistent database of users. It must be pos-
sible to use this database to hold more information about this user.

• Administration – Administering authorizations for each possible action and initiator is time-con-
suming and error-prone. It is therefore necessary to have mechanisms to group end users and
make it simple to assign authorizations to all members of a group at one time.

107.1.2 Entities
This Specification defines the following User Admin service entities:

• UserAdmin – This interface manages a database of named roles which can be used for authori-
zation and authentication purposes.

• Role – This interface exposes the characteristics shared by all roles: a name, a type, and a set of
properties.
OSGi Service Platform Release 4, Version 4.3 Page 151

Introduction User Admin Service Specification Version 1.1
• User – This interface (which extends Role) is used to represent any entity which may have creden-
tials associated with it. These credentials can be used to authenticate an initiator.

• Group – This interface (which extends User) is used to contain an aggregation of named Role
objects (Group or User objects).

• Authorization – This interface encapsulates an authorization context on which bundles can base
authorization decisions.

• UserAdminEvent – This class is used to represent a role change event.
• UserAdminListener – This interface provides a listener for events of type UserAdminEvent that can

be registered as a service.
• UserAdminPermission – This permission is needed to configure and access the roles managed by a

User Admin service.
• Role.USER_ANYONE – This is a special User object that represents any user, it implies all other

User objects. It is also used when a Group is used with only basic members. The
Role.USER_ANYONE is then the only required member.

Figure 107.1 User Admin Service, org.osgi .service.useradmin

107.1.3 Operation
An Operator uses the User Admin service to define OSGi Service Platform users and configure them
with properties, credentials, and roles.

A Role object represents the initiator of a request (human or otherwise). This specification defines
two types of roles:

<<interface>>
UserAdmin

<<interface>>
Role

<<interface>>
Group

UserAdmin
Event

<<interface>>
Authorization

<<interface>>
UserAdmin
Listener

<<interface>>
User

UserAdmin
Permission

UserAdmin
Implementation

Group
ImplementationsUser

ImplementationsRole
Implementation

User Admin
Listener Impl.

Request
Authenticator

Action
implementation

perform action

consult
for authorization

has roles

authenticate

receive
events

send event

has
permission

role name

user database1..n 1

0..n

0..n

0..n

0..n

1..n

0..n

re
qu

ire
d

m
em

be
r

ba
sic

 m
em

be
r

Page 152 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 Authentication
• User – A User object can be configured with credentials, such as a password, and properties, such
as address, telephone number, and so on.

• Group – A Group object is an aggregation of basic and required roles. Basic and required roles are
used in the authorization phase.

An OSGi Service Platform can have several entry points, each of which will be responsible for authen-
ticating incoming requests. An example of an entry point is the Http Service, which delegates
authentication of incoming requests to the handleSecurity method of the HttpContext object that
was specified when the target servlet or resource of the request was registered.

The OSGi Service Platform entry points should use the information in the User Admin service to
authenticate incoming requests, such as a password stored in the private credentials or the use of a
certificate.

A bundle can determine if a request for an action is authorized by looking for a Role object that has
the name of the requested action.

The bundle may execute the action if the Role object representing the initiator implies the Role object
representing the requested action.

For example, an initiator Role object X implies an action Group object A if:

• X implies at least one of A’s basic members, and
• X implies all of A’s required members.

An initiator Role object X implies an action User object A if:

• A and X are equal.

The Authorizat ion class handles this non-trivial logic. The User Admin service can capture the privi-
leges of an authenticated User object into an Authorizat ion object. The Authorizat ion.hasRole
method checks if the authenticate User object has (or implies) a specified action Role object.

For example, in the case of the Http Service, the HttpContext object can authenticate the initiator
and place an Authorizat ion object in the request header. The servlet calls the hasRole method on this
Authorizat ion object to verify that the initiator has the authority to perform a certain action. See
Authentication on page 54.

107.2 Authentication
The authentication phase determines if the initiator is actually the one it says it is. Mechanisms to
authenticate always need some information related to the user or the OSGi Service Platform to
authenticate an external user. This information can consist of the following:

• A secret known only to the initiator.
• Knowledge about cards that can generate a unique token.
• Public information like certificates of trusted signers.
• Information about the user that can be measured in a trusted way.
• Other specific information.

107.2.1 Repository
The User Admin service offers a repository of Role objects. Each Role object has a unique name and a
set of properties that are readable by anyone, and are changeable when the changer has the
UserAdminPermiss ion . Additionally, User objects, a sub-interface of Role , also have a set of private
protected properties called credentials. Credentials are an extra set of properties that are used to
authenticate users and that are protected by UserAdminPermission .
OSGi Service Platform Release 4, Version 4.3 Page 153

Authentication User Admin Service Specification Version 1.1
Properties are accessed with the Role.getPropert ies() method and credentials with the
User.getCredentials()method. Both methods return a Dict ionary object containing key/value pairs.
The keys are Str ing objects and the values of the Dictionary object are limited to Str ing or byte[]
objects.

This specification does not define any standard keys for the properties or credentials. The keys
depend on the implementation of the authentication mechanism and are not formally defined by
OSGi specifications.

The repository can be searched for objects that have a unique property (key/value pair) with the
method UserAdmin.getUser(Str ing,Str ing) . This makes it easy to find a specific user related to a spe-
cific authentication mechanism. For example, a secure card mechanism that generates unique tokens
could have a serial number identifying the user. The owner of the card could be found with the
method

User owner = useradmin.getUser(

"secure-card-serial", "132456712-1212");

If multiple User objects have the same property (key and value), a nul l is returned.

There is a convenience method to verify that a user has a credential without actually getting the cre-
dential. This is the User.hasCredential(Str ing,Object) method.

Access to credentials is protected on a name basis by UserAdminPermiss ion . Because properties can
be read by anyone with access to a User object, UserAdminPermiss ion only protects change access to
properties.

107.2.2 Basic Authentication
The following example shows a very simple authentication algorithm based on passwords.

The vendor of the authentication bundle uses the property "com.acme.basic-id" to contain the name
of a user as it logs in. This property is used to locate the User object in the repository. Next, the cre-
dential "com.acme.password" contains the password and is compared to the entered password. If the
password is correct, the User object is returned. In all other cases a SecurityException is thrown.

public User authenticate(

UserAdmin ua, String name, String pwd)

throws SecurityException {

User user = ua.getUser("com.acme.basicid",

username);

if (user == null)

throw new SecurityException("No such user");

if (!user.hasCredential(“com.acme.password”, pwd))

throw new SecurityException(

"Invalid password");

return user;

}

107.2.3 Certificates
Authentication based on certificates does not require a shared secret. Instead, a certificate contains a
name, a public key, and the signature of one or more signers.

The name in the certificate can be used to locate a User object in the repository. Locating a User
object, however, only identifies the initiator and does not authenticate it.
Page 154 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 Authorization
1. The first step to authenticate the initiator is to verify that it has the private key of the certificate.

2. Next, the User Admin service must verify that it has a User object with the right property, for
example "com.acme.cert i f icate"="Fudd" .

3. The next step is to see if the certificate is signed by a trusted source. The bundle could use a central
list of trusted signers and only accept certificates signed by those sources. Alternatively, it could
require that the certificate itself is already stored in the repository under a unique key as a byte[]
in the credentials.

4. In any case, once the certificate is verified, the associated User object is authenticated.

107.3 Authorization
The User Admin service authorization architecture is a role-based model. In this model, every action
that can be performed by a bundle is associated with a role. Such a role is a Group object (called group
from now on) from the User Admin service repository. For example, if a servlet could be used to acti-
vate the alarm system, there should be a group named AlarmSystemActivat ion .

The operator can administrate authorizations by populating the group with User objects (users) and
other groups. Groups are used to minimize the amount of administration required. For example, it is
easier to create one Administrators group and add administrative roles to it rather than individually
administer all users for each role. Such a group requires only one action to remove or add a user as an
administrator.

The authorization decision can now be made in two fundamentally different ways:

An initiator could be allowed to carry out an action (represented by a Group object) if it implied any
of the Group object’s members. For example, the AlarmSystemActivat ion Group object contains an
Administrators and a Family Group object:

Administrators = { Elmer, Pepe, Bugs }

Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation = { Administrators, Family }

Any of the four members Elmer , Pepe , Daffy , or Bugs can activate the alarm system.

Alternatively, an initiator could be allowed to perform an action (represented by a Group object) if it
implied all the Group object’s members. In this case, using the same AlarmSystemActivation group,
only Elmer and Pepe would be authorized to activate the alarm system, since Daffy and Bugs are not
members of both the Administrators and Family Group objects.

The User Admin service supports a combination of both strategies by defining both a set of basic mem-
bers (any) and a set of required members (all).

Administrators = { Elmer, Pepe, Bugs }

Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation

required = { Administrators }

basic = { Family }

The difference is made when Role objects are added to the Group object. To add a basic member, use
the Group.addMember(Role) method. To add a required member, use the
Group.addRequiredMember(Role) method.

Basic members define the set of members that can get access and required members reduce this set by
requiring the initiator to imply each required member.

A User object implies a Group object if it implies the following:
OSGi Service Platform Release 4, Version 4.3 Page 155

Authorization User Admin Service Specification Version 1.1
• All of the Group’s required members, and
• At least one of the Group’s basic members

A User object always implies itself.

If only required members are used to qualify the implication, then the standard user
Role.USER_ANYONE can be obtained from the User Admin service and added to the Group object.
This Role object is implied by anybody and therefore does not affect the required members.

107.3.1 The Authorization Object
The complexity of authorization is hidden in an Authorizat ion class. Normally, the authenticator
should retrieve an Authorization object from the User Admin service by passing the authenticated
User object as an argument. This Authorizat ion object is then passed to the bundle that performs the
action. This bundle checks the authorization with the Authorizat ion.hasRole(String) method. The
performing bundle must pass the name of the action as an argument. The Authorizat ion object
checks whether the authenticated user implies the Role object, specifically a Group object, with the
given name. This is shown in the following example.

public void activateAlarm(Authorization auth) {

if (auth.hasRole("AlarmSystemActivation")) {

// activate the alarm

...

}

else throw new SecurityException(

"Not authorized to activate alarm");

}

107.3.2 Authorization Example
This section demonstrates a possible use of the User Admin service. The service has a flexible model
and many other schemes are possible.

Assume an Operator installs an OSGi Service Platform. Bundles in this environment have defined the
following action groups:

AlarmSystemControl

InternetAccess

TemperatureControl

PhotoAlbumEdit

PhotoAlbumView

PortForwarding

Installing and uninstalling bundles could potentially extend this set. Therefore, the Operator also
defines a number of groups that can be used to contain the different types of system users.

Administrators

Buddies

Children

Adults

Residents

In a particular instance, the Operator installs it in a household with the following residents and bud-
dies:

Residents: Elmer, Fudd, Marvin, Pepe

Buddies: Daffy, Foghorn

First, the residents and buddies are assigned to the system user groups. Second, the user groups need
to be assigned to the action groups.
Page 156 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 Repository Maintenance
The following tables show how the groups could be assigned.

107.4 Repository Maintenance
The UserAdmin interface is a straightforward API to maintain a repository of User and Group objects.
It contains methods to create new Group and User objects with the createRole(Str ing, int) method.
The method is prepared so that the same signature can be used to create new types of roles in the
future. The interface also contains a method to remove a Role object.

The existing configuration can be obtained with methods that list all Role objects using a filter argu-
ment. This filter, which has the same syntax as the Framework filter, must only return the Role
objects for which the filter matches the properties.

Several utility methods simplify getting User objects depending on their properties.

107.5 User Admin Events
Changes in the User Admin service can be determined in real time. Each User Admin service imple-
mentation must send a UserAdminEvent object to any service in the Framework service registry that
is registered under the UserAdminListener interface. This event must be send asynchronously from
the cause of the event. The way events must be delivered is the same as described in Delivering Events
on page 106 of the Core specification.

This procedure is demonstrated in the following code sample.

class Listener implements UserAdminListener {

public void roleChanged(UserAdminEvent event) {

...

}

}

public class MyActivator

implements BundleActivator {

public void start(BundleContext context) {

context.registerService(

Table 107.1 Example Groups with Basic and Required Members

Groups Elmer Fudd Marvin Pepe Daffy Foghorn

Residents Basic Basic Basic Basic - -
Buddies - - - - Basic Basic
Chi ldren - - Basic Basic - -
Adults Basic Basic - - - -
Administrators Basic - - - - -

Table 107.2 Example Action Groups with their Basic and Required Members

Groups Residents Buddies Children Adults Admin

AlarmSystemCon-
trol

Basic - - - Required

InternetAccess Basic - - Required -
TemperatureCon-
trol

Basic - - Required -

PhotoAlbumEdit Basic - Basic Basic -
PhotoAlbumView Basic Basic - - -
PortForwarding Basic - - - Required
OSGi Service Platform Release 4, Version 4.3 Page 157

Security User Admin Service Specification Version 1.1
UserAdminListener.class.getName(),

new Listener(), null);

}

public void stop(BundleContext context) {}

}

It is not necessary to unregister the listener object when the bundle is stopped because the Frame-
work automatically unregisters it. Once registered, the UserAdminListener object must be notified of
all changes to the role repository.

107.5.1 Event Admin and User Admin Change Events
User admin events must be delivered asynchronously to the Event Admin service by the implemen-
tation, if present. The topic of a User Admin Event is:

org/osgi/service/useradmin/UserAdmin/<event type>

The following event types are supported:

ROLE_CREATED

ROLE_CHANGED

ROLE_REMOVED

All User Admin Events must have the following properties:

• event – (UserAdminEvent) The event that was broadcast by the User Admin service.
• role – (Role) The Role object that was created, modified or removed.
• role .name – (Str ing) The name of the role.
• role .type – (Integer) One of ROLE, USER or GROUP .
• service – (ServiceReference) The Service Reference of the User Admin service.
• service. id – (Long) The User Admin service's ID.
• service.objectClass – (Str ing[]) The User Admin service's object class (which must include

org.osgi .serv ice.useradmin.UserAdmin)
• service.pid – (Str ing) The User Admin service's persistent identity

107.6 Security
The User Admin service is related to the security model of the OSGi Service Platform, but is comple-
mentary to the [1] The Java Security Architecture for JDK 1.2. The final permission of most code should
be the intersection of the Java 2 Permissions, which are based on the code that is executing, and the
User Admin service authorization, which is based on the user for whom the code runs.

107.6.1 UserAdminPermission
The User Admin service defines the UserAdminPermiss ion class that can be used to restrict bundles
in accessing credentials. This permission class has the following actions:

• changeProperty – This permission is required to modify properties. The name of the permission is
the prefix of the property name.

• changeCredential – This action permits changing credentials. The name of the permission is the
prefix of the name of the credential.

• getCredentia l – This action permits getting credentials. The name of the permission is the prefix
of the credential.

If the name of the permission is "admin", it allows the owner to administer the repository. No action
is associated with the permission in that case.

Otherwise, the permission name is used to match the property name. This name may end with a ".*"
string to indicate a wildcard. For example, com.acme.*matches com.acme.fudd.elmer and
com.acme.bugs .
Page 158 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 Relation to JAAS
107.7 Relation to JAAS
At a glance, the Java Authorization and Authentication Service (JAAS) seems to be a very suitable
model for user administration. The OSGi organization, however, decided to develop an independent
User Admin service because JAAS was not deemed applicable. The reasons for this include depen-
dency on Java SE version 1.3 ("JDK 1.3") and existing mechanisms in the previous OSGi Service Gate-
way 1.0 specification.

107.7.1 JDK 1.3 Dependencies
The authorization component of JAAS relies on the java.security.DomainCombiner interface, which
provides a means to dynamically update the Protect ionDomain objects affiliated with an
AccessControlContext object.

This interface was added in JDK 1.3. In the context of JAAS, the SubjectDomainCombiner object,
which implements the DomainCombiner interface, is used to update ProtectionDomain objects. The
permissions of Protect ionDomain objects depend on where code came from and who signed it, with
permissions based on who is running the code.

Leveraging JAAS would have resulted in user-based access control on the OSGi Service Platform
being available only with JDK 1.3, which was not deemed acceptable.

107.7.2 Existing OSGi Mechanism
JAAS provides a pluggable authentication architecture, which enables applications and their under-
lying authentication services to remain independent from each other.

The Http Service already provides a similar feature by allowing servlet and resource registrations to
be supported by an HttpContext object, which uses a callback mechanism to perform any required
authentication checks before granting access to the servlet or resource. This way, the registering bun-
dle has complete control on a per-servlet and per-resource basis over which authentication protocol
to use, how the credentials presented by the remote requestor are to be validated, and who should be
granted access to the servlet or resource.

107.7.3 Future Road Map
In the future, the main barrier of 1.3 compatibility will be removed. JAAS could then be implemented
in an OSGi environment. At that time, the User Admin service will still be needed and will provide
complementary services in the following ways:

• The authorization component relies on group membership information to be stored and managed
outside JAAS. JAAS does not manage persistent information, so the User Admin service can be a
provider of group information when principals are assigned to a Subject object.

• The authorization component allows for credentials to be collected and verified, but a repository
is needed to actually validate the credentials.

In the future, the User Admin service can act as the back-end database to JAAS. The only aspect JAAS
will remove from the User Admin service is the need for the Authorizat ion interface.

107.8 org.osgi.service.useradmin
User Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:
OSGi Service Platform Release 4, Version 4.3 Page 159

org.osgi.service.useradmin User Admin Service Specification Version 1.1
Import-Package: org.osgi .service.useradmin; vers ion=”[1.1,2.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.useradmin; vers ion=”[1.1,1 .2)”

107.8.1 Summary
• Authorizat ion – The Authorization interface encapsulates an authorization context on which

bundles can base authorization decisions, where appropriate.
• Group – A named grouping of roles (Role objects).
• Role – The base interface for Role objects managed by the User Admin service.
• User – A User role managed by a User Admin service.
• UserAdmin – This interface is used to manage a database of named Role objects, which can be

used for authentication and authorization purposes.
• UserAdminEvent – Role change event.
• UserAdminListener – Listener for UserAdminEvents.
• UserAdminPermiss ion – Permission to configure and access the Role objects managed by a User

Admin service.

107.8.2 Permissions
Authorization

107.8.3 public interface Authorization
The Authorizat ion interface encapsulates an authorization context on which bundles can base
authorization decisions, where appropriate.

Bundles associate the privilege to access restricted resources or operations with roles. Before granting
access to a restricted resource or operation, a bundle will check if the Authorizat ion object passed to
it possess the required role, by calling its hasRole method.

Authorization contexts are instantiated by calling the UserAdmin.getAuthorization(User) method.

Trusting Authorization objects

There are no restrictions regarding the creation of Authorizat ion objects. Hence, a service must only
accept Authorizat ion objects from bundles that has been authorized to use the service using code
based (or Java 2) permissions.

In some cases it is useful to use ServicePermission to do the code based access control. A service bas-
ing user access control on Authorizat ion objects passed to it, will then require that a calling bundle
has the ServicePermission to get the service in question. This is the most convenient way. The OSGi
environment will do the code based permission check when the calling bundle attempts to get the
service from the service registry.

Example: A servlet using a service on a user’s behalf. The bundle with the servlet must be given the
ServicePermission to get the Http Service.

However, in some cases the code based permission checks need to be more fine-grained. A service
might allow all bundles to get it, but require certain code based permissions for some of its methods.

Example: A servlet using a service on a user’s behalf, where some service functionality is open to any-
one, and some is restricted by code based permissions. When a restricted method is called (e.g., one
handing over an Authorizat ion object), the service explicitly checks that the calling bundle has per-
mission to make the call.

No Implement Consumers of this API must not implement this interface
getName()

107.8.3.1 public String getName ()

 Gets the name of the User that this Authorizat ion context was created for.
Page 160 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
Returns The name of the User object that this Authorizat ion context was created for, or nul l if no user was spec-
ified when this Authorizat ion context was created.
getRoles()

107.8.3.2 public String[] getRoles ()

 Gets the names of all roles implied by this Authorization context.

Returns The names of all roles implied by this Authorizat ion context, or nul l if no roles are in the context. The
predefined role user.anyone will not be included in this list.
hasRole(String)

107.8.3.3 public boolean hasRole (String name)

name The name of the role to check for.

 Checks if the role with the specified name is implied by this Authorization context.

Bundles must define globally unique role names that are associated with the privilege of accessing
restricted resources or operations. Operators will grant users access to these resources, by creating a
Group object for each role and adding User objects to it.

Returns true if this Authorizat ion context implies the specified role, otherwise false .
Group

107.8.4 public interface Group
extends User
A named grouping of roles (Role objects).

Whether or not a given Authorizat ion context implies a Group object depends on the members of
that Group object.

A Group object can have two kinds of members: basic and required . A Group object is implied by an
Authorizat ion context if all of its required members are implied and at least one of its basic members
is implied.

A Group object must contain at least one basic member in order to be implied. In other words, a
Group object without any basic member roles is never implied by any Authorizat ion context.

A User object always implies itself.

No loop detection is performed when adding members to Group objects, which means that it is possi-
ble to create circular implications. Loop detection is instead done when roles are checked. The
semantics is that if a role depends on itself (i.e., there is an implication loop), the role is not implied.

The rule that a Group object must have at least one basic member to be implied is motivated by the
following example:

group foo

required members: marketing

basic members: alice, bob

Privileged operations that require membership in “foo” can be performed only by “alice” and “bob”,
who are in marketing.

If “alice” and “bob” ever transfer to a different department, anybody in marketing will be able to
assume the “foo” role, which certainly must be prevented. Requiring that “foo” (or any Group object
for that matter) must have at least one basic member accomplishes that.

However, this would make it impossible for a Group object to be implied by just its required mem-
bers. An example where this implication might be useful is the following declaration: “Any citizen
who is an adult is allowed to vote.” An intuitive configuration of “voter” would be:

group voter
OSGi Service Platform Release 4, Version 4.3 Page 161

org.osgi.service.useradmin User Admin Service Specification Version 1.1
required members: citizen, adult

basic members:

However, according to the above rule, the “voter” role could never be assumed by anybody, since it
lacks any basic members. In order to address this issue a predefined role named “user.anyone” can be
specified, which is always implied. The desired implication of the “voter” group can then be achieved
by specifying “user.anyone” as its basic member, as follows:

group voter

required members: citizen, adult

basic members: user.anyone

No Implement Consumers of this API must not implement this interface
addMember(Role)

107.8.4.1 public boolean addMember (Role role)

role The role to add as a basic member.

 Adds the specified Role object as a basic member to this Group object.

Returns true if the given role could be added as a basic member, and false if this Group object already contains
a Role object whose name matches that of the specified role.

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
addRequiredMember(Role)

107.8.4.2 public boolean addRequiredMember (Role role)

role The Role object to add as a required member.

 Adds the specified Role object as a required member to this Group object.

Returns true if the given Role object could be added as a required member, and false if this Group object al-
ready contains a Role object whose name matches that of the specified role.

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
getMembers()

107.8.4.3 public Role[] getMembers ()

 Gets the basic members of this Group object.

Returns The basic members of this Group object, or null if this Group object does not contain any basic mem-
bers.
getRequiredMembers()

107.8.4.4 public Role[] getRequiredMembers ()

 Gets the required members of this Group object.

Returns The required members of this Group object, or nul l if this Group object does not contain any required
members.
removeMember(Role)

107.8.4.5 public boolean removeMember (Role role)

role The Role object to remove from this Group object.

 Removes the specified Role object from this Group object.

Returns true if the Role object could be removed, otherwise false .

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
Role

107.8.5 public interface Role
The base interface for Role objects managed by the User Admin service.
Page 162 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
This interface exposes the characteristics shared by all Role classes: a name, a type, and a set of proper-
ties.

Properties represent public information about the Role object that can be read by anyone. Specific
UserAdminPermiss ion objects are required to change a Role object’s properties.

Role object properties are Dict ionary objects. Changes to these objects are propagated to the User
Admin service and made persistent.

Every User Admin service contains a set of predefined Role objects that are always present and can-
not be removed. All predefined Role objects are of type ROLE . This version of the
org.osgi .service.useradmin package defines a single predefined role named “user.anyone”, which is
inherited by any other role. Other predefined roles may be added in the future. Since “user.anyone” is
a Role object that has properties associated with it that can be read and modified. Access to these
properties and their use is application specific and is controlled using UserAdminPermission in the
same way that properties for other Role objects are.

No Implement Consumers of this API must not implement this interface
GROUP

107.8.5.1 public static final int GROUP = 2

The type of a Group role.

The value of GROUP is 2.
ROLE

107.8.5.2 public static final int ROLE = 0

The type of a predefined role.

The value of ROLE is 0.
USER

107.8.5.3 public static final int USER = 1

The type of a User role.

The value of USER is 1.
USER_ANYONE

107.8.5.4 public static final String USER_ANYONE = “user.anyone”

The name of the predefined role, user.anyone, that all users and groups belong to.

Since 1.1
getName()

107.8.5.5 public String getName ()

 Returns the name of this role.

Returns The role’s name.
getProperties()

107.8.5.6 public Dictionary getProperties ()

 Returns a Dictionary of the (public) properties of this Role object. Any changes to the returned
Dictionary will change the properties of this Role object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListener objects.

Only objects of type Str ing may be used as property keys, and only objects of type Str ing or byte[]
may be used as property values. Any other types will cause an exception of type
I l legalArgumentException to be raised.

In order to add, change, or remove a property in the returned Dict ionary , a UserAdminPermiss ion
named after the property name (or a prefix of it) with action changeProperty is required.

Returns Dictionary containing the properties of this Role object.
getType()

107.8.5.7 public int getType ()

 Returns the type of this role.
OSGi Service Platform Release 4, Version 4.3 Page 163

org.osgi.service.useradmin User Admin Service Specification Version 1.1
Returns The role’s type.
User

107.8.6 public interface User
extends Role
A User role managed by a User Admin service.

In this context, the term “user” is not limited to just human beings. Instead, it refers to any entity that
may have any number of credentials associated with it that it may use to authenticate itself.

In general, User objects are associated with a specific User Admin service (namely the one that cre-
ated them), and cannot be used with other User Admin services.

A User object may have credentials (and properties, inherited from the Role class) associated with it.
Specific UserAdminPermission objects are required to read or change a User object’s credentials.

Credentials are Dict ionary objects and have semantics that are similar to the properties in the Role
class.

No Implement Consumers of this API must not implement this interface
getCredentials()

107.8.6.1 public Dictionary getCredentials ()

 Returns a Dict ionary of the credentials of this User object. Any changes to the returned Dict ionary
object will change the credentials of this User object. This will cause a UserAdminEvent object of type
UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListeners objects.

Only objects of type Str ing may be used as credential keys, and only objects of type Str ing or of type
byte[] may be used as credential values. Any other types will cause an exception of type
I l legalArgumentException to be raised.

In order to retrieve a credential from the returned Dict ionary object, a UserAdminPermission named
after the credential name (or a prefix of it) with action getCredentia l is required.

In order to add or remove a credential from the returned Dictionary object, a UserAdminPermission
named after the credential name (or a prefix of it) with action changeCredentia l is required.

Returns Dictionary object containing the credentials of this User object.
hasCredential(String,Object)

107.8.6.2 public boolean hasCredential (String key , Object value)

key The credential key .

value The credential value .

 Checks to see if this User object has a credential with the specified key set to the specified value .

If the specified credential value is not of type Str ing or byte[] , it is ignored, that is, fa lse is returned
(as opposed to an I l legalArgumentException being raised).

Returns true if this user has the specified credential; false otherwise.

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion named after the credential key (or a prefix of it) with action getCredentia l .
UserAdmin

107.8.7 public interface UserAdmin
This interface is used to manage a database of named Role objects, which can be used for authentica-
tion and authorization purposes.

This version of the User Admin service defines two types of Role objects: “User” and “Group”. Each
type of role is represented by an int constant and an interface. The range of positive integers is
reserved for new types of roles that may be added in the future. When defining proprietary role types,
negative constant values must be used.

Every role has a name and a type.
Page 164 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
A User object can be configured with credentials (e.g., a password) and properties (e.g., a street
address, phone number, etc.).

A Group object represents an aggregation of User and Group objects. In other words, the members of
a Group object are roles themselves.

Every User Admin service manages and maintains its own namespace of Role objects, in which each
Role object has a unique name.

No Implement Consumers of this API must not implement this interface
createRole(String,int)

107.8.7.1 public Role createRole (String name , int type)

name The name of the Role object to create.

type The type of the Role object to create. Must be either a Role.USER type or Role.GROUP type.

 Creates a Role object with the given name and of the given type.

If a Role object was created, a UserAdminEvent object of type UserAdminEvent.ROLE_CREATED is
broadcast to any UserAdminListener object.

Returns The newly created Role object, or nul l if a role with the given name already exists.

Throws IllegalArgumentException – if type is invalid.

SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
getAuthorization(User)

107.8.7.2 public Authorization getAuthorization (User user)

user The User object to create an Authorizat ion object for, or nul l for the anonymous user.

 Creates an Authorizat ion object that encapsulates the specified User object and the Role objects it
possesses. The null user is interpreted as the anonymous user. The anonymous user represents a user
that has not been authenticated. An Authorizat ion object for an anonymous user will be unnamed,
and will only imply groups that user.anyone implies.

Returns the Authorizat ion object for the specified User object.
getRole(String)

107.8.7.3 public Role getRole (String name)

name The name of the Role object to get.

 Gets the Role object with the given name from this User Admin service.

Returns The requested Role object, or nul l if this User Admin service does not have a Role object with the given
name .
getRoles(String)

107.8.7.4 public Role[] getRoles (String filter) throws InvalidSyntaxException

filter The filter criteria to match.

 Gets the Role objects managed by this User Admin service that have properties matching the speci-
fied LDAP filter criteria. See org.osgi . framework.F i lter for a description of the filter syntax. If a nul l
filter is specified, all Role objects managed by this User Admin service are returned.

Returns The Role objects managed by this User Admin service whose properties match the specified filter cri-
teria, or all Role objects if a nul l filter is specified. If no roles match the filter, nul l will be returned.

Throws InvalidSyntaxException – If the filter is not well formed.
getUser(String,String)

107.8.7.5 public User getUser (String key , String value)

key The property key to look for.

value The property value to compare with.
OSGi Service Platform Release 4, Version 4.3 Page 165

org.osgi.service.useradmin User Admin Service Specification Version 1.1
 Gets the user with the given property key -value pair from the User Admin service database. This is a
convenience method for retrieving a User object based on a property for which every User object is
supposed to have a unique value (within the scope of this User Admin service), such as for example a
X.500 distinguished name.

Returns A matching user, if exactly one is found. If zero or more than one matching users are found, nul l is re-
turned.
removeRole(String)

107.8.7.6 public boolean removeRole (String name)

name The name of the Role object to remove.

 Removes the Role object with the given name from this User Admin service and all groups it is a
member of.

If the Role object was removed, a UserAdminEvent object of type UserAdminEvent.ROLE_REMOVED
is broadcast to any UserAdminListener object.

Returns true If a Role object with the given name is present in this User Admin service and could be removed,
otherwise fa lse .

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
UserAdminEvent

107.8.8 public class UserAdminEvent
Role change event.

UserAdminEvent objects are delivered asynchronously to any UserAdminListener objects when a
change occurs in any of the Role objects managed by a User Admin service.

A type code is used to identify the event. The following event types are defined: ROLE_CREATED type,
ROLE_CHANGED type, and ROLE_REMOVED type. Additional event types may be defined in the
future.

See Also UserAdmin , UserAdminListener
ROLE_CHANGED

107.8.8.1 public static final int ROLE_CHANGED = 2

A Role object has been modified.

The value of ROLE_CHANGED is 0x00000002.
ROLE_CREATED

107.8.8.2 public static final int ROLE_CREATED = 1

A Role object has been created.

The value of ROLE_CREATED is 0x00000001.
ROLE_REMOVED

107.8.8.3 public static final int ROLE_REMOVED = 4

A Role object has been removed.

The value of ROLE_REMOVED is 0x00000004.
UserAdminEvent(ServiceReference,int,Role)

107.8.8.4 public UserAdminEvent (ServiceReference ref , int type , Role role)

ref The ServiceReference object of the User Admin service that generated this event.

type The event type.

role The Role object on which this event occurred.

 Constructs a UserAdminEvent object from the given ServiceReference object, event type, and Role
object.
getRole()
Page 166 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
107.8.8.5 public Role getRole ()

 Gets the Role object this event was generated for.

Returns The Role object this event was generated for.
getServiceReference()

107.8.8.6 public ServiceReference getServiceReference ()

 Gets the ServiceReference object of the User Admin service that generated this event.

Returns The User Admin service’s ServiceReference object.
getType()

107.8.8.7 public int getType ()

 Returns the type of this event.

The type values are ROLE_CREATED type, ROLE_CHANGED type, and ROLE_REMOVED type.

Returns The event type.
UserAdminListener

107.8.9 public interface UserAdminListener
Listener for UserAdminEvents.

UserAdminListener objects are registered with the Framework service registry and notified with a
UserAdminEvent object when a Role object has been created, removed, or modified.

UserAdminListener objects can further inspect the received UserAdminEvent object to determine its
type, the Role object it occurred on, and the User Admin service that generated it.

See Also UserAdmin , UserAdminEvent
roleChanged(UserAdminEvent)

107.8.9.1 public void roleChanged (UserAdminEvent event)

event The UserAdminEvent object.

 Receives notification that a Role object has been created, removed, or modified.
UserAdminPermission

107.8.10 public final class UserAdminPermission
extends BasicPermission
Permission to configure and access the Role objects managed by a User Admin service.

This class represents access to the Role objects managed by a User Admin service and their properties
and credentials (in the case of User objects).

The permission name is the name (or name prefix) of a property or credential. The naming conven-
tion follows the hierarchical property naming convention. Also, an asterisk may appear at the end of
the name, following a “.”, or by itself, to signify a wildcard match. For example: “org.osgi.security.pro-
tocol.*” or “*” is valid, but “*protocol” or “a*b” are not valid.

The UserAdminPermission with the reserved name “admin” represents the permission required for
creating and removing Role objects in the User Admin service, as well as adding and removing mem-
bers in a Group object. This UserAdminPermission does not have any actions associated with it.

The actions to be granted are passed to the constructor in a string containing a list of one or more
comma-separated keywords. The possible keywords are: changeProperty ,changeCredentia l , and
getCredential . Their meaning is defined as follows:

action

changeProperty Permission to change (i.e., add and remove)

Role object properties whose names start with

the name argument specified in the constructor.

changeCredential Permission to change (i.e., add and remove)

User object credentials whose names start

with the name argument specified in the constructor.
OSGi Service Platform Release 4, Version 4.3 Page 167

org.osgi.service.useradmin User Admin Service Specification Version 1.1
getCredential Permission to retrieve and check for the

existence of User object credentials whose names

start with the name argument specified in the

constructor.

The action string is converted to lowercase before processing.

Following is a PermissionInfo style policy entry which grants a user administration bundle a number
of UserAdminPermiss ion object:

(org.osgi.service.useradmin.UserAdminPermission “admin”)

(org.osgi.service.useradmin.UserAdminPermission “com.foo.*” “changeProperty,get-

Credential,changeCredential”)

(org.osgi.service.useradmin.UserAdminPermission “user.*”, “changeProperty,

changeCredential”)

The first permission statement grants the bundle the permission to perform any User Admin service
operations of type “admin”, that is, create and remove roles and configure Group objects.

The second permission statement grants the bundle the permission to change any properties as well
as get and change any credentials whose names start with com.foo. .

The third permission statement grants the bundle the permission to change any properties and cre-
dentials whose names start with user . . This means that the bundle is allowed to change, but not
retrieve any credentials with the given prefix.

The following policy entry empowers the Http Service bundle to perform user authentication:

grant codeBase “${jars}http.jar” {

permission org.osgi.service.useradmin.UserAdminPermission

“user.password”, “getCredential”;

};

The permission statement grants the Http Service bundle the permission to validate any password
credentials (for authentication purposes), but the bundle is not allowed to change any properties or
credentials.

Concurrency Thread-safe
ADMIN

107.8.10.1 public static final String ADMIN = “admin”

The permission name “admin”.
CHANGE_CREDENTIAL

107.8.10.2 public static final String CHANGE_CREDENTIAL = “changeCredential”

The action string “changeCredential”.
CHANGE_PROPERTY

107.8.10.3 public static final String CHANGE_PROPERTY = “changeProperty”

The action string “changeProperty”.
GET_CREDENTIAL

107.8.10.4 public static final String GET_CREDENTIAL = “getCredential”

The action string “getCredential”.
UserAdminPermission(String,String)

107.8.10.5 public UserAdminPermission (String name , String actions)

name the name of this UserAdminPermission

actions the action string.

 Creates a new UserAdminPermission with the specified name and actions. name is either the
reserved string “admin” or the name of a credential or property, and actions contains a comma-sepa-
rated list of the actions granted on the specified name. Valid actions are changeProperty ,
changeCredential , and getCredential.
Page 168 OSGi Service Platform Release 4, Version 4.3

User Admin Service Specification Version 1.1 References
Throws IllegalArgumentException – If name equals “admin” and act ions are specified.
equals(Object)

107.8.10.6 public boolean equals (Object obj)

obj the object to be compared for equality with this object.

 Checks two UserAdminPermission objects for equality. Checks that obj is a UserAdminPermission ,
and has the same name and actions as this object.

Returns true if obj is a UserAdminPermission object, and has the same name and actions as this
UserAdminPermiss ion object.
getActions()

107.8.10.7 public String getActions ()

 Returns the canonical string representation of the actions, separated by comma.

Returns the canonical string representation of the actions.
hashCode()

107.8.10.8 public int hashCode ()

 Returns the hash code value for this object.

Returns A hash code value for this object.
implies(Permission)

107.8.10.9 public boolean implies (Permission p)

p the permission to check against.

 Checks if this UserAdminPermission object “implies” the specified permission.

More specifically, this method returns true if:

• p is an instanceof UserAdminPermiss ion ,
• p ‘s actions are a proper subset of this object’s actions, and
• p ‘s name is implied by this object’s name. For example, “java.*” implies “java.home”.

Returns true if the specified permission is implied by this object; false otherwise.
newPermissionCollection()

107.8.10.10 public PermissionCollection newPermissionCollection ()

 Returns a new PermissionCol lect ion object for storing UserAdminPermission objects.

Returns a new Permiss ionCol lection object suitable for storing UserAdminPermission objects.
toString()

107.8.10.11 public String toString ()

 Returns a string describing this UserAdminPermission object. This string must be in PermissionInfo
encoded format.

Returns The PermissionInfo encoded string for this UserAdminPermission object.

See Also org.osgi.service.permissionadmin.PermissionInfo.getEncoded()

107.9 References
[1] The Java Security Architecture for JDK 1.2

Version 1.0, Sun Microsystems, October 1998

[2] Java Authentication and Authorization Service
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
OSGi Service Platform Release 4, Version 4.3 Page 169

References User Admin Service Specification Version 1.1
Page 170 OSGi Service Platform Release 4, Version 4.3

Initial Provisioning Specification Version 1.2 Introduction
110 Initial Provisioning Specification
Version 1.2

110.1 Introduction
To allow freedom regarding the choice of management protocol, the OSGi Specifications assumes an
architecture to remotely manage a Service Platform with a Management Agent. The Management
Agent is implemented with a Management Bundle that can communicate with an unspecified man-
agement protocol.

This specification defines how the Management Agent can make its way to the Service Platform, and
gives a structured view of the problems and their corresponding resolution methods.

The purpose of this specification is to enable the management of a Service Platform by an Operator,
and (optionally) to hand over the management of the Service Platform later to another Operator. This
approach is in accordance with the OSGi remote management reference architecture.

This bootstrapping process requires the installation of a Management Agent, with appropriate con-
figuration data, in the Service Platform.

This specification consists of a prologue, in which the principles of the Initial Provisioning are out-
lined, and a number of mappings to different mechanisms.

110.1.1 Essentials
• Policy Free – The proposed solution must be business model agnostic; none of the affected parties

(Operators, SPS Manufacturers, etc.) should be forced into any particular business model.
• Inter-operability – The Initial Provisioning must permit arbitrary inter-operability between man-

agement systems and Service Platforms. Any compliant Remote Manager should be able to
manage any compliant Service Platform, even in the absence of a prior business relationship.
Adhering to this requirement allows a particular Operator to manage a variety of makes and
models of Service Platform Servers using a single management system of the Operator’s choice.
This rule also gives the consumer the greatest choice when selecting an Operator.

• Flexible – The management process should be as open as possible, to allow innovation and special-
ization while still achieving interoperability.

110.1.2 Entities
• Provisioning Service – A service registered with the Framework that provides information about the

initial provisioning to the Management Agent.
• Provisioning Dictionary – A Dict ionary object that is filled with information from the ZIP files that

are loaded during initial setup.
• RSH Protocol – An OSGi specific secure protocol based on HTTP.
• Management Agent – A bundle that is responsible for managing a Service Platform under control of

a Remote Manager.
OSGi Service Platform Release 4, Version 4.3 Page 171

Procedure Initial Provisioning Specification Version 1.2
Figure 110.1 Initial Provisioning

110.2 Procedure
The following procedure should be executed by an OSGi Framework implementation that supports
this Initial Provisioning specification.

When the Service Platform is first brought under management control, it must be provided with an
initial request URL in order to be provisioned. Either the end user or the manufacturer may provide
the initial request URL. How the initial request URL is transferred to the Framework is not specified,
but a mechanism might, for example, be a command line parameter when the framework is started.

When asked to start the Initial Provisioning, the Service Platform will send a request to the manage-
ment system. This request is encoded in a URL, for example:

http://osgi.acme.com/remote-manager

This URL may use any protocol that is available on the Service Platform Server. Many standard proto-
cols exist, but it is also possible to use a proprietary protocol. For example, software could be present
which can communicate with a smart card and could handle, for example, this URL:

smart-card://com1:0/7F20/6F38

Before the request URL is executed, the Service Platform information is appended to the URL. This
information includes at least the Service Platform Identifier, but may also contain proprietary infor-
mation, as long as the keys for this information do not conflict. Different URL schemes may use dif-
ferent methods of appending parameters; these details are specified in the mappings of this
specification to concrete protocols.

The result of the request must be a ZIP file (The content type should be appl ication/zip). It is the
responsibility of the underlying protocol to guarantee the integrity and authenticity of this ZIP file.

This ZIP file is unpacked and its entries (except bundle and bundle-url entries, described in Table
110.2) are placed in a Dict ionary object. This Dictionary object is called the Provisioning Dictionary. It
must be made available from the Provisioning Service in the service registry. The names of the entries
in the ZIP file must not start with a slash (’/’).

<<interface>>
Provisioning
Service

Management
Agent impl.

Provisioning
Service impl.

java.net.URL

RSH URL handler HTTP/HTTPS
URL handler

URL FILE handler

is installed by

gets

uses protocol defined by setup information
Page 172 OSGi Service Platform Release 4, Version 4.3

Initial Provisioning Specification Version 1.2 Procedure
The ZIP file may contain only four types of dictionary entries: text , binary , bundle , or bundle-url . The
type of an entry can be specified in different ways. An Initial Provisioning service must look in the
following places to find the information about an entry’s (MIME) type (in the given order):

1 The manifest header InitialProvisioning-Entries of the given ZIP file. This header is defined in Ini-
tialProvisioning-Entries Manifest Header on page 175. If this header is present, but a given entry’s
path is not named then try the next step.

2 The extension of the entry path name if one of . txt , . jar , .ur l extensions. See Content types of provi-
sioning ZIP file on page 173 for the mapping of types, MIME types, and extensions.

3 The entry is assumed to be a binary type

The types can optionally be specified as a MIME type as defined in [7] MIME Types. The text and
bundle-url entries are translated into a Str ing object from an UTF-8 encoded byte array. All other
entries must be stored as a byte[] .

The Provisioning Service must install (but not start) all entries in the ZIP file that are typed with
bundle or bundle-url .

Table 110.1 Content types of provisioning ZIP file

Type MIME Type Ext Description

text MIME_STRING
text/
pla in;charset=utf-8

.txt Must be represented as a String object

binary MIME_BYTE_ARRAY
appl ication/octet-
stream

not
.txt ,
.ur l ,
or . jar

Must be represented as a byte array (byte[]).

bundle MIME_BUNDLE
appl ication/
 vnd.osgi .bundle

MIME_BUNDLE_ALT
appl ication/
 x-osgi-bundle

. jar Entries must be installed using BundleCon-
text.installBundle(String,InputStream), with
the InputStream object constructed from the
contents of the ZIP entry. The location must
be the name of the ZIP entry without leading
slash. This entry must not be stored in the
Provisioning Dictionary.
If a bundle with this location name is
already installed in this system, then this
bundle must be updated instead of installed.
The MIME_BUNDLE_ALT version is intended
for backward compatibility, it specifies the
original MIME type for bundles before there
was an official IANA MIME type.

bundle-ur l MIME_BUNDLE_URL
text/
 x-osgi-bundle-url ;
 charset=utf-8

.url The content of this entry is a string coded in
utf-8. Entries must be installed using
BundleContext . instal lBundle(Str ing,
InputStream) , with the InputStream object
created from the given URL. The location
must be the name of the ZIP entry without
leading slash. This entry must not be stored
in the Provisioning Dictionary.
If a bundle with this location url is already
installed in this system, then this bundle
must be updated instead of installed.
OSGi Service Platform Release 4, Version 4.3 Page 173

Procedure Initial Provisioning Specification Version 1.2
If an entry named PROVISIONING_START_BUNDLE is present in the Provisioning Dictionary, then its
content type must be text as defined in Table 110.1. The content of this entry must match the bundle
location of a previously loaded bundle. This designated bundle must be given Al lPermission and
started.

If no PROVISIONING_START_BUNDLE entry is present in the Provisioning Dictionary, the Provision-
ing Dictionary should contain a reference to another ZIP file under the PROVISIONING_REFERENCE
key. If both keys are absent, no further action must take place.

If this PROVISIONING_REFERENCE key is present and holds a Str ing object that can be mapped to a
valid URL, then a new ZIP file must be retrieved from this URL. The PROVISIONING_REFERENCE link
may be repeated multiple times in successively loaded ZIP files.

Referring to a new ZIP file with such a URL allows a manufacturer to place a fixed reference inside the
Service Platform Server (in a file or smart card) that will provide some platform identifying informa-
tion and then also immediately load the information from the management system. The
PROVISIONING_REFERENCE link may be repeated multiple times in successively loaded ZIP files. The
entry PROVISIONING_UPDATE_COUNT must be an Integer object that must be incremented on every
iteration.

Information retrieved while loading subsequent PROVISIONING_REFERENCE URLs may replace pre-
vious key/values in the Provisioning Dictionary, but must not erase unrecognized key/values. For
example, if an assignment has assigned the key proprietary-x , with a value ’3’, then later assignments
must not override this value, unless the later loaded ZIP file contains an entry with that name. All
these updates to the Provisioning Dictionary must be stored persistently. At the same time, each
entry of type bundle or bundle-url (see Table 110.1) must be installed and not started.

Once the Management Agent has been started, the Initial Provisioning service has become opera-
tional. In this state, the Initial Provisioning service must react when the Provisioning Dictionary is
updated with a new PROVISIONING_REFERENCE property. If this key is set, it should start the cycle
again. For example, if the control of a Service Platform needs to be transferred to another Remote
Manager, the Management Agent should set the PROVISIONING_REFERENCE to the location of this
new Remote Manager’s Initial Provisioning ZIP file.This process is called re-provisioning.

If errors occur during this process, the Initial Provisioning service should try to notify the Service
User of the problem.

The previous description is depicted in Figure 110.2 as a flow chart.
Page 174 OSGi Service Platform Release 4, Version 4.3

Initial Provisioning Specification Version 1.2 Special Configurations
Figure 110.2 Flow chart installation Management Agent bundle

The Management Agent may require configuration data that is specific to the Service Platform
instance. If this data is available outside the Management Agent bundle, the merging of this data
with the Management Agent may take place in the Service Platform. Transferring the data separately
will make it possible to simplify the implementation on the server side, as it is not necessary to create
personalized Service Platform bundles. The PROVISIONING_AGENT_CONFIG key is reserved for this
purpose, but the Management Agent may use another key or mechanisms if so desired.

The PROVISIONING_SPID key must contain the Service Platform Identifier.

110.2.1 InitialProvisioning-Entries Manifest Header
The InitialProvisioning-Entries manifest header optionally specifies the type of the entries in the ZIP
file. The syntax for this header is:

InitialProvisioning-Entries ::= ip-entry (’,’ ip-entry) *

ip-entry ::= path (’;’ parameter) *

The entry is the path name of a resource in the ZIP file. This InitialProvisioning-Entries header recog-
nizes the following attribute:

• type – Gives the type of the dictionary entry. The type can have one of the following values: text ,
binary , bundle , or bundle-ur l

If the type parameter entry is not specified for an entry, then the type will be inferred from the exten-
sion of the entry, as defined in table Content types of provisioning ZIP file on page 173.

110.3 Special Configurations
The next section shows some examples of specially configured types of Service Platform Servers and
how they are treated with the respect to the specifications in this document.

U = platform URL

provisioning

load ZIP file from U

U = P. REFERENCE

Start
Management

Agent

install all bundles
with content type

bundle (-url)

into Provisioning
Dictionary

PROVISIONING

yes

no PROVISIONING

yes

no

operational

REFERENCE setSTART_BUNDLE set

re-provisioning
OSGi Service Platform Release 4, Version 4.3 Page 175

The Provisioning Service Initial Provisioning Specification Version 1.2
110.3.1 Branded Service Platform Server
If a Service Platform Operator is selling Service Platform Servers branded exclusively for use with
their service, the provisioning will most likely be performed prior to shipping the Service Platform
Server to the User. Typically the Service Platform is configured with the Dict ionary entry
PROVISIONING_REFERENCE pointing at a location controlled by the Operator.

Up-to-date bundles and additional configuration data must be loaded from that location at activation
time. The Service Platform is probably equipped with necessary security entities, like certificates, to
enable secure downloads from the Operator’s URL over open networks, if necessary.

110.3.2 Non-connected Service Platform
Circumstances might exist in which the Service Platform Server has no WAN connectivity, or prefers
not to depend on it for the purposes not covered by this specification.

The non-connected case can be implemented by specifying a f i le :// URL for the initial ZIP file
(PROVISIONING_REFERENCE). That f i le :// URL would name a local file containing the response that
would otherwise be received from a remote server.

The value for the Management Agent PROVISIONING_REFERENCE found in that file will be used as
input to the load process. The PROVISIONING_REFERENCE may point to a bundle file stored either
locally or remotely. No code changes are necessary for the non-connected scenario. The f i le :// URLs
must be specified, and the appropriate files must be created on the Service Platform.

110.4 The Provisioning Service
Provisioning information is conveyed between bundles using the Provisioning Service, as defined in
the Provis ioningService interface. The Provisioning Dictionary is retrieved from the
Provis ioningService object using the getInformation() method. This is a read-only Dict ionary object,
any changes to this Dict ionary object must throw an UnsupportedOperat ionException .

The Provisioning Service provides a number of methods to update the Provisioning Dictionary.

• addInformation(Dict ionary) – Add all key/value pairs in the given Dict ionary object to the Provi-
sioning Dictionary.

• addInformation(ZipInputStream) – It is also possible to add a ZIP file to the Provisioning Service
immediately. This will unpack the ZIP file and add the entries to the Provisioning Dictionary. This
method must install the bundles contained in the ZIP file as described in Procedure on page 172.

• set Information(Dict ionary) – Set a new Provisioning Dictionary. This will remove all existing
entries.

Each of these method will increment the PROVISIONING_UPDATE_COUNT entry.

110.5 Management Agent Environment
The Management Agent should be written with great care to minimize dependencies on other pack-
ages and services, as all services in OSGi are optional. Some Service Platforms may have other bundles
pre-installed, so it is possible that there may be exported packages and services available. Mecha-
nisms outside the current specification, however, must be used to discover these packages and ser-
vices before the Management Agent is installed.

The Provisioning Service must ensure that the Management Agent is running with AllPermiss ion .
The Management Agent should check to see if the Permission Admin service is available, and estab-
lish the initial permissions as soon as possible to insure the security of the device when later bundles
are installed. As the PermissionAdmin interfaces may not be present (it is an optional service), the
Management Agent should export the PermissionAdmin interfaces to ensure they can be resolved.
Page 176 OSGi Service Platform Release 4, Version 4.3

Initial Provisioning Specification Version 1.2 Mapping To File Scheme
Once started, the Management Agent may retrieve its configuration data from the Provisioning Ser-
vice by getting the byte[] object that corresponds to the PROVISIONING_AGENT_CONFIG key in the
Provisioning Dictionary. The structure of the configuration data is implementation specific.

The scope of this specification is to provide a mechanism to transmit the raw configuration data to
the Management Agent. The Management Agent bundle may alternatively be packaged with its con-
figuration data in the bundle, so it may not be necessary for the Management Agent bundle to use the
Provisioning Service at all.

Most likely, the Management Agent bundle will install other bundles to provision the Service Plat-
form. Installing other bundles might even involve downloading a more full featured Management
Agent to replace the initial Management Agent.

110.6 Mapping To File Scheme
The f i le : scheme is the simplest and most completely supported scheme which can be used by the Ini-
tial Provisioning specification. It can be used to store the configuration data and Management Agent
bundle on the Service Platform Server, and avoids any outside communication.

If the initial request URL has a f i le scheme, no parameters should be appended, because the f i le :
scheme does not accept parameters.

110.6.1 Example With File Scheme
The manufacturer should prepare a ZIP file containing only one entry named
PROVISIONING_START_BUNDLE that contains a location string of an entry of type bundle or bundle-
ur l . For example, the following ZIP file demonstrates this:

provisioning.start.bundle text agent

agent bundle C0AF0E9B2AB..

The bundle may also be specified with a URL:

provisioning.start.bundle text http://acme.com/a.jar

agent bundle-url http://acme.com/a.jar

Upon startup, the framework is provided with the URL with the f i le : scheme that points to this ZIP
file:

file:/opt/osgi/ma.zip

110.7 Mapping To HTTP(S) Scheme
This section defines how HTTP and HTTPS URLs must be used with the Initial Provisioning specifica-
tion.

• HTTP – May be used when the data exchange takes place over networks that are secured by other
means, such as a Virtual Private Network (VPN) or a physically isolated network. Otherwise,
HTTP is not a valid scheme because no authentication takes place.

• HTTPS – May be used if the Service Platform is equipped with appropriate certificates.

HTTP and HTTPS share the following qualities:

• Both are well known and widely used
• Numerous implementations of the protocols exist
• Caching of the Management Agent will be desired in many implementations where limited band-

width is an issue. Both HTTP and HTTPS already contain an accepted protocol for caching.

Both HTTP and HTTPS must be used with the GET method. The response is a ZIP file, implying that
the response header Content-Type header must contain appl ication/zip.
OSGi Service Platform Release 4, Version 4.3 Page 177

Mapping To HTTP(S) Scheme Initial Provisioning Specification Version 1.2
110.7.1 HTTPS Certificates
In order to use HTTPS, certificates must be in place. These certificates, that are used to establish trust
towards the Operator, may be made available to the Service Platform using the Provisioning Service.
The root certificate should be assigned to the Provisioning Dictionary before the HTTPS provider is
used. Additionally, the Service Platform should be equipped with a Service Platform certificate that
allows the Service Platform to properly authenticate itself towards the Operator. This specification
does not state how this certificate gets installed into the Service Platform.

The root certificate is stored in the Provisioning Dictionary under the key:

PROVISIONING_ROOTX509

The Root X.509 Certificate holds certificates used to represent a handle to a common base for estab-
lishing trust. The certificates are typically used when authenticating a Remote Manager to the Ser-
vice Platform. In this case, a Root X.509 certificate must be part of a certificate chain for the Operator’s
certificate. The format of the certificate is defined in Certificate Encoding on page 178.

110.7.2 Certificate Encoding
Root certificates are X.509 certificates. Each individual certificate is stored as a byte[] object. This
byte[] object is encoded in the default Java manner, as follows:

• The original, binary certificate data is DER encoded
• The DER encoded data is encoded into base64 to make it text.
• The base64 encoded data is prefixed with

 -----BEGIN CERTIFICATE-----
and suffixed with:
 -----END CERTIFICATE-----

• If a record contains more than one certificate, they are simply appended one after the other, each
with a delimiting prefix and suffix.

The decoding of such a certificate may be done with the java.security .cert.Cert i f icateFactory class:

InputStream bis = new ByteArrayInputStream(x509); // byte[]

CertificateFactory cf =

CertificateFactory.getInstance("X.509");

Collection c = cf.generateCertificates(bis);

Iterator i = c.iterator();

while (i.hasNext()) {

Certificate cert = (Certificate)i.next();

System.out.println(cert);

}

110.7.3 URL Encoding
The URL must contain the Service Platform Identity, and may contain more parameters. These
parameters are encoded in the URL according to the HTTP(S) URL scheme. A base URL may be set by
an end user but the Provisioning Service must add the Service Platform Identifier.

If the request URL already contains HTTP parameters (if there is a ’’ in the request), the
service_platform_id is appended to this URL as an additional parameter. If, on the other hand, the
request URL does not contain any HTTP parameters, the service_platform_id will be appended to the
URL after a ’’, becoming the first HTTP parameter. The following two examples show these two vari-
ants:

http://server.operator.com/service-x «
foo=bar&service_platform_id=VIN:123456789

http://server.operator.com/service-x «
Page 178 OSGi Service Platform Release 4, Version 4.3

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme
service_platform_id=VIN:123456789

Proper URL encoding must be applied when the URL contains characters that are not allowed. See [6]
RFC 2396 - Uniform Resource Identifier (URI).

110.8 Mapping To RSH Scheme
The RSH protocol is an OSGi-specific protocol, and is included in this specification because it is opti-
mized for Initial Provisioning. It requires a shared secret between the management system and the
Service Platform that is small enough to be entered by the Service User.

RSH bases authentication and encryption on Message Authentication Codes (MACs) that have been
derived from a secret that is shared between the Service Platform and the Operator prior to the start of
the protocol execution.

The protocol is based on an ordinary HTTP GET request/response, in which the request must be
signed and the response must be encrypted and authenticated. Both the signature and encryption key are
derived from the shared secret using Hashed Message Access Codes (HMAC) functions.

As additional input to the HMAC calculations, one client-generated nonce and one server-generated
nonce are used to prevent replay attacks. The nonces are fairly large random numbers that must be
generated in relation to each invocation of the protocol, in order to guarantee freshness. These non-
ces are called cl ientfg (client-generated freshness guarantee) and serverfg (server-generated freshness
guarantee).

In order to separate the HMAC calculations for authentication and encryption, each is based on a dif-
ferent constant value. These constants are called the authentication constant and the encryption constant.

From an abstract perspective, the protocol may be described as follows.

• – Shared secret, 160 bits or more
• s – Server nonce, called servercfg , 128 bits
• c – Client nonce, called cl ientfg , 128 bits
• Ka – Authentication key, 160 bits
• Ke – Encryption key, 192 bits
• r – Response data
• e – Encrypted data
• E – Encryption constant, a byte[] of 05, 36, 54, 70, 00 (hex)
• A – Authentication constant, a byte[] of 00, 4f, 53, 47, 49 (hex)
• M – Message material, used for Ke calculation.
• m – The calculated message authentication code.
• 3DES – Triple DES, encryption function, see [8] 3DES. The bytes of the key must be set to odd

parity. CBC mode must be used where the padding method is defined in [9] RFC 1423 Part III:
Algorithms, Modes, and Identifiers. In [11] Java Cryptography API (part of Java 1.4) this is addressed
as PKCS5Padding .

• IV – Initialization vector for 3DES.
• SHA1 – Secure Hash Algorithm to generate the Hashed Message Authentication Code, see [12]

SHA-1. The function takes a single parameter, the block to be worked upon.
• HMAC – The function that calculates a message authentication code, which must HMAC-

SHA1. HMAC-SHA1 is defined in [1] HMAC: Keyed-Hashing for Message Authentication. The
HMAC function takes a key and a block to be worked upon as arguments. Note that the lower
16 bytes of the result must be used.

• {} – Concatenates its arguments
• [] – Indicates access to a sub-part of a variable, in bytes. Index starts at one, not zero.

In each step, the emphasized server or client indicates the context of the calculation. If both are
used at the same time, each variable will have server or client as a subscript.
OSGi Service Platform Release 4, Version 4.3 Page 179

Mapping To RSH Scheme Initial Provisioning Specification Version 1.2
1. The client generates a random nonce, stores it and denotes it cl ientfg

2. The client sends the request with the cl ientfg to the server.

3. The server generates a nonce and denotes it serverfg .

4. The server calculates an authentication key based on the SHA1 function, the shared secret, the
received cl ientfg , the serverfg and the authentication constant.

5. The server calculates an encryption key using an SHA-1 function, the shared secret, the received
cl ientfg , the serverfg and the encryption constant. It must first calculate the key material M.

6. The key for DES consists Ke and IV.

The server encrypts the response data using the encryption key derived in 5. The encryption algo-
rithm that must be used to encrypt/decrypt the response data is 3DES. 24 bytes (192 bits) from M
are used to generate Ke, but the low order bit of each byte must be used as an odd parity bit. This
means that before using Ke, each byte must be processed to set the low order bit so that the byte
has odd parity.

The encryption/decryption key used is specified by the following:

7. The server calculates a MAC m using the HMAC function, the encrypted response data and the
authentication key derived in 4.

8. The server sends a response to the client containing the serverfg , the MAC m and the encrypted
response data

The client calculates the encryption key Ke the same way the server did in step 5 and 6, and uses
this to decrypt the encrypted response data. The serverfg value received in the response is used in
the calculation.

9. The client performs the calculation of the MAC m’ in the same way the server did, and checks that
the results match the received MAC m. If they do not match, further processing is discarded. The
serverfg value received in the response is used in the calculation.

c nonce=

cserver cclient

s nonce=

Ka SHA1 c s A ()

M 1 20 SHA1 c s E
M 21 40 SHA1 M 1 20 c s E

Ke M 1 24

IV M 25 32

e 3DES Ke IV r

m HMAC Ka e

sclient sserver

mclient mserver

eclient eserver

r 3DES Ke IV e

Ka SHA1 c s A ()

m HMAC Ka e

m m=
Page 180 OSGi Service Platform Release 4, Version 4.3

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme
Figure 110.3 Action Diagram for RSH

110.8.1 Shared Secret
The shared secret should be a key of length 160 bits (20 bytes) or more. The length is selected to match
the output of the selected hash algorithm [2] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995..

In some scenarios, the shared secret is generated by the Operator and communicated to the User, who
inserts the secret into the Service Platform through some unspecified means.

The opposite is also possible: the shared secret can be stored within the Service Platform, extracted
from it, and then communicated to the Operator. In this scenario, the source of the shared secret
could be either the Service Platform or the Operator.

In order for the server to calculate the authentication and encryption keys, it requires the proper
shared secret. The server must have access to many different shared secrets, one for each Service Plat-
form it is to support. To be able to resolve this issue, the server must typically also have access to the
Service Platform Identifier of the Service Platform. The normal way for the server to know the Service
Platform Identifier is through the application protocol, as this value is part of the URL encoded
parameters of the HTTP, HTTPS, or RSH mapping of the Initial Provisioning.

In order to be able to switch Operators, a new shared secret must be used. The new secret may be gen-
erated by the new Operator and then inserted into the Service Platform device using a mechanism
not covered by this specification. Or the device itself may generate the new secret and convey it to the
owner of the device using a display device or read-out, which is then communicated to the new oper-
ator out-of-band. Additionally, the generation of the new secret may be triggered by some external
event, like holding down a button for a specified amount of time.

110.8.2 Request Coding
RSH is mapped to HTTP or HTTPS. Thus, the request parameters are URL encoded as discussed in
110.7.3 URL Encoding. RSH requires an additional parameter in the URL: the cl ientfg parameter. This
parameter is a nonce that is used to counter replay attacks. See also RSH Transport on page 182.

110.8.3 Response Coding
The server’s response to the client is composed of three parts:

• A header containing the protocol version and the serverfg
• The MAC
• The encrypted response

These three items are packaged into a binary container according to Table 110.2.

Service Platform Remote Manager

request(spid,clientfg)

response(spid,mac,serverfg,encrypted-data) Shared Secret

Shared Secret

Table 110.2 RSH Header description

Bytes Description Value hex

4 Number of bytes in header 2E
1 Major version number 01
1 Minor version number 00
16 serverfg ...
OSGi Service Platform Release 4, Version 4.3 Page 181

Exception Handling Initial Provisioning Specification Version 1.2
The response content type is an RSH-specific encrypted ZIP file, implying that the response header
Content-Type must be appl icat ion/x-rsh for the HTTP request. When the content file is decrypted,
the content must be a ZIP file.

110.8.4 RSH URL
The RSH URL must be used internally within the Service Platform to indicate the usage of RSH for
initial provisioning. The RSH URL format is identical to the HTTP URL format, except that the
scheme is rsh: instead of http: . For example (« means line continues on next line):

rsh://server.operator.com/service-x

110.8.5 Extensions to the Provisioning Service Dictionary
RSH specifies one additional entry for the Provisioning Dictionary:

PROVISIONING_RSH_SECRET

The value of this entry is a byte[] containing the shared secret used by the RSH protocol.

110.8.6 RSH Transport
RSH is mapped to HTTP or HTTPS and follows the same URL encoding rules, except that the cl ientfg
is additionally appended to the URL. The key in the URL must be cl ientfg and the value must be
encoded in base 64 format:

The cl ientfg parameter is transported as an HTTP parameter that is appended after the
service_platform_id parameter. The second example above would then be:

rsh://server.operator.com/service-x

Which, when mapped to HTTP, must become:

http://server.operator.com/service-x «
service_platform_id=VIN:123456789& «
clientfg=AHPmWcw%2FsiWYC37xZNdKvQ%3D%3D

110.9 Exception Handling
The Initial Provisioning process is a a sensitive process that must run without user supervision.
There is therefore a need to handle exceptional cases in a well defined way to simplify trouble shoot-
ing.

There are only 2 types of problems that halt the provisioning process. They are:

• IO Exception when reading or writing provisioning information.
• IO Exception when retrieving or processing a provisioning zip file.

Other exceptions can occur and the Provisioning Service must do any attempt to log these events.

4 Number of bytes in MAC 10
16 Message Authentication Code MAC
4 Number of bytes of encrypted ZIP file N
N Encrypted ZIP file ...

Table 110.2 RSH Header description

Bytes Description Value hex
Page 182 OSGi Service Platform Release 4, Version 4.3

Initial Provisioning Specification Version 1.2 Security
In the cases that the provisioning process stops, it is important that the clients of the provisioning
service have a way to find out that the process is stopped. The mechanism that is used for this is a spe-
cial entry in the provisioning dictionary. The name of the entry must be provis ioning.error . The
value is a String object with the following format:

• Numeric error code
• Space
• A human readable string describing the error.

Permitted error codes are:

• 0 – Unknown error
• 1 – Couldn't load or save provisioning information
• 2 – Malformed URL Exception
• 3 – IO Exception when retrieving document of a URL
• 4 – Corrupted Zip Input Stream

The provisioning.update.count will be incremented as normal when a provisioning.error entry is
added to the provisioning information. After, the provisioning service will take no further action.

Some examples:

0 SIM card removed

2 "http://www.acme.com/secure/blib/ifa.zip"

110.10 Security
The security model for the Service Platform is based on the integrity of the Management Agent
deployment. If any of the mechanisms used during the deployment of management agents are weak,
or can be compromised, the whole security model becomes weak.

From a security perspective, one attractive means of information exchange would be a smart card.
This approach enables all relevant information to be stored in a single place. The Operator could then
provide the information to the Service Platform by inserting the smart card into the Service Platform.

110.10.1 Concerns
The major security concerns related to the deployment of the Management Agent are:

• The Service Platform is controlled by the intended Operator
• The Operator controls the intended Service Platform(s)
• The integrity and confidentiality of the information exchange that takes place during these pro-

cesses must be considered

In order to address these concerns, an implementation of the OSGi Remote Management Architec-
ture must assure that:

• The Operator authenticates itself to the Service Platform
• The Service Platform authenticates itself to the Operator
• The integrity and confidentiality of the Management Agent, certificates, and configuration data

are fully protected if they are transported over public transports.

Each mapping of the Initial Provisioning specification to a concrete implementation must describe
how these goals are met.

110.10.2 Service Platform Long-Term Security
Secrets for long-term use may be exchanged during the Initial Provisioning procedures. This way, one
or more secrets may be shared securely, assuming that the Provisioning Dictionary assignments used
are implemented with the proper security characteristics.
OSGi Service Platform Release 4, Version 4.3 Page 183

org.osgi.service.provisioning Initial Provisioning Specification Version 1.2
110.10.3 Permissions
The provisioning information may contain sensitive information. Also, the ability to modify provi-
sioning information can have drastic consequences. Thus, only trusted bundles should be allowed to
register, or get the Provisioning Service. This restriction can be enforced using ServicePermiss ion[
Provis ioningService, GET] .

No Permission classes guard reading or modification of the Provisioning Dictionary, so care must be
taken not to leak the Dictionary object received from the Provisioning Service to bundles that are not
trusted.

Whether message-based or connection-based, the communications used for Initial Provisioning
must support mutual authentication and message integrity checking, at a minimum.

By using both server and client authentication in HTTPS, the problem of establishing identity is
solved. In addition, HTTPS will encrypt the transmitted data. HTTPS requires a Public Key Infrastruc-
ture implementation in order to retrieve the required certificates.

When RSH is used, it is vital that the shared secret is shared only between the Operator and the Ser-
vice Platform, and no one else.

110.11 org.osgi.service.provisioning
Provisioning Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.provis ioning; version=”[1.2,2.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.provis ioning; version=”[1.2,1.3)”
ProvisioningService

110.11.1 public interface ProvisioningService
Service for managing the initial provisioning information.

Initial provisioning of an OSGi device is a multi step process that culminates with the installation
and execution of the initial management agent. At each step of the process, information is collected
for the next step. Multiple bundles may be involved and this service provides a means for these bun-
dles to exchange information. It also provides a means for the initial Management Bundle to get its
initial configuration information.

The provisioning information is collected in a Dict ionary object, called the Provisioning Dictionary.
Any bundle that can access the service can get a reference to this object and read and update provi-
sioning information. The key of the dictionary is a Str ing object and the value is a Str ing or byte[]
object. The single exception is the PROVISIONING_UPDATE_COUNT value which is an Integer. The
provis ioning prefix is reserved for keys defined by OSGi, other key names may be used for implemen-
tation dependent provisioning systems.

Any changes to the provisioning information will be reflected immediately in all the dictionary
objects obtained from the Provisioning Service.

Because of the specific application of the Provisioning Service, there should be only one Provisioning
Service registered. This restriction will not be enforced by the Framework. Gateway operators or
manufactures should ensure that a Provisioning Service bundle is not installed on a device that
already has a bundle providing the Provisioning Service.
Page 184 OSGi Service Platform Release 4, Version 4.3

Initial Provisioning Specification Version 1.2 org.osgi.service.provisioning
The provisioning information has the potential to contain sensitive information. Also, the ability to
modify provisioning information can have drastic consequences. Thus, only trusted bundles should
be allowed to register and get the Provisioning Service. The ServicePermission is used to limit the
bundles that can gain access to the Provisioning Service. There is no check of Permission objects to
read or modify the provisioning information, so care must be taken not to leak the Provisioning Dic-
tionary received from getInformation method.

No Implement Consumers of this API must not implement this interface
INITIALPROVISIONING_ENTRIES

110.11.1.1 public static final String INITIALPROVISIONING_ENTRIES = “InitialProvisioning-Entries”

Name of the header that specifies the type information for the ZIP file entries.

Since 1.2
MIME_BUNDLE

110.11.1.2 public static final String MIME_BUNDLE = “application/vnd.osgi.bundle”

MIME type to be stored in the extra field of a ZipEntry object for an installable bundle file. Zip entries
of this type will be installed in the framework, but not started. The entry will also not be put into the
information dictionary.
MIME_BUNDLE_ALT

110.11.1.3 public static final String MIME_BUNDLE_ALT = “application/x-osgi-bundle”

Alternative MIME type to be stored in the extra field of a ZipEntry object for an installable bundle file.
Zip entries of this type will be installed in the framework, but not started. The entry will also not be
put into the information dictionary. This alternative entry is only for backward compatibility, new
applications are recommended to use MIME_BUNDLE , which is an official IANA MIME type.

Since 1.2
MIME_BUNDLE_URL

110.11.1.4 public static final String MIME_BUNDLE_URL = “text/x-osgi-bundle-url”

MIME type to be stored in the extra field of a ZipEntry for a String that represents a URL for a bundle.
Zip entries of this type will be used to install (but not start) a bundle from the URL. The entry will not
be put into the information dictionary.
MIME_BYTE_ARRAY

110.11.1.5 public static final String MIME_BYTE_ARRAY = “application/octet-stream”

MIME type to be stored stored in the extra field of a ZipEntry object for byte[] data.
MIME_STRING

110.11.1.6 public static final String MIME_STRING = “text/plain;charset=utf-8”

MIME type to be stored in the extra field of a ZipEntry object for String data.
PROVISIONING_AGENT_CONFIG

110.11.1.7 public static final String PROVISIONING_AGENT_CONFIG = “provisioning.agent.config”

The key to the provisioning information that contains the initial configuration information of the
initial Management Agent. The value will be of type byte[] .
PROVISIONING_REFERENCE

110.11.1.8 public static final String PROVISIONING_REFERENCE = “provisioning.reference”

The key to the provisioning information that contains the location of the provision data provider.
The value must be of type Str ing .
PROVISIONING_ROOTX509

110.11.1.9 public static final String PROVISIONING_ROOTX509 = “provisioning.rootx509”

The key to the provisioning information that contains the root X509 certificate used to establish trust
with operator when using HTTPS.
PROVISIONING_RSH_SECRET

110.11.1.10 public static final String PROVISIONING_RSH_SECRET = “provisioning.rsh.secret”

The key to the provisioning information that contains the shared secret used in conjunction with the
RSH protocol.
PROVISIONING_SPID
OSGi Service Platform Release 4, Version 4.3 Page 185

References Initial Provisioning Specification Version 1.2
110.11.1.11 public static final String PROVISIONING_SPID = “provisioning.spid”

The key to the provisioning information that uniquely identifies the Service Platform. The value
must be of type Str ing .
PROVISIONING_START_BUNDLE

110.11.1.12 public static final String PROVISIONING_START_BUNDLE = “provisioning.start.bundle”

The key to the provisioning information that contains the location of the bundle to start with
AllPermiss ion . The bundle must have be previously installed for this entry to have any effect.
PROVISIONING_UPDATE_COUNT

110.11.1.13 public static final String PROVISIONING_UPDATE_COUNT = “provisioning.update.count”

The key to the provisioning information that contains the update count of the info data. Each set of
changes to the provisioning information must end with this value being incremented. The value
must be of type Integer . This key/value pair is also reflected in the properties of the ProvisioningSer-
vice in the service registry.
addInformation(Dictionary)

110.11.1.14 public void addInformation (Dictionary info)

info the set of Provisioning Information key/value pairs to add to the Provisioning Information dictionary.
Any keys are values that are of an invalid type will be silently ignored.

 Adds the key/value pairs contained in info to the Provisioning Information dictionary. This method
causes the PROVISIONING_UPDATE_COUNT to be incremented.
addInformation(ZipInputStream)

110.11.1.15 public void addInformation (ZipInputStream zis) throws IOException

zis the ZipInputStream that will be used to add key/value pairs to the Provisioning Information diction-
ary and install and start bundles. If a ZipEntry does not have an Extra field that corresponds to one of
the four defined MIME types (MIME_STRING , MIME_BYTE_ARRAY ,MIME_BUNDLE , and
MIME_BUNDLE_URL) in will be silently ignored.

 Processes the ZipInputStream and extracts information to add to the Provisioning Information dic-
tionary, as well as, install/update and start bundles. This method causes the
PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException – if an error occurs while processing the ZipInputStream. No additions will be made to
the Provisioning Information dictionary and no bundles must be started or installed.
getInformation()

110.11.1.16 public Dictionary getInformation ()

 Returns a reference to the Provisioning Dictionary. Any change operations (put and remove) to the
dictionary will cause an UnsupportedOperationException to be thrown. Changes must be done
using the setInformation and addInformation methods of this service.

Returns A reference to the Provisioning Dictionary.
setInformation(Dictionary)

110.11.1.17 public void setInformation (Dictionary info)

info the new set of Provisioning Information key/value pairs. Any keys are values that are of an invalid
type will be silently ignored.

 Replaces the Provisioning Information dictionary with the key/value pairs contained in info . Any
key/value pairs not in info will be removed from the Provisioning Information dictionary. This
method causes the PROVISIONING_UPDATE_COUNT to be incremented.

110.12 References
[1] HMAC: Keyed-Hashing for Message Authentication

http://www.ietf.org/rfc/rfc2104.txt Krawczyk ,et. al. 1997.
Page 186 OSGi Service Platform Release 4, Version 4.3

Initial Provisioning Specification Version 1.2 References
[2] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

[3] Hypertext Transfer Protocol - HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt Fielding, R., et. al.

[4] Rescorla, E., HTTP over TLS, IETF RFC 2818, May 2000
http://www.ietf.org/rfc/rfc2818.txt.

[5] ZIP Archive format
http://www.pkware.com/support/zip-app-note/archives

[6] RFC 2396 - Uniform Resource Identifier (URI)
http://www.ietf.org/rfc/rfc2396.txt

[7] MIME Types
http://www.ietf.org/rfc/rfc2046.txt and http://www.iana.org/assignments/media-types

[8] 3DES
W/ Tuchman, "Hellman Presents No Shortcut Solution to DES," IEEE Spectrum, v. 16, n. 7 July 1979,
pp40-41.

[9] RFC 1423 Part III: Algorithms, Modes, and Identifiers
http://www.ietf.org/rfc/rfc1423.txt

[10] PKCS 5
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2

[11] Java Cryptography API (part of Java 1.4)
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html/

[12] SHA-1
U.S. Government, Proposed Federal Information Processing Standard for Secure Hash Standard,
January 1992

[13] Transport Layer Security
http://www.ietf.org/rfc/rfc2246.txt, January 1999, The TLS Protocol Version 1.0, T. Dierks & C. Allen.
OSGi Service Platform Release 4, Version 4.3 Page 187

References Initial Provisioning Specification Version 1.2
Page 188 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 Introduction
111 UPnP™ Device Service
Specification
Version 1.2

111.1 Introduction
The UPnP Device Architecture specification provides the protocols for a peer-to-peer network. It
specifies how to join a network and how devices can be controlled using XML messages sent over
HTTP. The OSGi specifications address how code can be download and managed in a remote system.
Both standards are therefore fully complimentary. Using an OSGi Service Platform to work with
UPnP enabled devices is therefore a very successful combination.

This specification specifies how OSGi bundles can be developed that interoperate with UPnP™ (Uni-
versal Plug and Play) devices and UPnP control points. The specification is based on the UPnP Device
Architecture and does not further explain the UPnP specifications. The UPnP specifications are main-
tained by [1] UPnP Forum.

UPnP™ is a trademark of the UPnP Implementers Corporation.

111.1.1 Essentials
• Scope – This specification is limited to device control aspects of the UPnP specifications. Aspects

concerning the TCP/IP layer, like DHCP and limited TTL, are not addressed.
• Transparency – OSGi services should be made available to networks with UPnP enabled devices in

a transparent way.
• Network Selection – It must be possible to restrict the use of the UPnP protocols to a selection of the

connected networks. For example, in certain cases OSGi services that are UPnP enabled should not
be published to the Wide Area Network side of a gateway, nor should UPnP devices be detected on
this WAN.

• Event handling – Bundles must be able to listen to UPnP events.
• Export OSGi services as UPnP devices – Enable bundles that make a service available to UPnP control

points.
• Implement UPnP Control Points – Enable bundles that control UPnP devices.

111.1.2 Entities
• UPnP Base Driver – The bundle that implements the bridge between OSGi and UPnP networks.

This entity is not represented as a service.
• UPnP Root Device –A physical device can contain one or more root devices. Root devices contain

one ore more devices. A root device is modelled with a UPnPDevice object, there is no separate
interface defined for root devices.

• UPnP Device – The representation of a UPnP device. A UPnP device may contain other UPnP
devices and UPnP services. This entity is represented by a UPnPDevice object. A device can be local
(implemented in the Framework) or external (implemented by another device on the net).

• UPnP Service –A UPnP device consists of a number of services. A UPnP service has a number of
UPnP state variables that can be queried and modified with actions. This concept is represented by
a UPnPService object.
OSGi Service Platform Release 4, Version 4.3 Page 189

Introduction UPnP™ Device Service Specification Version 1.2
• UPnP Action – A UPnP service is associated with a number of actions that can be performed on that
service and that may modify the UPnP state variables. This entity is represented by a UPnPAction
object.

• UPnP State Variable – A variable associated with a UPnP service, represented by a
UPnPStateVariable object.

• UPnP Local State Variable – Extends the UPnPStateVariable interface when the state variable is
implemented locally. This interface provides access to the actual value.

• UPnP Event Listener Service – A listener to events coming from UPnP devices.
• UPnP Host – The machine that hosts the code to run a UPnP device or control point.
• UPnP Control Point – A UPnP device that is intended to control UPnP devices over a network. For

example, a UPnP remote controller.
• UPnP Icon – A representation class for an icon associated with a UPnP device.
• UPnP Exception – An exception that delivers errors that were discovered in the UPnP layer.
• UDN – Unique Device Name, a name that uniquely identifies the a specific device.

Figure 111.1 UPnP Service Specification class Diagram org.osgi.service.upnp package

111.1.3 Operation Summary
To make a UPnP service available to UPnP control points on a network, an OSGi service object must
be registered under the UPnPDevice interface with the Framework. The UPnP driver bundle must
detect these UPnP Device services and must make them available to the network as UPnP devices
using the UPnP protocol.

UPnP devices detected on the local network must be detected and automatically registered under the
UPnPDevice interface with the Framework by the UPnP driver implementation bundle.

<<interface>>
UPnPService

a listener

<<interface>>
UPnPAction

<<interface>>
UPnPState
Variable

<<interface>>
UPnPEvent
Listener

<<interface>>
UPnPIcon

A UPnP device
implementer

A UPnP control
point

A UPnP device
implementation

in parameter

out parm

has

1

1..n 0..n

1

10..n

11..n

UPnP Base Driver
Implementation

associated w
ith

has

has

registers getsregisters

receives events from

0..n

1 1 0..n

has

1..n

1

0..n

1

10..n

<<interface>>
UPnPDevice

child

0..n

0,1

<<interface>>
UPnPLocal
StateVariable

receives events from

0..n

0..n
Page 190 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 UPnP Specifications
A bundle that wants to control UPnP devices, for example to implement a UPnP control point, should
track UPnP Device services in the OSGi service registry and control them appropriately. Such bun-
dles should not distinguish between resident or remote UPnP Device services.

111.2 UPnP Specifications
The UPnP DA is intended to be used in a broad range of device from the computing (PCs printers),
consumer electronics (DVD, TV, radio), communication (phones) to home automation (lighting con-
trol, security) and home appliances (refrigerators, coffee makers) domains.

For example, a UPnP TV might announce its existence on a network by broadcasting a message. A
UPnP control point on that network can then discover this TV by listening to those announce mes-
sages. The UPnP specifications allow the control point to retrieve information about the user inter-
face of the TV. This information can then be used to allow the end user to control the remote TV from
the control point, for example turn it on or change the channels.

The UPnP specification supports the following features:

• Detect and control a UPnP standardized device. In this case the control point and the remote device
share a priori knowledge about how the device should be controlled. The UPnP Forum intends to
define a large number of these standardized devices.

• Use a user interface description. A UPnP control point receives enough information about a device
and its services to automatically build a user interface for it.

• Programmatic Control. A program can directly control a UPnP device without a user interface. This
control can be based on detected information about the device or through a priori knowledge of
the device type.

• Allows the user to browse a web page supplied by the device. This web page contains a user interface for
the device that be directly manipulated by the user. However, this option is not well defined in the
UPnP Device Architecture specification and is not tested for compliance.

The UPnP Device Architecture specification and the OSGi Service Platform provide complementary
functionality. The UPnP Device Architecture specification is a data communication protocol that
does not specify where and how programs execute. That choice is made by the implementations. In
contrast, the OSGi Service Platform specifies a (managed) execution point and does not define what
protocols or media are supported. The UPnP specification and the OSGi specifications are fully com-
plementary and do not overlap.

From the OSGi perspective, the UPnP specification is a communication protocol that can be imple-
mented by one or more bundles. This specification therefore defines the following:

• How an OSGi bundle can implement a service that is exported to the network via the UPnP pro-
tocols.

• How to find and control services that are available on the local network.

The UPnP specifications related to the assignment of IP addresses to new devices on the network or
auto-IP self configuration should be handled at the operating system level. Such functions are outside
the scope of this specification.

111.2.1 UPnP Base Driver
The functionality of the UPnP service is implemented in a UPnP base driver. This is a bundle that
implements the UPnP protocols and handles the interaction with bundles that use the UPnP devices.
A UPnP base driver bundle must provide the following functions:

• Discover UPnP devices on the network and map each discovered device into an OSGi registered
UPnP Device service.

• Present UPnP marked services that are registered with the OSGi Framework on one or more net-
works to be used by other computers.
OSGi Service Platform Release 4, Version 4.3 Page 191

UPnP Device UPnP™ Device Service Specification Version 1.2
111.3 UPnP Device
The principle entity of the UPnP specification is the UPnP device. There is a UPnP root device that rep-
resents a physical appliance, such as a complete TV. The root device contains a number of sub-
devices. These might be the tuner, the monitor, and the sound system. Each sub-device is further
composed of a number of UPnP services. A UPnP service represents some functional unit in a device.
For example, in a TV tuner it can represent the TV channel selector. Figure 111.2 on page 192 illus-
trates this hierarchy.

Figure 111.2 UPnP device hierarchy

Each UPnP service can be manipulated with a number of UPnP actions. UPnP actions can modify the
state of a UPnP state variable that is associated with a service. For example, in a TV there might be a
state variable volume. There are then actions to set the volume, to increase the volume, and to
decrease the volume.

111.3.1 Root Device
The UPnP root device is registered as a UPnP Device service with the Framework, as well as all its sub-
devices. Most applications will work with sub-devices, and, as a result, the children of the root device
are registered under the UPnPDevice interface.

UPnP device properties are defined per sub-device in the UPnP specification. These properties must
be registered with the OSGi Framework service registry so they are searchable.

Bundles that want to handle the UPnP device hierarchy can use the registered service properties to
find the parent of a device (which is another registered UPnPDevice).

The following service registration properties can be used to discover this hierarchy:

• PARENT_UDN – (Str ing) The Universal Device Name (UDN) of the parent device. A root device
most not have this property registered. Type is a Str ing object.

• CHILDREN_UDN – (Str ing[]) An array of UDNs of this device’s children.

111.3.2 Exported Versus Imported Devices
Both imported (from the network to the OSGi service registry) and exported (from the service registry
to the network) UPnPDevice services must have the same representation in the OSGi Service Plat-
form for identical devices. For example, if an OSGi UPnP Device service is exported as a UPnP device
from an OSGi Service Platform to the network, and it is imported into another OSGi Service Platform,
the object representation should be equal. Application bundles should therefore be able to interact
with imported and exported forms of the UPnP device in the same manner.

Network

UPnP root device

UPnP device

UPnP service

UPnP Action
Page 192 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 Device Category
Imported and exported UPnP devices differ only by two marker properties that can be added to the
service registration. One marker, DEVICE_CATEGORY, should typically be set only on imported
devices. By not setting DEVICE_CATEGORY on internal UPnP devices, the Device Manager does not
try to refine these devices (See the Device Access Specification on page 63 for more information about
the Device Manager). If the device service does not implement the Device interface and does not have
the DEVICE_CATEGORY property set, it is not considered a device according to the Device Access Spec-
ification.

The other marker, UPNP_EXPORT , should only be set on internally created devices that the bundle
developer wants to export. By not setting UPNP_EXPORT on registered UPnP Device services, the
UPnP Device service can be used by internally created devices that should not be exported to the net-
work. This allows UPnP devices to be simulated within an OSGi Service Platform without announc-
ing all of these devices to any networks.

The UPNP_EXPORT service property has no defined type, any value is correct.

111.3.3 Icons
A UPnP device can optionally support an icon. The purpose of this icon is to identify the device on a
UPnP control point. UPnP control points can be implemented in large computers like PC’s or simple
devices like a remote control. However, the graphic requirements for these UPnP devices differ tre-
mendously. The device can, therefore, export a number of icons of different size and depth.

In the UPnP specifications, an icon is represented by a URL that typically refers to the device itself. In
this specification, a list of icons is available from the UPnP Device service.

In order to obtain localized icons, the method getIcons(String) can be used to obtain different ver-
sions. If the locale specified is a nul l argument, then the call returns the icons of the default locale of
the called device (not the default locale of the UPnP control point).When a bundle wants to access the
icon of an imported UPnP device, the UPnP driver gets the data and presents it to the application
through an input stream.

A bundle that needs to export a UPnP Device service with one ore more icons must provide an imple-
mentation of the UPnPIcon interface. This implementation must provide an InputStream object to
the actual icon data. The UPnP driver bundle must then register this icon with an HTTP server and
include the URL to the icon with the UPnP device data at the appropriate place.

111.4 Device Category
UPnP Device services are devices in the context of the Device Manager. This means that these ser-
vices need to register with a number of properties to participate in driver refinement. The value for
UPnP devices is defined in the UPnPDevice constant DEVICE_CATEGORY . The value is UPnP . The
UPnPDevice interface contains a number of constants for matching values. Refer to
MATCH_GENERIC on page 201 for further information.

111.5 UPnPService
A UPnP Device contains a number of UPnPService objects. UPnPService objects combine zero or
more actions and one or more state variables.
OSGi Service Platform Release 4, Version 4.3 Page 193

Working With a UPnP Device UPnP™ Device Service Specification Version 1.2
111.5.1 State Variables
The UPnPStateVariable interface encapsulates the properties of a UPnP state variable. In addition to
the properties defined by the UPnP specification, a state variable is also mapped to a Java data type.
The Java data type is used when an event is generated for this state variable and when an action is per-
formed containing arguments related to this state variable. There must be a strict correspondence
between the UPnP data type and the Java data type so that bundles using a particular UPnP device
profile can predict the precise Java data type.

The function QueryStateVariable defined in the UPnP specification has been deprecated and is there-
fore not implemented. It is recommended to use the UPnP event mechanism to track UPnP state vari-
ables.

Additionally, a UPnPStateVariableobject can also implement the UPnPLocalStateVariable interface
if the device is implemented locally. That is, the device is not imported from the network. The
UPnPLocalStateVar iable interface provides a getCurrentValue() method that provides direct access
to the actual value of the state variable.

111.6 Working With a UPnP Device
The UPnP driver must register all discovered UPnP devices in the local networks. These devices are
registered under a UPnPDevice interface with the OSGi Framework.

Using a remote UPnP device thus involves tracking UPnP Device services in the OSGi service registry.
The following code illustrates how this can be done. The sample Control ler class extends the
ServiceTracker class so that it can track all UPnP Device services and add them to a user interface,
such as a remote controller application.

class Controller extends ServiceTracker {

UI ui;

Controller(BundleContext context) {

super(context, UPnPDevice.class.getName(), null);

}

public Object addingService(ServiceReference ref) {

UPnPDevice dev = (UPnPDevice)super.addingService(ref);

ui.addDevice(dev);

return dev;

}

public void removedService(ServiceReference ref,

Object dev) {

ui.removeDevice((UPnPDevice) dev);

}

...

}

111.7 Implementing a UPnP Device
OSGi services can also be exported as UPnP devices to the local networks, in a way that is transparent
to typical UPnP devices. This allows developers to bridge legacy devices to UPnP networks. A bundle
should perform the following to export an OSGi service as a UPnP device:

• Register an UPnP Device service with the registration property UPNP_EXPORT .
• Use the registration property PRESENTATION_URL to provide the presentation page. The service

implementer must register its own servlet with the Http Service to serve out this interface. This
URL must point to that servlet.
Page 194 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 Event API
There can be multiple UPnP root devices hosted by one OSGi platform. The relationship between the
UPnP devices and the OSGi platform is defined by the PARENT_UDN and CHILDREN_UDN service
properties. The bundle registering those device services must make sure these properties are set
accordingly.

Devices that are implemented on the OSGi Service Platform (in contrast with devices that are
imported from the network) should use the UPnPLocalStateVariable interface for their state vari-
ables instead of the UPnPStateVariable interface. This interface provides programmatic access to the
actual value of the state variable as maintained by the device specific code.

111.8 Event API
There are two distinct event directions for the UPnP Service specification.

• External events from the network must be dispatched to listeners inside the OSGi Service Plat-
forms. The UPnP Base driver is responsible for mapping the network events to internal listener
events.

• Implementations of UPnP devices must send out events to local listeners as well as cause the
transmission of the UPnP network events.

UPnP events are sent using the whiteboard model, in which a bundle interested in receiving the
UPnP events registers an object implementing the UPnPEventListener interface. A filter can be set to
limit the events for which a bundle is notified. The UPnP Base driver must register a UPnP Event
Lister without filter that receives all events.

Figure 111.3 Event Dispatching for Local and External Devices

If a service is registered with a property named upnp.f i l ter with the value of an instance of an Fi l ter
object, the listener is only notified for matching events (This is a Fi l ter object and not a Str ing object
because it allows the Inval idSyntaxException to be thrown in the client and not the UPnP driver bun-
dle).

The filter might refer to any valid combination of the following pseudo properties for event filtering:

• UPnPDevice.UDN – (UPnP.device.UDN/String) Only events generated by services contained in
the specific device are delivered. For example: (UPnP.device.UDN=uuid:Upnp-TVEmulator-1_0-
1234567890001)

• UPnPDevice.TYPE– (UPnP.device.type/Str ing or Str ing[]) Only events generated by services con-
tained in a device of the given type are delivered. For example: (UPnP.device.type=urn:schemas-
upnp-org:device:tvdevice:1)

• UPnPService. ID – (UPnP.service. id/Str ing) Service identity. Only events generated by services
matching the given service ID are delivered.

• UPnPService.TYPE – (UPnP.serv ice.type/Str ing or Str ing[]) Only events generated by services of
of the given type are delivered.

<<service>>
UPnP Event
Listener

Local Device

UPnP Base Driver

send events to

get events from

multicast

receive
network

send

0,10..n

0..n

1

OSGi Service Platform Release 4, Version 4.3 Page 195

UPnP Events and Event Admin service UPnP™ Device Service Specification Version 1.2
If an event is generated by either a local device or via the base driver for an external device, the
noti fyUPnPEvent(Str ing,Str ing,Dict ionary) method is called on all registered UPnPEventListener ser-
vices for which the optional filter matches for that event. If no filter is specified, all events must be
delivered. If the filter does not match, the UPnP Driver must not call the UPnP Event Listener service.
The way events must be delivered is the same as described in Delivering Events on page 106 of the Core
specification.

One or multiple events are passed as parameters to the noti fyUPnPEvent(String,Str ing,Dict ionary)
method. The Dictionary object holds a pair of UpnPStateVar iable objects that triggered the event and
an Object for the new value of the state variable.

111.8.1 Initial Event Delivery
Special care must be taken with the initial subscription to events. According to the UPnP specifica-
tion, when a client subscribes for notification of events for the first time, the device sends out a num-
ber of events for each state variable, indicating the current value of each state variable. This behavior
simplifies the synchronization of a device and an event-driven client.

The UPnP Base Driver must mimic this event distribution on behalf of external devices. It must there-
fore remember the values of the state variables of external devices. A UPnP Device implementation
must send out these initial events for each state variable they have a value for.

The UPnP Base Driver must have stored the last event from the device and retransmit the value over
the multicast network. The UPnP Driver must register an event listener without any filter for this
purpose.

The call to the listener's notification method must be done asynchronously.

111.9 UPnP Events and Event Admin service
UPnP events must be delivered asynchronously to the Event Admin service by the UPnP implementa-
tion, if present. UPnP events have the following topic:

org/osgi/service/upnp/UPnPEvent

The properties of a UPnP event are the following:

• upnp.deviceId – (Str ing) The identity as defined by UPnPDevice.UDN of the device sending the
event.

• upnp.serviceId – (Str ing) The identity of the service sending the events.
• upnp.events – (Dict ionary) A Dictionary object containing the new values for the state variables

that have changed.

111.10 Localization
All values of the UPnP properties are obtained from the device using the device's default locale. If an
application wants to query a set of localized property values, it has to use the method
getDescr ipt ions(String) . For localized versions of the icons, the method getIcons(Str ing) is to be
used.

111.11 Dates and Times
The UPnP specification uses different types for date and time concepts. An overview of these types is
given in Table 111.1 on page 197.
Page 196 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 UPnP Exception
The UPnP specification points to [2] XML Schema. In this standard, [3] ISO 8601 Date And Time formats
are referenced. The mapping is not completely defined which means that the this OSGi UPnP specifi-
cation defines a complete mapping to Java classes. The UPnP types date , dateTime and dateTime.tz
are represented as a Date object. For the date type, the hours, minutes and seconds must all be zero.

The UPnP types t ime and t ime.tz are represented as a Long object that represents the number of ms
since midnight. If the time wraps to the next day due to a time zone value, then the final value must
be truncated to modulo 86.400.000.

See also TYPE_DATE on page 209 and further.

111.12 UPnP Exception
The UPnP Exception can be thrown when a UPnPAction is invoked. This exception contains informa-
tion about the different UPnP layers. The following errors are defined:

INVALID_ACTION – (401) No such action could be found.

INVALID_ARGS – (402) Invalid argument.

INVALID_SEQUENCE_NUMBER – (403) Out of synchronization.

INVALID_VARIABLE – (404) State variable not found.

DEVICE_INTERNAL_ERROR – (501) Internal error.

Further errors are categorized as follows:

• Common Action Errors – In the range of 600-69 , defined by the UPnP Forum Technical Committee.
• Action Specific Errors – In the range of 700-799, defined by the UPnP Forum Working Committee.
• Non-Standard Action Specific Errors – In the range of 800-899. Defined by vendors.

111.13 Configuration
In order to provide a standardized way to configure a UPnP driver bundle, the Configuration Admin
property upnp.ssdp.address is defined.

The value is a Str ing[] with a list of IP addresses, optionally followed with a colon (’:’, \u003A) and a
port number. For example:

239.255.255.250:1900

Those addresses define the interfaces which the UPnP driver is operating on. If no SSDP address is
specified, the default assumed will be 239.255.255.250:1900. If no port is specified, port 1900 is
assumed as default.

Table 111.1 Mapping UPnP Date/Time types to Java
UPnP Type Class Example Value (TZ=CEST= +0200)
date Date 1985-04-12 Sun Apri l 12 00:00:00 CEST 1985
dateTime Date 1985-04-12T10:15:30 Sun Apri l 12 10:15:30 CEST 1985
dateTime.tz Date 1985-04-12T10:15:30+0400 Sun Apri l 12 08:15:30 CEST 1985
time Long 23:20:50 84.050.000 (ms)
t ime.tz Long 23:20:50+0300 1.250.000 (ms)
OSGi Service Platform Release 4, Version 4.3 Page 197

Networking considerations UPnP™ Device Service Specification Version 1.2
111.14 Networking considerations

111.14.1 The UPnP Multicasts
The operating system must support multicasting on the selected network device. In certain cases, a
multicasting route has to be set in the operating system routing table.

These configurations are highly dependent on the underlying operating system and beyond the
scope of this specification.

111.15 Security
The UPnP specification is based on HTTP and uses plain text SOAP (XML) messages to control
devices. For this reason, it does not provide any inherent security mechanisms. However, the UPnP
specification is based on the exchange of XML files and not code. This means that at least worms and
viruses cannot be implemented using the UPnP protocols.

However, a bundle registering a UPnP Device service is represented on the outside network and has
the ability to communicate. The same is true for getting a UPnP Device service. It is therefore recom-
mended that ServicePermission[UPnPDevice|UPnPEventListener, REGISTER|GET] be used sparingly
and only for bundles that are trusted.

111.16 Changes
• Added a new constructor for a UPnP Exception with a nested cause
• Renamed the getUPnPError_Code method to getUPnPErrorCode , the old one is left deprecated.

111.17 org.osgi.service.upnp
UPnP Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.upnp; version=”[1.2,2.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.upnp; version=”[1.2,1.3)”

111.17.1 Summary
• UPnPAction – A UPnP action.
• UPnPDevice – Represents a UPnP device.
• UPnPEventListener – UPnP Events are mapped and delivered to applications according to the

OSGi whiteboard model.
• UPnPException – There are several defined error situations describing UPnP problems while a

control point invokes actions to UPnPDevices.
• UPnPIcon – A UPnP icon representation.
• UPnPLocalStateVar iable – A local UPnP state variable which allows the value of the state variable

to be queried.
• UPnPService – A representation of a UPnP Service.
Page 198 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp
• UPnPStateVar iable – The meta-information of a UPnP state variable as declared in the device’s
service state table (SST).

111.17.2 Permissions
UPnPAction

111.17.3 public interface UPnPAction
A UPnP action. Each UPnP service contains zero or more actions. Each action may have zero or more
UPnP state variables as arguments.
getInputArgumentNames()

111.17.3.1 public String[] getInputArgumentNames ()

 Lists all input arguments for this action.

Each action may have zero or more input arguments.

This method must continue to return the action input argument names after the UPnP action has
been removed from the network.

Returns Array of input argument names or null if no input arguments.

See Also UPnPStateVariable
getName()

111.17.3.2 public String getName ()

 Returns the action name. The action name corresponds to the name field in the act ionList of the ser-
vice description.

• For standard actions defined by a UPnP Forum working committee, action names must not begin
with X_ nor A_ .

• For non-standard actions specified by a UPnP vendor and added to a standard service, action
names must begin with X_ .

This method must continue to return the action name after the UPnP action has been removed from
the network.

Returns Name of action, must not contain a hyphen character or a hash character
getOutputArgumentNames()

111.17.3.3 public String[] getOutputArgumentNames ()

 List all output arguments for this action.

This method must continue to return the action output argument names after the UPnP action has
been removed from the network.

Returns Array of output argument names or nul l if there are no output arguments.

See Also UPnPStateVariable
getReturnArgumentName()

111.17.3.4 public String getReturnArgumentName ()

 Returns the name of the designated return argument.

One of the output arguments can be flagged as a designated return argument.

This method must continue to return the action return argument name after the UPnP action has
been removed from the network.

Returns The name of the designated return argument or nul l if none is marked.
getStateVariable(String)

111.17.3.5 public UPnPStateVariable getStateVariable (String argumentName)

argumentName The name of the UPnP action argument.

 Finds the state variable associated with an argument name. Helps to resolve the association of state
variables with argument names in UPnP actions.

Returns State variable associated with the named argument or null if there is no such argument.
OSGi Service Platform Release 4, Version 4.3 Page 199

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2
Throws IllegalStateException – if the UPnP action has been removed from the network.

See Also UPnPStateVariable
invoke(Dictionary)

111.17.3.6 public Dictionary invoke (Dictionary args) throws Exception

args A Dict ionary of arguments. Must contain the correct set and type of arguments for this action. May be
nul l if no input arguments exist.

 Invokes the action. The input and output arguments are both passed as Dict ionary objects. Each
entry in the Dictionary object has a Str ing object as key representing the argument name and the
value is the argument itself. The class of an argument value must be assignable from the class of the
associated UPnP state variable. The input argument Dictionary object must contain exactly those
arguments listed by getInputArguments method. The output argument Dictionary object will con-
tain exactly those arguments listed by getOutputArguments method.

Returns A Dictionary with the output arguments. nul l if the action has no output arguments.

Throws UPnPException – A UPnP error has occurred.

IllegalStateException – if the UPnP action has been removed from the network.

Exception – The execution fails for some reason.

See Also UPnPStateVariable
UPnPDevice

111.17.4 public interface UPnPDevice
Represents a UPnP device. For each UPnP root and embedded device, an object is registered with the
framework under the UPnPDevice interface.

The relationship between a root device and its embedded devices can be deduced using the
UPnPDevice.CHILDREN_UDN and UPnPDevice.PARENT_UDN service registration properties.

The values of the UPnP property names are defined by the UPnP Forum.

All values of the UPnP properties are obtained from the device using the device’s default locale.

If an application wants to query for a set of localized property values, it has to use the method
UPnPDevice.getDescr ipt ions(Str ing locale) .
CHILDREN_UDN

111.17.4.1 public static final String CHILDREN_UDN = “UPnP.device.childrenUDN”

The property key that must be set for all devices containing other embedded devices.

The value is an array of UDNs for each of the device’s children (Str ing[]). The array contains UDNs
for the immediate descendants only.

If an embedded device in turn contains embedded devices, the latter are not included in the array.

The UPnP Specification does not encourage more than two levels of nesting.

The property is not set if the device does not contain embedded devices.

The property is of type Str ing[] . Value is “UPnP.device.childrenUDN”
DEVICE_CATEGORY

111.17.4.2 public static final String DEVICE_CATEGORY = “UPnP”

Constant for the value of the service property DEVICE_CATEGORY used for all UPnP devices. Value is
“UPnP”.

See Also org.osgi.service.device.Constants.DEVICE_CATEGORY
FRIENDLY_NAME

111.17.4.3 public static final String FRIENDLY_NAME = “UPnP.device.friendlyName”

Mandatory property key for a short user friendly version of the device name. The property value
holds a Str ing object with the user friendly name of the device. Value is “UPnP.device.friendlyName”.
ID
Page 200 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp
111.17.4.4 public static final String ID = “UPnP.device.UDN”

Property key for the Unique Device ID property. This property is an alias to UPnPDevice.UDN . It is
merely provided for reasons of symmetry with the UPnPService. ID property. The value of the prop-
erty is a Str ing object of the Device UDN. The value of the key is “UPnP.device.UDN”.
MANUFACTURER

111.17.4.5 public static final String MANUFACTURER = “UPnP.device.manufacturer”

Mandatory property key for the device manufacturer’s property. The property value holds a String
representation of the device manufacturer’s name. Value is “UPnP.device.manufacturer”.
MANUFACTURER_URL

111.17.4.6 public static final String MANUFACTURER_URL = “UPnP.device.manufacturerURL”

Optional property key for a URL to the device manufacturers Web site. The value of the property is a
Str ing object representing the URL. Value is “UPnP.device.manufacturerURL”.
MATCH_GENERIC

111.17.4.7 public static final int MATCH_GENERIC = 1

Constant for the UPnP device match scale, indicating a generic match for the device. Value is 1.
MATCH_MANUFACTURER_MODEL

111.17.4.8 public static final int MATCH_MANUFACTURER_MODEL = 7

Constant for the UPnP device match scale, indicating a match with the device model. Value is 7.
MATCH_MANUFACTURER_MODEL_REVISION

111.17.4.9 public static final int MATCH_MANUFACTURER_MODEL_REVISION = 15

Constant for the UPnP device match scale, indicating a match with the device revision. Value is 15.
MATCH_MANUFACTURER_MODEL_REVISION_SERIAL

111.17.4.10 public static final int MATCH_MANUFACTURER_MODEL_REVISION_SERIAL = 31

Constant for the UPnP device match scale, indicating a match with the device revision and the serial
number. Value is 31.
MATCH_TYPE

111.17.4.11 public static final int MATCH_TYPE = 3

Constant for the UPnP device match scale, indicating a match with the device type. Value is 3.
MODEL_DESCRIPTION

111.17.4.12 public static final String MODEL_DESCRIPTION = “UPnP.device.modelDescription”

Optional (but recommended) property key for a Str ing object with a long description of the device for
the end user. The value is “UPnP.device.modelDescription”.
MODEL_NAME

111.17.4.13 public static final String MODEL_NAME = “UPnP.device.modelName”

Mandatory property key for the device model name. The property value holds a Str ing object giving
more information about the device model. Value is “UPnP.device.modelName”.
MODEL_NUMBER

111.17.4.14 public static final String MODEL_NUMBER = “UPnP.device.modelNumber”

Optional (but recommended) property key for a Str ing class typed property holding the model num-
ber of the device. Value is “UPnP.device.modelNumber”.
MODEL_URL

111.17.4.15 public static final String MODEL_URL = “UPnP.device.modelURL”

Optional property key for a Str ing typed property holding a string representing the URL to the Web
site for this model. Value is “UPnP.device.modelURL”.
PARENT_UDN

111.17.4.16 public static final String PARENT_UDN = “UPnP.device.parentUDN”

The property key that must be set for all embedded devices. It contains the UDN of the parent device.
The property is not set for root devices. The value is “UPnP.device.parentUDN”.
PRESENTATION_URL
OSGi Service Platform Release 4, Version 4.3 Page 201

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2
111.17.4.17 public static final String PRESENTATION_URL = “UPnP.presentationURL”

Optional (but recommended) property key for a Str ing typed property holding a string representing
the URL to a device representation Web page. Value is “UPnP.presentationURL”.
SERIAL_NUMBER

111.17.4.18 public static final String SERIAL_NUMBER = “UPnP.device.serialNumber”

Optional (but recommended) property key for a Str ing typed property holding the serial number of
the device. Value is “UPnP.device.serialNumber”.
TYPE

111.17.4.19 public static final String TYPE = “UPnP.device.type”

Property key for the UPnP Device Type property. Some standard property values are defined by the
Universal Plug and Play Forum. The type string also includes a version number as defined in the
UPnP specification. This property must be set.

For standard devices defined by a UPnP Forum working committee, this must consist of the following
components in the given order separated by colons:

• urn
• schemas-upnp-org
• device
• a device type suffix
• an integer device version

For non-standard devices specified by UPnP vendors following components must be specified in the
given order separated by colons:

• urn
• an ICANN domain name owned by the vendor
• device
• a device type suffix
• an integer device version

To allow for backward compatibility the UPnP driver must automatically generate additional Device
Type property entries for smaller versions than the current one. If for example a device announces its
type as version 3, then properties for versions 2 and 1 must be automatically generated.

In the case of exporting a UPnPDevice, the highest available version must be announced on the net-
work.

Syntax Example: urn:schemas-upnp-org:device:deviceType:v

The value is “UPnP.device.type”.
UDN

111.17.4.20 public static final String UDN = “UPnP.device.UDN”

Property key for the Unique Device Name (UDN) property. It is the unique identifier of an instance of
a UPnPDevice . The value of the property is a Str ing object of the Device UDN. Value of the key is
“UPnP.device.UDN”. This property must be set.
UPC

111.17.4.21 public static final String UPC = “UPnP.device.UPC”

Optional property key for a Str ing typed property holding the Universal Product Code (UPC) of the
device. Value is “UPnP.device.UPC”.
UPNP_EXPORT

111.17.4.22 public static final String UPNP_EXPORT = “UPnP.export”

The UPnP.export service property is a hint that marks a device to be picked up and exported by the
UPnP Service. Imported devices do not have this property set. The registered property requires no
value.

The UPNP_EXPORT string is “UPnP.export”.
Page 202 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp
getDescriptions(String)

111.17.4.23 public Dictionary getDescriptions (String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples include “de“, “en“ or “en-
US“. The default locale of the device is specified by passing a nul l argument.

 Get a set of localized UPnP properties. The UPnP specification allows a device to present different
device properties based on the client’s locale. The properties used to register the UPnPDevice service
in the OSGi registry are based on the device’s default locale. To obtain a localized set of the properties,
an application can use this method.

Not all properties might be available in all locales. This method does not substitute missing proper-
ties with their default locale versions.

This method must continue to return the properties after the UPnP device has been removed from
the network.

Returns Dictionary mapping property name Strings to property value Strings
getIcons(String)

111.17.4.24 public UPnPIcon[] getIcons (String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples include “de“, “en“ or “en-
US“. The default locale of the device is specified by passing a nul l argument.

 Lists all icons for this device in a given locale. The UPnP specification allows a device to present dif-
ferent icons based on the client’s locale.

Returns Array of icons or null if no icons are available.

Throws IllegalStateException – if the UPnP device has been removed from the network.
getService(String)

111.17.4.25 public UPnPService getService (String serviceId)

serviceId The service id

 Locates a specific service by its service id.

Returns The requested service or null if not found.

Throws IllegalStateException – if the UPnP device has been removed from the network.
getServices()

111.17.4.26 public UPnPService[] getServices ()

 Lists all services provided by this device.

Returns Array of services or null if no services are available.

Throws IllegalStateException – if the UPnP device has been removed from the network.
UPnPEventListener

111.17.5 public interface UPnPEventListener
UPnP Events are mapped and delivered to applications according to the OSGi whiteboard model. An
application that wishes to be notified of events generated by a particular UPnP Device registers a ser-
vice extending this interface.

The notification call from the UPnP Service to any UPnPEventListener object must be done asynchro-
nous with respect to the originator (in a separate thread).

Upon registration of the UPnP Event Listener service with the Framework, the service is notified for
each variable which it listens for with an initial event containing the current value of the variable.
Subsequent notifications only happen on changes of the value of the variable.

A UPnP Event Listener service filter the events it receives. This event set is limited using a standard
framework filter expression which is specified when the listener service is registered.

The filter is specified in a property named “upnp.filter” and has as a value an object of type
org.osgi . f ramework.Fi l ter .
OSGi Service Platform Release 4, Version 4.3 Page 203

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2
When the Filter is evaluated, the folowing keywords are recognized as defined as literal constants in
the UPnPDevice class.

The valid subset of properties for the registration of UPnP Event Listener services are:

• UPnPDevice.TYPE-- Which type of device to listen for events.
• UPnPDevice. ID-- The ID of a specific device to listen for events.
• UPnPService.TYPE-- The type of a specific service to listen for events.
• UPnPService. ID-- The ID of a specific service to listen for events.
UPNP_FILTER

111.17.5.1 public static final String UPNP_FILTER = “upnp.filter”

Key for a service property having a value that is an object of type org.osgi . framework.F i lter and that
is used to limit received events.
notifyUPnPEvent(String,String,Dictionary)

111.17.5.2 public void notifyUPnPEvent (String deviceId , String serviceId , Dictionary events)

deviceId ID of the device sending the events

serviceId ID of the service sending the events

events Dictionary object containing the new values for the state variables that have changed.

 Callback method that is invoked for received events. The events are collected in a Dict ionary object.
Each entry has a Str ing key representing the event name (= state variable name) and the new value of
the state variable. The class of the value object must match the class specified by the UPnP State Vari-
able associated with the event. This method must be called asynchronously
UPnPException

111.17.6 public class UPnPException
extends Exception
There are several defined error situations describing UPnP problems while a control point invokes
actions to UPnPDevices.

Since 1.1
DEVICE_INTERNAL_ERROR

111.17.6.1 public static final int DEVICE_INTERNAL_ERROR = 501

The invoked action failed during execution.
INVALID_ACTION

111.17.6.2 public static final int INVALID_ACTION = 401

No Action found by that name at this service.
INVALID_ARGS

111.17.6.3 public static final int INVALID_ARGS = 402

Not enough arguments, too many arguments with a specific name, or one of more of the arguments
are of the wrong type.
INVALID_SEQUENCE_NUMBER

111.17.6.4 public static final int INVALID_SEQUENCE_NUMBER = 403

The different end-points are no longer in synchronization.
INVALID_VARIABLE

111.17.6.5 public static final int INVALID_VARIABLE = 404

Refers to a non existing variable.
UPnPException(int,String)

111.17.6.6 public UPnPException (int errorCode , String errorDescription)

errorCode error code which defined by UPnP Device Architecture V1.0.

errorDescription error description which explain the type of problem.

 This constructor creates a UPnPException on the specified error code and error description.
UPnPException(int,String,Throwable)
Page 204 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp
111.17.6.7 public UPnPException (int errorCode , String errorDescription , Throwable errorCause)

errorCode error code which defined by UPnP Device Architecture V1.0.

errorDescription error description which explain the type of the problem.

errorCause cause of that UPnPException .

 This constructor creates a UPnPException on the specified error code, error description and error
cause.

Since 1.2
getUPnPError_Code()

111.17.6.8 public int getUPnPError_Code ()

 Returns the UPnPError Code occurred by UPnPDevices during invocation.

Returns The UPnPErrorCode defined by a UPnP Forum working committee or specified by a UPnP vendor.

Deprecated As of version 1.2, replaced by getUPnPErrorCode()
getUPnPErrorCode()

111.17.6.9 public int getUPnPErrorCode ()

 Returns the UPnP Error Code occurred by UPnPDevices during invocation.

Returns The UPnPErrorCode defined by a UPnP Forum working committee or specified by a UPnP vendor.

Since 1.2
UPnPIcon

111.17.7 public interface UPnPIcon
A UPnP icon representation. Each UPnP device can contain zero or more icons.
getDepth()

111.17.7.1 public int getDepth ()

 Returns the color depth of the icon in bits.

This method must continue to return the icon depth after the UPnP device has been removed from
the network.

Returns The color depth in bits. If the actual color depth of the icon is unknown, -1 is returned.
getHeight()

111.17.7.2 public int getHeight ()

 Returns the height of the icon in pixels. If the actual height of the icon is unknown, -1 is returned.

This method must continue to return the icon height after the UPnP device has been removed from
the network.

Returns The height in pixels, or -1 if unknown.
getInputStream()

111.17.7.3 public InputStream getInputStream () throws IOException

 Returns an InputStream object for the icon data. The InputStream object provides a way for a client
to read the actual icon graphics data. The number of bytes available from this InputStream object can
be determined via the getSize() method. The format of the data encoded can be determined by the
MIME type available via the getMimeType() method.

Returns An InputStream to read the icon graphics data from.

Throws IOException – If the InputStream cannot be returned.

IllegalStateException – if the UPnP device has been removed from the network.

See Also UPnPIcon.getMimeType()
getMimeType()

111.17.7.4 public String getMimeType ()

 Returns the MIME type of the icon. This method returns the format in which the icon graphics, read
from the InputStream object obtained by the getInputStream() method, is encoded.
OSGi Service Platform Release 4, Version 4.3 Page 205

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2
The format of the returned string is in accordance to RFC2046. A list of valid MIME types is main-
tained by the IANA (http://www.iana.org/assignments/media-types/) .

Typical values returned include: “image/jpeg” or “image/gif”

This method must continue to return the icon MIME type after the UPnP device has been removed
from the network.

Returns The MIME type of the encoded icon.
getSize()

111.17.7.5 public int getSize ()

 Returns the size of the icon in bytes. This method returns the number of bytes of the icon available to
read from the InputStream object obtained by the getInputStream() method. If the actual size can
not be determined, -1 is returned.

Returns The icon size in bytes, or -1 if the size is unknown.

Throws IllegalStateException – if the UPnP device has been removed from the network.
getWidth()

111.17.7.6 public int getWidth ()

 Returns the width of the icon in pixels. If the actual width of the icon is unknown, -1 is returned.

This method must continue to return the icon width after the UPnP device has been removed from
the network.

Returns The width in pixels, or -1 if unknown.
UPnPLocalStateVariable

111.17.8 public interface UPnPLocalStateVariable
extends UPnPStateVariable
A local UPnP state variable which allows the value of the state variable to be queried.

Since 1.1
getCurrentValue()

111.17.8.1 public Object getCurrentValue ()

 This method will keep the current values of UPnPStateVariables of a UPnPDevice whenever UPnP-
StateVariable’s value is changed , this method must be called.

Returns Object current value of UPnPStateVariable. if the current value is initialized with the default value de-
fined UPnP service description.

Throws IllegalStateException – if the UPnP state variable has been removed.
UPnPService

111.17.9 public interface UPnPService
A representation of a UPnP Service. Each UPnP device contains zero or more services. The UPnP
description for a service defines actions, their arguments, and event characteristics.
ID

111.17.9.1 public static final String ID = “UPnP.service.id”

Property key for the optional service id. The service id property is used when registering UPnP
Device services or UPnP Event Listener services. The value of the property contains a Str ing array
(Str ing[]) of service ids. A UPnP Device service can thus announce what service ids it contains. A
UPnP Event Listener service can announce for what UPnP service ids it wants notifications. A service
id does not have to be universally unique. It must be unique only within a device. A null value is a
wildcard, matching all services. The value is “UPnP.service.id”.
TYPE
Page 206 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp
111.17.9.2 public static final String TYPE = “UPnP.service.type”

Property key for the optional service type uri. The service type property is used when registering
UPnP Device services and UPnP Event Listener services. The property contains a Str ing array
(Str ing[]) of service types. A UPnP Device service can thus announce what types of services it con-
tains. A UPnP Event Listener service can announce for what type of UPnP services it wants notifica-
tions. The service version is encoded in the type string as specified in the UPnP specification. A nul l
value is a wildcard, matching all service types. Value is “UPnP.service.type”.

See Also UPnPService.getType()
getAction(String)

111.17.9.3 public UPnPAction getAction (String name)

name Name of action. Must not contain hyphen or hash characters. Should be < 32 characters.

 Locates a specific action by name. Looks up an action by its name.

Returns The requested action or nul l if no action is found.

Throws IllegalStateException – if the UPnP service has been removed from the network.
getActions()

111.17.9.4 public UPnPAction[] getActions ()

 Lists all actions provided by this service.

Returns Array of actions (UPnPAction[])or nul l if no actions are defined for this service.

Throws IllegalStateException – if the UPnP service has been removed from the network.
getId()

111.17.9.5 public String getId ()

 Returns the serviceId field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the serviceId must contain the
following components in the indicated order:

• urn:upnp-org:serviceId:
• service ID suffix

Example: urn:upnp-org:serviceId:serviceID .

Note that upnp-org is used instead of schemas-upnp-org in this example because an XML schema is
not defined for each serviceId.

For non-standard services specified by UPnP vendors, the serviceId must contain the following com-
ponents in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• :serv iceId:
• service ID suffix

Example: urn:domain-name:serviceId:serv iceID .

This method must continue to return the service id after the UPnP service has been removed from the
network.

Returns The service ID suffix defined by a UPnP Forum working committee or specified by a UPnP vendor.
Must be <= 64 characters. Single URI.
getStateVariable(String)

111.17.9.6 public UPnPStateVariable getStateVariable (String name)

name Name of the State Variable

 Gets a UPnPStateVariable objects provided by this service by name

Returns State variable or nul l if no such state variable exists for this service.

Throws IllegalStateException – if the UPnP service has been removed from the network.
getStateVariables()
OSGi Service Platform Release 4, Version 4.3 Page 207

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2
111.17.9.7 public UPnPStateVariable[] getStateVariables ()

 Lists all UPnPStateVariable objects provided by this service.

Returns Array of state variables or nul l if none are defined for this service.

Throws IllegalStateException – if the UPnP service has been removed from the network.
getType()

111.17.9.8 public String getType ()

 Returns the serv iceType field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the serviceType must contain
the following components in the indicated order:

• urn:schemas-upnp-org:service:
• service type suffix:
• integer service version

Example: urn:schemas-upnp-org:service:serviceType:v .

For non-standard services specified by UPnP vendors, the serviceType must contain the following
components in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• : service:
• service type suffix:
• integer service version

Example: urn:domain-name:service:serv iceType:v .

This method must continue to return the service type after the UPnP service has been removed from
the network.

Returns The service type suffix defined by a UPnP Forum working committee or specified by a UPnP vendor.
Must be <= 64 characters, not including the version suffix and separating colon. Single URI.
getVersion()

111.17.9.9 public String getVersion ()

 Returns the version suffix encoded in the serviceType field in the UPnP service description.

This method must continue to return the service version after the UPnP service has been removed
from the network.

Returns The integer service version defined by a UPnP Forum working committee or specified by a UPnP ven-
dor.
UPnPStateVariable

111.17.10 public interface UPnPStateVariable
The meta-information of a UPnP state variable as declared in the device’s service state table (SST).

Method calls to interact with a device (e.g. UPnPAction. invoke(. . .) ;) use this class to encapsulate meta
information about the input and output arguments.

The actual values of the arguments are passed as Java objects. The mapping of types from UPnP data
types to Java data types is described with the field definitions.
TYPE_BIN_BASE64

111.17.10.1 public static final String TYPE_BIN_BASE64 = “bin.base64”

MIME-style Base64 encoded binary BLOB.

Takes 3 Bytes, splits them into 4 parts, and maps each 6 bit piece to an octet. (3 octets are encoded as
4.) No limit on size.

Mapped to byte[] object. The Java byte array will hold the decoded content of the BLOB.
TYPE_BIN_HEX
Page 208 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp
111.17.10.2 public static final String TYPE_BIN_HEX = “bin.hex”

Hexadecimal digits representing octets.

Treats each nibble as a hex digit and encodes as a separate Byte. (1 octet is encoded as 2.) No limit on
size.

Mapped to byte[] object. The Java byte array will hold the decoded content of the BLOB.
TYPE_BOOLEAN

111.17.10.3 public static final String TYPE_BOOLEAN = “boolean”

True or false.

Mapped to Boolean object.
TYPE_CHAR

111.17.10.4 public static final String TYPE_CHAR = “char”

Unicode string.

One character long.

Mapped to Character object.
TYPE_DATE

111.17.10.5 public static final String TYPE_DATE = “date”

A calendar date.

Date in a subset of ISO 8601 format without time data.

See http://www.w3.org/TR/ xmlschema-2/#date (http://www.w3.org/TR/xmlschema-2/#date) .

Mapped to java.ut i l .Date object. Always 00:00 hours.
TYPE_DATETIME

111.17.10.6 public static final String TYPE_DATETIME = “dateTime”

A specific instant of time.

Date in ISO 8601 format with optional time but no time zone.

See http://www.w3.org /TR/xmlschema-2/#dateTime (http://www.w3.org/TR/xmlschema-2/
#dateTime) .

Mapped to java.ut i l .Date object using default time zone.
TYPE_DATETIME_TZ

111.17.10.7 public static final String TYPE_DATETIME_TZ = “dateTime.tz”

A specific instant of time.

Date in ISO 8601 format with optional time and optional time zone.

See http://www.w3.org /TR/xmlschema-2/#dateTime (http://www.w3.org/TR/xmlschema-2/
#dateTime) .

Mapped to java.ut i l .Date object adjusted to default time zone.
TYPE_FIXED_14_4

111.17.10.8 public static final String TYPE_FIXED_14_4 = “fixed.14.4”

Same as r8 but no more than 14 digits to the left of the decimal point and no more than 4 to the right.

Mapped to Double object.
TYPE_FLOAT

111.17.10.9 public static final String TYPE_FLOAT = “float”

Floating-point number.

Mantissa (left of the decimal) and/or exponent may have a leading sign. Mantissa and/or exponent
may have leading zeros. Decimal character in mantissa is a period, i.e., whole digits in mantissa sepa-
rated from fractional digits by period. Mantissa separated from exponent by E. (No currency symbol.)
(No grouping of digits in the mantissa, e.g., no commas.)
OSGi Service Platform Release 4, Version 4.3 Page 209

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2
Mapped to Float object.
TYPE_I1

111.17.10.10 public static final String TYPE_I1 = “i1”

1 Byte int.

Mapped to Integer object.
TYPE_I2

111.17.10.11 public static final String TYPE_I2 = “i2”

2 Byte int.

Mapped to Integer object.
TYPE_I4

111.17.10.12 public static final String TYPE_I4 = “i4”

4 Byte int.

Must be between -2147483648 and 2147483647

Mapped to Integer object.
TYPE_INT

111.17.10.13 public static final String TYPE_INT = “int”

Integer number.

Mapped to Integer object.
TYPE_NUMBER

111.17.10.14 public static final String TYPE_NUMBER = “number”

Same as r8.

Mapped to Double object.
TYPE_R4

111.17.10.15 public static final String TYPE_R4 = “r4”

4 Byte float.

Same format as float. Must be between 3.40282347E+38 to 1.17549435E-38.

Mapped to Float object.
TYPE_R8

111.17.10.16 public static final String TYPE_R8 = “r8”

8 Byte float.

Same format as float. Must be between -1.79769313486232E308 and -4.94065645841247E-324 for neg-
ative values, and between 4.94065645841247E-324 and 1.79769313486232E308 for positive values,
i.e., IEEE 64-bit (8-Byte) double.

Mapped to Double object.
TYPE_STRING

111.17.10.17 public static final String TYPE_STRING = “string”

Unicode string.

No limit on length.

Mapped to Str ing object.
TYPE_TIME

111.17.10.18 public static final String TYPE_TIME = “time”

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with no date and no time zone.

See http://www.w3.org /TR/xmlschema-2/#time (http://www.w3.org/TR/xmlschema-2/#dateTime) .
Page 210 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp
Mapped to Long . Converted to milliseconds since midnight.
TYPE_TIME_TZ

111.17.10.19 public static final String TYPE_TIME_TZ = “time.tz”

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with optional time zone but no date.

See http://www.w3.org /TR/xmlschema-2/#time (http://www.w3.org/TR/xmlschema-2/#dateTime) .

Mapped to Long object. Converted to milliseconds since midnight and adjusted to default time zone,
wrapping at 0 and 24*60*60*1000.
TYPE_UI1

111.17.10.20 public static final String TYPE_UI1 = “ui1”

Unsigned 1 Byte int.

Mapped to an Integer object.
TYPE_UI2

111.17.10.21 public static final String TYPE_UI2 = “ui2”

Unsigned 2 Byte int.

Mapped to Integer object.
TYPE_UI4

111.17.10.22 public static final String TYPE_UI4 = “ui4”

Unsigned 4 Byte int.

Mapped to Long object.
TYPE_URI

111.17.10.23 public static final String TYPE_URI = “uri”

Universal Resource Identifier.

Mapped to Str ing object.
TYPE_UUID

111.17.10.24 public static final String TYPE_UUID = “uuid”

Universally Unique ID.

Hexadecimal digits representing octets. Optional embedded hyphens are ignored.

Mapped to Str ing object.
getAllowedValues()

111.17.10.25 public String[] getAllowedValues ()

 Returns the allowed values, if defined. Allowed values can be defined only for String types.

This method must continue to return the state variable allowed values after the UPnP state variable
has been removed from the network.

Returns The allowed values or null if not defined. Should be less than 32 characters.
getDefaultValue()

111.17.10.26 public Object getDefaultValue ()

 Returns the default value, if defined.

This method must continue to return the state variable default value after the UPnP state variable has
been removed from the network.

Returns The default value or nul l if not defined. The type of the returned object can be determined by
getJavaDataType .
getJavaDataType()

111.17.10.27 public Class getJavaDataType ()

 Returns the Java class associated with the UPnP data type of this state variable.
OSGi Service Platform Release 4, Version 4.3 Page 211

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2
Mapping between the UPnP data types and Java classes is performed according to the schema men-
tioned above.

Integer ui1, ui2, i1, i2, i4, int

Long ui4, time, time.tz

Float r4, float

Double r8, number, fixed.14.4

Character char

String string, uri, uuid

Date date, dateTime, dateTime.tz

Boolean boolean

byte[] bin.base64, bin.hex

This method must continue to return the state variable java type after the UPnP state variable has
been removed from the network.

Returns A class object corresponding to the Java type of this argument.
getMaximum()

111.17.10.28 public Number getMaximum ()

 Returns the maximum value, if defined. Maximum values can only be defined for numeric types.

This method must continue to return the state variable maximum value after the UPnP state variable
has been removed from the network.

Returns The maximum value or nul l if not defined.
getMinimum()

111.17.10.29 public Number getMinimum ()

 Returns the minimum value, if defined. Minimum values can only be defined for numeric types.

This method must continue to return the state variable minimum value after the UPnP state variable
has been removed from the network.

Returns The minimum value or nul l if not defined.
getName()

111.17.10.30 public String getName ()

 Returns the variable name.

• All standard variables defined by a UPnP Forum working committee must not begin with X_ nor
A_ .

• All non-standard variables specified by a UPnP vendor and added to a standard service must begin
with X_ .

This method must continue to return the state variable name after the UPnP state variable has been
removed from the network.

Returns Name of state variable. Must not contain a hyphen character nor a hash character. Should be < 32 char-
acters.
getStep()

111.17.10.31 public Number getStep ()

 Returns the size of an increment operation, if defined. Step sizes can be defined only for numeric
types.

This method must continue to return the step size after the UPnP state variable has been removed
from the network.

Returns The increment size or null if not defined.
getUPnPDataType()

111.17.10.32 public String getUPnPDataType ()

 Returns the UPnP type of this state variable. Valid types are defined as constants.
Page 212 OSGi Service Platform Release 4, Version 4.3

UPnP™ Device Service Specification Version 1.2 References
This method must continue to return the state variable UPnP data type after the UPnP state variable
has been removed from the network.

Returns The UPnP data type of this state variable, as defined in above constants.
sendsEvents()

111.17.10.33 public boolean sendsEvents ()

 Tells if this StateVariable can be used as an event source. If the StateVariable is eventable, an event
listener service can be registered to be notified when changes to the variable appear.

This method must continue to return the correct value after the UPnP state variable has been
removed from the network.

Returns true if the StateVariable generates events, fa lse otherwise.

111.18 References
[1] UPnP Forum

http://www.upnp.org

[2] XML Schema
http://www.w3.org/TR/xmlschema-2

[3] ISO 8601 Date And Time formats
http://www.iso.ch
OSGi Service Platform Release 4, Version 4.3 Page 213

References UPnP™ Device Service Specification Version 1.2
Page 214 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Introduction
112 Declarative Services
Specification
Version 1.2

112.1 Introduction
The OSGi Framework contains a procedural service model which provides a publish/find/bind model
for using services. This model is elegant and powerful, it enables the building of applications out of
bundles that communicate and collaborate using these services.

This specification addresses some of the complications that arise when the OSGi service model is
used for larger systems and wider deployments, such as:

• Startup Time – The procedural service model requires a bundle to actively register and acquire its
services. This is normally done at startup time, requiring all present bundles to be initialized with
a Bundle Activator. In larger systems, this quickly results in unacceptably long startup times.

• Memory Footprint – A service registered with the Framework implies that the implementation, and
related classes and objects, are loaded in memory. If the service is never used, this memory is
unnecessarily occupied. The creation of a class loader may therefore cause significant overhead.

• Complexity – Service can come and go at any time. This dynamic behavior makes the service pro-
gramming model more complex than more traditional models. This complexity negatively influ-
ences the adoption of the OSGi service model as well as the robustness and reliability of
applications because these applications do not always handle the dynamicity correctly.

The service component model uses a declarative model for publishing, finding and binding to OSGi ser-
vices. This model simplifies the task of authoring OSGi services by performing the work of register-
ing the service and handling service dependencies. This minimizes the amount of code a
programmer has to write; it also allows service components to be loaded only when they are needed.
As a result, bundles need not provide a BundleActivator class to collaborate with others through the
service registry.

From a system perspective, the service component model means reduced startup time and poten-
tially a reduction of the memory footprint. From a programmer’s point of view the service compo-
nent model provides a simplified programming model.

The Service Component model makes use of concepts described in [1] Automating Service Dependency
Management in a Service-Oriented Component Model.

112.1.1 Essentials
• Backward Compatibility – The service component model must operate seamlessly with the existing

service model.
• Size Constraints – The service component model must not require memory and performance

intensive subsystems. The model must also be applicable on resource constrained devices.
• Delayed Activation – The service component model must allow delayed activation of a service com-

ponent. Delayed activation allows for delayed class loading and object creation until needed,
thereby reducing the overall memory footprint.

• Simplicity – The programming model for using declarative services must be very simple and not
require the programmer to learn a complicated API or XML sub-language.
OSGi Service Platform Release 4, Version 4.3 Page 215

Introduction Declarative Services Specification Version 1.2
• Reactive – It must be possible to react to changes in the external dependencies with different pol-
icies.

• Annotations – Annotations must be provided that can leverage the type information to create the
XML descriptor.

112.1.2 Entities
• Service Component – A service component contains a description that is interpreted at run time to

create and dispose objects depending on the availability of other services, the need for such an
object, and available configuration data. Such objects can optionally provide a service. This speci-
fication also uses the generic term component to refer to a service component.

• Component Description – The declaration of a service component. It is contained within an XML
document in a bundle.

• Component Properties – A set of properties which can be specified by the component description,
Configuration Admin service and from the component factory.

• Component Configuration – A component configuration represents a component description
parameterized by component properties. It is the entity that tracks the component dependencies
and manages a component instance. An activated component configuration has a component
context.

• Component Instance – An instance of the component implementation class. A component instance
is created when a component configuration is activated and discarded when the component con-
figuration is deactivated. A component instance is associated with exactly one component config-
uration.

• Delayed Component – A component whose component configurations are activated when their
service is requested.

• Immediate Component – A component whose component configurations are activated immediately
upon becoming satisfied.

• Factory Component – A component whose component configurations are created and activated
through the component’s component factory.

• Reference – A specified dependency of a component on a set of target services.
• Service Component Runtime (SCR) – The actor that manages the components and their life cycle.
• Target Services – The set of services that is defined by the reference interface and target property

filter.
• Bound Services – The set of target services that are bound to a component configuration.
• Event methods – The bind, updated, and unbind methods associated with a Reference.

Figure 112.1 Service Component Runtime, org.osgi.service.component package

a Component
Impl

a Service Impl

Service
Component
Runtime

a Servicea Component
Instance

Component
Description

a Component
Confguration

registered service

tracks
dependencies

declares com
ponent

created by

controls 1 0..n

0..n

0..n

references

1..n
1

Configuration
Admin

0..n

1

0..n

1

Page 216 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Components
112.1.3 Synopsis
The Service Component Runtime reads component descriptions from started bundles. These descrip-
tions are in the form of XML documents which define a set of components for a bundle. A component
can refer to a number of services that must be available before a component configuration becomes
satisfied. These dependencies are defined in the descriptions and the specific target services can be
influenced by configuration information in the Configuration Admin service. After a component
configuration becomes satisfied, a number of different scenarios can take place depending on the
component type:

• Immediate Component – The component configuration of an immediate component must be acti-
vated immediately after becoming satisfied. Immediate components may provide a service.

• Delayed Component – When a component configuration of a delayed component becomes sat-
isfied, SCR will register the service specified by the service element without activating the com-
ponent configuration. If this service is requested, SCR must activate the component configuration
creating an instance of the component implementation class that will be returned as the service
object. If the servicefactory attribute of the service element is true , then, for each distinct bundle
that requests the service, a different component configuration is created and activated and a new
instance of the component implementation class is returned as the service object.

• Factory Component – If a component’s description specifies the factory attribute of the component
element, SCR will register a Component Factory service. This service allows client bundles to
create and activate multiple component configurations and dispose of them. If the component’s
description also specifies a service element, then as each component configuration is activated,
SCR will register it as a service.

112.1.4 Readers
• Architects – The chapter, Components on page 217, gives a comprehensive introduction to the capa-

bilities of the component model. It explains the model with a number of examples. The section
about Component Life Cycle on page 234 provides some deeper insight in the life cycle of compo-
nents.

• Service Programmers – Service programmers should read Components on page 217. This chapter
should suffice for the most common cases. For the more advanced possibilities, they should
consult Component Description on page 227 for the details of the XML grammar for component
descriptions.

• Deployers – Deployers should consult Deployment on page 244.

112.2 Components
A component is a normal Java class contained within a bundle. The distinguishing aspect of a compo-
nent is that it is declared in an XML document. Component configurations are activated and deacti-
vated under the full control of SCR. SCR bases its decisions on the information in the component’s
description. This information consists of basic component information like the name and type,
optional services that are implemented by the component, and references. References are dependen-
cies that the component has on other services.

SCR must activate a component configuration when the component is enabled and the component
configuration is satisfied and a component configuration is needed. During the life time of a compo-
nent configuration, SCR can notify the component of changes in its bound references.

SCR will deactivate a previously activated component configuration when the component becomes
disabled, the component configuration becomes unsatisfied, or the component configuration is no
longer needed.

If an activated component configuration’s configuration properties change, SCR must deactivate the
component configuration and then attempt to reactivate the component configuration using the
new configuration information.
OSGi Service Platform Release 4, Version 4.3 Page 217

Components Declarative Services Specification Version 1.2
112.2.1 Declaring a Component
A component requires the following artifacts in the bundle:

• An XML document that contains the component description.
• The Service-Component manifest header which names the XML documents that contain the

component descriptions.
• An implementation class that is specified in the component description.

The elements in the component’s description are defined in Component Description on page 227. The
XML grammar for the component declaration is defined by the XML Schema, see Component Descrip-
tion Schema on page 248.

112.2.2 Immediate Component
An immediate component is activated as soon as its dependencies are satisfied. If an immediate compo-
nent has no dependencies, it is activated immediately. A component is an immediate component if it
is not a factory component and either does not specify a service or specifies a service and the
immediate attribute of the component element set to true . If an immediate component configura-
tion is satisfied and specifies a service, SCR must register the component configuration as a service in
the service registry and then activate the component configuration.

For example, the bundle entry /OSGI-INF/activator.xml contains:

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.activator"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="com.acme.Activator"/>

</scr:component>

The manifest header Service-Component must also be specified in the bundle manifest. For exam-
ple:

Service-Component: OSGI-INF/activator.xml

An example class for this component could look like:

public class Activator {

public Activator() {...}

private void activate(BundleContext context) {...}

private void deactivate() {...}

}

This example component is virtually identical to a Bundle Activator. It has no references to other ser-
vices so it will be satisfied immediately. It publishes no service so SCR will activate a component con-
figuration immediately.

The act ivate method is called when SCR activates the component configuration and the deactivate
method is called when SCR deactivates the component configuration. If the act ivate method throws
an Exception, then the component configuration is not activated and will be discarded.

112.2.3 Delayed Component
A delayed component specifies a service, is not specified to be a factory component and does not have
the immediate attribute of the component element set to true . If a delayed component configuration
is satisfied, SCR must register the component configuration as a service in the service registry but the
activation of the component configuration is delayed until the registered service is requested. The
registered service of a delayed component looks like a normal registered service but does not incur
the overhead of an ordinarily registered service that require a service’s bundle to be initialized to reg-
ister the service.
Page 218 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Components
For example, a bundle needs to see events of a specific topic. The Event Admin uses the white board
pattern, receiving the events is therefore as simple as registering a Event Handler service. The exam-
ple XML for the delayed component looks like:

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.handler"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="com.acme.HandlerImpl"/>

<property name="event.topics">some/topic</property>

<service>

<provide interface=

"org.osgi.service.event.EventHandler"/>

</service>

</scr:component>

The associated component class looks like:

public class HandlerImpl implements EventHandler {

public void handleEvent(Event evt) {

...

 }

}

The component configuration will only be activated once the Event Admin service requires the ser-
vice because it has an event to deliver on the topic to which the component subscribed.

112.2.4 Factory Component
Certain software patterns require the creation of component configurations on demand. For exam-
ple, a component could represent an application that can be launched multiple times and each appli-
cation instance can then quit independently. Such a pattern requires a factory that creates the
instances. This pattern is supported with a factory component. A factory component is used if the
factory attribute of the component element is set to a factory identifier. This identifier can be used by a
bundle to associate the factory with externally defined information.

SCR must register a Component Factory service on behalf of the component as soon as the compo-
nent factory is satisfied. The service properties must be:

• component.name – The name of the component.
• component. factory – The factory identifier.

The service properties of the Component Factory service must not include the component properties.

New configurations of the component can be created and activated by calling the newInstance
method on this Component Factory service. The newInstance(Dict ionary) method has a Dictionary
object as argument. This Dictionary object is merged with the component properties as described in
Component Properties on page 243. If the component specifies a service, then the service is registered
after the created component configuration is satisfied with the component properties. Then the com-
ponent configuration is activated.

For example, a component can provide a connection to a USB device. Such a connection should nor-
mally not be shared and should be created each time such a service is needed. The component
description to implement this pattern looks like:

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.factory"

factory="usb.connection"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="com.acme.USBConnectionImpl"/>

</scr:component>
OSGi Service Platform Release 4, Version 4.3 Page 219

References to Services Declarative Services Specification Version 1.2
The component class looks like:

public class USBConnectionImpl implements USBConnection {

private void activate(Map properties) {

 ...

}

}

A factory component can be associated with a service. In that case, such a service is registered for each
component configuration. For example, the previous example could provide a USB Connection ser-
vice.

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.factory"

factory="usb.connection"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="com.acme.USBConnectionImpl"/>

<service>

<provide interface="com.acme.USBConnection"/>

</service>

</scr:component>

The associated component class looks like:

public class USBConnectionImpl implements USBConnection {

private void activate(Map properties) {...}

public void connect() { ... }

...

public void close() { ... }

}

A new service will be registered each time a new component configuration is created and activated
with the newInstance method. This allows a bundle other than the one creating the component con-
figuration to utilize the service. If the component configuration is deactivated, the service must be
unregistered.

112.3 References to Services
Most bundles will require access to other services from the service registry. The dynamics of the ser-
vice registry require care and attention of the programmer because referenced services, once
acquired, could be unregistered at any moment. The component model simplifies the handling of
these service dependencies significantly.

The services that are selected by a reference are called the target services. These are the services
selected by the BundleContext.getServiceReferences method where the first argument is the refer-
ence’s interface and the second argument is the reference’s target property, which must be a valid fil-
ter.

A component configuration becomes satisfied when each specified reference is satisfied. A reference is
satisfied if it specifies optional cardinality or when the target services contains at least one member.
An activated component configuration that becomes unsatisfied must be deactivated.

During the activation of a component configuration, SCR must bind some or all of the target services
of a reference to the component configuration. Any target service that is bound to the component
configuration is called a bound service. See Binding Services on page 238.
Page 220 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 References to Services
112.3.1 Accessing Services
A component instance must be able to use the services that are referenced by the component configu-
ration, that is, the bound services of the references. There are two strategies for a component instance
to acquire these bound services:

• Event strategy – SCR calls a method on the component instance when a service becomes bound,
when a service becomes unbound, or when its properties are updated. These methods are the
bind, updated, and unbind methods specified by the reference. The event strategy is useful if the
component needs to be notified of changes to the bound services for a dynamic reference.

• Lookup strategy – A component instance can use one of the locateService methods of
ComponentContext to locate a bound service. These methods take the name of the reference as a
parameter. If the reference has a dynamic policy, it is important to not store the returned service
object(s) but look it up every time it is needed.

A component may use either or both strategies to access bound services.

112.3.2 Event Methods
When using the event strategy the SCR must callback the components at the appropriate time. The
SCR must callback on the following events:

• bind – The bind method is called to bind a new service to the component that matches the
selection criteria. If the policy is dynamic then the bind method of a replacement service can be
called before its corresponding unbind method.

• updated – The updated method is called when the service properties of a bound services are mod-
ified and the resulting properties do not cause the service to become unbound because it is no
longer selected by the target filter.

• unbind – The unbind method is called when the SCR needs to unbind the service.

Together these methods are called the event methods. Event methods must have one of the following
prototypes:

void <method-name>(ServiceReference);

void <method-name>(<parameter-type>);

void <method-name>(<parameter-type>, Map);

If an event method has the first prototype, then a Service Reference to the bound service will be
passed to the method. This Service Reference may later be passed to the locateServ ice(Str ing,
Serv iceReference) method to obtain the actual service object. This approach is useful when the ser-
vice properties need to be examined before accessing the service object. It also allows for the delayed
activation of bound services when using the event strategy.

If an event method has the second prototype, then the service object of the bound service is passed to
the method. The method’s parameter type must be assignable from the type specified by the refer-
ence’s interface attribute. That is, the service object of the bound service must be castable to the
method’s parameter type.

If an event method has the third prototype, then the service object of the bound service is passed to
the method as the first argument and an unmodifiable Map containing the service properties of the
bound service is passed as the second argument. The method’s first parameter type must be assign-
able from the type specified by the reference’s interface attribute. That is, the service object of the
bound service must be castable to the method’s first parameter type.

The bind and unbind methods must be called once for each bound service. This implies that if the ref-
erence has multiple cardinality, then the methods may be called multiple times. The updated
method can be called multiple times per service.

A suitable method is selected using the following priority:

1 The method takes a single argument and the type of the argument is
org.osgi . f ramework.ServiceReference .
OSGi Service Platform Release 4, Version 4.3 Page 221

References to Services Declarative Services Specification Version 1.2
2 The method takes a single argument and the type of the argument is the type specified by the ref-
erence’s interface attribute.

3 The method takes a single argument and the type of the argument is assignable from the type
specified by the reference’s interface attribute. If multiple methods match this rule, this implies
the method name is overloaded and SCR may choose any of the methods to call.

4 The method takes two argument and the type of the first argument is the type specified by the ref-
erence’s interface attribute and the type of the second argument is java.ut i l .Map .

5 The method takes two argument and the type of the first argument is assignable from the type
specified by the reference’s interface attribute and the type of the second argument is
java.ut i l .Map . If multiple methods match this rule, this implies the method name is overloaded
and SCR may choose any of the methods to call.

When searching for an event method to call, SCR must locate a suitable method as specified in Locat-
ing Component Methods on page 247. If no suitable method is located, SCR must log an error message
with the Log Service, if present, and there will be no bind, updated, or unbind notification.

When the service object for a bound service is first provided to a component instance, that is passed
to an event method or returned by a locate service method, SCR must get the service object from the
OSGi Framework’s service registry using the getService method on the component’s Bundle Context.
If the service object for a bound service has been obtained and the service becomes unbound, SCR
must unget the service object using the ungetService method on the component’s Bundle Context
and discard all references to the service object.

For example, a component requires the Log Service and uses the lookup strategy. The reference is
declared without any bind, updated, and unbind methods:

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="com.acme.LogLookupImpl"/>

<reference name="LOG"

 interface="org.osgi.service.log.LogService"/>

</scr:component>

The component implementation class must now lookup the service. This looks like:

public class LogLookupImpl {

private void activate(ComponentContext ctxt) {

LogService log = (LogService)

ctxt.locateService("LOG");

log.log(LogService.LOG_INFO, "Hello Components!"));

}

}

Alternatively, the component could use the event strategy and ask to be notified with the Log Service
by declaring bind, updated, and unbind methods.

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="com.acme.LogEventImpl"/>

<reference name="LOG"

 interface="org.osgi.service.log.LogService"

bind="setLog"

updated="updatedLog"

unbind="unsetLog"

/>

</scr:component>
Page 222 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 References to Services
The component implementation class looks like:

public class LogEventImpl {

LogService log;

Integer level;

void setLog(LogService l, Map<String,?> ref) {

log = l;

updatedLog(ref);

}

 void updatedLog(Map<String,?> ref) {

level = (Integer) ref.get("level");

}

void unsetLog(LogService l) { log = null; }

private void activate() {

log.log(LogService.LOG_INFO, "Hello Components!"));

}

}

Event methods can be declared private in the component class but are only looked up in the inherit-
ance chain when they are protected, public, or have default access. See Locating Component Methods on
page 247.

112.3.3 Reference Cardinality
A component implementation is always written with a certain cardinality in mind. The cardinality
represents two important concepts:

• Multiplicity – Does the component implementation assume a single service or does it explicitly
handle multiple occurrences For example, when a component uses the Log Service, it only needs
to bind to one Log Service to function correctly. Alternatively, when the Configuration Admin
uses the Configuration Listener services it needs to bind to all target services present in the service
registry to dispatch its events correctly.

• Optionality – Can the component function without any bound service present Some components
can still perform useful tasks even when no target service is available, other components must
bind to at least one target service before they can be useful. For example, the Configuration
Admin in the previous example must still provide its functionality even if there are no Configu-
ration Listener services present. Alternatively, an application that solely presents a Servlet page
has little to do when the Http Service is not present, it should therefore use a reference with a
mandatory cardinality.

The cardinality is expressed with the following syntax:

cardinality ::= optionality ’..’ multiplicity

optionality ::= ’0’ | ’1’

multiplicity ::= ’1’ | ’n’

A reference is satisfied if the number of target services is equal to or more than the optional i ty . The
mult ipl ic ity is irrelevant for the satisfaction of the reference. The mult ipl ic ity only specifies if the
component implementation is written to handle being bound to multiple services (n) or requires SCR
to select and bind to a single service (1).

The cardinality for a reference can be specified as one of four choices:

• 0..1 – Optional and unary.
• 1. .1 – Mandatory and unary (Default) .
• 0..n – Optional and multiple.
• 1. .n – Mandatory and multiple.
OSGi Service Platform Release 4, Version 4.3 Page 223

References to Services Declarative Services Specification Version 1.2
When a satisfied component configuration is activated, there must be at most one bound service for
each reference with a unary cardinality and at least one bound service for each reference with a man-
datory cardinality. If the cardinality constraints cannot be maintained after a component configura-
tion is activated, that is the reference becomes unsatisfied, the component configuration must be
deactivated. If the reference has a unary cardinality and there is more than one target service for the
reference, then the bound service must be the target service with the highest service ranking as speci-
fied by the service.ranking property. If there are multiple target services with the same service rank-
ing, then the bound service must be the target service with the highest service ranking and the lowest
service ID as specified by the serv ice. id property.

For example, a component wants to register a resource with all Http Services that are available. Such
a scenario has the cardinality of 0. .n . The code must be prepared to handle multiple calls to the bind
method for each Http Service in such a case. In this example, the code uses the registerResources
method to register a directory for external access.

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="com.acme.HttpResourceImpl"/>

<reference name="HTTP"

 interface="org.osgi.service.http.HttpService"

cardinality="0..n"

bind="setPage"

unbind="unsetPage"

/>

</scr:component>

public class HttpResourceImpl {

private void setPage(HttpService http) {

http.registerResources("/scr", "scr", null);

}

private void unsetPage(HttpService http) {

http.unregister("/scr");

}

}

112.3.4 Reference Policy
Once all the references of a component are satisfied, a component configuration can be activated and
therefore bound to target services. However, the dynamic nature of the OSGi service registry makes it
likely that services are registered, modified and unregistered after target services are bound. These
changes in the service registry could make one or more bound services no longer a target service
thereby making obsolete any object references that the component has to these service objects. Com-
ponents therefore must specify a policy how to handle these changes in the set of bound services. A
policy-option can further refine how changes affect bound services.

The static policy is the most simple policy and is the default policy. A component instance never sees
any of the dynamics. Component configurations are deactivated before any bound service for a refer-
ence having a static policy becomes unavailable. If a target service is available to replace the bound
service which became unavailable, the component configuration must be reactivated and bound to
the replacement service.

If the pol icy-option is reluctant then the registration of an additional target service for a reference
must not result in deactivating and reactivating a component configuration. If the pol icy-option is
greedy then the component must be reactivated when new applicable services become available, see
Table 112.1 on page 226. A reference with a static policy is called a static reference. A static reference
can still be updated dynamically if it specifies an updated method.
Page 224 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 References to Services
The static policy can be very expensive if it depends on services that frequently unregister and re-reg-
ister or if the cost of activating and deactivating a component configuration is high. Static policy is
usually also not applicable if the cardinality specifies multiple bound services.

The dynamic policy is slightly more complex since the component implementation must properly
handle changes in the set of bound services that can occur on any thread. With the dynamic policy,
SCR can change the set of bound services without deactivating a component configuration. If the
component uses the event strategy to access services, then the component instance will be notified of
changes in the set of bound services by calls to the bind, and unbind methods.

If the pol icy-option is reluctant then a bound reference is not rebound even if a more suitable service
becomes available for a 1..1 or 0..1 reference. If the pol icy-option is greedy then the component must
be unbound and rebound for that reference.

A reference with a dynamic policy is called a dynamic reference.

The previous example with the registering of a resource directory used a static policy. This implied
that the component configurations are deactivated when there is a change in the bound set of Http
Services. The code in the example can be seen to easily handle the dynamics of Http Services that
come and go. The component description can therefore be updated to:

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="com.acme.HttpResourceImpl"/>

<reference name="HTTP"

 interface="org.osgi.service.http.HttpService"

cardinality="0..n"

policy="dynamic"

bind="setPage"

unbind="unsetPage"

/>

</scr:component>

The code is identical to the previous example.

112.3.5 Policy Option
The pol icy-option defines how eager the reference is to rebind when a new, potentially with a higher
ranking, target service becomes available. It can have the following values:

• reluctant – Minimize rebinding and reactivating.
• greedy – Maximize the use of the best service by deactivating static references or rebinding

dynamic references.
OSGi Service Platform Release 4, Version 4.3 Page 225

References to Services Declarative Services Specification Version 1.2
Table 112.1 defines the actions that are taken when a better target service becomes available. In this
context, better is when the reference is not bound or when the new target service has a higher rank-
ing than the bound service.

112.3.6 Selecting Target Services
The target services for a reference are constrained by the reference’s interface name and target prop-
erty. By specifying a filter in the target property, the programmer and deployer can constrain the set
of services that should be part of the target services.

For example, a component wants to track all Component Factory services that have a factory identifi-
cation of acme.appl icat ion . The following component description shows how this can be done.

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="com.acme.FactoryTracker"/>

<reference name="FACTORY"

 interface=

"org.osgi.service.component.ComponentFactory"

target="(component.factory=acme.application)"

/>

</scr:component>

The filter is manifested as a component property called the target property. The target property can
also be set by property and propert ies elements, see Property Element on page 230. The deployer can
also set the target property by establishing a configuration for the component which sets the value of
the target property. This allows the deployer to override the target property in the component
description. See Component Properties on page 243 for more information.

112.3.7 Circular References
It is possible for a set of component descriptions to create a circular dependency. For example, if com-
ponent A references a service provided by component B and component B references a service pro-
vided by component A then a component configuration of one component cannot be satisfied
without accessing a partially activated component instance of the other component. SCR must
ensure that a component instance is never accessible to another component instance or as a service
until it has been fully activated, that is it has returned from its act ivate method if it has one.

Table 112.1 Action taken for policy-option when a new or higher ranking service becomes available

Cardinality static
reluctant

static
greedy

dynamic
reluctant

dynamic
greedy

0..1 Ignore Reactivate to bind the
better target service.

If no service is bound,
bind to new target ser-
vice. Otherwise, ignore
new target service.

If no service is bound,
bind to better target ser-
vice. Otherwise, unbind
the bound service and
bind the better target
service.

1. .1 Ignore Reactivate to bind the
better target service.

Ignore Unbind the bound ser-
vice, then bind the new
service.

0..n Ignore Reactivate Bind new target service Bind new target service

1. .n Ignore Reactivate Bind new target service Bind new target service
Page 226 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Description
Circular references must be detected by SCR when it attempts to satisfy component configurations
and SCR must fail to satisfy the references involved in the cycle and log an error message with the Log
Service, if present. However, if one of the references in the cycle has optional cardinality SCR must
break the cycle. The reference with the optional cardinality can be satisfied and bound to zero target
services. Therefore the cycle is broken and the other references may be satisfied.

112.4 Component Description
Component descriptions are defined in XML documents contained in a bundle and any attached frag-
ments.

If SCR detects an error when processing a component description, it must log an error message with
the Log Service, if present, and ignore the component description. Errors can include XML parsing
errors and ill-formed component descriptions.

112.4.1 Annotations
A number of CLASS retention annotations have been provided to allow tools to construct the XML
from the Java class files. These annotations will be discussed with the appropriate elements an
attributes. Since the naming rules between XML and Java differ, some name changes are necessary.

• Elements – The annotation class that corresponds to an element starts with an upper case. For
example the component element is represented by the @Component annotation.

• Attributes – Multi word attributes that use a minus sign (’ - ’ \u002D) are changed to camel case.
For example, the component element conf igurat ion-pid attribute is the configurat ionPid
member in the @Component annotation.

Some elements do not have a corresponding annotation since the annotations can be parameterized
by the type information in the Java class. For example, the @Component annotation synthesizes the
implement element’s c lass attribute from the type it is applied to.

These annotations are intended to be used during build time to generate the XML and are not recog-
nized by SCR at runtime.

112.4.2 Service Component Header
XML documents containing component descriptions must be specified by the Service-Component
header in the manifest. The value of the header is a comma separated list of paths to XML entries
within the bundle.

Service-Component ::= header // 3.2.4

The Service-Component header has no architected directives or properties. The header can be left
empty.

The last component of each path in the Service-Component header may use wildcards so that
Bundle.f indEntries can be used to locate the XML document within the bundle and its fragments. For
example:

Service-Component: OSGI-INF/*.xml

A Service-Component manifest header specified in a fragment is ignored by SCR. However, XML doc-
uments referenced by a bundle’s Service-Component manifest header may be contained in attached
fragments.

SCR must process each XML document specified in this header. If an XML document specified by the
header cannot be located in the bundle and its attached fragments, SCR must log an error message
with the Log Service, if present, and continue.
OSGi Service Platform Release 4, Version 4.3 Page 227

Component Description Declarative Services Specification Version 1.2
112.4.3 XML Document
A component description must be in a well-formed XML document [4] stored in a UTF-8 encoded
bundle entry. The namespace for component descriptions is:

http://www.osgi.org/xmlns/scr/v1.2.0

The recommended prefix for this namespace is scr . This prefix is used by examples in this specifica-
tion. XML documents containing component descriptions may contain a single, root component ele-
ment or one or more component elements embedded in a larger document. Use of the namespace for
component descriptions is mandatory. The attributes and sub-elements of a component element are
always unqualified.

If an XML document contains a single, root component element which does not specify a namespace,
then the http://www.osgi.org/xmlns/scr/v1.0.0 namespace is assumed. Component descriptions
using the http://www.osgi .org/xmlns/scr/v1.0.0 namespace must be treated according to version 1.0
of this specification.

SCR must parse all component elements in the namespace. Elements not in this namespace must be
ignored. Ignoring elements that are not recognized allows component descriptions to be embedded
in any XML document. For example, an entry can provide additional information about components.
These additional elements are parsed by another sub-system.

See Component Description Schema on page 248 for component description schema.

112.4.4 Component Element
The component element specifies the component description. The following text defines the struc-
ture of the XML grammar using a form that is similar to the normal grammar used in OSGi specifica-
tions. In this case the grammar should be mapped to XML elements:

<component> ::= <implementation>

 (<properties> | <property>) *

 <service>

 <reference> *

SCR must not require component descriptions to specify the elements in the order listed above and as
required by the XML schema. SCR must allow other orderings since arbitrary orderings of these ele-
ments do not affect the meaning of the component description. Only the relative ordering of
property and propert ies element have meaning.
Page 228 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Description

.

-

.

-

t

-
,

-

The component element has the attributes and @Component annotations defined in Table 112.2.

Table 112.2 Component Element and Annotations

Attribute Annotation Description

name name The name of a component must be unique within a bundle. The component name
is used as a PID to retrieve component properties from the OSGi Configuration
Admin service if present, unless a conf igurat ion-pid attribute has been defined.
See Deployment on page 244 for more information. If the component name is used
as a PID then it should be unique within the framework. The XML schema allows
the use of component names which are not valid PIDs. Care must be taken to use
a valid PID for a component name if the component should be configured by the
Configuration Admin service. This attribute is optional. The default value of this
attribute is the value of the class attribute of the nested implementation element
If multiple component elements in a bundle use the same value for the class
attribute of their nested implementation element, then using the default value
for this attribute will result in duplicate component names. In this case, this
attribute must be specified with a unique value.

enabled enabled Controls whether the component is enabled when the bundle is started. The
default value is true . If enabled is set to fa lse , the component is disabled until the
method enableComponent is called on the ComponentContext object. This
allows some initialization to be performed by some other component in the bun
dle before this component can become satisfied. See Enabled on page 234.

factory factory If set to a non-empty string, it indicates that this component is a factory component
SCR must register a Component Factory service for each factory component. See
Factory Component on page 219.

immediate immediate Controls whether component configurations must be immediately activated
after becoming satisfied or whether activation should be delayed. The default
value is false if the factory attribute or if the service element is specified and true
otherwise. If this attribute is specified, its value must be fa lse if the factory
attribute is also specified or must be true unless the service element is also speci
fied.

conf igurat ion-
pol icy

configurat ionPol icy
(OPTIONAL,
REQUIRE, or
IGNORE)

Controls whether component configurations must be satisfied depending on the
presence of a corresponding Configuration object in the OSGi Configuration
Admin service. A corresponding configuration is a Configurat ion object where
the PID is the name of the component.
• optional – (default) Use the corresponding Configurat ion object if present bu

allow the component to be satisfied even if the corresponding Configuration
object is not present.

• require – There must be a corresponding Configurat ion object for the com-
ponent configuration to become satisfied.

• ignore – Always allow the component configuration to be satisfied and do not
use the corresponding Configurat ion object even if it is present.

conf igurat ion-
pid

configurat ionPid The configuration PID to be used for the component in conjunction with Config
uration Admin. The default value for this attribute is the name of the component
or if this is also not specified, the implementation class name.

act ivate Activate Specifies the name of the method to call when a component configuration is acti
vated. The default value of this attribute is act ivate . See Activate Method on page
238 for more information.
The annotation must be applied to the activate method and can only be used
once.
OSGi Service Platform Release 4, Version 4.3 Page 229

Component Description Declarative Services Specification Version 1.2

,

112.4.5 Implementation Element
The implementat ion element is required and defines the name of the component implementation
class. The single attribute is defined in Table 112.3.

The class is retrieved with the loadClass method of the component’s bundle. The class must be public
and have a public constructor without arguments (this is normally the default constructor) so com-
ponent instances may be created by SCR with the newInstance method on Class .

If the component description specifies a service, the class must implement all interfaces that are pro-
vided by the service.

112.4.6 Property Element
A component description can define a number of properties. These can defined inline or from a
resource in the bundle. The property and propert ies elements can occur multiple times and they can
be interleaved. This interleaving is relevant because the properties are processed from top to bottom.
Later properties override earlier properties that have the same name.

Properties can also be overridden by a Configuration Admin service’s Configuration object before
they are exposed to the component or used as service properties. This is described in Component Prop-
erties on page 243 and Deployment on page 244.

The property element has the attributes and annotations defined in Table 112.4.

For example, a component that needs an array of hosts can use the following property definition:

<property name="hosts">

www.acme.com

backup.acme.com

</property>

This property declaration results in the property hosts, with a value of Str ing[] { "www.acme.com",
"backup.acme.com" } .

deactivate Deactivate Specifies the name of the method to call when a component configuration is
deactivated. The default value of this attribute is deact ivate . See Deactivate
Method on page 241 for more information.
The annotation must be applied to the deactivate method and can only be used
once.

modif ied Modif ied Specifies the name of the method to call when the configuration properties for a
component configuration is using a Configurat ion object from the Configuration
Admin service and that Configurat ion object is modified without causing the
component configuration to become unsatisfied. If this attribute is not specified
then the component configuration will become unsatisfied if its configuration
properties use a Configurat ion object that is modified in any way. See Modified
Method on page 240 for more information.
The annotation must be applied to the modified method and can only be used
once.

Table 112.2 Component Element and Annotations

Attribute Annotation Description

Table 112.3 Implementation Element and Annotations

Attribute Annotation Description

class Component The Java fully qualified name of the implementation class.
The component Component annotation will define the implementation element
automatically from the type it is applied to.
Page 230 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Description

-

A property can also be set with the property annotation element of Component . This element is an
array of strings that must follow the following syntax:

property ::= name (’:’ type)? ’=’ value

In this case name , type , and value parts map to the attributes of the property element. If multiple val-
ues must be specified then the same name can be repeated multiple times. The annotation does not
support ordering of properties. For example:

@Component(property={"foo:Integer=1","foo:Integer=2","foo:Integer=3"})

public class FooImpl {

 ...

}

The propert ies element references an entry in the bundle whose contents conform to a standard [3]
Java Properties File.

The entry is read and processed to obtain the properties and their values. The properties element
attributes are defined in Table 112.5.

Table 112.4 Property Element and Annotations

Attribute Annotation Description

name Component property The name of the property.

value The value of the property. This value is parsed according to the property type. If
the value attribute is specified, the body of the element is ignored. If the type of
the property is not Str ing , parsing of the value is done by the static
valueOf(String) method in the given type. For Character types, the conversion
must be handled by Integer.valueOf method, a Character is always represented
by its Unicode value.

type • The type of the property. Defines how to interpret the value. The type must be
one of the following Java types:
• Str ing (default)
• Long
• Double
• Float
• Integer
• Byte
• Character
• Boolean
• Short

<body> If the value attribute is not specified, the body of the property element must con
tain one or more values. The value of the property is then an array of the specified
type. Except for Str ing objects, the result will be translated to an array of primi-
tive types. For example, if the type attribute specifies Integer , then the resulting
array must be int[] .

Values must be placed one per line and blank lines are ignored. Parsing of the
value is done by the parse methods in the class identified by the type, after trim-
ming the line of any beginning and ending white space. Str ing values are also
trimmed of beginning and ending white space before being placed in the array.

Table 112.5 Properties Element and Annotations

Attribute Annotation Description

entry Component
 propert ies

The entry path relative to the root of the bundle
OSGi Service Platform Release 4, Version 4.3 Page 231

Component Description Declarative Services Specification Version 1.2

-
-

For example, to include vendor identification properties that are stored in the OSGI-INF directory,
the following definition could be used:

<properties entry="OSGI-INF/vendor.properties" />

The Component propert ies element can be used to provide the same information, this element con-
sists of an array of strings where each string defines an entry. The order within the array is the order
that must be used for the XML. However, the annotations do not allow mixing of the property and
properties element.

For example:

@Component(properties="OSGI-INF/vendor.properties")

112.4.7 Service Element
The service element is optional. It describes the service information to be used when a component
configuration is to be registered as a service.

A service element has the following attribute Table 112.6.

The serv icefactory attribute must not be true if the component is a factory component or an immedi-
ate component. This is because SCR is not free to create component configurations as necessary to
support servicefactory . A component description is ill-formed if it specifies that the component is a
factory component or an immediate component and servicefactory is set to true .

The service element must have one or more provide elements that define the service interfaces. The
provide element has the attribute defined in Table 112.7.

For example, a component implements an Event Handler service.

<service>

<provide interface=

"org.osgi.service.eventadmin.EventHandler"/>

</service>

Table 112.6 Service Element and Annotations

Attribute Annotation Description

servicefactory Component
 servicefactory

Controls whether the service uses the ServiceFactory concept of the OSGi Frame
work. The default value is fa lse . If servicefactory is set to true , a different compo
nent configuration is created, activated and its component instance returned as
the service object for each distinct bundle that requests the service. Each of these
component configurations has the same component properties. Otherwise, the
same component instance from the single component configuration is returned
as the service object for all bundles that request the service.

Table 112.7 Provide Element and Annotations

Attribute Annotation Description

interface Component
 service

The name of the interface that this service is registered under. This name must be
the fully qualified name of a Java class. For example,
org.osgi .service. log.LogService . The specified Java class should be an interface
rather than a class, however specifying a class is supported. The component
implementation class must implement all the specified service interfaces.

The Component annotation can specify the provided services, if this element is
not specified all directly implemented interfaces on the component’s type are
defined as service interfaces. Specifying an empty array indicates that no service
should be registered.
Page 232 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Description

This previous example can be generated with the following annotation:

@Component

public class Foo implements EventHandler { ... }

112.4.8 Reference Element
A reference declares a dependency that a component has on a set of target services. A component con-
figuration is not satisfied, unless all its references are satisfied. A reference specifies target services by
specifying their interface and an optional target filter.

A reference element has the attributes defined in Table 112.8.

Table 112.8 Reference Element and Annotations

Attribute Annotation Description

name name The name of the reference. This name is local to the component and can be used
to locate a bound service of this reference with one of the locateService methods
of ComponentContext . Each reference element within the component must
have a unique name. This name attribute is optional. The default value of this
attribute is the value of the interface attribute of this element. If multiple
reference elements in the component use the same interface name, then using
the default value for this attribute will result in duplicate reference names. In this
case, this attribute must be specified with a unique name for the reference to
avoid an error.

The Reference annotation will use the full method name as the default reference
name.

interface serv ice Fully qualified name of the class that is used by the component to access the ser-
vice. The service provided to the component must be type compatible with this
class. That is, the component must be able to cast the service object to this class. A
service must be registered under this name to be considered for the set of target
services.

The Reference annotation will use the type of the first argument of the method it
is applied for the service value.

cardinal i ty cardinal i ty
 MANDATORY
 OPTIONAL
 MULTIPLE
 AT_LEAST_ONE

 Specifies if the reference is optional and if the component implementation sup-
port a single bound service or multiple bound services. See Reference Cardinality
on page 223.

pol icy pol icy
 STATIC
 DYNAMIC

The policy declares the assumption of the component about dynamicity. See Ref-
erence Policy on page 224.

pol icy-option pol icyOption
 RELUCTANT
 GREEDY

Defines the policy when a better service becomes available. See Reference Policy on
page 224.

target target An optional OSGi Framework filter expression that further constrains the set of
target services. The default is no filter, limiting the set of matched services to all
service registered under the given reference interface. The value of this attribute
is used to set a target property. See Selecting Target Services on page 226.
OSGi Service Platform Release 4, Version 4.3 Page 233

Component Life Cycle Declarative Services Specification Version 1.2

.

-

The following code demonstrates the use of the Reference annotation.

@Component

public class FooImpl implements Foo {

 @Activate

 void open() { ... }

 @Deactivate

 void close() { ... }

 @Reference(

 policy = DYNAMIC,

 policyOption=GREEDY,

 cardinality=MANDATORY)

 void setLog(LogService log) { ... }

 void unsetLog(LogService log) { ... }

 void updatedLog(Map<String,?> ref) { ... }

}

112.5 Component Life Cycle

112.5.1 Enabled
A component must first be enabled before it can be used. A component cannot be enabled unless the
component’s bundle is started. See Starting Bundles on page 91 of the Core specification. All compo-
nents in a bundle become disabled when the bundle is stopped. So the life cycle of a component is
contained within the life cycle of its bundle.

Every component can be enabled or disabled. The initial enabled state of a component is specified in
the component description via the enabled attribute of the component element. See Component Ele-
ment on page 228. Component configurations can be created, satisfied and activated only when the
component is enabled.

The enabled state of a component can be controlled with the Component Context
enableComponent(Str ing) and disableComponent(Str ing) methods. The purpose of later enabling a
component is to be able to decide programmatically when a component can become enabled. For
example, an immediate component can perform some initialization work before other components

bind Reference The name of a method in the component implementation class that is used to
notify that a service is bound to the component configuration. For static refer-
ences, this method is only called before the act ivate method. For dynamic refer-
ences, this method can also be called while the component configuration is
active. See Accessing Services on page 221.

The Reference annotation will use the method it is applied to as the bind method

updated updated The name of a method in the component implementation class that is used to
notify that a bound service has modified its properties.

unbind unbind Same as bind, but is used to notify the component configuration that the service
is unbound. For static references, the method is only called after the deactivate
method. For dynamic references, this method can also be called while the compo
nent configuration is active. See Accessing Services on page 221.

Table 112.8 Reference Element and Annotations

Attribute Annotation Description
Page 234 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Life Cycle
in the bundle are enabled. The component descriptions of all other components in the bundle can be
disabled by having enabled set to false in their component descriptions. After any necessary initial-
ization work is complete, the immediate component can call enableComponent to enable the
remaining components.

The enableComponent and disableComponent methods must return after changing the enabled
state of the named component. Any actions that result from this, such as activating or deactivating a
component configuration, must occur asynchronously to the method call. Therefore a component
can disable itself.

All components in a bundle can be enabled by passing a nul l as the argument to enableComponent .

112.5.2 Satisfied
Component configurations can only be activated when the component configuration is satisfied. A
component configuration becomes satisfied when the following conditions are all satisfied:

• The component is enabled.
• If the component description specifies configurat ion-pol icy=required , then a Configurat ion

object for the component is present in the Configuration Admin service.
• Using the component properties of the component configuration, all the component’s references

are satisfied. A reference is satisfied when the reference specifies optional cardinality or there is at
least one target service for the reference.

Once any of the listed conditions are no longer true, the component configuration becomes unsatis-
fied. An activated component configuration that becomes unsatisfied must be deactivated.

112.5.3 Immediate Component
A component is an immediate component when it must be activated as soon as its dependencies are
satisfied. Once the component configuration becomes unsatisfied, the component configuration
must be deactivated. If an immediate component configuration is satisfied and specifies a service,
SCR must register the component configuration as a service in the service registry and then activate
the component configuration. The service properties for this registration consist of the component
properties as defined in Service Properties on page 244.

The state diagram is shown in Figure 112.2.

Figure 112.2 Immediate Component Configuration

112.5.4 Delayed Component
A key attribute of a delayed component is the delaying of class loading and object creation. Therefore,
the activation of a delayed component configuration does not occur until there is an actual request
for a service object. A component is a delayed component when it specifies a service but it is not a fac-
tory component and does not have the immediate attribute of the component element set to true .

UNSATISFIED

becomes
satisfied

activate

deactivate

ACTIVE

becomes
unsatisfied

if dynamic:
rebinding
OSGi Service Platform Release 4, Version 4.3 Page 235

Component Life Cycle Declarative Services Specification Version 1.2
SCR must register a service after the component configuration becomes satisfied. The registration of
this service must look to observers of the service registry as if the component’s bundle actually regis-
tered this service. This strategy makes it possible to register services without creating a class loader
for the bundle and loading classes, thereby allowing reduction in initialization time and a delay in
memory footprint.

When SCR registers the service on behalf of a component configuration, it must avoid causing a class
load to occur from the component's bundle. SCR can ensure this by registering a ServiceFactory
object with the Framework for that service. By registering a ServiceFactory object, the actual service
object is not needed until the ServiceFactory is called to provide the service object. The service prop-
erties for this registration consist of the component properties as defined in Service Properties on page
244.

The activation of a component configuration must be delayed until its service is requested. When the
service is requested, if the service has the servicefactory attribute set to true , SCR must create and
activate a unique component configuration for each bundle requesting the service. Otherwise, SCR
must activate a single component configuration which is used by all bundles requesting the service.
A component instance can determine the bundle it was activated for by calling the getUsingBundle()
method on the Component Context.

The activation of delayed components is depicted in a state diagram in Figure 112.3. Notice that mul-
tiple component configurations can be created from the REGISTERED state if a delayed component
specifies servicefactory set to true .

If the service registered by a component configuration becomes unused because there are no more
bundles using it, then SCR should deactivate that component configuration. This allows SCR imple-
mentations to eagerly reclaim activated component configurations.

Figure 112.3 Delayed Component Configuration

112.5.5 Factory Component
SCR must register a Component Factory service as soon as the component factory becomes satisfied.
The component factory is satisfied when the following conditions are all satisfied:

• The component is enabled.
• Using the component properties specified by the component description, all the component’s ref-

erences are satisfied. A reference is satisfied when the reference specifies optional cardinality or
there is at least one target service for the reference

The component factory, however, does not use any of the target services and does not bind to them.

Once any of the listed conditions are no longer true, the component factory becomes unsatisfied and
the Component Factory service must be unregistered. Any component configurations activated via
the component factory are unaffected by the unregistration of the Component Factory service, but
may themselves become unsatisfied for the same reason.

UNSATISFIED

becomes
satisfied

becomes

activate

deactivate

ACTIVE

unsatisfied

REGISTERED becomes

get
service

unget
service unsatisfied1

if dynamic:
rebinding

servicefactory: 0..n
otherwise: 1
Page 236 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Life Cycle
The Component Factory service must be registered under the name
org.osgi .service.component.ComponentFactory with the following service properties:

• component.name – The name of the component.
• component. factory – The value of the factory attribute.

The service properties of the Component Factory service must not include the component properties.

New component configurations are created and activated when the newInstance method of the
Component Factory service is called. If the component description specifies a service, the component
configuration is registered as a service under the provided interfaces. The service properties for this
registration consist of the component properties as defined in Service Properties on page 244. The ser-
vice registration must take place before the component configuration is activated. Service unregistra-
tion must take place before the component configuration is deactivated.

Figure 112.4 Factory Component

A Component Factory service has a single method: newInstance(Dict ionary) . This method must cre-
ate, satisfy and activate a new component configuration and register its component instance as a ser-
vice if the component description specifies a service. It must then return a ComponentInstance
object. This ComponentInstance object can be used to get the component instance with the
getInstance() method.

SCR must attempt to satisfy the component configuration created by newInstance before activating
it. If SCR is unable to satisfy the component configuration given the component properties and the
Dictionary argument to newInstance , the newInstance method must throw a ComponentException .

The client of the Component Factory service can also deactivate a component configuration with the
dispose() method on the ComponentInstance object. If the component configuration is already deac-
tivated, or is being deactivated, then this method is ignored. Also, if the component configuration
becomes unsatisfied for any reason, it must be deactivated by SCR.

Once a component configuration created by the Component Factory has been deactivated, that com-
ponent configuration will not be reactivated or used again.

112.5.6 Activation
Activating a component configuration consists of the following steps:

1 Load the component implementation class.
2 Create the component instance and component context.

activate

deactivate

ACTIVE

FACTORY

becomes

newInstance

dispose
unsatisfied

0..n

1

rebinding
if dynamic

register

unregister

UNSATISFIED

becomes
satisfied

becomes
unsatisfied
OSGi Service Platform Release 4, Version 4.3 Page 237

Component Life Cycle Declarative Services Specification Version 1.2
3 Bind the target services. See Binding Services on page 238.
4 Call the activate method, if present. See Activate Method on page 238.

Component instances must never be reused. Each time a component configuration is activated, SCR
must create a new component instance to use with the activated component configuration. A compo-
nent instance must complete activation before it can be deactivated. Once the component configura-
tion is deactivated or fails to activate due to an exception, SCR must unbind all the component’s
bound services and discard all references to the component instance associated with the activation.

112.5.7 Binding Services
When a component configuration’s reference is satisfied, there is a set of zero or more target services
for that reference. When the component configuration is activated, a subset of the target services for
each reference are bound to the component configuration. The subset is chosen by the cardinality of
the reference. See Reference Cardinality on page 223.

When binding services, the references are processed in the order in which they are specified in the
component description. That is, target services from the first specified reference are bound before ser-
vices from the next specified reference.

For each reference using the event strategy, the bind method must be called for each bound service of
that reference. This may result in activating a component configuration of the bound service which
could result in an exception. If the loss of the bound service due to the exception causes the refer-
ence’s cardinality constraint to be violated, then activation of this component configuration will fail.
Otherwise the bound service which failed to activate will be considered unbound. If a bind method
throws an exception, SCR must log an error message containing the exception with the Log Service, if
present, but the activation of the component configuration does not fail.

112.5.8 Activate Method
A component instance can have an activate method. The name of the activate method can be speci-
fied by the act ivate attribute. See Component Element on page 228. If the act ivate attribute is not spec-
ified, the default method name of activate is used. The prototype of the activate method is:

void <method-name>(<arguments>);

The activate method can take zero or more arguments. Each argument must be of one of the follow-
ing types:

• ComponentContext – The component instance will be passed the Component Context for the
component configuration.

• BundleContext – The component instance will be passed the Bundle Context of the component's
bundle.

• Map – The component instance will be passed an unmodifiable Map containing the component
properties.

A suitable method is selected using the following priority:

1 The method takes a single argument and the type of the argument is
org.osgi .serv ice.component.ComponentContext .

2 The method takes a single argument and the type of the argument is
org.osgi . framework.BundleContext .

3 The method takes a single argument and the type of the argument is the java.uti l .Map .
4 The method takes two or more arguments and the type of each argument must be

org.osgi .serv ice.component.ComponentContext , org.osgi . framework.BundleContext or
java.ut i l .Map . If multiple methods match this rule, this implies the method name is overloaded
and SCR may choose any of the methods to call.

5 The method takes zero arguments.
Page 238 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Life Cycle
When searching for the activate method to call, SCR must locate a suitable method as specified in
Locating Component Methods on page 247. If the act ivate attribute is specified and no suitable method
is located, SCR must log an error message with the Log Service, if present, and the component config-
uration is not activated.

If an activate method is located, SCR must call this method to complete the activation of the compo-
nent configuration. If the activate method throws an exception, SCR must log an error message con-
taining the exception with the Log Service, if present, and the component configuration is not
activated.

112.5.9 Component Context
The Component Context is made available to a component instance via the act ivate and deactivate
methods. It provides the interface to the execution context of the component, much like the Bundle
Context provides a bundle the interface to the Framework. A Component Context should therefore
be regarded as a capability and not shared with other components or bundles.

Each distinct component instance receives a unique Component Context. Component Contexts are
not reused and must be discarded when the component configuration is deactivated.

112.5.10 Bound Service Replacement
If an active component configuration has a dynamic reference with unary cardinality and the bound
service is modified or unregistered and ceases to be a target service, or the pol icy-option is greedy
and a better target service becomes available then SCR must attempt to replace the bound service
with a new target service. SCR must first bind a replacement target service and then unbind the out-
going service. This reversed order allows the component to not having to handle the inevitable gap
between the unbind and bind methods. However, this means that in the unbind method care must be
taken to not overwrite the newly bound service. For example, the following code handles the associ-
ated concurrency issues and simplify handling the reverse order.

final AtomicReference<LogService> log = new AtomicReference<LogService>();

void setLogService(LogService log) {

 this.log.set(log);

}

void unsetLogService(LogService log) {

this.log.compareAndSet(log,null);

}

If the dynamic reference has a mandatory cardinality and no replacement target service is available,
the component configuration must be deactivated because the cardinality constraints will be vio-
lated.

If a component configuration has a static reference and a bound service is modified or unregistered
and ceases to be a target service, or the pol icy-option is greedy and a better target service becomes
available then SCR must deactivate the component configuration. Afterwards, SCR must attempt to
activate the component configuration again if another target service can be used as a replacement for
the outgoing service.

112.5.11 Updated method
If an active component is bound to a service that modifies it properties then the component can be
notified with the update method specified on the reference element. This method can be called with
a Service Reference or a Map to obtain the service properties.
OSGi Service Platform Release 4, Version 4.3 Page 239

Component Life Cycle Declarative Services Specification Version 1.2
112.5.12 Modification
Modifying a component configuration can occur if the component description specifies the modif ied
attribute and the component properties of the component configuration use a Configurat ion object
from the Configuration Admin service and that Configurat ion object is modified without causing the
component configuration to become unsatisfied. If this occurs, the component instance will be noti-
fied of the change in the component properties.

If the modif ied attribute is not specified, then the component configuration will become unsatisfied
if its component properties use a Configurat ion object and that Configuration object is modified in
any way.

Modifying a component configuration consists of the following steps:

1 Update the component context for the component configuration with the modified configuration
properties.

2 Call the modified method. See Modified Method on page 240.
3 Modify the bound services for the dynamic references if the set of target services changed due to

changes in the target properties. See Bound Service Replacement on page 239.
4 If the component configuration is registered as a service, modify the service properties.

A component instance must complete activation, or a previous modification, before it can be modi-
fied.

See Modified Configurations on page 244 for more information.

112.5.13 Modified Method
The name of the modified method is specified by the modif ied attribute. See Component Element on
page 228. The prototype and selection priority of the modified method is identical to that of the acti-
vate method. See Activate Method on page 238.

SCR must locate a suitable method as specified in Locating Component Methods on page 247. If the
modif ied attribute is specified and no suitable method is located, SCR must log an error message with
the Log Service, if present, and the component configuration becomes unsatisfied and is deactivated
as if the modif ied attribute was not specified.

If a modified method is located, SCR must call this method to notify the component configuration of
changes to the component properties. If the modified method throws an exception, SCR must log an
error message containing the exception with the Log Service, if present and continue processing the
modification.

112.5.14 Deactivation
Deactivating a component configuration consists of the following steps:

1 Call the deactivate method, if present. See Deactivate Method on page 241.
2 Unbind any bound services. See Unbinding on page 241.
3 Release all references to the component instance and component context.

A component instance must complete activation or modification before it can be deactivated. A com-
ponent configuration can be deactivated for a variety of reasons. The deactivation reason can be
received by the deactivate method. The following reason values are defined:

• 0 – Unspecified.
• 1 – The component was disabled.
• 2 – A reference became unsatisfied.
• 3 – A configuration was changed.
• 4 – A configuration was deleted.
• 5 – The component was disposed.
• 6 – The bundle was stopped.
Page 240 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Life Cycle
Once the component configuration is deactivated, SCR must discard all references to the component
instance and component context associated with the activation.

112.5.15 Deactivate Method
A component instance can have a deactivate method. The name of the deactivate method can be spec-
ified by the deactivate attribute. See Component Element on page 228. If the deactivate attribute is not
specified, the default method name of deactivate is used. The prototype of the deactivate method is:

void <method-name>(<arguments>);

The deactivate method can take zero or more arguments. Each argument must be assignable from
one of the following types:

• ComponentContext – The component instance will be passed the Component Context for the
component.

• BundleContext – The component instance will be passed the Bundle Context of the component's
bundle.

• Map – The component instance will be passed an unmodifiable Map containing the component
properties.

• int or Integer – The component instance will be passed the reason the component configuration
is being deactivated. See Deactivation on page 240.

A suitable method is selected using the following priority:

1 The method takes a single argument and the type of the argument is
org.osgi .service.component.ComponentContext .

2 The method takes a single argument and the type of the argument is
org.osgi . f ramework.BundleContext .

3 The method takes a single argument and the type of the argument is the java.ut i l .Map .
4 The method takes a single argument and the type of the argument is the int .
5 The method takes a single argument and the type of the argument is the java. lang. Integer .
6 The method takes two or more arguments and the type of each argument must be

org.osgi .service.component.ComponentContext , org.osgi . framework.BundleContext ,
java.ut i l .Map , int or java. lang. Integer . If multiple methods match this rule, this implies the
method name is overloaded and SCR may choose any of the methods to call.

7 The method takes zero arguments.

When searching for the deactivate method to call, SCR must locate a suitable method as specified in
Locating Component Methods on page 247. If the deactivate attribute is specified and no suitable
method is located, SCR must log an error message with the Log Service, if present, and the deactiva-
tion of the component configuration will continue.

If a deactivate method is located, SCR must call this method to commence the deactivation of the
component configuration. If the deactivate method throws an exception, SCR must log an error mes-
sage containing the exception with the Log Service, if present, and the deactivation of the component
configuration will continue.

112.5.16 Unbinding
When a component configuration is deactivated, the bound services are unbound from the compo-
nent configuration.

When unbinding services, the references are processed in the reverse order in which they are speci-
fied in the component description. That is, target services from the last specified reference are
unbound before services from the previous specified reference.

For each reference using the event strategy, the unbind method must be called for each bound service
of that reference. If an unbind method throws an exception, SCR must log an error message contain-
ing the exception with the Log Service, if present, and the deactivation of the component configura-
tion will continue.
OSGi Service Platform Release 4, Version 4.3 Page 241

Component Life Cycle Declarative Services Specification Version 1.2
112.5.17 Life Cycle Example
A component could declare a dependency on the Http Service to register some resources.

<xml version="1.0" encoding="UTF-8">

<scr:component name="example.binding"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0">

<implementation class="example.Binding"/>

<reference name="LOG"

interface="org.osgi.service.log.LogService"

cardinality="1..1"

policy="static"

/>

<reference name="HTTP"

interface="org.osgi.service.http.HttpService"

cardinality="0..1"

policy="dynamic"

bind="setHttp"

unbind="unsetHttp"

/>

</scr:component>

The component implementation code looks like:

public class Binding {

LogService log;

HttpService http;

private void setHttp(HttpService h) {

this.http = h;

// register servlet

}

 private void unsetHttp(HttpService h){

this.h = null;

// unregister servlet

}

private void activate(ComponentContext context) {.

 log = (LogService) context.locateService("LOG");

 }

private void deactivate(ComponentContext context){...}

}

This example is depicted in a sequence diagram in Figure 112.5. with the following scenario:

1 A bundle with the example.Binding component is started. At that time there is a Log Service l1
and a Http Service h1 registered.

2 The Http Service h1 is unregistered
3 A new Http Service h2 is registered
4 The Log Service h1 is unregistered.
Page 242 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Properties
Figure 112.5 Sequence Diagram for binding

112.6 Component Properties
Each component configuration is associated with a set of component properties. The component
properties are specified in the following places (in order of precedence):

1 Properties specified in the argument of ComponentFactory.newInstance method. This is only
applicable for factory components.

2 Properties retrieved from the OSGi Configuration Admin service with a Configuration object that
has a PID equal to the configuration PID. The configuration PID is the component name, or when
specified, the configuration-pid attribute.

3 Properties specified in the component description. Properties specified later in the component
description override properties that have the same name specified earlier. Properties can be spec-
ified in the component description in the following ways:
• target attribute of reference elements – Sets a component property called the target property of

the reference. The key of a target property is the name of the reference appended with . target .
The value of a target property is the value of the target attribute. For example, a reference with
the name http whose target attribute has the value "(http.port=80)" results in the component
property having the name http.target and value "(http.port=80)". See Selecting Target Services
on page 226. The target property can also be set wherever component properties can be set.

• property and propert ies elements – See Property Element on page 230.

The precedence behavior allows certain default values to be specified in the component description
while allowing properties to be replaced and extended by:

• A configuration in Configuration Admin
• The argument to ComponentFactory.newInstance method

SCR always adds the following component properties, which cannot be overridden:

• component.name – The component name.

• component. id – A unique value (Long) that is larger than all previously assigned values. These
values are not persistent across restarts of SCR.

a ComponentLog Service Ref.Http Service Ref.SCR

bundle started
resolve
resolve
satisfied
satisfied
setHttp(h1)

activate(context)

unregistered

dynamic, 0..1 static, 1..1

unsetHttp(h1)

locateService("LOG")

available
setHttp(h2)

unregistered
deactivate(context)
unsetHttp(h2)

1.

2.

3.

4.

Configuration

create
OSGi Service Platform Release 4, Version 4.3 Page 243

Deployment Declarative Services Specification Version 1.2
112.6.1 Service Properties
When SCR registers a service on behalf of a component configuration, SCR must follow the recom-
mendations in Property Propagation on page 95 and must not propagate private configuration proper-
ties. That is, the service properties of the registered service must be all the component properties of
the component configuration whose property names do not start with full stop (’ . ’ \u002E).

Component properties whose names start with full stop are available to the component instance but
are not available as service properties of the registered service.

112.7 Deployment
A component description contains default information to select target services for each reference.
However, when a component is deployed, it is often necessary to influence the target service selec-
tion in a way that suits the needs of the deployer. Therefore, SCR uses Configurat ion objects from
Configuration Admin to replace and extend the component properties for a component configura-
tion. That is, through Configuration Admin, a deployer can configure component properties.

The name of the component is used as the key for obtaining additional component properties from
Configuration Admin. The following situations can arise:

• No Configuration – If the component’s conf igurat ion-pol icy is set to ignore or there is no Configu-
ration with a PID or factory PID equal to the configuration PID, then component configurations
will not obtain component properties from Configuration Admin. Only component properties
specified in the component description or via the ComponentFactory .newInstance method will
be used.

• Not Satisfied – If the component’s conf igurat ion-pol icy is set to require and there is no Configu-
ration with a PID or factory PID equal to the configuration PID, then the component configu-
ration is not satisfied and will not be activated.

• Single Configuration – If there exists a Configuration with a PID equal to the configuration PID,
then component configurations will obtain additional component properties from Configuration
Admin.

• Factory Configuration – If a factory PID exists, with zero or more Configurations, that is equal to the
configuration PID, then for each Configuration, a component configuration must be created that
will obtain additional component properties from Configuration Admin.

A factory configuration must not be used if the component is a factory component. This is because
SCR is not free to create component configurations as necessary to support multiple Configurat ions.
When SCR detects this condition, it must log an error message with the Log Service, if present, and
ignore the component description.

SCR must obtain the Configurat ion objects from the Configuration Admin service using the Bundle
Context of the bundle containing the component.

For example, there is a component named com.acme.cl ient with a reference named HTTP that
requires an Http Service which must be bound to a component com.acme.httpserver which provides
an Http Service. A deployer can establish the following configuration:

[PID=com.acme.client, factoryPID=null]

HTTP.target = (component.name=com.acme.httpserver)

112.7.1 Modified Configurations
SCR must track changes in the Configurat ion objects used in the component properties of a compo-
nent configuration. If a Configurat ion object that is used by a component configuration is deleted,
then the component configuration will become unsatisfied and SCR must deactivate that component
configuration.
Page 244 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Use of the Annotations
If a Configuration object that is used by a component configuration changes, then SCR must take
action based upon whether the component configuration has been activated and whether the com-
ponent description specifies the modif ied attribute.

If a component configuration has not been activated and it has a service registered, then a
Configurat ion object change that leaves the component configuration satisfied will only cause the
service properties of the service to be modified.

If a component description specifies the modif ied attribute and the changes to the target properties
for the component configuration do not cause any references of the component configuration to
become unsatisfied, SCR must modify the component properties for the component configuration.
See Modification on page 240. A reference can become unsatisfied by a target property change if either:

• A bound service of a static reference is no longer a target service, or
• There are no target services for a mandatory dynamic reference.

Otherwise, the component configuration will become unsatisfied and SCR must deactivate that com-
ponent configuration. SCR must attempt to satisfy the component configuration with the updated
component properties.

112.8 Use of the Annotations
The Declarative Services Annotations provide a convenient way to create the component description
XML during build time. Since annotations are placed in the source file and can use types, fields, and
methods they can significantly simplify the use of Declarative Services.

The Declarative Services Annotations are build time annotations because one of the key aspect of
Declarative Services is its laziness. Implementations can easily read the component description XML
from the bundle, pre-process it, and cache the results between framework invocations. This is way it
is unnecessary to create a class on the bundle when the bundle is started and/or scan the classes for
annotations.

The Declarative Services Annotations are not inherited, they can only be used on a given class, anno-
tations on its super class hierarchy or interfaces are not taken into account.

The primary annotation is the Component annotation. It indicates that a class is a component. It’s
defaults create the easiest to use component:

• Its name is the class name
• It registers all directly implemented interfaces as services
• The instance will be shared by all bundles
• It is enabled
• It is immediate if it has no services, otherwise it is delayed
• It has an optional configuration policy
• The configuration PID is the class name

For example, the following class registers a Speech service that can run on a Macintosh:

pubic interface Speech {

 void say(String what) throws Exception;

}

@Component

public class MacSpeech implements Speech {

 ScriptEngine engine =

 new ScriptEngineManager().getEngineByName("AppleScript");

 public void say(String message) throws Exception {

engine.eval("say \"" + message.replace(’"’,’\’’ + "\"");
OSGi Service Platform Release 4, Version 4.3 Page 245

Service Component Runtime Declarative Services Specification Version 1.2
}

}

The previous example must generate the following XML:

<scr:component name=’com.example.MacSpeech'>

 <implementation class='com.example.MacSpeech'/>

 <service>

 <provide interface='com.example.service.speech.Speech'/>

 </service>

</component>

It is possible to add activate and deactivate methods on the component with the Activate and
Deactivate annotations. If the component wants to be updated for changes in the configuration
properties than it can also indicated the modified method with the Modified annotation. For exam-
ple:

@Activate

void open(Map<String,?> properties) { ... }

@Deactivate

void close() { ... }

@Modified

void modified(Map<String,?> properties) { ... }

If a component has dependencies on other services then they can be referenced with the Reference
annotation that is applied to the bind method. The defaults for the reference annotations are:

• The name of the bind method is used for the name of the reference.
• 1:1 Cardinality.
• Static reluctant policy.
• The requested service is the type of the first argument of the method the Reference annotation is

applied to.
• It will infer a default unset method and updated method based on the method name it is applied

to.

For example:

@Reference(cardinality=MULTIPLE, policy=DYNAMIC)

void setLogService(LogService log, Map<String,?> props) { ... }

void unsetLogService(LogService log) { ... }

void updatedLogService(Map<String,?> map) { ...}

112.9 Service Component Runtime

112.9.1 Relationship to OSGi Framework
The SCR must have access to the Bundle Context of any bundle that contains a component. The SCR
needs access to the Bundle Context for the following reasons:

• To be able to register and get services on behalf of a bundle with components.
• To interact with the Configuration Admin on behalf of a bundle with components.
• To provide a component its Bundle Context when the Component Context getBundleContext

method is called.

The SCR should use the Bundle.getBundleContext() method to obtain the Bundle Context reference.
Page 246 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Service Component Runtime
112.9.2 Starting and Stopping SCR
When SCR is implemented as a bundle, any component configurations activated by SCR must be
deactivated when the SCR bundle is stopped. When the SCR bundle is started, it must process any
components that are declared in bundles that are started. This includes bundles which are started and
are awaiting lazy activation.

112.9.3 Logging Error Messages
When SCR must log an error message to the Log Service, it must use a Log Service obtained using the
component’s Bundle Context so that the resulting Log Entry is associated with the component’s bun-
dle.

If SCR is unable to obtain, or use, a Log Service using the component’s Bundle Context, then SCR
must log the error message to a Log Service obtained using SCR’s bundle context to ensure the error
message is logged.

112.9.4 Locating Component Methods
SCR will need to locate activate, deactivate, modified, bind, updated, and unbind methods for a com-
ponent instance. These methods will be located, and called, using reflection. The declared methods of
each class in the component implementation class' hierarchy are examined for a suitable method. If a
suitable method is found in a class, and it is accessible to the component implementation class, then
that method must be used. If suitable methods are found in a class but none of the suitable methods
are accessible by the component implementation class, then the search for suitable methods termi-
nates with no suitable method having been located. If no suitable methods are found in a class, the
search continues in the superclass.

Only methods that are accessible, [5] Access Control Java Language Specification, to the component
implementation class will be used. If the method has the public or protected access modifier, then
access is permitted. Otherwise, if the method has the private access modifier, then access is permitted
only if the method is declared in the component implementation class. Otherwise, if the method has
default access, also known as package private access, then access is permitted only if the method is
declared in the component implementation class or if the method is declared in a superclass and all
classes in the hierarchy from the component implementation class to the superclass, inclusive, are in
the same package and loaded by the same class loader.

It is recommended that these methods should not be declared with the publ ic access modifier so that
they do not appear as public methods on the component instance when it is used as a service object.
Having these methods declared publ ic allows any code to call the methods with reflection, even if a
Security Manager is installed. These methods are generally intended to only be called by SCR.

112.9.5 Bundle Activator Interaction
A bundle containing components may also declare a Bundle Activator. Such a bundle may also be
marked for lazy activation. Since components are activated by SCR and Bundle Activators are called
by the OSGi Framework, a bundle using both components and a Bundle Activator must take care.
The Bundle Activator’s start method must not rely upon SCR having activated any of the bundle’s
components. However, the components can rely upon the Bundle Activator’s start method having
been called. That is, there is a happens-before relationship between the Bundle Activator’s start method
being run and the components being activated.
OSGi Service Platform Release 4, Version 4.3 Page 247

Security Declarative Services Specification Version 1.2
112.10 Security

112.10.1 Service Permissions
Declarative services are built upon the existing OSGi service infrastructure. This means that Service
Permission applies regarding the ability to publish, find or bind services.

If a component specifies a service, then component configurations for the component cannot be sat-
isfied unless the component’s bundle has ServicePermission[<provides>, REGISTER] for each pro-
vided interface specified for the service.

If a component’s reference does not specify optional cardinality, the reference cannot be satisfied
unless the component’s bundle has ServicePermission[<interface>, GET] for the specified interface
in the reference. If the reference specifies optional cardinality but the component’s bundle does not
have ServicePermission[<interface>, GET] for the specified interface in the reference, no service
must be bound for this reference.

If a component is a factory component, then the above Service Permission checks still apply. But the
component’s bundle is not required to have ServicePermission[ComponentFactory, REGISTER] as
the Component Factory service is registered by SCR.

112.10.2 Required Admin Permission
The SCR requires AdminPermission[*,CONTEXT] because it needs access to the bundle’s Bundle Con-
text object with the Bundle.getBundleContext() method.

112.10.3 Using hasPermission
SCR does all publishing, finding and binding of services on behalf of the component using the Bundle
Context of the component’s bundle. This means that normal stack-based permission checks will
check SCR and not the component’s bundle. Since SCR is registering and getting services on behalf of
a component’s bundle, SCR must call the Bundle.hasPermission method to validate that a compo-
nent’s bundle has the necessary permission to register or get a service.

112.11 Component Description Schema
This XML Schema defines the component description grammar.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.2.0"
targetNamespace="http://www.osgi.org/xmlns/scr/v1.2.0"
elementFormDefault="unqualified"
attributeFormDefault="unqualified"
version="1.2.0">

<annotation>
<documentation xml:lang="en">

This is the XML Schema for component descriptions used by
the Service Component Runtime (SCR). Component description
documents may be embedded in other XML documents. SCR will
process all XML documents listed in the Service-Component
manifest header of a bundle. XML documents containing
component descriptions may contain a single, root component
element or one or more component elements embedded in a
larger document. Use of the namespace for component
descriptions is mandatory. The attributes and subelements
of a component element are always unqualified.

</documentation>
</annotation>
<element name="component" type="scr:Tcomponent" />
<complexType name="Tcomponent">

<sequence>
Page 248 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Component Description Schema
<annotation>
<documentation xml:lang="en">

Implementations of SCR must not require component
descriptions to specify the subelements of the component
element in the order as required by the schema. SCR
implementations must allow other orderings since
arbitrary orderings do not affect the meaning of the
component description. Only the relative ordering of
property and properties element have meaning.

</documentation>
</annotation>
<choice minOccurs="0" maxOccurs="unbounded">

<element name="property" type="scr:Tproperty" />
<element name="properties" type="scr:Tproperties" />

</choice>
<element name="service" type="scr:Tservice" minOccurs="0"

maxOccurs="1" />
<element name="reference" type="scr:Treference"

minOccurs="0" maxOccurs="unbounded" />
<element name="implementation" type="scr:Timplementation"

minOccurs="1" maxOccurs="1" />
<any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="enabled" type="boolean" default="true"

use="optional" />
<attribute name="name" type="token" use="optional">

<annotation>
<documentation xml:lang="en">

The default value of this attribute is the value of
the class attribute of the nested implementation
element. If multiple component elements use the same
value for the class attribute of their nested
implementation element, then using the default value
for this attribute will result in duplicate names.
In this case, this attribute must be specified with
a unique value.

</documentation>
</annotation>

</attribute>
<attribute name="factory" type="string" use="optional" />
<attribute name="immediate" type="boolean" use="optional" />
<attribute name="configuration-policy"

type="scr:Tconfiguration-policy" default="optional" use="optional" />
<attribute name="activate" type="token" use="optional"

default="activate" />
<attribute name="deactivate" type="token" use="optional"

default="deactivate" />
<attribute name="modified" type="token" use="optional" />
<attribute name="configuration-pid" type="token" use="optional">

<annotation>
<documentation xml:lang="en">

The default value of this attribute is the value of
the name attribute of this element.

</documentation>
</annotation>

</attribute>
<anyAttribute />

</complexType>
<complexType name="Timplementation">

<sequence>
<any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="class" type="token" use="required" />
<anyAttribute />

</complexType>
<complexType name="Tproperty">

<simpleContent>
<extension base="string">

<attribute name="name" type="string" use="required" />
<attribute name="value" type="string" use="optional" />
<attribute name="type" type="scr:Tjava-types"

default="String" use="optional" />
<anyAttribute />
OSGi Service Platform Release 4, Version 4.3 Page 249

Component Description Schema Declarative Services Specification Version 1.2
</extension>
</simpleContent>

</complexType>
<complexType name="Tproperties">

<sequence>
<any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="entry" type="string" use="required" />
<anyAttribute />

</complexType>
<complexType name="Tservice">

<sequence>
<element name="provide" type="scr:Tprovide" minOccurs="1"

maxOccurs="unbounded" />
<!-- It is non-deterministic, per W3C XML Schema 1.0:
http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use name space="##any" below. -->
<any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="servicefactory" type="boolean" default="false"

use="optional" />
<anyAttribute />

</complexType>
<complexType name="Tprovide">

<sequence>
<any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="interface" type="token" use="required" />
<anyAttribute />

</complexType>
<complexType name="Treference">

<sequence>
<any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="name" type="token" use="optional">

<annotation>
<documentation xml:lang="en">

The default value of this attribute is the value of
the interface attribute of this element. If multiple
instances of this element within a component element
use the same value for the interface attribute, then
using the default value for this attribute will result
in duplicate names. In this case, this attribute
must be specified with a unique value.

</documentation>
</annotation>

</attribute>
<attribute name="interface" type="token" use="required" />
<attribute name="cardinality" type="scr:Tcardinality"

default="1..1" use="optional" />
<attribute name="policy" type="scr:Tpolicy" default="static"

use="optional" />
<attribute name="policy-option" type="scr:Tpolicy-option"

default="reluctant" use="optional" />
<attribute name="target" type="string" use="optional" />
<attribute name="bind" type="token" use="optional" />
<attribute name="unbind" type="token" use="optional" />
<attribute name="updated" type="token" use="optional" />
<anyAttribute />

</complexType>
<simpleType name="Tjava-types">

<restriction base="string">
<enumeration value="String" />
<enumeration value="Long" />
<enumeration value="Double" />
<enumeration value="Float" />
<enumeration value="Integer" />
<enumeration value="Byte" />
<enumeration value="Character" />
<enumeration value="Boolean" />
<enumeration value="Short" />
Page 250 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 Changes
</restriction>
</simpleType>
<simpleType name="Tcardinality">

<restriction base="string">
<enumeration value="0..1" />
<enumeration value="0..n" />
<enumeration value="1..1" />
<enumeration value="1..n" />

</restriction>
</simpleType>
<simpleType name="Tpolicy">

<restriction base="string">
<enumeration value="static" />
<enumeration value="dynamic" />

</restriction>
</simpleType>
<simpleType name="Tpolicy-option">

<restriction base="string">
<enumeration value="reluctant" />
<enumeration value="greedy" />

</restriction>
</simpleType>
<simpleType name="Tconfiguration-policy">

<restriction base="string">
<enumeration value="optional" />
<enumeration value="require" />
<enumeration value="ignore" />

</restriction>
</simpleType>
<attribute name="must-understand" type="boolean">

<annotation>
<documentation xml:lang="en">

This attribute should be used by extensions to documents
to require that the document consumer understand the
extension. This attribute must be qualified when used.

</documentation>
</annotation>

</attribute>
</schema>

SCR must not require component descriptions to specify the elements in the order required by the
schema. SCR must allow other orderings since arbitrary orderings of these elements do not affect the
meaning of the component description. Only the relative ordering of property , propert ies and
reference elements have meaning for overriding previously set property values.

The schema is also available in digital form from [6] OSGi XML Schemas.

112.12 Changes
• Added a section to clarify the interaction between component activation and Bundle Activator

execution.
• Added an updated method to the reference element to receive services updates for bound refer-

ences
• Added a conf igurat ion-pid attribute to the component element to allow the configuration PID to

be separate from the component name.
• Added a new policy-option attribute to the reference element to allow references to be greedy for

rebinding.
• Added build time annotations

112.13 org.osgi.service.component
Service Component Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.
OSGi Service Platform Release 4, Version 4.3 Page 251

org.osgi.service.component Declarative Services Specification Version 1.2
Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component; version=”[1.2,2.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component; version=”[1.2,1 .3)”

112.13.1 Summary
• ComponentConstants – Defines standard names for Service Component constants.
• ComponentContext – A Component Context object is used by a component instance to interact

with its execution context including locating services by reference name.
• ComponentException – Unchecked exception which may be thrown by the Service Component

Runtime.
• ComponentFactory – When a component is declared with the factory attribute on its component

element, the Service Component Runtime will register a Component Factory service to allow new
component configurations to be created and activated rather than automatically creating and
activating component configuration as necessary.

• ComponentInstance – A ComponentInstance encapsulates a component instance of an activated
component configuration.

112.13.2 Permissions
ComponentConstants

112.13.3 public interface ComponentConstants
Defines standard names for Service Component constants.

No Implement Consumers of this API must not implement this interface
COMPONENT_FACTORY

112.13.3.1 public static final String COMPONENT_FACTORY = “component.factory”

A service registration property for a Component Factory that contains the value of the factory
attribute. The value of this property must be of type Str ing .
COMPONENT_ID

112.13.3.2 public static final String COMPONENT_ID = “component.id”

A component property that contains the generated id for a component configuration. The value of
this property must be of type Long .

The value of this property is assigned by the Service Component Runtime when a component config-
uration is created. The Service Component Runtime assigns a unique value that is larger than all pre-
viously assigned values since the Service Component Runtime was started. These values are NOT
persistent across restarts of the Service Component Runtime.
COMPONENT_NAME

112.13.3.3 public static final String COMPONENT_NAME = “component.name”

A component property for a component configuration that contains the name of the component as
specified in the name attribute of the component element. The value of this property must be of type
Str ing .
DEACTIVATION_REASON_BUNDLE_STOPPED

112.13.3.4 public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6

The component configuration was deactivated because the bundle was stopped.

Since 1.1
DEACTIVATION_REASON_CONFIGURATION_DELETED

112.13.3.5 public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4

The component configuration was deactivated because its configuration was deleted.

Since 1.1
DEACTIVATION_REASON_CONFIGURATION_MODIFIED
Page 252 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 org.osgi.service.component
112.13.3.6 public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3

The component configuration was deactivated because its configuration was changed.

Since 1.1
DEACTIVATION_REASON_DISABLED

112.13.3.7 public static final int DEACTIVATION_REASON_DISABLED = 1

The component configuration was deactivated because the component was disabled.

Since 1.1
DEACTIVATION_REASON_DISPOSED

112.13.3.8 public static final int DEACTIVATION_REASON_DISPOSED = 5

The component configuration was deactivated because the component was disposed.

Since 1.1
DEACTIVATION_REASON_REFERENCE

112.13.3.9 public static final int DEACTIVATION_REASON_REFERENCE = 2

The component configuration was deactivated because a reference became unsatisfied.

Since 1.1
DEACTIVATION_REASON_UNSPECIFIED

112.13.3.10 public static final int DEACTIVATION_REASON_UNSPECIFIED = 0

The reason the component configuration was deactivated is unspecified.

Since 1.1
REFERENCE_TARGET_SUFFIX

112.13.3.11 public static final String REFERENCE_TARGET_SUFFIX = “.target”

The suffix for reference target properties. These properties contain the filter to select the target ser-
vices for a reference. The value of this property must be of type Str ing .
SERVICE_COMPONENT

112.13.3.12 public static final String SERVICE_COMPONENT = “Service-Component”

Manifest header specifying the XML documents within a bundle that contain the bundle’s Service
Component descriptions.

The attribute value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.
ComponentContext

112.13.4 public interface ComponentContext
A Component Context object is used by a component instance to interact with its execution context
including locating services by reference name. Each component instance has a unique Component
Context.

A component instance may have an activate method. If a component instance has a suitable and
accessible activate method, this method will be called when a component configuration is activated.
If the activate method takes a ComponentContext argument, it will be passed the component
instance’s Component Context object. If the activate method takes a BundleContext argument, it will
be passed the component instance’s Bundle Context object. If the activate method takes a Map argu-
ment, it will be passed an unmodifiable Map containing the component properties.

A component instance may have a deactivate method. If a component instance has a suitable and
accessible deactivate method, this method will be called when the component configuration is deac-
tivated. If the deactivate method takes a ComponentContext argument, it will be passed the compo-
nent instance’s Component Context object. If the deactivate method takes a BundleContext
argument, it will be passed the component instance’s Bundle Context object. If the deactivate method
takes a Map argument, it will be passed an unmodifiable Map containing the component properties.
If the deactivate method takes an int or Integer argument, it will be passed the reason code for the
component instance’s deactivation.

Concurrency Thread-safe
OSGi Service Platform Release 4, Version 4.3 Page 253

org.osgi.service.component Declarative Services Specification Version 1.2
No Implement Consumers of this API must not implement this interface
disableComponent(String)

112.13.4.1 public void disableComponent (String name)

name The name of a component.

 Disables the specified component name. The specified component name must be in the same bundle
as this component.
enableComponent(String)

112.13.4.2 public void enableComponent (String name)

name The name of a component or nul l to indicate all components in the bundle.

 Enables the specified component name. The specified component name must be in the same bundle
as this component.
getBundleContext()

112.13.4.3 public BundleContext getBundleContext ()

 Returns the BundleContext of the bundle which contains this component.

Returns The BundleContext of the bundle containing this component.
getComponentInstance()

112.13.4.4 public ComponentInstance getComponentInstance ()

 Returns the Component Instance object for the component instance associated with this Component
Context.

Returns The Component Instance object for the component instance.
getProperties()

112.13.4.5 public Dictionary getProperties ()

 Returns the component properties for this Component Context.

Returns The properties for this Component Context. The Dictionary is read only and cannot be modified.
getServiceReference()

112.13.4.6 public ServiceReference getServiceReference ()

 If the component instance is registered as a service using the service element, then this method
returns the service reference of the service provided by this component instance.

This method will return nul l if the component instance is not registered as a service.

Returns The ServiceReference object for the component instance or nul l if the component instance is not reg-
istered as a service.
getUsingBundle()

112.13.4.7 public Bundle getUsingBundle ()

 If the component instance is registered as a service using the servicefactory=”true” attribute, then
this method returns the bundle using the service provided by the component instance.

This method will return nul l if:

• The component instance is not a service, then no bundle can be using it as a service.
• The component instance is a service but did not specify the servicefactory=”true” attribute, then

all bundles using the service provided by the component instance will share the same component
instance.

• The service provided by the component instance is not currently being used by any bundle.

Returns The bundle using the component instance as a service or nul l .
locateService(String)

112.13.4.8 public Object locateService (String name)

name The name of a reference as specified in a reference element in this component’s description.

 Returns the service object for the specified reference name.
Page 254 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 org.osgi.service.component
If the cardinality of the reference is 0..n or 1. .n and multiple services are bound to the reference, the
service with the highest ranking (as specified in its Constants.SERVICE_RANKING property) is
returned. If there is a tie in ranking, the service with the lowest service ID (as specified in its
Constants.SERVICE_ID property); that is, the service that was registered first is returned.

Returns A service object for the referenced service or nul l if the reference cardinality is 0..1 or 0..n and no
bound service is available.

Throws ComponentException – If the Service Component Runtime catches an exception while activating the
bound service.
locateService(String,ServiceReference)

112.13.4.9 public Object locateService (String name , ServiceReference reference)

name The name of a reference as specified in a reference element in this component’s description.

reference The ServiceReference to a bound service. This must be a ServiceReference provided to the compo-
nent via the bind or unbind method for the specified reference name.

 Returns the service object for the specified reference name and ServiceReference .

Returns A service object for the referenced service or null if the specified ServiceReference is not a bound serv-
ice for the specified reference name.

Throws ComponentException – If the Service Component Runtime catches an exception while activating the
bound service.
locateServices(String)

112.13.4.10 public Object[] locateServices (String name)

name The name of a reference as specified in a reference element in this component’s description.

 Returns the service objects for the specified reference name.

Returns An array of service objects for the referenced service or nul l if the reference cardinality is 0..1 or 0. .n
and no bound service is available. If the reference cardinality is 0..1 or 1. .1 and a bound service is avail-
able, the array will have exactly one element.

Throws ComponentException – If the Service Component Runtime catches an exception while activating a
bound service.
ComponentException

112.13.5 public class ComponentException
extends RuntimeException
Unchecked exception which may be thrown by the Service Component Runtime.
ComponentException(String,Throwable)

112.13.5.1 public ComponentException (String message , Throwable cause)

message The message for the exception.

cause The cause of the exception. May be nul l .

 Construct a new ComponentException with the specified message and cause.
ComponentException(String)

112.13.5.2 public ComponentException (String message)

message The message for the exception.

 Construct a new ComponentException with the specified message.
ComponentException(Throwable)

112.13.5.3 public ComponentException (Throwable cause)

cause The cause of the exception. May be nul l .

 Construct a new ComponentException with the specified cause.
getCause()

112.13.5.4 public Throwable getCause ()

 Returns the cause of this exception or null if no cause was set.
OSGi Service Platform Release 4, Version 4.3 Page 255

org.osgi.service.component Declarative Services Specification Version 1.2
Returns The cause of this exception or nul l if no cause was set.
initCause(Throwable)

112.13.5.5 public Throwable initCause (Throwable cause)

cause The cause of this exception.

 Initializes the cause of this exception to the specified value.

Returns This exception.

Throws IllegalArgumentException – If the specified cause is this exception.

IllegalStateException – If the cause of this exception has already been set.
ComponentFactory

112.13.6 public interface ComponentFactory
When a component is declared with the factory attribute on its component element, the Service
Component Runtime will register a Component Factory service to allow new component configura-
tions to be created and activated rather than automatically creating and activating component con-
figuration as necessary.

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface
newInstance(Dictionary)

112.13.6.1 public ComponentInstance newInstance (Dictionary properties)

properties Additional properties for the component configuration or nul l if there are no additional properties.

 Create and activate a new component configuration. Additional properties may be provided for the
component configuration.

Returns A ComponentInstance object encapsulating the component instance of the component configura-
tion. The component configuration has been activated and, if the component specifies a service ele-
ment, the component instance has been registered as a service.

Throws ComponentException – If the Service Component Runtime is unable to activate the component con-
figuration.
ComponentInstance

112.13.7 public interface ComponentInstance
A ComponentInstance encapsulates a component instance of an activated component configuration.
ComponentInstances are created whenever a component configuration is activated.

ComponentInstances are never reused. A new ComponentInstance object will be created when the
component configuration is activated again.

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface
dispose()

112.13.7.1 public void dispose ()

 Dispose of the component configuration for this component instance. The component configuration
will be deactivated. If the component configuration has already been deactivated, this method does
nothing.
getInstance()

112.13.7.2 public Object getInstance ()

 Returns the component instance of the activated component configuration.

Returns The component instance or null if the component configuration has been deactivated.
Page 256 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 org.osgi.service.component.annotations
112.14 org.osgi.service.component.annotations
Service Component Annotations Package Version 1.2.

This package is not used at runtime. Annotated classes are processed by tools to generate Component
Descriptions which are used at runtime.

112.14.1 Summary
• Activate – Identify the annotated method as the act ivate method of a Service Component.
• Component – Identify the annotated class as a Service Component.
• Configurat ionPol icy – Configuration Policy for the Component annotation.
• Deactivate – Identify the annotated method as the deactivate method of a Service Component.
• Modif ied – Identify the annotated method as the modif ied method of a Service Component.
• Reference – Identify the annotated method as a bind method of a Service Component.
• ReferenceCardinal ity – Cardinality for the Reference annotation.
• ReferencePol icy – Policy for the Reference annotation.
• ReferencePol icyOption – Policy option for the Reference annotation.

112.14.2 Permissions
Activate

112.14.3 @Activate
Identify the annotated method as the activate method of a Service Component.

The annotated method is the activate method of the Component.

This annotation is not processed at runtime by a Service Component Runtime implementation. It
must be processed by tools and used to add a Component Description to the bundle.

See Also The activate attribute of the component element of a Component Description.

Since 1.1

Retention CLASS

Target METHOD
Component

112.14.4 @Component
Identify the annotated class as a Service Component.

The annotated class is the implementation class of the Component.

This annotation is not processed at runtime by a Service Component Runtime implementation. It
must be processed by tools and used to add a Component Description to the bundle.

See Also The component element of a Component Description.

Retention CLASS

Target TYPE
name

112.14.4.1 String name default “”

 The name of this Component.

If not specified, the name of this Component is the fully qualified type name of the class being anno-
tated.

See Also The name attribute of the component element of a Component Description.
service

112.14.4.2 Class<?>[] service default {}

 The types under which to register this Component as a service.
OSGi Service Platform Release 4, Version 4.3 Page 257

org.osgi.service.component.annotations Declarative Services Specification Version 1.2
If no service should be registered, the empty value {} must be specified.

If not specified, the service types for this Component are all the directly implemented interfaces of the
class being annotated.

See Also The service element of a Component Description.
factory

112.14.4.3 String factory default “”

 The factory identifier of this Component. Specifying a factory identifier makes this Component a
Factory Component.

If not specified, the default is that this Component is not a Factory Component.

See Also The factory attribute of the component element of a Component Description.
servicefactory

112.14.4.4 boolean servicefactory default false

 Declares whether this Component uses the OSGi ServiceFactory concept and each bundle using this
Component’s service will receive a different component instance.

If true , this Component uses the OSGi ServiceFactory concept. If fa lse or not specified, this Compo-
nent does not use the OSGi ServiceFactory concept.

See Also The servicefactory attribute of the service element of a Component Description.
enabled

112.14.4.5 boolean enabled default true

 Declares whether this Component is enabled when the bundle containing it is started.

If true , this Component is enabled. If fa lse or not specified, this Component is disabled.

See Also The enabled attribute of the component element of a Component Description.
immediate

112.14.4.6 boolean immediate default false

 Declares whether this Component must be immediately activated upon becoming satisfied or
whether activation should be delayed.

If true , this Component must be immediately activated upon becoming satisfied. If false , activation
of this Component is delayed. If this property is specified, its value must be false if the factory prop-
erty is also specified or must be true if the service property is specified with an empty value.

If not specified, the default is fa lse if the factory property is specified or the service property is not
specified or specified with a non-empty value and true otherwise.

See Also The immediate attribute of the component element of a Component Description.
property

112.14.4.7 String[] property default {}

 Properties for this Component.

Each property string is specified as “key=value” . The type of the property value can be specified in
the key as key:type=value . The type must be one of the property types supported by the type
attribute of the property element of a Component Description.

To specify a property with multiple values, use multiple key, value pairs. For example, “foo=bar”,
“foo=baz” .

See Also The property element of a Component Description.
properties

112.14.4.8 String[] properties default {}

 Property entries for this Component.

Specifies the name of an entry in the bundle whose contents conform to a standard Java Properties
File. The entry is read and processed to obtain the properties and their values.

See Also The properties element of a Component Description.
xmlns
Page 258 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 org.osgi.service.component.annotations
112.14.4.9 String xmlns default “”

 The XML name space of the Component Description for this Component.

If not specified, the XML name space of the Component Description for this Component should be
the lowest Declarative Services XML name space which supports all the specification features used
by this Component.

See Also The XML name space specified for a Component Description.
configurationPolicy

112.14.4.10 ConfigurationPolicy configurationPolicy default ConfigurationPolicy.OPTIONAL

 The configuration policy of this Component.

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID equals the name of the component.

If not specified, the OPTIONAL configuration policy is used.

See Also The configuration-policy attribute of the component element of a Component

Description.

Since 1.1
configurationPid

112.14.4.11 String configurationPid default “”

 The configuration PID for the configuration of this Component.

Allows the configuration PID for this Component to be different than the name of this Component.

If not specified, the name of this Component is used as the configuration PID of this Component.

See Also The configuration-pid attribute of the component element of a Component Description.

Since 1.2
ConfigurationPolicy

112.14.5 enum ConfigurationPolicy
Configuration Policy for the Component annotation.

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID is the name of the component.

Since 1.1
OPTIONAL

112.14.5.1 OPTIONAL

Use the corresponding Configuration object if present but allow the component to be satisfied even if
the corresponding Configuration object is not present.
REQUIRE

112.14.5.2 REQUIRE

There must be a corresponding Configuration object for the component configuration to become sat-
isfied.
IGNORE

112.14.5.3 IGNORE

Always allow the component configuration to be satisfied and do not use the corresponding Configu-
ration object even if it is present.
Deactivate

112.14.6 @Deactivate
Identify the annotated method as the deactivate method of a Service Component.

The annotated method is the deactivate method of the Component.
OSGi Service Platform Release 4, Version 4.3 Page 259

org.osgi.service.component.annotations Declarative Services Specification Version 1.2
This annotation is not processed at runtime by a Service Component Runtime implementation. It
must be processed by tools and used to add a Component Description to the bundle.

See Also The deactivate attribute of the component element of a Component Description.

Since 1.1

Retention CLASS

Target METHOD
Modified

112.14.7 @Modified
Identify the annotated method as the modif ied method of a Service Component.

The annotated method is the modified method of the Component.

This annotation is not processed at runtime by a Service Component Runtime implementation. It
must be processed by tools and used to add a Component Description to the bundle.

See Also The modified attribute of the component element of a Component Description.

Since 1.1

Retention CLASS

Target METHOD
Reference

112.14.8 @Reference
Identify the annotated method as a bind method of a Service Component.

The annotated method is a bind method of the Component.

This annotation is not processed at runtime by a Service Component Runtime implementation. It
must be processed by tools and used to add a Component Description to the bundle.

In the generated Component Description for a component, the references must be ordered in ascend-
ing lexicographical order (using String.compareTo) of the reference names.

See Also The reference element of a Component Description.

Retention CLASS

Target METHOD
name

112.14.8.1 String name default “”

 The name of this reference.

If not specified, the name of this reference is based upon the name of the method being annotated. If
the method name begins with bind , set or add , that is removed.

See Also The name attribute of the reference element of a Component Description.
service

112.14.8.2 Class<?> service default Object.class

 The type of the service to bind to this reference.

If not specified, the type of the service to bind is based upon the type of the first argument of the
method being annotated.

See Also The interface attribute of the reference element of a Component Description.
cardinality

112.14.8.3 ReferenceCardinality cardinality default ReferenceCardinality.MANDATORY

 The cardinality of the reference.

If not specified, the reference has a 1. .1 cardinality.

See Also The cardinality attribute of the reference element of a Component Description.
Page 260 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 org.osgi.service.component.annotations
policy

112.14.8.4 ReferencePolicy policy default ReferencePolicy.STATIC

 The policy for the reference.

If not specified, the STATIC reference policy is used.

See Also The policy attribute of the reference element of a Component Description.
target

112.14.8.5 String target default “”

 The target filter for the reference.

See Also The target attribute of the reference element of a Component Description.
unbind

112.14.8.6 String unbind default “”

 The name of the unbind method which is associated with the annotated bind method.

To declare no unbind method, the value “-” must be used.

If not specified, the name of the unbind method is derived from the name of the annotated bind
method. If the annotated method name begins with bind , set or add , that is replaced with unbind ,
unset or remove , respectively, to derive the unbind method name. Otherwise, un is prefixed to the
annotated method name to derive the unbind method name. The unbind method is only set if the
component type contains a method with the derived name.

See Also The unbind attribute of the reference element of a Component Description.
policyOption

112.14.8.7 ReferencePolicyOption policyOption default ReferencePolicyOption.RELUCTANT

 The policy option for the reference.

If not specified, the RELUCTANT reference policy option is used.

See Also The policy-option attribute of the reference element of a Component Description.

Since 1.2
updated

112.14.8.8 String updated default “”

 The name of the updated method which is associated with the annotated bind method.

To declare no updated method, the value “-” must be used.

If not specified, the name of the updated method is derived from the name of the annotated bind
method. If the annotated method name begins with bind , set or add , that is replaced with updated to
derive the updated method name. Otherwise, updated is prefixed to the annotated method name to
derive the updated method name. The updated method is only set if the component type contains a
method with the derived name.

See Also The updated attribute of the reference element of a Component Description.

Since 1.2
ReferenceCardinality

112.14.9 enum ReferenceCardinality
Cardinality for the Reference annotation.

Specifies if the reference is optional and if the component implementation support a single bound
service or multiple bound services.
OPTIONAL

112.14.9.1 OPTIONAL

The reference is optional and unary. That is, the reference has a cardinality of 0..1 .
MANDATORY

112.14.9.2 MANDATORY

The reference is mandatory and unary. That is, the reference has a cardinality of 1. .1 .
MULTIPLE
OSGi Service Platform Release 4, Version 4.3 Page 261

References Declarative Services Specification Version 1.2
112.14.9.3 MULTIPLE

The reference is optional and multiple. That is, the reference has a cardinality of 0..n .
AT_LEAST_ONE

112.14.9.4 AT_LEAST_ONE

The reference is mandatory and multiple. That is, the reference has a cardinality of 1. .n .
ReferencePolicy

112.14.10 enum ReferencePolicy
Policy for the Reference annotation.
STATIC

112.14.10.1 STATIC

The static policy is the most simple policy and is the default policy. A component instance never sees
any of the dynamics. Component configurations are deactivated before any bound service for a refer-
ence having a static policy becomes unavailable. If a target service is available to replace the bound
service which became unavailable, the component configuration must be reactivated and bound to
the replacement service.
DYNAMIC

112.14.10.2 DYNAMIC

The dynamic policy is slightly more complex since the component implementation must properly
handle changes in the set of bound services. With the dynamic policy, SCR can change the set of
bound services without deactivating a component configuration. If the component uses the event
strategy to access services, then the component instance will be notified of changes in the set of
bound services by calls to the bind and unbind methods.
ReferencePolicyOption

112.14.11 enum ReferencePolicyOption
Policy option for the Reference annotation.

Since 1.2
RELUCTANT

112.14.11.1 RELUCTANT

The reluctant policy option is the default policy option for both stat ic and dynamic reference poli-
cies. When a new target service for a reference becomes available, references having the reluctant
policy option for the static policy or the dynamic policy with a unary cardinality will ignore the new
target service. References having the dynamic policy with a multiple cardinality will bind the new
target service.
GREEDY

112.14.11.2 GREEDY

The greedy policy option is a valid policy option for both stat ic and dynamic reference policies.
When a new target service for a reference becomes available, references having the greedy policy
option will bind the new target service.

112.15 References
[1] Automating Service Dependency Management in a Service-Oriented Component Model

Humberto Cervantes, Richard S. Hall, Proceedings of the Sixth Component-Based Software
Engineering Workshop, May 2003, pp. 91-96.
http://www-adele.imag.fr/Les.Publications/intConferences/CBSE2003Cer.pdf

[2] Service Binder
Humberto Cervantes, Richard S. Hall, http://gravity.sourceforge.net/servicebinder
Page 262 OSGi Service Platform Release 4, Version 4.3

Declarative Services Specification Version 1.2 References
[3] Java Properties File
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream)

[4] Extensible Markup Language (XML) 1.0
http://www.w3.org/TR/REC-xml/

[5] Access Control Java Language Specification
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#104285

[6] OSGi XML Schemas
http://www.osgi.org/Release4/XMLSchemas
OSGi Service Platform Release 4, Version 4.3 Page 263

References Declarative Services Specification Version 1.2
Page 264 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 Introduction
113 Event Admin Service
Specification
Version 1.3

113.1 Introduction
Nearly all the bundles in an OSGi framework must deal with events, either as an event publisher or as
an event handler. So far, the preferred mechanism to disperse those events have been the service
interface mechanism.

Dispatching events for a design related to X, usually involves a service of type XListener . However,
this model does not scale well for fine grained events that must be dispatched to many different han-
dlers. Additionally, the dynamic nature of the OSGi environment introduces several complexities
because both event publishers and event handlers can appear and disappear at any time.

The Event Admin service provides an inter-bundle communication mechanism. It is based on a event
publish and subscribe model, popular in many message based systems.

This specification defines the details for the participants in this event model.

113.1.1 Essentials
• Simplifications – The model must significantly simplify the process of programming an event

source and an event handler.
• Dependencies – Handle the myriad of dependencies between event sources and event handlers for

proper cleanup.
• Synchronicity – It must be possible to deliver events asynchronously or synchronously with the

caller.
• Event Window – Only event handlers that are active when an event is published must receive this

event, handlers that register later must not see the event.
• Performance – The event mechanism must impose minimal overhead in delivering events.
• Selectivity – Event listeners must only receive notifications for the event types for which they are

interested
• Reliability – The Event Admin must ensure that events continue to be delivered regardless the

quality of the event handlers.
• Security – Publishing and receiving events are sensitive operations that must be protected per

event type.
• Extensibility – It must be possible to define new event types with their own data types.
• Native Code – Events must be able to be passed to native code or come from native code.
• OSGi Events – The OSGi Framework, as well as a number of OSGi services, already have number of

its own events defined. For uniformity of processing, these have to be mapped into generic event
types.

113.1.2 Entities
• Event – An Event object has a topic and a Dictionary object that contains the event properties. It is

an immutable object.
• Event Admin – The service that provides the publish and subscribe model to Event Handlers and

Event Publishers.
• Event Handler – A service that receives and handles Event objects.
OSGi Service Platform Release 4, Version 4.3 Page 265

Event Admin Architecture Event Admin Service Specification Version 1.3
• Event Publisher – A bundle that sends event through the Event Admin service.
• Event Subscriber – Another name for an Event Handler.
• Topic – The name of an Event type.
• Event Properties – The set of properties that is associated with an Event.

Figure 113.1 The Event Admin service org.osgi.service.event package

113.1.3 Synopsis
The Event Admin service provides a place for bundles to publish events, regardless of their destina-
tion. It is also used by Event Handlers to subscribe to specific types of events.

Events are published under a topic, together with a number of event properties. Event Handlers can
specify a filter to control the Events they receive on a very fine grained basis.

113.1.4 What To Read
• Architects – The Event Admin Architecture on page 266 provides an overview of the Event Admin

service.
• Event Publishers – The Event Publisher on page 269 provides an introduction of how to write an

Event Publisher. The Event Admin Architecture on page 266 provides a good overview of the design.
• Event Subscribers/Handlers – The Event Handler on page 268 provides the rules on how to subscribe

and handle events.

113.2 Event Admin Architecture
The Event Admin is based on the Publish-Subscribe pattern. This pattern decouples sources from their
handlers by interposing an event channel between them. The publisher posts events to the channel,
which identifies which handlers need to be notified and then takes care of the notification process.
This model is depicted in Figure 113.2.

Event Publisher
Impl

an Event
Consumer Impl

receive
send

<<service>>
Event Admin

Event Admin Impl

<<service>>
Event Handler1 0..n

<<class>>
Eventevent

event
Page 266 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 The Event
Figure 113.2 Channel Pattern

In this model, the event source and event handler are completely decoupled because neither has any
direct knowledge of the other. The complicated logic of monitoring changes in the event publishers
and event handlers is completely contained within the event channel. This is highly advantageous in
an OSGi environment because it simplifies the process of both sending and receiving events.

113.3 The Event
Events have the following attributes:

• Topic – A topic that defines what happened. For example, when a bundle is started an event is pub-
lished that has a topic of org/osgi/f ramework/BundleEvent/STARTED .

• Properties – Zero or more properties that contain additional information about the event. For
example, the previous example event has a property of bundle. id which is set to a Long object,
among other properties.

113.3.1 Topics
The topic of an event defines the type of the event. It is fairly granular in order to give handlers the
opportunity to register for just the events they are interested in. When a topic is designed, its name
should not include any other information, such as the publisher of the event or the data associated
with the event, those parts are intended to be stored in the event properties.

The topic is intended to serve as a first-level filter for determining which handlers should receive the
event. Event Admin service implementations use the structure of the topic to optimize the dispatch-
ing of the events to the handlers.

Topics are arranged in a hierarchical namespace. Each level is defined by a token and levels are sepa-
rated by slashes. More precisely, the topic must conform to the following grammar:

 topic ::= token (’/’ token) * // See 1.3.2 Core book

Topics should be designed to become more specific when going from left to right. Handlers can pro-
vide a prefix that matches a topic, using the preferred order allows a handler to minimize the number
of prefixes it needs to register.

Topics are case-sensitive. As a convention, topics should follow the reverse domain name scheme
used by Java packages to guarantee uniqueness. The separator must be slashes (’ / ’ \u002F) instead of
the full stop (’ . ’ \u002E).

This specification uses the convention ful ly/qual i f ied/package/ClassName/ACTION . If necessary, a
pseudo-class-name is used.

113.3.2 Properties
Information about the actual event is provided as properties. The property name is a case-sensitive
string and the value can be any object. Although any Java object can be used as a property value, only
Str ing objects and the eight primitive types (plus their wrappers) should be used. Other types cannot
be passed to handlers that reside external from the Java VM.

Publisher <<service>>
EventHandler

1
0..n

<<service>>
Event Admin

1
0..n

sendEvent handleEvent
postEvent
OSGi Service Platform Release 4, Version 4.3 Page 267

Event Handler Event Admin Service Specification Version 1.3
Another reason that arbitrary classes should not be used is the mutability of objects. If the values are
not immutable, then any handler that receives the event could change the value. Any handlers that
received the event subsequently would see the altered value and not the value as it was when the
event was sent.

The topic of the event is available as a property with the key EVENT_TOPIC . This allows filters to
include the topic as a condition if necessary.

113.3.3 High Performance
An event processing system can become a bottleneck in large systems. One expensive aspect of the
Event object is its properties and its immutability. This combination requires the Event object to cre-
ate a copy of the properties for each object. There are many situations where the same properties are
dispatched through Event Admin, the topic is then used to signal the information. Creating the copy
of the properties can therefore take unnecessary CPU time and memory. However, the immutability
of the Event object requires the properties to be immutable.

For this reason, this specification also provides an immutable Map with the Event Properties class.
This class implements an immutable map that is recognized and trusted by the Event object to not
mutate. Using an Event Properties object allows a client to create many different Event objects with
different topics but sharing the same properties object.

The following example shows how an event poster can limit the copying of the properties.

void foo(EventAdmin eventAdmin) {

 Map<String,Object> props = new HashMap<String,Object>();

 props.put("foo", 1);

 EventProperties eventProps = new EventProperties(props);

 for (int i=0; i<1000; i++)

 eventAdmin.postEvent(new Event("my/topic/" + i, eventProps));

}

113.4 Event Handler
Event handlers must be registered as services with the OSGi framework under the object class
org.osgi .service.event.EventHandler .

Event handlers should be registered with a property (constant from the EventConstants class)
EVENT_TOPIC . The value being a Str ing or Str ing[] object that describes which topics the handler is
interested in. A wildcard (’*’ \u002A) may be used as the last token of a topic name, for example com/
action/* . This matches any topic that shares the same first tokens. For example, com/act ion/*
matches com/action/l isten .

Event Handlers which have not specified the EVENT_TOPIC service property must not receive events.

The value of each entry in the EVENT_TOPIC service registration property must conform to the fol-
lowing grammar:

topic-scope ::= ’*’ | (topic ’/*’?)

Event handlers can also be registered with a service property named EVENT_FILTER . The value of this
property must be a string containing a Framework filter specification. Any of the event's properties
can be used in the filter expression.

event-filter ::= filter // 3.2.7 Core book
Page 268 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 Event Publisher
Each Event Handler is notified for any event which belongs to the topics the handler has expressed
an interest in. If the handler has defined a EVENT_FILTER service property then the event properties
must also match the filter expression. If the filter is an error, then the Event Admin service should log
a warning and further ignore the Event Handler.

For example, a bundle wants to see all Log Service events with a level of WARNING or ERROR , but it
must ignore the INFO and DEBUG events. Additionally, the only events of interest are when the bun-
dle symbolic name starts with com.acme .

public AcmeWatchDog implements BundleActivator,

EventHandler {

final static String [] topics = new String[] {

"org/osgi/service/log/LogEntry/LOG_WARNING",

"org/osgi/service/log/LogEntry/LOG_ERROR" };

public void start(BundleContext context) {

Dictionary d = new Hashtable();

d.put(EventConstants.EVENT_TOPIC, topics);

d.put(EventConstants.EVENT_FILTER,

"(bundle.symbolicName=com.acme.*)");

context.registerService(EventHandler.class.getName(),

this, d);

}

public void stop(BundleContext context) {}

public void handleEvent(Event event) {

//...

}

}

If there are multiple Event Admin services registered with the Framework then all Event Admin ser-
vices must send their published events to all registered Event Handlers.

113.4.1 Ordering
In the default case, an Event Handler will receive posted (asynchronous) events from a single thread
in the same order as they were posted. Maintaining this ordering guarantee requires the Event Admin
to serialize the delivery of events instead of, for example, delivering the events on different worker
threads. There are many scenarios where this ordering is not really required. For this reason, an Event
Handler can signal to the Event Admin that events can be delivered out of order. This is notified with
the EVENT_DELIVERY service property. This service property can be used in the following way:

• Not set or set to both – The Event Admin must deliver the events in the proper order.
• DELIVERY_ASYNC_ORDERED – Events must be delivered in order.
• DELIVERY_ASYNC_UNORDERED – Allow the events to be delivered in any order.

113.5 Event Publisher
To fire an event, the event source must retrieve the Event Admin service from the OSGi service regis-
try. Then it creates the event object and calls one of the Event Admin service's methods to fire the
event either synchronously or asynchronously.

The following example is a class that publishes a time event every 60 seconds.

public class TimerEvent extends Thread

implements BundleActivator {

Hashtable time = new Hashtable();

ServiceTracker tracker;
OSGi Service Platform Release 4, Version 4.3 Page 269

Specific Events Event Admin Service Specification Version 1.3
public TimerEvent() { super("TimerEvent"); }

public void start(BundleContext context) {

tracker = new ServiceTracker(context,

EventAdmin.class.getName(), null);

tracker.open();

start();

}

public void stop(BundleContext context) {

interrupt();

tracker.close();

}

public void run() {

while (! Thread.interrupted()) try {

Calendar c = Calendar.getInstance();

set(c,Calendar.MINUTE,"minutes");

set(c,Calendar.HOUR,"hours");

set(c,Calendar.DAY_OF_MONTH,"day");

set(c,Calendar.MONTH,"month");

set(c,Calendar.YEAR,"year");

EventAdmin ea =

(EventAdmin) tracker.getService();

if (ea != null)

ea.sendEvent(new Event("com/acme/timer",

time));

Thread.sleep(60000-c.get(Calendar.SECOND)*1000);

} catch(InterruptedException e) {

return;

}

}

void set(Calendar c, int field, String key) {

time.put(key, new Integer(c.get(field)));

}

}

113.6 Specific Events

113.6.1 General Conventions
Some handlers are more interested in the contents of an event rather than what actually happened.
For example, a handler wants to be notified whenever an Exception is thrown anywhere in the sys-
tem. Both Framework Events and Log Entry events may contain an exception that would be of inter-
est to this hypothetical handler. If both Framework Events and Log Entries use the same property
names then the handler can access the Exception in exactly the same way. If some future event type
follows the same conventions then the handler can receive and process the new event type even
though it had no knowledge of it when it was compiled.
Page 270 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 Specific Events
The following properties are suggested as conventions. When new event types are defined they
should use these names with the corresponding types and values where appropriate. These values
should be set only if they are not nul l

A list of these property names can be found in Table 113.1..

The topic of an OSGi event is constructed by taking the fully qualified name of the event class, substi-
tuting a slash for every period, and appending a slash followed by the name of the constant that
defines the event type. For example, the topic of

BundleEvent.STARTED

Event becomes

org/osgi/framework/BundleEvent/STARTED

If a type code for the event is unknown then the event must be ignored.

113.6.2 OSGi Events
In order to present a consistent view of all the events occurring in the system, the existing Frame-
work-level events are mapped to the Event Admin’s publish-subscribe model. This allows event sub-
scribers to treat framework events exactly the same as other events.

It is the responsibility of the Event Admin service implementation to map these Framework events
to its queue.

The properties associated with the event depends on its class as outlined in the following sections.

Table 113.1 General property names for events
Name Type Notes

BUNDLE_SIGNER Str ing |
Col lect ion
<Str ing>

A bundle’s signers DN

BUNDLE_VERSION Version A bundle’s version

BUNDLE_SYMBOLICNAME String A bundle’s symbolic name

EVENT Object The actual event object. Used when rebroadcasting
an event that was sent via some other event mecha-
nism

EXCEPTION Throwable An exception or error

EXCEPTION_MESSAGE String Must be equal to exception.getMessage() .

EXCEPTION_CLASS Str ing Must be equal to the name of the Exception class.

MESSAGE String A human-readable message that is usually not local-
ized.

SERVICE Service
Reference

A Service Reference

SERVICE_ID Long A service’s id

SERVICE_OBJECTCLASS Str ing[] A service's objectClass

SERVICE_PID Str ing |
Col lect ion
<Str ing>

A service’s persistent identity. A PID that is specified
with a Str ing[] must be coerced into a
Collect ion<Str ing> .

TIMESTAMP Long The time when the event occurred, as reported by
System.currentTimeMil l is()
OSGi Service Platform Release 4, Version 4.3 Page 271

Specific Events Event Admin Service Specification Version 1.3
113.6.3 Framework Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/FrameworkEvent/<event type>

The following event types are supported:

STARTED

ERROR

PACKAGES_REFRESHED

STARTLEVEL_CHANGED

WARNING

INFO

Other events are ignored, no event will be send by the Event Admin. The following event properties
must be set for a Framework Event.

• event – (FrameworkEvent) The original event object.

If the FrameworkEvent getBundle method returns a non-nul l value, the following fields must be set:

• bundle. id – (Long) The source’s bundle id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name. Only set if the bundle’s

symbolic name is not null .
• bundle.version – (Version) The version of the bundle, if set.
• bundle.s igner – (Str ing|Collect ion<Str ing>) The DNs of the signers.
• bundle – (Bundle) The source bundle.

If the FrameworkEvent getThrowable method returns a non- nul l value:

• exception.class – (Str ing) The fully-qualified class name of the attached Exception.
• exception.message –(Str ing) The message of the attached exception. Only set if the Exception

message is not nul l .
• exception – (Throwable) The Exception returned by the getThrowable method.

113.6.4 Bundle Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/BundleEvent/<event type>

The following event types are supported:

INSTALLED

STARTED

STOPPED

UPDATED

UNINSTALLED

RESOLVED

UNRESOLVED

Unknown events must be ignored.

The following event properties must be set for a Bundle Event. If listeners require synchronous deliv-
ery then they should register a Synchronous Bundle Listener with the Framework.

• event – (BundleEvent) The original event object.
• bundle. id – (Long) The source’s bundle id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name. Only set if the bundle’s

symbolic name is not null .
• bundle.version – (Version) The version of the bundle, if set.
• bundle.s igner – (Str ing|Collect ion<Str ing>) The DNs of the signers.
Page 272 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 Event Admin Service
• bundle – (Bundle) The source bundle.

113.6.5 Service Event
Service Events must be delivered asynchronously with the topic:

org/osgi/framework/ServiceEvent/<event type>

The following event types are supported:

REGISTERED

MODIFIED

UNREGISTERING

Unknown events must be ignored.

• event – (ServiceEvent) The original Service Event object.
• service – (ServiceReference) The result of the getServiceReference method
• service. id – (Long) The service's ID.
• service.pid – (String or Col lection<Str ing>) The service's persistent identity. Only set if not nul l . If

the PID is specified as a Str ing[] then it must be coerced into a Collection<Str ing> .
• service.objectClass – (Str ing[]) The service's object class.

113.6.6 Other Event Sources
Several OSGi service specifications define their own event model. It is the responsibility of these ser-
vices to map their events to Event Admin events. Event Admin is seen as a core service that will be
present in most devices. However, if there is no Event Admin service present, applications are not
mandated to buffer events.

113.7 Event Admin Service
The Event Admin service must be registered as a service with the object class
org.osgi .service.event.EventAdmin . Multiple Event Admin services can be registered. Publishers
should publish their event on the Event Admin service with the highest value for the
SERVICE_RANKING service property. This is the service selected by the getServiceReference method.

The Event Admin service is responsible for tracking the registered handlers, handling event notifica-
tions and providing at least one thread for asynchronous event delivery.

113.7.1 Synchronous Event Delivery
Synchronous event delivery is initiated by the sendEvent method. When this method is invoked, the
Event Admin service determines which handlers must be notified of the event and then notifies each
one in turn. The handlers can be notified in the caller's thread or in an event-delivery thread, depend-
ing on the implementation. In either case, all notifications must be completely handled before the
sendEvent method returns to the caller.

Synchronous event delivery is significantly more expensive than asynchronous delivery. All things
considered equal, the asynchronous delivery should be preferred over the synchronous delivery.

Callers of this method will need to be coded defensively and assume that synchronous event notifica-
tions could be handled in a separate thread. That entails that they must not be holding any monitors
when they invoke the sendEvent method. Otherwise they significantly increase the likelihood of
deadlocks because Java monitors are not reentrant from another thread by definition. Not holding
monitors is good practice even when the event is dispatched in the same thread.
OSGi Service Platform Release 4, Version 4.3 Page 273

Reliability Event Admin Service Specification Version 1.3
113.7.2 Asynchronous Event Delivery
Asynchronous event delivery is initiated by the postEvent method. When this method is invoked,
the Event Admin service must determine which handlers are interested in the event. By collecting
this list of handlers during the method invocation, the Event Admin service ensures that only han-
dlers that were registered at the time the event was posted will receive the event notification. This is
the same as described in Delivering Events on page 106 of the Core specification.

The Event Admin service can use more than one thread to deliver events. If it does then it must guar-
antee that each handler receives the events in the same order as the events were posted, unless this
handler allows unordered deliver, see Ordering on page 269. This ensures that handlers see events in
their expected order. For example, for some handlers it would be an error to see a destroyed event
before the corresponding created event.

Before notifying each handler, the event delivery thread must ensure that the handler is still regis-
tered in the service registry. If it has been unregistered then the handler must not be notified.

113.7.3 Order of Event Delivery
Asynchronous events are delivered in the order in which they arrive in the event queue. Thus if two
events are posted by the same thread then they will be delivered in the same order (though other
events may come between them). However, if two or more events are posted by different threads then
the order in which they arrive in the queue (and therefore the order in which they are delivered) will
depend very much on subtle timing issues. The event delivery system cannot make any guarantees in
this case. An Event Handler can indicate that the ordering is not relevant, allowing the Event Admin
to more aggressively parallelize the event deliver, see Ordering on page 269.

Synchronous events are delivered as soon as they are sent. If two events are sent by the same thread,
one after the other, then they must be guaranteed to be processed serially and in the same order.
However, if two events are sent by different threads then no guarantees can be made. The events can
be processed in parallel or serially, depending on whether or not the Event Admin service dispatches
synchronous events in the caller's thread or in a separate thread.

Note that if the actions of a handler trigger a synchronous event, then the delivery of the first event
will be paused and delivery of the second event will begin. Once delivery of the second event has
completed, delivery of the first event will resume. Thus some handlers may observe the second event
before they observe the first one.

113.8 Reliability

113.8.1 Exceptions in callbacks
If a handler throws an Exception during delivery of an event, it must be caught by the Event Admin
service and handled in some implementation specific way. If a Log Service is available the exception
should be logged. Once the exception has been caught and dealt with, the event delivery must con-
tinue with the next handlers to be notified, if any.

As the Log Service can also forward events through the Event Admin service there is a potential for a
loop when an event is reported to the Log Service.

113.8.2 Dealing with Stalled Handlers
Event handlers should not spend too long in the handleEvent method. Doing so will prevent other
handlers in the system from being notified. If a handler needs to do something that can take a while,
it should do it in a different thread.
Page 274 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 Inter-operability with Native Applications
An event admin implementation can attempt to detect stalled or deadlocked handlers and deal with
them appropriately. Exactly how it deals with this situation is left as implementation specific. One
allowed implementation is to mark the current event delivery thread as invalid and spawn a new
event delivery thread. Event delivery must resume with the next handler to be notified.

Implementations can choose to blacklist any handlers that they determine are misbehaving. Black-
listed handlers must not be notified of any events. If a handler is blacklisted, the event admin should
log a message that explains the reason for it.

113.9 Inter-operability with Native Applications
Implementations of the Event Admin service can support passing events to, and/or receiving events
from native applications.

If the implementation supports native inter-operability, it must be able to pass the topic of the event
and its properties to/from native code. Implementations must be able to support property values of
the following types:

• Str ing objects, including full Unicode support
• Integer , Long, Byte, Short , F loat , Double, Boolean, Character objects
• Single-dimension arrays of the above types (including Str ing)
• Single-dimension arrays of Java's eight primitive types (int , long, byte, short , f loat, double,

boolean, char)

Implementations can support additional types. Property values of unsupported types must be
silently discarded.

113.10 Security

113.10.1 Topic Permission
The TopicPermission class allows fine-grained control over which bundles may post events to a given
topic and which bundles may receive those events.

The target parameter for the permission is the topic name. TopicPermission classes uses a wildcard
matching algorithm similar to the BasicPermission class, except that slashes are used as separators
instead of periods. For example, a name of a/b/* implies a/b/c but not x/y/z or a/b .

There are two available actions: PUBLISH and SUBSCRIBE . These control a bundle's ability to either
publish or receive events, respectively. Neither one implies the other.

113.10.2 Required Permissions
Bundles that need to register an event handler must be granted
ServicePermission [org.osgi .service.event.EventHandler , REGISTER]. In addition, handlers require
TopicPermission[<topic>, SUBSCRIBE] for each topic they want to be notified about.

Bundles that need to publish an event must be granted ServicePermission[
org.osgi .service.event.EventAdmin, GET] so that they may retrieve the Event Admin service and use
it. In addition, event sources require TopicPermission[<topic>, PUBLISH] for each topic they want to
send events to.

Bundles that need to iterate the handlers registered with the system must be granted
ServicePermission[org.osgi .service.event.EventHandler , GET] to retrieve the event handlers from
the service registry.

Only a bundle that contains an Event Admin service implementation should be granted
ServicePermission[org.osgi .service.event.EventAdmin, REGISTER] to register the event channel
admin service.
OSGi Service Platform Release 4, Version 4.3 Page 275

Changes Event Admin Service Specification Version 1.3
113.10.3 Security Context During Event Callbacks
During an event notification, the Event Admin service's Protection Domain will be on the stack
above the handler's Protection Domain. In the case of a synchronous event, the event publisher's pro-
tection domain can also be on the stack.

Therefore, if a handler needs to perform a secure operation using its own privileges, it must invoke
the doPriv i leged method to isolate its security context from that of its caller.

The event delivery mechanism must not wrap event notifications in a doPriv i leged call.

113.11 Changes
• Added a containsProperty method to the Event object to detect of a property was set and not just

nul l .
• Added a new Ordering on page 269 section to define the out of order delivery.
• Added the Event Properties Map to optimize not having to always create a new Map for each

event.

113.12 org.osgi.service.event
Event Admin Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.event; version=”[1.3,2.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.event; version=”[1.3,1.4)”

113.12.1 Summary
• Event – An event.
• EventAdmin – The Event Admin service.
• EventConstants – Defines standard names for EventHandler properties.
• EventHandler – Listener for Events.
• EventPropert ies – The properties for an Event .
• TopicPermission – A bundle’s authority to publish or subscribe to event on a topic.

113.12.2 Permissions
Event

113.12.3 public class Event
An event. Event objects are delivered to EventHandler services which subscribe to the topic of the
event.

Concurrency Immutable
Event(String,Map)

113.12.3.1 public Event (String topic , Map<String,?> properties)

topic The topic of the event.

properties The event’s properties (may be nul l). A property whose key is not of type Str ing will be ignored.

 Constructs an event.

Throws IllegalArgumentException – If topic is not a valid topic name.
Page 276 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 org.osgi.service.event
Since 1.2
Event(String,Dictionary)

113.12.3.2 public Event (String topic , Dictionary<String,?> properties)

topic The topic of the event.

properties The event’s properties (may be nul l). A property whose key is not of type Str ing will be ignored.

 Constructs an event.

Throws IllegalArgumentException – If topic is not a valid topic name.
containsProperty(String)

113.12.3.3 public final boolean containsProperty (String name)

name The name of the property.

 Indicate the presence of an event property. The event topic is present using the property name
“event.topics”.

Returns true if a property with the specified name is in the event. This property may have a nul l value. false
otherwise.

Since 1.3
equals(Object)

113.12.3.4 public boolean equals (Object object)

object The Event object to be compared.

 Compares this Event object to another object.

An event is considered to be equal to another event if the topic is equal and the properties are equal.
The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a Event and is equal to this object; false otherwise.
getProperty(String)

113.12.3.5 public final Object getProperty (String name)

name The name of the property to retrieve.

 Retrieve the value of an event property. The event topic may be retrieved with the property name
“event.topics”.

Returns The value of the property, or null if not found.
getPropertyNames()

113.12.3.6 public final String[] getPropertyNames ()

 Returns a list of this event’s property names. The list will include the event topic property name
“event.topics”.

Returns A non-empty array with one element per property.
getTopic()

113.12.3.7 public final String getTopic ()

 Returns the topic of this event.

Returns The topic of this event.
hashCode()

113.12.3.8 public int hashCode ()

 Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.
matches(Filter)

113.12.3.9 public final boolean matches (Filter filter)

filter The filter to test.

 Tests this event’s properties against the given filter using a case sensitive match.

Returns true If this event’s properties match the filter, false otherwise.
toString()
OSGi Service Platform Release 4, Version 4.3 Page 277

org.osgi.service.event Event Admin Service Specification Version 1.3
113.12.3.10 public String toString ()

 Returns the string representation of this event.

Returns The string representation of this event.
EventAdmin

113.12.4 public interface EventAdmin
The Event Admin service. Bundles wishing to publish events must obtain the Event Admin service
and call one of the event delivery methods.

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface
postEvent(Event)

113.12.4.1 public void postEvent (Event event)

event The event to send to all listeners which subscribe to the topic of the event.

 Initiate asynchronous, ordered delivery of an event. This method returns to the caller before delivery
of the event is completed. Events are delivered in the order that they are received by this method.

Throws SecurityException – If the caller does not have TopicPermiss ion[topic,PUBLISH] for the topic spec-
ified in the event.
sendEvent(Event)

113.12.4.2 public void sendEvent (Event event)

event The event to send to all listeners which subscribe to the topic of the event.

 Initiate synchronous delivery of an event. This method does not return to the caller until delivery of
the event is completed.

Throws SecurityException – If the caller does not have TopicPermiss ion[topic,PUBLISH] for the topic spec-
ified in the event.
EventConstants

113.12.5 public interface EventConstants
Defines standard names for EventHandler properties.

No Implement Consumers of this API must not implement this interface
BUNDLE

113.12.5.1 public static final String BUNDLE = “bundle”

The Bundle object of the bundle relevant to the event. The type of the value for this event property is
Bundle .

Since 1.1
BUNDLE_ID

113.12.5.2 public static final String BUNDLE_ID = “bundle.id”

The Bundle id of the bundle relevant to the event. The type of the value for this event property is
Long .

Since 1.1
BUNDLE_SIGNER

113.12.5.3 public static final String BUNDLE_SIGNER = “bundle.signer”

The Distinguished Names of the signers of the bundle relevant to the event. The type of the value for
this event property is Str ing or Col lection of Str ing .
BUNDLE_SYMBOLICNAME

113.12.5.4 public static final String BUNDLE_SYMBOLICNAME = “bundle.symbolicName”

The Bundle Symbolic Name of the bundle relevant to the event. The type of the value for this event
property is Str ing .
BUNDLE_VERSION
Page 278 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 org.osgi.service.event
113.12.5.5 public static final String BUNDLE_VERSION = “bundle.version”

The version of the bundle relevant to the event. The type of the value for this event property is Ver-
sion .

Since 1.2
DELIVERY_ASYNC_ORDERED

113.12.5.6 public static final String DELIVERY_ASYNC_ORDERED = “async.ordered”

Event Handler delivery quality value specifying the Event Handler requires asynchronously deliv-
ered events be delivered in order. Ordered delivery is the default for asynchronously delivered events.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_UNORDERED . However, if
both this value and DELIVERY_ASYNC_UNORDERED are specified for an event handler, this value
takes precedence.

See Also EVENT_DELIVERY

Since 1.3
DELIVERY_ASYNC_UNORDERED

113.12.5.7 public static final String DELIVERY_ASYNC_UNORDERED = “async.unordered”

Event Handler delivery quality value specifying the Event Handler does not require asynchronously
delivered events be delivered in order. This may allow an Event Admin implementation to optimize
asynchronous event delivery by relaxing ordering requirements.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_ORDERED . However, if
both this value and DELIVERY_ASYNC_ORDERED are specified for an event handler,
DELIVERY_ASYNC_ORDERED takes precedence.

See Also EVENT_DELIVERY

Since 1.3
EVENT

113.12.5.8 public static final String EVENT = “event”

The forwarded event object. Used when rebroadcasting an event that was sent via some other event
mechanism. The type of the value for this event property is Object .
EVENT_DELIVERY

113.12.5.9 public static final String EVENT_DELIVERY = “event.delivery”

Service Registration property specifying the delivery qualities requested by an Event Handler service.

Event handlers MAY be registered with this property. Each value of this property is a string specify-
ing a delivery quality for the Event handler.

The value of this property must be of type Str ing , Str ing[] , or Collection<String> .

See Also DELIVERY_ASYNC_ORDERED , DELIVERY_ASYNC_UNORDERED

Since 1.3
EVENT_FILTER

113.12.5.10 public static final String EVENT_FILTER = “event.filter”

Service Registration property specifying a filter to further select Event s of interest to an Event Han-
dler service.

Event handlers MAY be registered with this property. The value of this property is a string containing
an LDAP-style filter specification. Any of the event’s properties may be used in the filter expression.
Each event handler is notified for any event which belongs to the topics in which the handler has
expressed an interest. If the event handler is also registered with this service property, then the prop-
erties of the event must also match the filter for the event to be delivered to the event handler.

If the filter syntax is invalid, then the Event Handler must be ignored and a warning should be
logged.

The value of this property must be of type Str ing .

See Also Event , Filter
OSGi Service Platform Release 4, Version 4.3 Page 279

org.osgi.service.event Event Admin Service Specification Version 1.3
EVENT_TOPIC

113.12.5.11 public static final String EVENT_TOPIC = “event.topics”

Service registration property specifying the Event topics of interest to an Event Handler service.

Event handlers SHOULD be registered with this property. Each value of this property is a string that
describe the topics in which the handler is interested. An asterisk (’*’) may be used as a trailing wild-
card. Event Handlers which do not have a value for this property must not receive events. More pre-
cisely, the value of each string must conform to the following grammar:

topic-description := ‘*’ | topic (‘/*’)?

topic := token (‘/’ token)*

The value of this property must be of type Str ing , Str ing[] , or Collect ion<String> .

See Also Event
EXCEPTION

113.12.5.12 public static final String EXCEPTION = “exception”

An exception or error. The type of the value for this event property is Throwable .
EXCEPTION_CLASS

113.12.5.13 public static final String EXCEPTION_CLASS = “exception.class”

The name of the exception type. Must be equal to the name of the class of the exception in the event
property EXCEPTION . The type of the value for this event property is Str ing .

Since 1.1
EXCEPTION_MESSAGE

113.12.5.14 public static final String EXCEPTION_MESSAGE = “exception.message”

The exception message. Must be equal to the result of calling getMessage() on the exception in the
event property EXCEPTION . The type of the value for this event property is Str ing .
EXECPTION_CLASS

113.12.5.15 public static final String EXECPTION_CLASS = “exception.class”

This constant was released with an incorrectly spelled name. It has been replaced by
EXCEPTION_CLASS

Deprecated As of 1.1, replaced by EXCEPTION_CLASS
MESSAGE

113.12.5.16 public static final String MESSAGE = “message”

A human-readable message that is usually not localized. The type of the value for this event property
is Str ing .
SERVICE

113.12.5.17 public static final String SERVICE = “service”

A service reference. The type of the value for this event property is ServiceReference .
SERVICE_ID

113.12.5.18 public static final String SERVICE_ID = “service.id”

A service’s id. The type of the value for this event property is Long .
SERVICE_OBJECTCLASS

113.12.5.19 public static final String SERVICE_OBJECTCLASS = “service.objectClass”

A service’s objectClass. The type of the value for this event property is Str ing[] .
SERVICE_PID

113.12.5.20 public static final String SERVICE_PID = “service.pid”

A service’s persistent identity. The type of the value for this event property is Str ing or Collect ion of
Str ing .
TIMESTAMP

113.12.5.21 public static final String TIMESTAMP = “timestamp”

The time when the event occurred, as reported by System.currentTimeMil l is() . The type of the value
for this event property is Long .
EventHandler
Page 280 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 org.osgi.service.event
113.12.6 public interface EventHandler
Listener for Events.

EventHandler objects are registered with the Framework service registry and are notified with an
Event object when an event is sent or posted.

EventHandler objects can inspect the received Event object to determine its topic and properties.

EventHandler objects must be registered with a service property EventConstants.EVENT_TOPIC
whose value is the list of topics in which the event handler is interested.

For example:

String[] topics = new String[] {”com/isv/*”};

Hashtable ht = new Hashtable();

ht.put(EventConstants.EVENT_TOPIC, topics);

context.registerService(EventHandler.class.getName(), this, ht);

Event Handler services can also be registered with an EventConstants.EVENT_FILTER service prop-
erty to further filter the events. If the syntax of this filter is invalid, then the Event Handler must be
ignored by the Event Admin service. The Event Admin service should log a warning.

Security Considerations. Bundles wishing to monitor Event objects will require
ServicePermission[EventHandler ,REGISTER] to register an EventHandler service. The bundle must
also have TopicPermission[topic,SUBSCRIBE] for the topic specified in the event in order to receive
the event.

See Also Event

Concurrency Thread-safe
handleEvent(Event)

113.12.6.1 public void handleEvent (Event event)

event The event that occurred.

 Called by the EventAdmin service to notify the listener of an event.
EventProperties

113.12.7 public class EventProperties
implements Map<String,Object>
The properties for an Event . An event source can create an EventProperties object if it needs to reuse
the same event properties for multiple events.

The keys are all of type Str ing . The values are of type Object . The key “event.topics” is ignored as
event topics can only be set when an Event is constructed.

Once constructed, an EventProperties object is unmodifiable. However, the values of the map used to
construct an EventProperties object are still subject to modification as they are not deeply copied.

Since 1.3

Concurrency Immutable
EventProperties(Map)

113.12.7.1 public EventProperties (Map<String,?> properties)

properties The properties to use for this EventProperties object (may be nul l).

 Create an EventProperties from the specified properties.

The specified properties will be copied into this EventProperties. Properties whose key is not of type
Str ing will be ignored. A property with the key “event.topics” will be ignored.
clear()

113.12.7.2 public void clear ()

 This method throws UnsupportedOperat ionException .
OSGi Service Platform Release 4, Version 4.3 Page 281

org.osgi.service.event Event Admin Service Specification Version 1.3
Throws UnsupportedOperationException – if called.
containsKey(Object)

113.12.7.3 public boolean containsKey (Object name)

name The property name.

 Indicates if the specified property is present.

Returns true If the property is present, false otherwise.
containsValue(Object)

113.12.7.4 public boolean containsValue (Object value)

value The property value.

 Indicates if the specified value is present.

Returns true If the value is present, false otherwise.
entrySet()

113.12.7.5 public Set<Map.Entry<String,Object>> entrySet ()

 Return the property entries.

Returns A set containing the property name/value pairs.
equals(Object)

113.12.7.6 public boolean equals (Object object)

object The EventPropert ies object to be compared.

 Compares this EventPropert ies object to another object.

The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a EventPropert ies and is equal to this object; fa lse otherwise.
get(Object)

113.12.7.7 public Object get (Object name)

name The name of the specified property.

 Return the value of the specified property.

Returns The value of the specified property.
hashCode()

113.12.7.8 public int hashCode ()

 Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.
isEmpty()

113.12.7.9 public boolean isEmpty ()

 Indicate if this properties is empty.

Returns true If this properties is empty, false otherwise.
keySet()

113.12.7.10 public Set<String> keySet ()

 Return the names of the properties.

Returns The names of the properties.
put(String,Object)

113.12.7.11 public Object put (String key , Object value)

 This method throws UnsupportedOperat ionException .

Throws UnsupportedOperationException – if called.
putAll(Map)

113.12.7.12 public void putAll (Map<? extends String,? extends Object> map)

 This method throws UnsupportedOperat ionException .

Throws UnsupportedOperationException – if called.
remove(Object)
Page 282 OSGi Service Platform Release 4, Version 4.3

Event Admin Service Specification Version 1.3 org.osgi.service.event
113.12.7.13 public Object remove (Object key)

 This method throws UnsupportedOperat ionException .

Throws UnsupportedOperationException – if called.
size()

113.12.7.14 public int size ()

 Return the number of properties.

Returns The number of properties.
toString()

113.12.7.15 public String toString ()

 Returns the string representation of this object.

Returns The string representation of this object.
values()

113.12.7.16 public Collection<Object> values ()

 Return the properties values.

Returns The values of the properties.
TopicPermission

113.12.8 public final class TopicPermission
extends Permission
A bundle’s authority to publish or subscribe to event on a topic.

A topic is a slash-separated string that defines a topic.

For example:

org / osgi / service / foo / FooEvent / ACTION

TopicPermission has two actions: publ ish and subscribe .

Concurrency Thread-safe
PUBLISH

113.12.8.1 public static final String PUBLISH = “publish”

The action string publish .
SUBSCRIBE

113.12.8.2 public static final String SUBSCRIBE = “subscribe”

The action string subscribe .
TopicPermission(String,String)

113.12.8.3 public TopicPermission (String name , String actions)

name Topic name.

actions publish ,subscribe (canonical order).

 Defines the authority to publich and/or subscribe to a topic within the EventAdmin service.

The name is specified as a slash-separated string. Wildcards may be used. For example:

org/osgi/service/fooFooEvent/ACTION

com/isv/*

*

A bundle that needs to publish events on a topic must have the appropriate TopicPermission for that
topic; similarly, a bundle that needs to subscribe to events on a topic must have the appropriate
TopicPermssion for that topic.
equals(Object)

113.12.8.4 public boolean equals (Object obj)

obj The object to test for equality with this TopicPermission object.
OSGi Service Platform Release 4, Version 4.3 Page 283

org.osgi.service.event Event Admin Service Specification Version 1.3
 Determines the equality of two TopicPermission objects. This method checks that specified
TopicPermission has the same topic name and actions as this TopicPermission object.

Returns true if obj is a TopicPermiss ion , and has the same topic name and actions as this TopicPermission ob-
ject; false otherwise.
getActions()

113.12.8.5 public String getActions ()

 Returns the canonical string representation of the TopicPermission actions.

Always returns present TopicPermission actions in the following order: publ ish ,subscr ibe .

Returns Canonical string representation of the TopicPermiss ion actions.
hashCode()

113.12.8.6 public int hashCode ()

 Returns the hash code value for this object.

Returns A hash code value for this object.
implies(Permission)

113.12.8.7 public boolean implies (Permission p)

p The target permission to interrogate.

 Determines if the specified permission is implied by this object.

This method checks that the topic name of the target is implied by the topic name of this object. The
list of TopicPermiss ion actions must either match or allow for the list of the target object to imply the
target TopicPermission action.

x/y/*,”publish” -> x/y/z,”publish” is true

*,”subscribe” -> x/y,”subscribe” is true

*,”publish” -> x/y,”subscribe” is false

x/y,”publish” -> x/y/z,”publish” is false

Returns true if the specified TopicPermission action is implied by this object; false otherwise.
newPermissionCollection()

113.12.8.8 public PermissionCollection newPermissionCollection ()

 Returns a new PermissionCol lect ion object suitable for storing TopicPermission objects.

Returns A new PermissionCollection object.
Page 284 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Introduction
117 Dmt Admin Service
Specification
Version 2.0

117.1 Introduction
There are a large number of Device Management standards available today. Starting with the ITU
X.700 series in the seventies, SNMP in the eighties and then an explosion of different protocols when
the use of the Internet expanded in the nineties. Many device management standards have flour-
ished, and some subsequently withered, over the last decades. Some examples:

• X.700 CMIP
• IETF SNMP
• IETF LDAP
• OMA DM
• Broadband Forum TR-069
• UPnP Forum’s Device Management
• IETF NETCONF
• OASIS WS Distributed Management

This heterogeneity of the remote management for OSGi Service Platform based devices is a problem
for device manufacturers. Since there is often no dominant protocol these manufacturers have to
develop multiple solutions for different remote management protocols. It is also problematic for
device operators since they have to choose a specific protocol but by that choice could exclude a class
of devices that do not support that protocol. There is therefore a need to allow the use of multiple pro-
tocols at minimal costs.

Almost all management standards are based on hierarchical object models and provide primitives like:

• Get and replace values
• Add/Remove instances
• Discovery of value names and instance ids
• Provide notifications

A Device Management standard consists of a protocol stack and a number of object models. The protocol
stack is generic and shared for all object types; the object model describes a specific device’s proper-
ties and methods. For example, the protocol stack can consist of a set of SOAP message formats and an
object model is a Deployment Unit . An object model consists of a data model and sometimes a set of
functions.

The core problem is that the generic Device Management Tree must be mapped to device specific
functions. This specification therefore defines an API for managing a device using general device
management concepts but providing an effective plugin model to link the generic tree to the specific
device functions.

The API is decomposed in the following packages/functionality:

• org.osgi .service.dmt – Main package that provides access to the local Device Management Tree.
Access is session based.

• org.osgi .service.dmt.noti f ication – The notification package provides the capability to send
alerts to a management server.
OSGi Service Platform Release 4, Version 4.3 Page 285

Introduction Dmt Admin Service Specification Version 2.0
• org.osgi .service.dmt.spi – Provides the capability to register subtree handlers in the Device Man-
agement Tree.

• org.osgi .service.dmt.noti f icat ion.spi – The API to provide the possibilitity to extend the notifi-
cation system.

• org.osgi .service.dmt.security – Permission classes.

117.1.1 Entities
• Device Management Tree – The Device Management Tree (DMT) is the logical view of manageable

aspects of an OSGi Environment, implemented by plugins and structured in a tree with named
nodes.

• Dmt Admin – A service through which the DMT can be manipulated. It is used by Local Managers
or by Protocol Adapters that initiate DMT operations. The Dmt Admin service forwards selected
DMT operations to Data Plugins and execute operations to Exec Plugins; in certain cases the Dmt
Admin service handles the operations itself. The Dmt Admin service is a singleton.

• Dmt Session – A session groups a set of operations on a sub-tree with optional transactionality and
locking. Dmt Session objects are created by the Dmt Admin service and are given to a plugin when
they first join the session.

• Local Manager – A bundle which uses the Dmt Admin service directly to read or manipulate the
DMT. Local Managers usually do not have a principal associated with the session.

• Protocol Adapter – A bundle that communicates with a management server external to the device
and uses the Dmt Admin service to operate on the DMT. Protocol Adapters usually have a prin-
cipal associated with their sessions.

• Meta Node – Information provided by the node implementer about a node for the purpose of per-
forming validation and providing assistance to users when these values are edited.

• Multi nodes – Interior nodes that have a homogeneous set of children. All these children share the
same meta node.

• Plugin – Services which take the responsibility over a given sub-tree of the DMT: Data Plugin ser-
vices and Exec Plugin services.

• Data Plugin – A Plugin that can create a Readable Data Session, Read Write Data Session, or Trans-
actional Data Session for data operations on a sub-tree for a Dmt Session.

• Exec Plugin – A Plugin that can handle execute operations.
• Readable Data Session – A plugin session that can only read.
• Read Write Data Session – A plugin session that can read and write.
• Transactional Data Session – A plugin session that is transactional.
• Principal – Represents the optional identity of an initiator of a Dmt Session. When a session has a

principal, the Dmt Admin must enforce ACLs and must ignore Dmt Permissions.
• ACL – An Access Control List is a set of principals that is associated with permitted operations.
• Dmt Event – Information about a modification of the DMT.
• Dmt Event Listener – Listeners to Dmt Events. These listeners are services according to the white

board pattern.
• Mount Point – A point in the DMT where a Plugin or the Dmt Admin service allows other Plugins

to have their root.

The overall service interaction diagram is depicted in Figure 117.1.
Page 286 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Introduction
Figure 117.1 Overall Service Diagram

The entities used in the Dmt Admin operations and notifications are depicted in Figure 117.2.

Figure 117.2 Using Dmt Admin service, org.osgi.service.dmt, info, dmt.notification.* package

Extending the Dmt Admin service with Plugins is depicted in Figure 117.3.

DMT Admin Impl
DmtAdmin

Notification
Service

Data
Plugin

Exec
Plugin

RemoteAlert
Sender

Event Handler
(Event Admin)

Dmt Event
Listener

<<service>>
Dmt Admin

administers

DMT Admin Impl

<<service>>
Notification
Service

Local Manager or
Protocol Adapter

sends alerts

<<class>>
Alert Item

<<class>>
Acl

<<interface>>
Meta Node

<<class>>
Dmt Data

<<interface>>
Dmt Session

Session Impl Alert Sender Impl

0..*

1

0..*

1

<<service>>
Remote Alert
Sender

Remote Alert
Sender Impl

0..*

1

<<service>>
Dmt Event
Listener

<<class>>
Dmt Event

0..*

1

Listener Impl
OSGi Service Platform Release 4, Version 4.3 Page 287

The Device Management Model Dmt Admin Service Specification Version 2.0
Figure 117.3 Extending the Dmt Admin service, org.osgi.service.dmt.spi package

117.2 The Device Management Model
The standard-based features of the DMT model are:

• The Device Management Tree consists of interior nodes and leaf nodes. Interior nodes can have
children and leaf nodes have primitive values.

• All nodes have a set of properties: Name, Title, Format, ACL, Version, Size, Type, Value, and
TimeStamp.

• The storage of the nodes is undefined. Nodes typically map to peripheral registers, settings, config-
uration, databases, etc.

• A node’s name must be unique among its siblings.
• Nodes can have Access Control Lists (ACLs), associating operations allowed on those nodes with a

particular principal.
• Nodes can have Meta Nodes that describe actual nodes and their siblings.
• Base value types (called formats in the standard) are

• integer
• long
• string
• boolean
• binary data (multiple types)
• datetime
• time
• float
• XML fragments

• Leaf nodes in the tree can have default values specified in the meta node.

DMT Admin ImplSession Impl

<<service>>
Data Plugin

<<service>>
Exec Plugin

<<interface>>
Readable Data
Session

Data Plugin Impl Exec Plugin Impl

<<interface>>
Read Write
Data Session

<<interface>>
Transactional
Data Session

Session Impl

<<interface>>
Mount Plugin

Mount Point Impl

<<interface>>
Mount Point
Page 288 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 The Device Management Model
• Meta Nodes define allowed access operations (Get , Add , Replace , Delete and Exec)

Figure 117.4 Device Management Tree example

117.2.1 Tree Terminology
In the following sections, the DMT is discussed frequently. Thus, well-defined terms for all the con-
cepts that the DMT introduces are needed. The different terms are shown in Figure 117.5.

Figure 117.5 DMT naming, relative to node F

All terms are defined relative to node F. For this node, the terminology is as follows:

• URI – The path consisting of node names that uniquely defines a node, see The DMT Addressing
URI on page 291.

• ancestors – All nodes that are above the given node ordered in proximity. The closest node must be
first in the list. In the example, this list is [./E , .]

• parent – The first ancestor, in this example this is . /E .
• children – A list of nodes that are directly beneath the given node without any preferred ordering.

For node F this list is { . /E/F/f1 , . /E/F/f2, . /E/F/G } .
• siblings – An unordered list of nodes that have the same parent. All siblings must have different

names. For F , this is { ./E/K}
• descendants – A list of all nodes below the given node. For F this is { . /E/F/f1 , . /E/F/G, ./E/F/f2, . /E/

F/G/H, . /E/F/G/I , . /E/F/G/J }
• sub-tree – The given node plus the list of all descendants. For node F this is { ./E/F, . /E/F/f1 , . /E/F/

G, . /E/F/f2, . /E/F/G/H, . /E/F/G/I , . /E/F/G/J }
• overlap – Two given URIs overlap if they share any node in their sub-trees. In the example, the sub-

tree . /E/F and . /E/F/G overlap.
• data root URI – A URI which represents the root of a Data Plugin.
• exec root URI – A URI which represents the root of an Exec Plugin.
• Parent Plugin – A Plugin A is a Parent Plugin of Plugin B if B ’s root is a in A ’s sub-tree, this requires a

Parent Plugin to at least have one mount point.
• Child Plugin – A Plugin A is a Child Plugin of Plugin B if A ’s root is in B ’s sub-tree.

root node.

Vendor Operator

ScreenSavers

OSGiOMA DM

RingSignals

Bach Popcorn Sinatra

interior node

leaf node

leaf node

interior node

.

E

G

F

f1 f2

A

DC

IH J

parent

self
siblings

ancestors

descendants
children sub-tree

K

OSGi Service Platform Release 4, Version 4.3 Page 289

The DMT Admin Service Dmt Admin Service Specification Version 2.0
• Scaffold Node – An ancestor node of a Plugin that is managed by the Dmt Admin service to ensure
that all nodes are discoverable by traversing from the root.

117.2.2 Actors
There are two typical users of the Dmt Admin service:

• Remote manager – The typical client of the Dmt Admin service is a Protocol Adapter. A management
server external to the device can issue DMT operations over some management protocol. The pro-
tocol to be used is not specified by this specification. For example, OMA DM, TR-069, or others
could be used. The protocol operations reach the service platform through the Protocol Adapter,
which forwards the calls to the Dmt Admin service in a session. Protocol Adapters should authen-
ticate the remote manager and set the principal in the session. This association will make the Dmt
Admin service enforce the ACLs. This requires that the principal is equal to the server name.
The Dmt Admin service provides a facility to send notifications to the remote manager with the
Notification Service.

• Local Manager – A bundle which uses the Dmt Admin service to operate on the DMT: for example,
a GUI application that allows the end user to change settings through the DMT.
Although it is possible to manage some aspects of the system through the DMT, it can be easier for
such applications to directly use the services that underlie the DMT; many of the management
features available through the DMT are also available as services. These services shield the callers
from the underlying details of the abstract, and sometimes hard to use DMT structure. As an
example, it is more straightforward to use the Monitor Admin service than to operate upon the
monitoring sub-tree. The local management application might listen to Dmt Events if it is inter-
ested in updates in the tree made by other entities, however, these events do not necessarily reflect
the accurate state of the underlying services.

Figure 117.6 Actors

117.3 The DMT Admin Service
The Dmt Admin service operates on the Device Management Tree of an OSGi-based device. The Dmt
Admin API is loosely modelled after the OMA DM protocol: the operations for Get , Replace , Add ,
Delete and Exec are directly available. The Dmt Admin is a singleton service.

Access to the DMT is session-based to allow for locking and transactionality. The sessions are, in prin-
ciple, concurrent, but implementations that queue sessions can be compliant. The client indicates to
the Dmt Admin service what kind of session is needed:

<<service>>
Dmt Admin

Protocol Adapter
Impl

remote management

<<interface>>
Dmt Session

Local Manager
Impl

Remote Server

protocol

principal
Page 290 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Manipulating the DMT
• Exclusive Update Session– Two or more updating sessions cannot access the same part of the tree
simultaneously. An updating session must acquire an exclusive lock on the sub-tree which blocks
the creation of other sessions that want to operate on an overlapping sub-tree.

• Multiple Readers Session – Any number of read-only sessions can run concurrently, but ongoing
read-only sessions must block the creation of an updating session on an overlapping sub-tree.

• Atomic Session – An atomic session is the same as an exclusive update session, except that the
session can be rolled back at any moment, undoing all changes made so far in the session. The par-
ticipants must accept the outcome: rollback or commit. There is no prepare phase. The lack of full
two phase commit can lead to error situations which are described later in this document; see
Plugins and Transactions on page 304.

Although the DMT represents a persistent data store with transactional access and without size limi-
tations, the notion of the DMT should not be confused with a general purpose database. The intended
purpose of the DMT is to provide a dynamic view of the management state of the device; the DMT
model and the Dmt Admin service are designed for this purpose.

117.4 Manipulating the DMT

117.4.1 The DMT Addressing URI
The OMA DM limits URIs to the definition of a URI in [8] RFC 2396 Uniform Resource Identifiers (URI):
Generic Syntax. The Uri utility classes handles nearly all escaping issues with a number of static meth-
ods. All URIs in any of the API methods can use the full Unicode character set. For example, the fol-
lowing URIs as used in Java code are valid URIs for the Dmt Admin service.

"./ACME © 2000/A/x"

"./ACME/Address/Street/9C, Avenue St. Drézéry"

This strategy has a number of consequences.

• A slash (’ / ’ \u002F) collides with the use of the slash as separator of the node names. Slashes must
therefore be escaped using a backslash slash (’ \ / ’). The backslash must be escaped with a double
backslash sequence. The Dmt Admin service must ignore a backslash when it is not followed by a
slash or backslash. The slash and backslash must not be escaped using the %00 like escaping
defined for URIs. For example, a node that has the name of a MIME type could look like:

./OSGi/mime/application\/png

In Java, a backslash must be escaped as well, therefore requiring double back slashes:

String a = "./OSGi/mime/application\\/png";

A literal backslash would therefore require 4 backslashes in a Java string.
• The length of a node name is defined to be the length of the byte array that results from UTF-8

encoding a string.

The Uri class provides an encode(Str ing) method to escape a string and a decode(String) method to
unescape a string. Though in general the Dmt Admin service implementations should not impose
unnecessary constraints on the node name length, it is possible that an implementation runs out of
space. In that case it must throw a DmtException URI_TOO_LONG .

Nodes are addressed by presenting a relative or absolute URI for the requested node. The URI is defined
with the following grammar:

uri ::= relative-uri | absolute-uri

absolute-uri ::= ’./’ relative-uri

relative-uri ::= segment (’/’ segment)*

segment ::= (~[’/’])*
OSGi Service Platform Release 4, Version 4.3 Page 291

Manipulating the DMT Dmt Admin Service Specification Version 2.0
The Uri isAbsoluteUri(Str ing) method makes it simple to find out if a URI is relative or absolute. Rel-
ative URIs require a base URI that is for example provided by the session, see Locking and Sessions on
page 292.

Each node name is appended to the previous ones using a slash (’/’ \u002F) as the separating charac-
ter. The first node of an absolute URI must be the full stop (’.’\u002E). For example, to access the Bach
leaf node in the RingTones interior node from Figure 117.4 on page 289, the URI must be:

./Vendor/RingSignals/Bach

 The URI must be given with the root of the management tree as the starting point. URIs used in the
DMT must be treated and interpreted as case-sensitive. I.e. . /Vendor and . /vendor designate two differ-
ent nodes. The following mandatory restrictions on URI syntax are intended to simplify the parsing
of URIs.

The full stop has no special meaning in a node name. That is, sequences like . . do not imply parent
node. The isVal idUri(Str ing) method verifies that a URI fulfills all its obligations and is valid.

117.4.2 Locking and Sessions
The Dmt Admin service is the main entry point into the DMT, its usage is to create sessions. A simple
example is getting a session on a specific sub-tree. Such a session can be created with the
getSession(Str ing) method. This method creates an updating session with an exclusive lock on the
given sub-tree. The given sub-tree can be a single leaf node, if so desired.

Each session has an ID associated with it which is unique to the machine and is never reused. This id
is always greater than 0. The value -1 is reserved as place holder to indicate a situation has no session
associated with it, for example an event generated from an underlying service. The URI argument
addresses the sub-tree root. If nul l , it addresses the root of the DMT. All nodes can be reached from
the root, so specifying a session root node is not strictly necessary but it permits certain optimiza-
tions in the implementations.

If the default exclusive locking mode of a session is not adequate, it is possible to specify the locking
mode with the getSession(String, int) and getSession(Str ing,Str ing, int) method. These methods
supports the following locking modes:

• LOCK_TYPE_SHARED – Creates a shared session. It is limited to read-only access to the given sub-
tree, which means that multiple sessions are allowed to read the given sub-tree at the same time.

• LOCK_TYPE_EXCLUSIVE – Creates an exclusive session. The lock guarantees full read-write access to
the tree. Such sessions, however, cannot share their sub-tree with any other session. This type of
lock requires that the underlying implementation supports Read Write Data Sessions.

• LOCK_TYPE_ATOMIC – Creates an atomic session with an exclusive lock on the sub-tree, but with
added transactionality. Operations on such a session must either succeed together or fail together.
This type of lock requires that the underlying implementation supports Transactional Data Ses-
sions. If the Dmt Admin service does not support transactions, then it must throw a Dmt
Exception with the FEATURE_NOT_SUPPORTED code. If the session accesses data plugins that are
not transactional in write mode, then the Dmt Admin service must throw a Dmt Exception with
the TRANSACTION_ERROR code. That is, data plugins can participate in a atomic sessions as long
as they only perform read operations.

The Dmt Admin service must lock the sub-tree in the requested mode before any operations are per-
formed. If the requested sub-tree is not accessible, the getSession(Str ing, int) , getSession(Str ing,
Str ing, int) , or getSession(Str ing) method must block until the sub-tree becomes available. The
implementation can decide after an implementation-dependent period to throw a Dmt Exception
with the SESSION_CREATION_TIMEOUT code.

As a simplification, the Dmt Admin service is allowed to lock the entire tree irrespective of the given
sub-tree. For performance reasons, implementations should provide more fine-grained locking when
possible.
Page 292 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Manipulating the DMT
Persisting the changes of a session works differently for exclusive and atomic sessions. Changes to
the sub-tree in an atomic session are not persisted until the commit() or close() method of the ses-
sion is called. Changes since the last transaction point can be rolled back with the rol lback() method.

The commit() and rol lback() methods can be called multiple times in a session; they do not close the
session. The open , commit() , and rol lback() methods all establish a transaction point. The rollback
operation cannot roll back further than the last transaction point.

Once a fatal error is encountered (as defined by the DmtException isFatal() method), all successful
changes must be rolled back automatically to the last transaction point. Non-fatal errors do not roll-
back the session. Any error/exception in the commit or rol lback methods invalidates and closes the
session. This can happen if, for example, the mapping state of a plugin changes that has its plugin
root inside the session’s sub-tree.

Changes in an exclusive session are persisted immediately after each separate operation. Errors do
not roll back any changes made in such a session.

Due to locking and transactional behavior, a session of any type must be closed once it is no longer
used. Locks must always be released, even if the close() method throws an exception.

Once a session is closed no further operations are allowed and manipulation methods must throw a
Dmt Illegal State Exception when called. Certain information methods like for example getState()
and getRootUri() can still be called for logging or diagnostic purposes. This is documented with the
Dmt Session methods.

The close() or commit() method can be expected to fail even if all or some of the individual opera-
tions were successful. This failure can occur due to multi-node constraints defined by a specific
implementation. The details of how an implementation specifies such constraints is outside the
scope of this specification.

Events in an atomic session must only be sent at commit time.

117.4.3 Associating a Principal
Protocol Adapters must use the getSession(Str ing,Str ing, int) method which features the principal
as the first parameter. The principal identifies the external entity on whose behalf the session is cre-
ated. This server identification string is determined during the authentication process in a way spe-
cific to the management protocol.

For example, the identity of the OMA DM server can be established during the handshake between
the OMA DM agent and the server. In the simpler case of OMA CP protocol, which is a one-way proto-
col based on WAP Push, the identity of the principal can be a fixed value.

117.4.4 Relative Addressing
All DMT operation methods are found on the session object. Most of these methods accept a relative
or absolute URI as their first parameter: for example, the method isLeafNode(String) . This URI is abso-
lute or relative to the sub-tree with which the session is associated. For example, if the session is
opened on:

./Vendor

then the following URIs address the Bach ring tone:

RingTones/Bach

./Vendor/RingTones/Bach

Opening the session with a nul l URI is identical to opening the session at the root. But the absolute
URI can be used to address the Bach ring tone as well as a relative URI.

./Vendor/RingTones/Bach

Vendor/RingTones/Bach
OSGi Service Platform Release 4, Version 4.3 Page 293

Manipulating the DMT Dmt Admin Service Specification Version 2.0
If the URI specified does not correspond to a legitimate node in the tree, a Dmt Exception must be
thrown. The only exception to this rule is the isNodeUri(Str ing) method that can verify if a node is
actually valid. The getMetaNode(Str ing) method must accept URIs to non-existing nodes if an appli-
cable meta node is available; otherwise it must also throw a Dmt Exception.

117.4.5 Creating Nodes
The methods that create interior nodes are:

• createInter iorNode(String) – Create a new interior node using the default meta data. If the prin-
cipal does not have Replace access rights on the parent of the new node then the session must
automatically set the ACL of the new node so that the creating server has Add , Delete and Replace
rights on the new node.

• createInter iorNode(String,Str ing) – Create a new interior node. The meta data for this new node
is identified by the second argument, which is a URI identifying an OMA DM Device Description
Framework (DDF) file, this does not have to be a valid location. It uses a format like org.osgi/1.0/
LogManagementObject . This meta node must be consistent with any meta information from the
parent node.

• createLeafNode(Str ing) – Create a new leaf node with a default value.
• createLeafNode(Str ing,DmtData) – Create a leaf node and assign a value to the leaf-node.
• createLeafNode(Str ing,DmtData,Str ing) – Create a leaf node and assign a value for the node. The

last argument is the MIME type, which can be nul l .

For a node to be created, the following conditions must be fulfilled:

• The URI of the new node has to be a valid URI.
• The principal of the Dmt Session, if present, must have ACL Add permission to add the node to the

parent. Otherwise, the caller must have the necessary permission.
• All constraints of the meta node must be verified, including value constraints, name constraints,

type constraints, and MIME type constraints. If any of the constraints fail, a Dmt Exception must
be thrown with an appropriate code.

117.4.6 Node Properties
A DMT node has a number of runtime properties that can be set through the session object. These
properties are:

• Title – (Str ing) A human readable title for the object. The title is distinct from the node name. The
title can be set with setNodeTit le(Str ing,Str ing) and read with getNodeTit le(Str ing) . This speci-
fication does not define how this information is localized. This property is optional depending on
the implementation that handles the node.

• Type –(Str ing) The MIME type, as defined in [9] MIME Media Types, of the node’s value when it is a
leaf node. The type of an interior node is a string identifying a DDF type. These types can be set
with setNodeType(Str ing,Str ing) and read with getNodeType(Str ing) .

• Version – (int) Version number, which must start at 0, incremented after every modification (for
both a leaf and an interior node) modulo 0x10000. Changes to the value or any of the properties
(including ACLs), or adding/deleting nodes, are considered changes. The getNodeVersion(String)
method returns this version; the value is read-only. In certain cases, the underlying data structure
does not support change notifications or makes it difficult to support versions. This property is
optional depending on the node’s implementation.

• Size – (int) The size measured in bytes is read-only and can be read with getNodeSize(String) . Not
all nodes can accurately provide this information.

• Time Stamp –(Date) Time of the last change in version. The getNodeTimestamp(String) returns
the time stamp. The value is read only. This property is optional depending on the node’s imple-
mentation.

• ACL – The Access Control List for this and descendant nodes. The property can be set with
setNodeAcl(Str ing,Acl) and obtained with getNodeAcl(Str ing) .
Page 294 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Manipulating the DMT
If a plugin that does not implement an optional property is accessed, a Dmt Exception with the code
FEATURE_NOT_SUPPORTED must be thrown.

117.4.7 Setting and Getting Data
Values are represented as DmtData objects, which are immutable. The are acquired with the
getNodeValue(Str ing) method and set with the setNodeValue(Str ing,DmtData) method.

DmtData objects are dynamically typed by an integer enumeration. In OMA DM, this integer is
called the format of the data value. The format of the DmtData class is similar to the type of a variable
in a programming language, but the word format is used here. The available data formats are listed in
Table 117.1.

Table 117.1 Data Formats

Format
Type

Java
Type

Format
Name

Constructor Get Description

FORMAT_BASE64 byte[] base64 DmtData(byte[] ,
boolean)

getBase64() Binary type that must be
encoded with base 64, see [10]
RFC 3548 The Base16, Base32,
and Base64 Data Encodings.

FORMAT_BINARY byte[] binary DmtData(byte[])
DmtData(byte[] ,
boolean)

getBinary() A byte array. The DmtData
object is created with the
constructor. The byte array
can only be acquired with
the method.

FORMAT_BOOLEAN boolean boolean DmtData(boolean) getBoolean() Boolean. There are two con-
stants for this type:

• FALSE_VALUE
• TRUE_VALUE

FORMAT_DATE Str ing date DmtData(Str ing, int) getStr ing()

getDate()

A Date (no time). Syntax
defined in [13] XML Schema
Part 2: Datatypes Second Edi-
tion as the date type.

FORMAT_DATE_TIME Str ing dateTime DmtData(Date) getDateTime() A Date object representing a
point in time.

FORMAT_FLOAT float float DmtData(float) getFloat() Float
FORMAT_INTEGER int integer DmtData(int) getInt() Integer
FORMAT_LONG long long DmtData(long) getLong() Long
FORMAT_NODE Object NODE DmtData(Object) getNode() A DmtData object can have a

format of FORMAT_NODE .
This value is returned from a
MetaNode getFormat()
method if the node is an inte-
rior node or for a data value
when the Plugin supports
complex values.

FORMAT_NULL No valid data is available.
DmtData objects with this
format cannot be con-
structed; the only instance is
the DmtData NULL_VALUE
constant.
OSGi Service Platform Release 4, Version 4.3 Page 295

Manipulating the DMT Dmt Admin Service Specification Version 2.0
117.4.8 Complex Values
The OMA DM model prescribes that only leaf nodes have primitive values. This model maps very
well to remote managers. However, when a manager is written in Java and uses the Dmt Admin API
to access the tree, there are often unnecessary conversions from a complex object, to leaf nodes, and
back to a complex object. For example, an interior node could hold the current GPS position as an
OSGi Posit ion object, which consists of a longitude, latitude, altitude, speed, and direction. All these
objects are Measurement objects which consist of value, error, and unit. Reading such a Posit ion
object through its leaf nodes only to make a new Posit ion object is wasting resources. It is therefore
that the Dmt Admin service also supports complex values as a supplementary facility.

If a complex value is used then the leaves must also be accessible and represent the same semantics as
the complex value. A manager unaware of complex values must work correctly by only using the leaf
nodes. Setting or getting the complex value of an interior node must be identical to setting or getting
the leaf nodes.

Accessing a complex value requires Get access to the node and all its descendants. Setting a complex
value requires Replace access to the interior node. Replacing a complex value must only generate a
single Replace event.

FORMAT_RAW_BINARY byte[] <custom> DmtData(Str ing,byte[]) getRawBinary() A raw binary format is
always created with a format
name. This format name
allows the creator to define a
proprietary format. The for-
mat name is available from
the getFormatName()
method, which has pre-
defined values for the stan-
dard formats.

FORMAT_RAW_STRING Str ing <custom> DmtData(Str ing,Str ing) getRawStr ing() A raw string format is always
created with a format name.
This format name allows the
creator to define a propri-
etary format. The format
name is available from the
getFormatName() method,
which has predefined values
for the standard formats.

FORMAT_STRING Str ing str ing DmtData(Str ing) getStr ing() String
FORMAT_TIME Str ing t ime DmtData(Str ing, int) getStr ing() Time of Day. Syntax defined

in [13] XML Schema Part 2:
Datatypes Second Edition as
the t ime type.

FORMAT_XML Str ing xml DmtData(Str ing, int) getXml() A string containing an XML
fragment. It can be obtained
with. The validity of the XML
must not be verified by the
Dmt Admin service.

Table 117.1 Data Formats

Format
Type

Java
Type

Format
Name

Constructor Get Description
Page 296 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Manipulating the DMT
Trying to set or get a complex value on an interior node that does not support complex values must
throw a Dmt Exception with the code COMMAND_NOT_ALLOWED .

117.4.9 Nodes and Types
The node’s type can be set with the setNodeType(Str ing,Str ing) method and acquired with
getNodeType(Str ing) . The namespaces for the types differ for interior and leaf nodes. A leaf node is
typed with a MIME type and an interior node is typed with a DDF Document URI. However, in both
cases the Dmt Admin service must not verify the syntax of the type name.

The createLeafNode(String,DmtData,Str ing) method takes a MIME type as last argument that will
type the leaf node. The MIME type reflects how the data of the node should be interpreted. For exam-
ple, it is possible to store a GIF and a JPEG image in a DmtData object with a FORMAT_BINARY format.
Both the GIF and the JPEG object share the same format, but will have MIME types of image/jpg and
image/gif respectively. The Meta Node provides a list of possible MIME types.

The createInteriorNode(Str ing,Str ing)method takes a DDF Document URI as the last argument that
will type the interior node. This specification defines the DDF Document URIs listed in Table 117.2
for interior nodes that have a particular meaning in this specification.

117.4.10 Deleting Nodes
The deleteNode(Str ing) method on the session represents the Delete operation. It deletes the sub-
tree of that node. This method is applicable to both leaf and interior nodes. Nodes can be deleted by
the Dmt Admin service in any order. The root node of the session cannot be deleted.

For example, given Figure 117.7, deleting node P must delete the nodes . /P ,. /P/ M , . /P/M/X , . /P/M/n2
and . /P/M/n3 in any order.

Figure 117.7 DMT node and deletion

Table 117.2 Standard Interior Node Types

Interior Node Type Description

DDF_SCAFFOLD Scaffold nodes are automatically generated nodes by the Dmt
Admin service to provide the children node names so that Plu-
gins are reachable from the root. See Scaffold Nodes on page
305.

DDF_MAP MAP nodes define a key -> value mapping construct using the
node name (key) and the node value (value). See MAP Nodes
on page 333.

DDF_LIST LIST nodes use the node name to maintain an index in a list.
See LIST Nodes on page 331.

.

P

X

M

n2 n3
OSGi Service Platform Release 4, Version 4.3 Page 297

Meta Data Dmt Admin Service Specification Version 2.0
117.4.11 Copying Nodes
The copy(Str ing,Str ing,boolean) method on the DmtSession object represents the Copy operation.
A node is completely copied to a new URI. It can be specified with a boolean if the whole sub-tree
(true) or just the indicated node is copied.

The ACLs must not be copied; the new access rights must be the same as if the caller had created the
new nodes individually. This restriction means that the copied nodes inherit the access rights from
the parent of the destination node, unless the calling principal does not have Replace rights for the
parent. See Creating Nodes on page 294 for details.

117.4.12 Renaming Nodes
The renameNode(String,Str ing) method on the DmtSession object represents the Rename opera-
tion, which replaces the node name. It requires permission for the Replace operation. The root node
for the current session can not be renamed.

117.4.13 Execute
The execute(Str ing,Str ing) and execute(Str ing,Str ing,Str ing) methods can execute a node. Executing
a node is intended to be used when a problem is hard to model as a set of leaf nodes. This can be
related to synchronization issues or data manipulation. The execute methods can provide a correla-
tor for a notification and an opaque string that is forwarded to the implementer of the node.

Execute operations can not take place in a read only session because simultaneous execution could
make conflicting changes to the tree.

117.4.14 Closing
When all the changes have been made, the session must be closed by calling the close() method on
the session. The Dmt Admin service must then finalize, clean up, and release any locks. For atomic
sessions, the Dmt Admin service must automatically commit any changes that were made since the
last transaction point.

A session times out and is invalidated after an extended period of inactivity. The exact length of this
period is not specified, but is recommended to be at least 1 minute and at most 24 hours. All methods
of an invalidated session must throw an Dmt Illegal State Exception after the session is invalidated.

A session's state is one of the following: STATE_CLOSED , STATE_INVALID or STATE_OPEN , as can be
queried by the getState() call. The invalid state is reached either after a fatal error case is encountered
or after the session is timed out. When an atomic session is invalidated, it is automatically rolled back
to the last transaction point of the session.

117.5 Meta Data
The getMetaNode(Str ing) method returns a MetaNode object for a given URI. This node is called the
meta node. A meta node provides information about nodes.

Any node can optionally have a meta node associated with it. The one or more nodes that are
described by the meta nodes are called the meta node’s related instances. A meta node can describe a
singleton-related instance, or it can describe all the children of a given parent if it is a multi-node. That
is to say, meta nodes can exist without an actual instance being present. In order to retrieve the meta
node of a multi-node any name can be used.

For example, if a new ring tone, Grieg , was created in Figure 117.8 it would be possible to get the Meta
Node for . /Vendor/RingSignals/Grieg before the node was created. This is usually the case for multi
nodes. The model is depicted in Figure 117.8.
Page 298 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Meta Data
Figure 117.8 Nodes and meta nodes

A URI is generally associated with the same Meta Node. The getMetaNode(Str ing) should return the
same meta node for the same URI except in the case of Scaffold Nodes on page 305. As the ownership of
scaffold nodes can change from the Dmt Admin service to the Parent Plugin service, or from a Parent
Plugin to a Child Plugin, the Meta Node can change as well.

The last segment of the URI to get a Meta Node can be any valid node name, for example, instead of
Grieg it would have been possible to retrieve the same Meta Node with the name . /Vendor/
RingSignals/0 , . /Vendor/RingSignals/anyName , . /Vendor/RingSignals/<> , etc.

The actual meta data can come from two sources:

• Dmt Admin – Each Dmt Admin service likely has a private meta data repository. This meta data is
placed in the device in a proprietary way.

• Plugins – Plugins can carry meta nodes and provide these to the Dmt Admin service by imple-
menting the getMetaNode(Str ing[]) method. If a plugin returns a non-null value, the Dmt
Admin service must use that value, possibly complemented by its own metadata for elements not
provided by the plugin.

The MetaNode interface supports methods to retrieve read-only meta data. The following sections
describes this meta-data in more detail.

117.5.1 Operations
The can(int) method provide information as to whether the associated node can perform the given
operation. This information is only about the capability; it can still be restricted in runtime by ACLs
and permissions.

For example, if the can(MetaNode.CMD_EXECUTE) method returns true , the target object supports
the Execute operation. That is, calling the execute(Str ing,Str ing) method with the target URI is pos-
sible.

The can(int) method can take the following constants as parameters:

• CMD_ADD
• CMD_DELETE
• CMD_EXECUTE
• CMD_GET
• CMD_REPLACE

For example:

void foo(DmtSession session, String nodeUri) {

MetaNode meta = session.getMetaNode(nodeUri);

 if (meta !=null && meta.can(MetaNode.CMD_EXECUTE))
session.execute(nodeUri,"foo");

}

meta node

Vendor

RingSignals

Bach Popcorn ...

./Vendor/RingSingals

<>

related instance
OSGi Service Platform Release 4, Version 4.3 Page 299

Meta Data Dmt Admin Service Specification Version 2.0
117.5.2 Scope
The scope is part of the meta information of a node. It provides information about what the life cycle
role is of the node. The getScope() method on the Meta Node provides this information. The value of
the scope can be one of the following:

• DYNAMIC – Dynamic nodes are intended to be created and deleted by a management system or an
other controlling source. This this not imply that it actually is possible to add new nodes and
delete nodes, the actions can still allow or deny this. However, in principle nodes that can be
added or deleted have the DYNAMIC scope. The LIST and MAP nodes, see OSGi Object Modeling on
page 327, always have DYNAMIC scope.

• PERMANENT – Permanent nodes represent an entity in the system. This can be a network
interface, de device description, etc. Permanent nodes in general map to an object in an object ori-
ented language. Despite their name, PERMANENT nodes can appear and disappear, for example
the plugging in of a USB device might create a new PERMANENT node. Generally, the Plugin roots
map to PERMANENT nodes.

• AUTOMATIC – Automatic nodes map in general to nodes that are closely tied to the parent. They
are similar to fields of an object in an object oriented language. They cannot be deleted or added.

For example, a node representing the Battery can never be deleted because it is an intrinsic part of the
device; it will therefore be PERMANENT . The Level and number of ChargeCycle nodes will be
AUTOMATIC . A new ring tone is dynamically created by a manager and is therefore DYNAMIC .

117.5.3 Description and Default
• getDescr ipt ion() – (Str ing) A description of the node. Descriptions can be used in dialogs with

end users: for example, a GUI application that allows the user to set the value of a node. Local-
ization of these values is not defined.

• getDefault() – (DmtData) A default data value.

117.5.4 Validation
The validation information allows the runtime system to verify constraints on the values; it also
allows user interfaces to provide guidance.

A node does not have to exist in the DMT in order to have meta data associated with it. Nodes may
exist that have only partial meta data, or no metadata, associated with them. For each type of meta-
data, the default value to assume when it is omitted is described in MetaNode on page 379.

117.5.5 Data Types
A leaf node can be constrained to a certain format and one of a set of MIME types.

• getFormat() – (int) The required type. This type is a logical OR of the supported formats.
• getRawFormatNames() – Return an array of possible raw format names. This is only applicable

when the getFormat() returns the FORMAT_RAW_BINARY or FORMAT_RAW_STRING formats. The
method must return nul l otherwise.

• getMimeTypes() – (Str ing[]) A list of MIME types for leaf nodes or DDF types for interior nodes.
The Dmt Admin service must verify that the actual type of the node is part of this set.

117.5.6 Cardinality
A meta node can constrain the number of siblings (i.e., not the number of children) of an interior or
leaf node. This constraint can be used to verify that a node must not be deleted, because there should
be at least one node left on that level (isZeroOccurrenceAllowed()), or to verify that a node cannot be
created, because there are already too many siblings (getMaxOccurrence()).

If the cardinality of a meta node is more than one, all siblings must share the same meta node to pre-
vent an invalid situation. For example, if a node has two children that are described by different meta
nodes, and any of the meta nodes has a cardinality >1, that situation is invalid.
Page 300 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Plugins
For example, the . /Vendor/RingSignals/<> meta node (where <> stands for any name) could specify
that there should be between 0 and 12 ring signals.

• getMaxOccurrence() – (int) A value greater than 0 that specifies the maximum number of
instances for this node.

• isZeroOccurrenceAl lowed() – (boolean) Returns true if zero instances are allowed. If not, the last
instance must not be deleted.

117.5.7 Matching
The following methods provide validation capabilities for leaf nodes.

• isVal idValue(DmtData) – (DmtData) Verify that the given value is valid for this meta node.
• getVal idValues() – (DmtData[]) A set of possible values for a node, or null otherwise. This can for

example be used to give a user a set of options to choose from.

117.5.8 Numeric Ranges
Numeric leaf nodes (format must be FORMAT_INTEGER , FORMAT_LONG , or FORMAT_FLOAT) can be
checked for a minimum and maximum value.

Minimum and maximum values are inclusive. That is, the range is [getMin() ,getMax()] . For exam-
ple, if the maximum value is 5 and the minimum value is -5, then the range is [-5,5]. This means that
valid values are -5,-4,-3,-2... 4, 5.

• getMax() – (double) The value of the node must be less than or equal to this maximum value.
• getMin() – (double) The value of the node must be greater than or equal to this minimum value.

If no meta data is provided for the minimum and maximum values, the meta node must return the
Double.MIN_VALUE , and Double.MAX_VALUE respectively.

117.5.9 Name Validation
The meta node provides the following name validation facilities for both leaf and interior nodes:

• isVal idName(Str ing) – (Str ing) Verifies that the given name matches the rules for this meta node.
• getVal idNames() – (Str ing[]) An array of possible names. A valid name for this node must appear

in this list.

117.5.10 User Extensions
The Meta Node provides an extension mechanism; each meta node can be associated with a number
of properties. These properties are then interpreted in a proprietary way. The following methods are
used for user extensions:

• getExtensionPropertyKeys() – Returns an array of key names that can be provided by this meta
node.

• getExtensionProperty(Str ing) – Returns the value of an extension property.

For example, a manufacturer could use a regular expression to validate the node names with the
isVal idName(Str ing) method. In a web based user interface it is interesting to provide validity check-
ing in the browser, however, in such a case the regular expression string is required. This string could
then be provided as a user extension under the key x-acme-regex-javascr ipt .

117.6 Plugins
The Plugins take the responsibility of handling DMT operations within certain sub-trees of the DMT.
It is the responsibility of the Dmt Admin service to forward the operation requests to the appropriate
plugin. The only exceptions are the ACL manipulation commands. ACLs must be enforced by the
Dmt Admin service and never by the plugin. The model is depicted in Figure 117.9.
OSGi Service Platform Release 4, Version 4.3 Page 301

Plugins Dmt Admin Service Specification Version 2.0
Figure 117.9 Device Management Tree example

Plugins are OSGi services. The Dmt Admin service must dynamically map and unmap the plugins,
acting as node handler, as they are registered and unregistered. Service properties are used to specify
the sub-tree that the plugin can manage as well as mount points that it provides to Child Plugins; plu-
gins that manage part of the Plugin’s sub-tree.

For example, a plugin related to Configuration Admin handles the sub-tree which stores configura-
tion data. This sub-tree could start at . /OSGi/Configurat ion. When the client wants to add a new con-
figuration object to the DMT, it must issue an Add operation to the . /OSGi/Conf igurat ion node. The
Dmt Admin service then forwards this operation to the configuration plugin. The plugin maps the
request to one or more method calls on the Configuration Admin service. Such a plugin can be a sim-
ple proxy to the Configuration Admin service, so it can provide a DMT view of the configuration data
store.

There are two types of Dmt plugins: data plugins and exec plugins. A data plugin is responsible for han-
dling the sub-tree retrieval, addition and deletion operations, and handling of meta data, while an
exec plugin handles a node execution operation.

117.6.1 Data Sessions
Data Plugins must participate in the Dmt Admin service sessions. A Data Plugin provider must there-
fore register a Data Plugin service. Such a service can create a session for the Dmt Admin service
when the given sub-tree is accessed by a Dmt Session. If the associated Dmt Session is later closed, the
Data Session will also be closed. Three types of sessions provide different capabilities. Data Plugins do
not have to implement all session types; if they choose not to implement a session type they can
return null .

• Readable Data Session – Must always be supported. It provides the basic read-only access to the
nodes and the close() method. The Dmt Admin service uses this session type when the lock mode
is LOCK_TYPE_SHARED for the Dmt Session. Such a session is created with the plugin’s
openReadOnlySession(Str ing[] ,DmtSession) , method which returns a ReadableDataSession
object.

• Read Write Data Session – Extends the Readable Data Session with capabilities to modify the DMT.
This is used for Dmt Sessions that are opened with LOCK_TYPE_EXCLUSIVE . Such a session is
created with the plugin’s openReadWriteSession(String[] ,DmtSession) method, which returns a
ReadWriteDataSession object.

• Transactional Data Session – Extends the Read Write Data Session with commit and rollback
methods so that this session can be used with transactions. It is used when the Dmt Session is
opened with lock mode LOCK_TYPE_ATOMIC . Such a session is created with the plugin’s
openAtomicSession(Str ing[] ,DmtSession) method, which returns a Transact ionalDataSession
object.

Device Operator

ScreenSavers

OSGiOMA DM

Battery

Level Temp Cycles

<<service>>
Data Pluginhandled by

Battery Handler
Impl

.
Plugin root node
Page 302 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Plugins
117.6.2 URIs and Plugins
The plugin Data Sessions do not use a simple string to identify a node as the Dmt Session does.
Instead the URI parameter is a Str ing[] . The members of this Str ing[] are the different segments. The
first node after the root is the second segment and the node name is the last segment. The different
segments require escaping of the slash and backslash (’/’ and’\’).

The reason to use Str ing[] objects instead of the original string is to reduce the number times that the
URI is parsed. The entry String objects, however, are still escaped. For example, the URI . /A/B/image\/
jpg gives the following Str ing[] :

{ ".", "A", "B", "image\/jpg" }

A plugin can assume that the path is validated and can be used directly.

117.6.3 Associating a sub-tree
Each plugin is associated with one ore more DMT sub-trees. The top node of a sub-tree is called the
plugin root. The plugin root is defined by a service registration property. This property is different for
exec plugins and data plugins:

• DATA_ROOT_URIS – (Str ing+) A sequence of data URI, defining a plugin root for data plugins.
• EXEC_ROOT_URIS – (Str ing+) A sequence of exec URI, defining a plugin root for exec plugins.

If the Plugin modifies these service properties then the Dmt Admin service must reflect these
changes as soon as possible. The reason for the different properties is to allow a single service to regis-
ter both as a Data Plugin service as well as an Exec Plugin service.

Data and Exec Plugins live in independent trees and can fully overlap. However, an Exec Plugin can
only execute a node when the there exists a valid node at the corresponding node in the Data tree.
that is, to be able to execute a node it is necessary that isNodeUri(Str ing) would return true .

For example, a data plugin can register itself in its activator to handle the sub-tree . /Dev/Battery :

public void start(BundleContext context) {

 Hashtable ht = new Hashtable();

 ht.put(Constants.SERVICE_PID, "com.acme.data.plugin");

 ht.put(DataPlugin.DATA_ROOT_URIS, "./Dev/Battery");
 context.registerService(

DataPlugin.class.getName(),

new BatteryHandler(context);

ht);

}

If this activator was executed, an access to ./Dev/Battery must be forwarded by the Dmt Admin ser-
vice to this plugin via one of the data session.

117.6.4 Synchronization with Dmt Admin Service
The Dmt Admin service can, in certain cases, detect that a node was changed without the plugin
knowing about this change. For example, if the ACL is changed, the version and timestamp must be
updated; these properties are maintained by the plugin. In these cases, the Dmt Admin service must
open a ReadableDataSession and call nodeChanged(Str ing[]) method with the changed URI.

117.6.5 Plugin Meta Data
Plugins can provide meta data; meta data from the Plugin must take precedence over the meta data of
the Dmt Admin service. If a plugin provides meta information, the Dmt Admin service must verify
that an operation is compatible with the meta data of the given node.
OSGi Service Platform Release 4, Version 4.3 Page 303

Plugins Dmt Admin Service Specification Version 2.0
For example if the plugin reports in its meta data that the . /A leaf node can only have the text/pla in
MIME type, the createLeafNode(Str ing) calls must not be forwarded to the Plugin if the third argu-
ment specifies any other MIME type. If this contract between the Dmt Admin service and the plugin
is violated, the plugin should throw a Dmt Exception METADATA_MISMATCH .

117.6.6 Plugins and Transactions
For the Dmt Admin service to be transactional, transactions must be supported by the data plugins.
This support is not mandatory in this specification, and therefore the Dmt Admin service has no
transactional guarantees for atomicity, consistency, isolation or durability. The DmtAdmin interface
and the DataPlugin (or more specifically the data session) interfaces, however, are designed to sup-
port Data Plugin services that are transactional. Exec plugins need not be transaction-aware because
the execute method does not provide transactional semantics, although it can be executed in an
atomic transaction.

Data Plugins do not have to support atomic sessions. When the Dmt Admin service creates a Transac-
tional Data Session by calling openAtomicSession(Str ing[] ,DmtSession) the Data Plugin is allowed
to return null . In that case, the plugin does not support atomic sessions. The caller receives a Dmt
Exception.

Plugins must persist any changes immediately for Read Write Data Sessions. Transactional Data Ses-
sions must delay changes until the commit() method is called, which can happen multiple times dur-
ing a session. The opening of an atomic session and the commit() and rol lback() methods all
establish a transaction point. Rollback can never go further back than the last transaction point.

• commit() – Commit any changes that were made to the DMT but not yet persisted. This method
should not throw an Exception because other Plugins already could have persisted their data and
can no longer roll it back. The commit method can be called multiple times in an open session,
and if so, the commit must make persistent the changes since the last transaction point.

• rol lback() – Undo any changes made to the sub-tree since the last transaction point.
• close() – Clean up and release any locks. The Dmt Admin service must call the commit methods

before the close method is called. A Plugin must not perform any persistency operations in the
close method.

The commit() , rol lback() , and close() plugin data session methods must all be called in reverse order
of that in which Plugins joined the session.

If a Plugin throws a fatal exception during an operation, the Dmt Session must be rolled back imme-
diately, automatically rolling back all data plugins, as well as the plugins that threw the fatal Dmt
Exception. The fatality of an Exception can be checked with the Dmt Exception isFatal() method.

If a plugin throws a non-fatal exception in any method accessing the DMT, the current operation
fails, but the session remains open for further commands. All errors due to invalid parameters (e.g.
non-existing nodes, unrecognized values), all temporary errors, etc. should fall into this category.

A rollback of the transaction can take place due to any irregularity during the session. For example:

• A necessary Plugin is unregistered or unmapped
• A fatal exception is thrown while calling a plugin
• Critical data is not available
• An attempt is made to breach the security

Any Exception thrown during the course of a commit() or rol lback() method call is considered fatal,
because the session can be in a half-committed state and is not safe for further use. The operation in
progress should be continued with the remaining Plugins to achieve a best-effort solution in this lim-
ited transactional model. Once all plugins have been committed or rolled back, the Dmt Admin ser-
vice must throw an exception, specifying the cause exception(s) thrown by the plugin(s), and should
log an error.
Page 304 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Plugins

e
117.6.7 Side Effects
Changing a node’s value will have a side effect of changing the system. A plugin can also, however,
cause state changes with a get operation. Sometimes the pattern to use a get operation to perform a
state changing action can be quite convenient. The get operation, however, is defined to have no side
effects. This definition is reflected in the session model, which allows the DMT to be shared among
readers. Therefore, plugins should refrain from causing side effects for read-only operations.

117.6.8 Copying
Plugins do not have to support the copy operation. They can throw a Dmt Exception with a code
FEATURE_NOT_SUPPORTED . In this case, the Dmt Admin service must do the copying node by node.
For the clients of the Dmt Admin service, it therefore appears that the copy method is always sup-
ported.

117.6.9 Scaffold Nodes
As Plugins can be mapped anywhere into the DMT it is possible that a part of the URI has no corre-
sponding Plugin, such a plugin would not be reachable unless the intermediate nodes were provided.
A program that would try to discover the DMT would not be able to find the registered Plugins as the
intermediate nodes would not be discoverable.

These intermediate nodes that will make all plugins reachable must therefore be provided by the
Dmt Admin service, they are called the scaffold nodes. The only purpose of the scaffold nodes is to
allow every node to be discovered when the DMT is traversed from the root down. Scaffold nodes are
provided both for Data Plugins as well as Exec Plugins as well as for Child Plugins that are mounted
inside a Parent Plugin, see Sharing the DMT on page 307. In Figure 117.10 the Device node is a scaffold
node because there is no plugin associated with it. The Dmt Admin service must, however, provide
the Battery node as child node of the Device node.

Figure 117.10 Scaffold Nodes

A scaffold node is always an interior node and has limited functionality, it must have a type of
DDF_SCAFFOLD . It has no value, it is impossible to add or delete nodes to it, and the methods that are
allowed for a scaffold node are specified in Table 117.3.

Device

Battery

Level Temp Cycles

.

Scaffold node

Plugin Root Node for

Scaffold node

plugin with root ./Device/Battery

Table 117.3 Supported Scaffold Node Methods

Method Description

getNodeAcl(Str ing) Must inherit from the root node.
getChi ldNodeNames(Str ing) Answer the child node names such that plugin’s in the sub-tree ar

reachable.
getMetaNode(Str ing) Provides the Meta Node defined in Table 117.4
getNodeSize(Str ing) Must always return 0.
getNodeTit le(Str ing) nul l
OSGi Service Platform Release 4, Version 4.3 Page 305

Plugins Dmt Admin Service Specification Version 2.0
Any other operations must throw a DmtException with error code COMMAND_NOT_ALLOWED . The
scope of a scaffold node is always PERMANENT . Scaffold nodes must have a Meta Node provided by
the Dmt Admin service. This Meta Node must act as defined in Table 117.4.

If a Plugin is registered then it is possible that a scaffold node becomes a Data Plugin root node. In
that case the node and the Meta Node must subsequently be provided by the Data Plugin and can
thus become different. Scaffold nodes are virtual, there are therefore no events associated with the
life cycle of a scaffold node.

For example, there are three plugins registered:

URI Plugin Children

./A/B P1 ba

./A/C P2 ca

./A/X/Y P3 ya,yb

getNodeTimestamp(Str ing) Time first created
getNodeType(Str ing) DDF_SCAFFOLD
isNodeUri(Str ing) true

isLeafNode(String) false

getNodeVersion(Str ing) Away returns 0
copy(Str ing,Str ing,boolean) Not allowed for a single scaffold node as nodeUri , if the recurse

parameter is fa lse the DmtException COMMAND_NOT_ALLOWED

Table 117.3 Supported Scaffold Node Methods

Method Description

Table 117.4 Scaffold Meta Node Supported Methods

Method Description

can(int) CMD_GET
getDefault() nul l

getDescr iption() nul l

getFormat() FORMAT_NODE
getMax() Double.MAX_VALUE
getMaxOccurrence() 1
getMimeTypes() DDF_SCAFFOLD

getMin() Double.MIN_VALUE
getRawFormatNames() nul l
getScope() PERMANENT
getVal idNames() nul l

getVal idValues() nul l

isLeaf() false

isVal idName(Str ing) true

isVal idValue(DmtData) false

isZeroOccurrenceAl lowed() true
Page 306 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Sharing the DMT
In this example, node B , C , and Y are the plugin roots of the different plugins. As there is no plugin the
manage node A and X these must be provided by the Dmt Admin service. In this example, the child
names returned from each node are summarized as follows:

Node Children Provided by

. { A } Dmt Admin (scaffold node)

A { X, C, B } Dmt Admin (scaffold node)

B { ba } P1

C { ca } P2

X { Y } Dmt Admin (scaffold node)

Y { ya, yb } P3

Figure 117.11 Example Scaffold Nodes

117.7 Sharing the DMT
The Dmt Admin service provides a model to integrate the management of the myriad of components
that make up an OSGi device. This integration is achieved by sharing a single namespace: the DMT.
Sharing a single namespace requires rules to prevent conflicts and to resolve any conflicts when Plu-
gins register with plugin roots that overlap. It also requires rules for the Dmt Admin service when
nodes are accessed for which there is no Plugin available.

This section defines the management of overlapping plugins through the mount points, places where a
Parent Plugin can allow a Child Plugin to take over.

117.7.1 Mount Points
With multiple plugins the DMT is a shared namespace. Sharing requires rules to ensure that conflicts
are avoided and when they occur, can be resolved in a consistent way. The most powerful and flexible
model is to allow general overlapping. However, in practice this flexibility comes at the cost of order-
ing issues and therefore timing dependent results. A best practice is therefore to strictly control the
points where the DMT can be extended for both Data and Exec Plugins.

A mount point is such a place. A Dmt Admin service at start up provides virtual mount points any-
where in the DMT and provides scaffold nodes for any intermediate nodes between the root of the
DMT and the Plugin’s root URI. Once a Plugin is mounted it is free to use its sub-tree (the plugin root
and any ancestors) as it sees fit. However, this implies that the Plugin must implement the full sub-
tree. In reality, many object models use a pattern where the different levels in the object model map
to different domains.

.
.

BC

Y

.

P1

A

X P2

P3

ya yb

ca ba
OSGi Service Platform Release 4, Version 4.3 Page 307

Sharing the DMT Dmt Admin Service Specification Version 2.0
For example, an Internet Gateway could have an object model where the general information, like
the name, vendor, etc. is stored in the first level but any attached interfaces are stored in the sub-tree.
However, It is highly unlikely that the code that handles the first level with the general information
is actually capable of handling the details of, for example, the different network interfaces. It is actu-
ally likely that these network interfaces are dynamic. A Virtual Private Network (VPN) can add vir-
tual network interfaces on demand. Such a could have the object model depicted in Figure 117.12.

Figure 117.12 Data Modeling

Forcing these different levels to be implemented by the same plugin violates one of the primary rules
of modularity: cohesion. Plugins forced to handle all aspects become complex and hard to maintain. A
Plugin like the one managing the Gateway node could provide its own Plugin mechanism but that
would force a lot of replication and is error prone. For this reason, the Dmt Admin service allows a
Plugin to provide mount points inside its sub-tree. A Plugin can specify that it has mount points by reg-
istering a MOUNT_POINTS service property (the constant is defined both in DataPlugin and
ExecPlugin but have the same constant value). The type of this property must be Str ing+ , each string
specifies a mount point. Each mount point is specified as a URI that is relative from the plugin root.
That is, when the plugin root is . /A/B and the mount point is specified as C then the absolute URI of
the mount point is . /A/B/C .

A Plugin that has mount points acts as a Parent Plugin to a number of Child Plugins. In the previous
example, the LAN, VPN, and WAN nodes, can then be provided by separate Child Plugins even
though the Gateway/Name node is provided by the Parent Plugin. In this case, the mount points are
children of the Interface node.

A mount point can be used by a number of child plugins. In the previous example, there was a Child
Plugin for the LAN node, the VPN node, and the WAN node. This model has the implicit problem
that it requires coordination to ensure that their names are unique. Such a coordination between
independent parties is complicated and error prone. Its is therefore possible to force the Dmt Admin
service to provide unique names for these nodes, see Shared Mount Points on page 310.

A Parent Plugin is not responsible for any scaffolding nodes to make its Child Plugins reachable. It is
the responsibility of the Dmt Admin service to add child node names to any child node names
returned from a plugin so that Child Plugins are always reachable.

For example, the following setup of plugins:

Plugin Plugin Root Mount Points

P1 ./A X/B

P2 ./A/X/B

This setup is depicted in Figure 117.13.

.
..

Gateway

Name Interface

WANLAN

VPN
Page 308 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Sharing the DMT
Figure 117.13 Example Scaffold Nodes For Child Plugin

If the child node names are requested for the . /A node then the plugin P1 is asked for the child node
names and must return the names [f ,g] . However, if plugin P2 is mapped then the Dmt Admin service
must add the scaffold node name that makes this plugin reachable from that level, the returned set
must therefore be [f , g, X] .

117.7.2 Parent Plugin
If a Plugin is registered with mount points then it is a Parent Plugin. A Parent Plugin must register
with a single plugin root URI, that is the DATA_ROOT_URIS or EXEC_ROOT_URIS service properties
must contain only one element. A Parent Plugin is allowed to be a Data and Exec Plugin at the same
time. If a Parent Plugin is registered with multiple plugin root URIs then the Dmt Admin service
must log an error and ignore the registration of such a Parent Plugin. A Parent Plugin can in itself also
be a Child Plugin.

For example, a Plugin P1 that has a plugin root of . /A/B and provides a mount point at . /A/B/C and . /
A/B/E/F . as depicted in Figure 117.14.

Figure 117.14 Example Mount Points

Registering such a Plugin would have to register the following service properties to allow the exam-
ple configuration of the DMT:

dataRootUris ./A/B

mountPoints [C, E/F]

.
.

A

B

.

P1

X

P2

g

g

mount
point

f

.
.

B

.

A

P1

C

Mount point

E

F

OSGi Service Platform Release 4, Version 4.3 Page 309

Sharing the DMT Dmt Admin Service Specification Version 2.0
117.7.3 Shared Mount Points
Mount points can be shared between different Plugins. In the earlier example about the Gateway the
Interface node contained a sub-tree of network interfaces. It is very likely in such an example that the
Plugins for the VPN interface will be provided by a different organization than the WAN and LAN
network interfaces. However, all these network interface plugins must share a single parent node, the
Interface node, under which they would have to mount. Sharing therefore requires a prior agree-
ment and a naming scheme.

The naming scheme is defined by using the number sign (’#’ \u0023) to specify a shared mount point.
A plugin root that ends with the number sign, for example . /A/B/# , indicates that it is willing to get
any node under node B , leaving the naming of that node up to the Dmt Admin service. Shared mount
points cannot overlap with normal mount points, the first one will become mapped and subsequent
ones are in error, they are incompatible with each other. A Parent Plugin must specify a mount point
explicitly as a shared mount point by using the number sign at the end of the mount point’s relative
URI.

A plugin is compatible with other plugins if all other plugins specify a shared mount point to the
same URI. It is compatible with its Parent Plugin if the child’s plugin root and the mount point are
either shared or not.

The Dmt Admin service must provide a name for a plugin root that identifies a shared mount point
such that every Plugin on that mount point has a unique integer name for that node level. The inte-
ger name must be >= 1. The name must be convertible to an int with the static Integer
parseInt(Str ing) method.

A management system in general requires permanent links to nodes. It is therefore necessary to
choose the same integer every time a plugin is mapped to a shared mount point. A Child Plugin on a
shared mount point must therefore get a permanent integer node name when it registers with a Per-
sistent ID (PID). That is, it registers with the service property serv ice.pid . The permanent link is then
coupled to the PID and the bundle id since different bundles must be able to use the same PID. If a
Plugin is registered with multiple PIDs then the first one must be used. Since permanent links can
stay around for a long time implementations must strive to not reuse these integer names.

If no PID is provided then the Dmt Admin service must choose a new number that has not been used
yet nor matches any persistently stored names that are currently not registered.

The Gateway example would require the following Plugin registrations:

Root URI Mount Points Plugin Role

./Gateway [Interface/#] Gateway Parent

./Gateway/Interface/# [] WAN If. Child

./Gateway/Interface/# [] LAN If. Child

./Gateway/Interface/# [] VPN.1 Child

This setup is depicted in Figure 117.15.
Page 310 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Sharing the DMT
Figure 117.15 Mount Point Sharing

The Meta Node for a Node on the level of the Mount Point can specify either an existing Plugin or it
can refer to a non-existing node. If the node exists, the corresponding Plugin must provide the Meta
Node. If the node does not exist, the Dmt Admin service must provide the Meta Node. Such a Meta
Node must provide the responses as specified in Table 117.4.

A URI can cross multiple mount points, shared and unshared. For example, if a network interface
could be associated with a number of firewall rules then it is possible to register a URI on the desig-
nated network interface that refers to the Firewall rules. For the previous example, a Plugin could reg-
ister a Firewall if the following registrations were done:

Root URI Mount Points Plugin Parent Name

./Gateway [Interface/#] Gw

./Gateway/Interface/# [Fw/#] WAN If. Gw 11

./Gateway/Interface/# [] LAN If. Gw 33

./Gateway/Interface/# [] VPN.1 Gw 42

./Gateway/Interface/11/Fw/#[] Fw.1 WAN If. 97

.
..

Gateway

Name Interface

WANLAN VPN

12 33 42 Assigned by Dmt Admin

If..1If.

Table 117.5 Shared Mount Point Meta Node Supported Methods

Method Description

can(int) CMD_GET
getDefault() nul l

getDescr iption() nul l

getFormat() FORMAT_NODE

getMax() Double.MAX_VALUE
getMaxOccurrence() Integer.MAX_VALUE

getMimeTypes() nul l

getMin() Double.MIN_VALUE
getRawFormatNames() nul l
getScope() The scope will depend on the Parent
getVal idNames() nul l

getVal idValues() nul l

isLeaf() false

isVal idName(Str ing) name >=1 && name < Integer.MAX_VALUE

isVal idValue(DmtData) false

isZeroOccurrenceAl lowed() true
OSGi Service Platform Release 4, Version 4.3 Page 311

Sharing the DMT Dmt Admin Service Specification Version 2.0
This example DMT is depicted in Figure 117.16.

Figure 117.16 Mount Point Multiple Sharing

117.7.4 Mount Points are Excluded
Mount nodes are logically not included in the sub-tree of a Plugin. The Dmt Admin service must
never ask any information from/about a Mount Point node to its Parent Plugin. A Parent Plugin must
also not return the name of a mount point in the list of child node names, the Mount Point and its
subtree is logically excluded from the sub-tree. For the Dmt Admin service an unoccupied mount
point is a node that does not exist. Its name, must only be discoverable if a Plugin has actually
mounted the node. The Dmt Admin service must ensure that the names of the mounted Plugins are
included for that level.

In the case of shared mount points the Dmt Admin service must provide the children names of all
registered Child Plugins that share that node level.

For example, a Plugin P1 registered with the plugin root of . /A/B , having two leaf nodes E , and a
mount point C must not return the name C when the child node names for node B are requested. This
is depicted in Figure 117.17. The Dmt Admin service must ensure that C is returned in the list of
names when a Plugin is mounted on that node.

Figure 117.17 Example Exclusion

.
..

Name Interface

WAN
LAN

VPN

11 33 42 Assigned by Dmt Admin

Fw

97Fw#1

Gateway

.
.

B

.

A

P1

CE
not returned in getChildNodeNames
method of the Plugin
Page 312 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Sharing the DMT
117.7.5 Mapping a Plugin
A Plugin is not stand alone, its validity can depend on other Plugins. Invalid states make it possible
that a Plugin is either mapped or unmapped. When a Plugin is mapped it is available in the DMT and
when it is unmapped it is not available. Any registration, unregistration, or modification of its ser-
vices properties of a Plugin can potentially alter the mapped state of any related Plugin. A plugin
becomes eligible for mapping when it is registered.

A plugin can have multiple roots. However, the mapping is described as if there is a single plugin
root. Plugins with multiple roots must be treated as multiple plugins that can each independently be
mapped or unmapped depending on the context.

If no Parent Plugin is available, the Dmt Admin service must act as a virtual Parent Plugin that allows
mount points anywhere in the tree where there is no mapped plugin yet.

When a Plugin becomes eligible then the following assertions must be valid for that Plugin to
become mapped:

• If it has one or more mount points then
• It must have at most one Data and/or Exec Root URI.
• None of its mount points must overlap.
• Any already mapped Child Plugins must be compatible with its mount points

• If no mount points are specified then there must be no Child Plugins already registered
• The plugin root must be compatible with the corresponding parent’s mount point
• The plugin root must be compatible with any other plugins on that mount point

If either of these assertions fail then the Dmt Admin service must log an error and ignore the regis-
tered Plugin, it must not become mapped. If, through the unregistration or modification of the ser-
vice properties, the assertions can become valid then the Dmt Admin service must retry mapping the
Plugin so that it can become available in the DMT. Any mappings and unmappings that affect nodes
that are in the sub-tree of an active session must abort that session with a CONCURRENT_ACCESS
exception.

When there are errors in the configuration then the ordering will define which plugins are mapped
or not. Since this is an error situation no ordering is defined between conflicting plugins.

For example, a number of Plugins are registered in the given order:

Plugin Root Children Mount Points Plugin

./A/B E C P1

./A/B/C P2

./A/B/D P3

The first Plugin P1 will be registered immediately without problems. It has only a single plugin root
as required by the fact that it is a Parent Plugin (it has a mount point). There are no Child Plugins yet
so it is impossible to have a violation of the mount points. As there is no Parent Plugin registered, the
Dmt Admin service will map plugin P1 and automatically provide the scaffold node A .

When Plugin P2 is registered its plugin root maps to a mount point in Plugin P1 . As P2 is not a Parent
Plugin it is only necessary that it has no Child Plugins. As it has no Child Plugins, the mapping will
succeed.

Plugin P3 cannot be mapped because the Parent Plugin is P1 but P1 does not provide a mount point
for P3 ’s plugin root . /A/B/D .

If, at a later time P1 is unregistered then the Dmt Admin service must map plugin P3 and leave plugin
P2 mapped. This sequence of action is depicted in Figure 117.18.

If plugin P1 becomes registered again at a later time it can then in its turn not be mapped as there
would be a child plugin (P3) that would not map to its mount point.
OSGi Service Platform Release 4, Version 4.3 Page 313

Sharing the DMT Dmt Admin Service Specification Version 2.0
Figure 117.18 Plugin Activation

117.7.6 Mount Plugins
In Mapping a Plugin on page 313 it is specified that a Plugin can be mapped or not. The mapped state of
a Plugin can change depending on other plugins that are registered and unregistered. Plugins require
in certain cases to know:

• What is the name of their root node if they mount on a shared mount point.
• What is the mapping state of the Plugin.

To find out these details a Plugin can implement the MountPlugin interface; this is a mixin interface,
it is not necessary to register it as MountPlugin service. The Dmt Admin service must do an
instanceof operation on Data Plugin services and Exec Plugin services to detect if they are interested
in the mount point information.

The Mount Point interface is used by the Dmt Admin service to notify the Plugin when it becomes
mapped and when it becomes unmapped. The Plugin will be informed about each plugin root sepa-
rately.

The Mount Plugin specifies the following methods that are called synchronously:

• mountPointAdded(MountPoint) – The Dmt Admin service must call this method after it has
mapped a plugin root. From this point on the given mount point provides the actual path until
the mountPointRemoved(MountPoint) is called with an equal object. The given Mount Point can
be used to post events.

• mountPointRemoved(MountPoint) – The Dmt Admin service must call this method after it has
unmapped the given mount point. This method must always be called when a plugin root is
unmapped, even if this is caused by the unregistration of the plugin.

As the mapping and unmapping of a plugin root can happen any moment in time a Plugin that
implements the Mount Plugin interface must be prepared to handle these events at any time on any
thread.

The MountPoint interface has two separate responsibilities:

• Path – The path that this Mount Point is associated with. This path is a plugin root of the plugin.
This path is identical to the Plugin’s root except when it is mounted on a shared mount point; in
that case the URI ends in the name chosen by the Dmt Admin service. The getMountPath()
method provides the path.

• Events – Post events about the given sub-tree that signal internal changes that occur outside a Dmt
Session. The Dmt Admin service must treat these events as they were originated from modifica-
tions to the DMT. That is, they need to be forwarded to the Event Admin as well as the Dmt Lis-

.

B

.

A

P1

CE

.

B

.

A

P1

CE

.

B

.

A

P1

CEP2

D

P2

P3

P1 Registered
and mapped

P2 registered
and mapped

P3 is registered
but cannot be mapped

??

..

A

CDP3 C P2

B

P1 is unregistered
mapping P3
Page 314 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Access Control Lists
teners. For this purpose there are the postEvent(Str ing,Str ing[] ,Dictionary) and
postEvent(Str ing,Str ing[] ,Str ing[] ,Dict ionary) methods.

For example, a Data Plugin monitoring one of the batteries registers with the following service prop-
erties:

dataRootURIs "./Device/Battery/#"

The Device node is from a Parent Plugin that provided the shared mount point. The Battery Plugin
implements the MountPlugin interface so it gets called back when it is mapped. This will cause the
Dmt Admin service to call the mountPointAdded(MountPoint) method on the plugin. In this case, it
will get just one mount point, the mount point for its plugin root. If the Dmt Admin service would
have assigned the Battery Plugin number 101 then the getMountPath() would return:

 [".", "Device", "Battery", "101"]

As the Plugin monitors the charge state of the battery it can detect a significant change. In that case it
must send an event to notify any observers. The following code shows how this could be done:

@Component(properties="dataRootURIs=./Device/Battery/#",

provide=DataPlugin.class)

public class Battery implements DataPlugin, MountPlugin {

Timer timer;

volatile float charge;

TimerTask task;

public void mountPointsAdded(final MountPoint[] mountPoints) {

task = new TimerTask() {

public void run() {

float next = measure();

if (Math.abs(charge - next) > 0.2) {

charge = next;

mountPoints[0].postEvent(DmtConstants.EVENT_TOPIC_REPLACED,

new String[] { "Charge" }, null);

}

}

};

timer.schedule(task, 1000);

}

public void mountPointsRemoved(MountPoint[] mountPoints) {

task.cancel();

 task = null;

}

... // Other methods

}

117.8 Access Control Lists
Each node in the DMT can be protected with an access control list, or ACL. An ACL is a list of associa-
tions between Principal and Operation:

• Principal – The identity that is authorized to use the associated operations. Special principal is the
wildcard (’* ’ \u002A); the operations granted to this principal are called the global permissions.
The global permissions are available to all principals.

• Operation – A list of operations: ADD, DELETE, GET, REPLACE, EXECUTE .
OSGi Service Platform Release 4, Version 4.3 Page 315

Access Control Lists Dmt Admin Service Specification Version 2.0
DMT ACLs are defined as strings with an internal syntax in [1] OMA DM-TND v1.2 draft. Instances of
the ACL class can be created by supplying a valid OMA DM ACL string as its parameter. The syntax of
the ACL is presented here in shortened form for convenience:

acl ::= (acl-entry (’&’ acl-entry)*)

acl-entry ::= command ’=’ (principals | ’*’)

principals ::= principal (’+’ principal)*

principal ::= ~[’=’ ’&’ ’*’ ’+’ ’\t’ ’\n’ ’\r’]+

The principal name should only use printable characters according to the OMA DM specification.

command ::= ’Add’ | ’Delete’ | ’Exec’ | ’Get’ | ’Replace’

White space between tokens is not allowed.

Examples:

Add=*&Replace=*&Get=*

Add=www.sonera.fi-8765&Delete=www.sonera.fi-8765&Replace=www.sonera.fi-

8765+321_ibm.com&Get=*

The Acl(Str ing) constructor can be used to construct an ACL from an ACL string. The toString()
method returns a Str ing object that is formatted in the specified form, also called the canonical form.
In this form, the principals must be sorted alphabetically and the order of the commands is:

 ADD, DELETE, EXEC, GET, REPLACE

The Acl class is immutable, meaning that a Acl object can be treated like a string, and that the object
cannot be changed after it has been created.

ACLs must only be verified by the Dmt Admin service when the session has an associated principal.

ACLs are properties of nodes. If an ACL is not set (i.e. contains no commands nor principals), the effec-
tive ACL of that node must be the ACL of its first ancestor that has a non-empty ACL. This effective
ACL can be acquired with the getEffect iveNodeAcl(Str ing) method. The root node of DMT must
always have an ACL associated with it. If this ACL is not explicitly set, it should be set to
Add=*&Get=*&Replace=* .

This effect is shown in Figure 117.19. This diagram shows the ACLs set on a node and their effect
(which is shown by the shaded rectangles). Any principal can get the value of p , q and r , but they can-
not replace, add or delete the node. Node t can only be read and replaced by principal S1 .

Node X is fully accessible to any authenticated principal because the root node specifies that all prin-
cipals have Get , Add and Replace access (*->G,A,R).
Page 316 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Access Control Lists
Figure 117.19 ACL inheritance

The definition and example demonstrate the access rights to the properties of a node, which includes
the value.

Changing the ACL property itself has different rules. If a principal has Replace access to an interior
node, the principal is permitted to change its own ACL property and the ACL properties of all its child
nodes. Replace access on a leaf node does not allow changing the ACL property itself.

In the previous example, only principal S1 is authorized to change the ACL of node B because it has
Replace permission on node B ’s parent node A .

Figure 117.20 ACLs for the ACL property

Figure 117.20 demonstrates the effect of this rule with an example. Server S1 can change the ACL
properties of all interior nodes. A more detailed analysis:

• Root – The root allows all authenticated principals to access it. The root is an interior node so the
Replace permission permits the change of the ACL property.

• Node A – Server S1 has Replace permission and node A is an interior node so principal S1 can
modify the ACL.

• Node B – Server S1 has no Replace permission for node B, but the parent node A of node B grants
principal S1 Replace permission, and S1 is therefore permitted to change the ACL.

• Node t – Server S1 must not be allowed to change the ACL of node t , despite the fact that it has
Replace permission on node t . For leaf nodes, permission to change an ACL is defined by the
Replace permission in the parent node’s ACL. This parent, node B, has no such permission set and
thus, access is denied.

The following methods provide access to the ACL property of the node.

• getNodeAcl(Str ing) – Return the ACL for the given node, this method must not take any ACL
inheritance into account. The ACL may be null if no ACL is set.

.

X

B

p q r

A

* -> Get,Add,Replace

S1 -> Get,Replace

* -> Get
t

.

B

t

A

* -> Get,Add,Replace

S1 -> Get,Replace

S1 -> Get

S1 -> Get,Replace
OSGi Service Platform Release 4, Version 4.3 Page 317

Access Control Lists Dmt Admin Service Specification Version 2.0
• getEffect iveNodeAcl(Str ing) – Return the effective ACL for the given node, taking any inher-
itance into account.

• setNodeAcl(Str ing,Acl) – Set the node’s ACL. The ACL can be nul l , in which case the effective per-
mission must be derived from an ancestor. The Dmt Admin service must call
nodeChanged(Str ing[]) on the data session with the given plugin to let the plugin update any
timestamps and versions.

The Acl class maintains the permissions for a given principal in a bit mask. The following permission
masks are defined as constants in the Acl class:

• ADD
• DELETE
• EXEC
• GET
• REPLACE

The class features methods for getting permissions for given principals. A number of methods allow
an existing ACL to be modified while creating a new ACL.

• addPermiss ion(Str ing, int) – Return a new Acl object where the given permissions have been
added to permissions of the given principal.

• deletePermission(Str ing, int) – Return a new Acl object where the given permissions have been
removed from the permissions of the given principal.

• setPermission(Str ing, int) – Return a new Acl object where the permissions of the given principal
are overwritten with the given permissions.

Information from a given ACL can be retrieved with:

• getPermiss ions(Str ing) – (int) Return the combined permission mask for this principal.
• getPrincipals() – (Str ing[]) Return a list of principals (Str ing objects) that have been granted per-

missions for this node.

Additionally, the isPermitted(Str ing, int) method verifies if the given ACL authorizes the given per-
mission mask. The method returns true if all commands in the mask are allowed by the ACL.

For example:

Acl acl = new Acl("Get=S1&Replace=S1");

if (acl.isPermitted("S1", Acl.GET+Acl.REPLACE))

... // will execute

if (acl.isPermitted(

"S1", Acl.GET+Acl.REPLACE+Acl.ADD))

... // will NOT execute

117.8.1 Global Permissions
Global permissions are indicated with the ’* ’ and the given permissions apply to all principals. Pro-
cessing the global permissions, however, has a number of non-obvious side effects:

• Global permissions can be retrieved and manipulated using the special’*’ principal: all methods of
the Acl class that have a principal parameter also accept this principal.

• Global permissions are automatically granted to all specific principals. That is, the result of the
getPermissions or isPermitted methods will be based on the OR of the global permissions and the
principal-specific permissions.

• If a global permission is revoked, it is revoked from all specific principals, even if the specific prin-
cipals already had that permission before it was made global.
Page 318 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Notifications
• None of the global permissions can be revoked from a specific principal. The OMA DM ACL
format does not handle exceptions, which must be enforced by the deletePermission and
setPermiss ion methods.

117.8.2 Ghost ACLs
The ACLs are fully maintained by the Dmt Admin service and enforced when the session has an asso-
ciated principal. A plugin must be completely unaware of any ACLs. The Dmt Admin service must
synchronize the ACLs with any change in the DMT that is made through its service interface. For
example, if a node is deleted through the Dmt Admin service, it must also delete an associated ACL.

The DMT nodes, however, are mapped to plugins, and plugins can delete nodes outside the scope of
the Dmt Admin service.

As an example, consider a configuration record which is mapped to a DMT node that has an ACL. If
the configuration record is deleted using the Configuration Admin service, the data disappears, but
the ACL entry in the Dmt Admin service remains. If the configuration dictionary is recreated with
the same PID, it will get the old ACL, which is likely not the intended behavior.

This specification does not specify a solution to solve this problem. Suggestions to solve this problem
are:

• Use a proprietary callback mechanism from the underlying representation to notify the Dmt
Admin service to clean up the related ACLs.

• Implement the services on top of the DMT. For example, the Configuration Admin service could
use a plugin that provides general data storage service.

117.9 Notifications
In certain cases it is necessary for some code on the device to alert a remote management server or to
initiate a session; this process is called sending a notification or an alert. Some examples:

• A Plugin that must send the result of an asynchronous EXEC operation.
• Sending a request to the server to start a management session.
• Notifying the server of completion of a software update operation.

Notifications can be sent to a management server using the sendNotif ication(String, int ,Str ing,
Alert Item[]) method on the Notification Service. This method is on the Notification Service and not
on the session, because the session can already be closed when the need for an alert arises. If an alert is
related to a session, the session can provide the required principal, even after it is closed.

The remote server is alerted with one or more AlertItem objects. The Alert Item class describes details
of the alert. An alert code is an alert type identifier, usually requiring specifically formatted Alert Item
objects.

The data syntax and semantics vary widely between various alerts, and so does the optionality of par-
ticular parameters of an alert item. If an item, such as source or type, is not defined, the correspond-
ing getter method must return nul l .

The Alert Item class contains the following items. The value of these items must be defined in an alert
definition:

• source – (Str ing) The URI of a node that is related to this request. This parameter can be nul l .

• type – (Str ing) The type of the item. For example, x-oma-appl ication:syncml.samplealert in the
Generic Alert example.

• mark – (Str ing) Mark field of an alert. Contents depend on the alert type.

• data – (DmtData) The payload of the alert with its type.

An Alert Item object can be constructed with two different constructors:
OSGi Service Platform Release 4, Version 4.3 Page 319

Exceptions Dmt Admin Service Specification Version 2.0
• Alert Item(String,Str ing,Str ing,DmtData) – This method takes all the previously defined fields.

• Alert Item(Str ing[] ,Str ing,Str ing,DmtData) – Same as previous but with a convenience parameter
for a segmented URI.

The Notification Service provides the following method to send AlertItem objects to the manage-
ment server:

• sendNotif icat ion(Str ing, int ,Str ing,AlertItem[]) – Send the alert to the server that is associated
with the session. The first argument is the name of the principal (identifying the remote man-
agement system) or nul l for implementation defined routing. The int argument is the alert type.
The alert types are defined by managed object types. The third argument (Str ing) can be used for the
correlation id of a previous execute operation that triggered the alert. The AlertItem objects
contain the data of the alert. The method will run asynchronously from the caller. The Notifi-
cation Service must provide a reliable delivery method for these alerts. Alerts must therefore not
be re-transmitted.
When this method is called with nul l correlator, null or empty Alert Item array, and a 0 code as val-
ues, it should send a protocol specific notification that must initiate a new management session.

Implementers should base the routing on the session or server information provided as a parameter
in the sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) method. Routing might even be possible
without any routing information if there is a well known remote server for the device.

If the request cannot be routed, the Alert Sender service must immediately throw a Dmt Exception
with a code of ALERT_NOT_ROUTED . The caller should not attempt to retry the sending of the notifi-
cation. It is the responsibility of the Notification Service to deliver the notification to the remote
management system.

117.9.1 Routing Alerts
The Notification Service allows external parties to route alerts to their destination. This mechanism
enables Protocol Adapters to receive any alerts for systems with which they can communicate.

Such a Protocol Adapter should register a Remote Alert Sender service. It should provide the follow-
ing service property:

• principals – (Str ing+) The array of principals to which this Remote Alert Sender service can route
alerts. If this property is not registered, the Remote Alert Sender service will be treated as the
default sender. The default alert sender is only used when a more specific alert sender cannot be
found.

If multiple Remote Alert Sender services register for the same principals highest ranking service is
taken as defined in the OSGi Core.

117.10 Exceptions
Most of the methods of this Dmt Admin service API throw Dmt Exceptions whenever an operation
fails. The DmtException class contains numeric error codes which describe the cause of the error.
Some of the error codes correspond to the codes described by the OMA DM spec, while some are
introduced by the OSGi Alliance. The documentation of each method describes what codes could
potentially be used for that method.

The fatality of the exception decides if a thrown Exception rolls back an atomic session or not. If the
isFatal() method returns true , the Exception is fatal and the session must be rolled back.

All possible error codes are constants in the DmtException class.
Page 320 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Events
117.11 Events
There are the following mechanisms to work with events when using the Dmt Admin service.

• Event Admin service – Standard asynchronous notifications
• Dmt Event Listener service – A white board model for listener. A registered DmtEventListener

service can use service properties to filter the received events

In both cases events are delivered asynchronously and ordered per listener unless otherwise speci-
fied. Events to the DMT can occur because of modifications made in a session or they can occur
because a Plugin changes its internal state and notifies the Dmt Admin service through the
MountPoint interface.

Changes made through a session always start with a SESSION_OPENED event directly after the ses-
sion is opened. This event must contain the properties defined in Life Cycle Event Properties on page
323.

If events originate from an atomic session then these events must be queued until the sessions is suc-
cessfully committed, which can happen multiple times over the life time of a session. If the session is
rolled back or runs into an error then none of the queued events must be sent.

When a session is closed, which can happen automatically when the session fails, then the
SESSION_CLOSED event must be sent. This event must happen after any queued events. This closed
event must contain the properties defined in Life Cycle Event Properties on page 323.

An event must only be sent when that type of event actually occurred.

117.11.1 Event Admin
Event Admin, when present, must be used to deliver the Dmt Admin events asynchronously. The
event types are specified in Table 117.7 on page 322, the Topic column defines the Event Admin
topic. The Table 117.9 on page 324 and Table 117.10 on page 324 define the Life Cycle and Session
properties that must be passed as the event properties of Event Admin.

117.11.2 Dmt Event Listeners
To receive the Dmt Admin events it is necessary to register a Dmt Event Listener service. It is possible
to filter the events by registering a combination of the service properties defined in Table 117.6.

A Dmt Event must only be delivered to a Dmt Event Listener if the Bundle that registers the Dmt
Event Listener service has the GET Dmt Permission for each of the nodes used in the nodes and
newNodes properties as tested with the Bundle hasPermiss ion method.

Table 117.6 Service Properties for the Dmt Event Listener

Service Property Data Type Default Description

FILTER_EVENT Integer All Events A bitmap of DmtEvent types: SESSION_OPENED ,
ADDED , COPIED , DELETED , RENAMED , REPLACED , and
SESSION_CLOSED . A Dmt Event’s type must occur in
the bitmap to be delivered.

FILTER_PRINCIPAL Str ing+ Any node Only deliver Dmt Events for which at least one of the
given principals has the right to Get that node.

FILTER_SUBTREE Str ing+ Any node This property defines a number of sub-trees by specify-
ing the URI of the top nodes of these sub-trees. Only
events that occur in one of the sub-trees must be deliv-
ered.
OSGi Service Platform Release 4, Version 4.3 Page 321

Events Dmt Admin Service Specification Version 2.0
The Dmt Admin service must track Dmt Event Listener services and deliver matching events as long
as a Dmt Event Listener service is registered. Any changes in the service properties must be expedi-
ently handled.

A Dmt Event Listener must implement the changeOccurred(DmtEvent) method. This method is
called asynchronously from the actual event occurrence but each listener must receive the events in
order.

Events are delivered with a DmtEvent object. This object provides access to the properties of the
event. Some properties are available as methods others must be retrieved through the
getProperty(Str ing) method. The methods that provide property information are listed in the prop-
erty tables, see Table 117.9 on page 324.

117.11.3 Atomic Sessions and Events
The intent of the events is that a listener can follow the modifications to the DMT from the events
alone. However, from an efficiency point of view certain events should be coalesced to minimize the
number of events that a listener need to handle. For this reason, the Dmt Admin service must coa-
lesce events if possible.

Two consecutive events can be coalesced when they are of the same type. In that case the nodes and,
if present, the newNodes of the second event can be concatenated with the first event and the
t imestamp must be derived from the first event. It is not necessary to remove duplicates from the
nodes and newNodes . This guarantees that the order of the nodes is in the order of the events.

117.11.4 Event Types
This section describes the events that can be generated by the Dmt Admin service. Event TypesTable
117.7 enumerates all the events and provides the name of the topic of Event Admin and the Dmt
Event type for the listener model.

There are two kinds of events:

• Life Cycle Events – The events for session open and closed are the session events.
• Session Events – ADDED , DELETED , REPLACED , RENAMED , and COPIED.

Session and life cycle events have different properties.

Table 117.7 Event Types

Event Topic Dmt Event Type Description

SESSION
OPENED

org/osgi/service/dmt/DmtEvent/
SESSION_OPENED

SESSION_OPENED A new session was opened. The event
must the properties defined in Table
117.10 on page 324.

ADDED org/osgi/service/dmt/DmtEvent/
ADDED

ADDED One or more nodes were added.

DELETED org/osgi/service/dmt/DmtEvent/
DELETED

DELETED One or more existing nodes were deleted.

REPLACED org/osgi/service/dmt/DmtEvent/
REPLACED

REPLACED Values of nodes were replaced.

RENAMED org/osgi/service/dmt/DmtEvent/
RENAMED

RENAMED Existing nodes were renamed.
Page 322 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Events
117.11.5 General Event Properties
The following properties must be available as the event properties in Event Admin service and the
properties in the Dmt Event for Dmt Event Listener services.

117.11.6 Session Event Properties
All Life Cycle events must have the properties defined in Event Properties for Life Cycle Events on page
324.

117.11.7 Life Cycle Event Properties
All session events must have the properties defined in Event Properties for Life Cycle Events on page 324.

COPIED org/osgi/serv ice/dmt/DmtEvent/
COPIED

COPIED Existing nodes were copied. A copy oper-
ation does not trigger an ADDED event
(in addition to the COPIED event), even
though new node(s) are created. For effi-
ciency reasons, recursive copy and delete
operations must only generate a single
COPIED and DELETED event for the root
of the affected sub-tree.

SESSION
CLOSED

org/osgi/serv ice/dmt/DmtEvent/
SESSION_CLOSED

SESSION_CLOSED A session was closed either because it
was closed explicitly or because there
was an error detected. The event must
the properties defined in Table 117.10 on
page 324.

Table 117.7 Event Types

Event Topic Dmt Event Type Description

Table 117.8 General Event

Property Name Type Dmt Event Description

event.topics Str ing Event topic, required by Event Admin but must also
be present in the Dmt Events.

session. id Integer getSessionId() A unique identifier for the session that triggered the
event. This property has the same value as
getSessionId() of the associated DMT session. If this
event is generated outside a session then the session id
must be -1, otherwise it must be >=1.

timestamp Long The time the event was started as defined by
System.currentTimeMil l is()

bundle Bundle The initiating Bundle, this is the bundle that caused
the event. This is either the Bundle that opened the
associated session or the Plugin’s bundle when there is
no session (i.e. the session id is -1).

bundle.signer String+ The signer of the initiating Bundle

bundle.symbolicname String The Bundle Symbolic name of the initiating Bundle

bundle.version Version The Bundle version of the initiating Bundle.

bundle.id Long The Bundle Id of the initiating Bundle.
OSGi Service Platform Release 4, Version 4.3 Page 323

Events Dmt Admin Service Specification Version 2.0
117.11.8 Example Event Delivery
The example in this section shows the change of a non-trivial tree and the events that these changes
will cause.

Table 117.9 Event Properties for Life Cycle Events

Property Name Type Dmt Event Description

nodes String[] getNodes() The absolute URIs of each affected node. This is the nodeUri
parameter of the Dmt API methods. The order of the URIs in
the array corresponds to the chronological order of the opera-
tions. In case of a recursive delete or copy, only the session
root URI is present in the array.

newnodes String[] getNewNodes() The absolute URIs of new renamed or copied nodes. Only the
RENAMED and COPIED events have this property.
The newnodes array runs parallel to the nodes array. In case
of a rename, newnodes[i] must contains the new name of
nodes[i] , and in case of a copy, newnodes[i] is the URI to
which nodes[i] was copied.

Table 117.10 Event Properties For Session Event

Property Name Type Dmt Session

session.rootur i Str ing getRootUri() The root URI of the session that triggered the event.
session.principal Str ing getPr incipal() The principal of the session, or absent if no principal is associ-

ated with this session. In the latter case the method returns
null .

session. locktype Integer getLockType() The lock type of the session. The number is mapped as fol-
lows:
• LOCK_TYPE_SHARED – 0
• LOCK_TYPE_EXCLUSIVE – 1
• LOCK_TYPE_ATOMIC – 2

session.t imeout Boolean If the session timed out then this property must be set to true .
If it did not time out this property must be fa lse .

exception Throwable The name of the actual exception class if the session had a
fatal exception.

exception.message String Must describe the exception if the session had a fatal excep-
tion or timed out.

exception.class String The name of the actual exception class if the session had a
fatal exception or timed out.
Page 324 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Events
Figure 117.21 Example DMT before

For example, in a given session, when the DMT in Figure 117.21 is modified with the following oper-
ations:

• Open atomic session 42 on the root URI
• Add node . /A/B/C
• Add node . /A/B/C/D
• Rename . /M/n1 to./M/n2
• Copy . /M/n2 to . /M/n3
• Delete node . /P/Q
• Add node . /P/Q
• Delete node . /P/Q
• Replace . /X/Y/z with 3
• Commit
• Close

Figure 117.22 Example DMT after

When the Dmt Session is closed (assuming it is atomic), the following events are published:

SESSION_OPENED {

session.id = 42

session.rooturi=.

session.principal=null

session.locktype=2

timestamp=1313411544752

bundle=<Bundle>

bundle.signer=[]

bundle.symbolicname"com.acme.bundle"

bundle.version=1.2.4711

bundle.id=442

.

Q

z

P X

YB

A M

n1

R

s1 s2

value=1

.

P X

YB

A M

n2

C

D

n3

z value=3
OSGi Service Platform Release 4, Version 4.3 Page 325

Events Dmt Admin Service Specification Version 2.0
...

}

ADDED {

nodes = [./A/B/C, ./A/B/C/D]# note the coalescing

session.id = 42

...

}

RENAMED {

nodes = [./M/n1]

newnodes = [./M/n2]

session.id = 42

...

}

COPIED {

nodes = [./M/n2]

newnodes = [./M/n3]

session.id = 42

...

}

DELETED {

nodes = [./P/Q]

session.id = 42

...

}

ADDED {

nodes = [./P/Q]

session.id = 42

...

}

DELETED {

nodes = [./P/Q]

session.id = 42

...

}

REPLACED {

nodes = [./X/Y/z]

session.id = 42

...

}

SESSION_CLOSED {

session.id = 42

session.rooturi=.

session.principal=null

session.locktype=2

...

}

Page 326 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling
117.12 OSGi Object Modeling

117.12.1 Object Models
Management protocols define only half the picture; the object models associated with a particular
protocol are the other half. Object models are always closely associated with a remote management
protocol since they are based on the data types and actions that are defined in the protocol. Even
small differences between the data types of a protocol and its differences make accurate mapping
between protocols virtually impossible. It is therefore necessary to make the distinction between
native and foreign protocols for an object model.

A native protocol for an object model originates from the same specification organization. For exam-
ple, OMA DM consists of a protocol based on SyncML and a number of object models that define the
structure and behavior of the nodes of the DMT. The FOMA specification defines an OMA DM native
object model, it defines how firmware management is done. This is depicted in Figure 117.23.

Figure 117.23 Device Management Architecture

If an object implements a standardized data model it must be visible through its native Protocol
Adapter, that is the Protocol Adapter that belongs to the object model’s standard. For example, an
ExecutionUnit node defined in UPnP Device Management could be implemented as a bundle,
exposed through a Data Plugin for the Dmt Admin service, and then translated by its native UPnP
Protocol Adapter.

If an object is present in the Dmt Admin service it is also available to foreign Protocol Adapters. A for-
eign Protocol Adapter is any Protocol Adapter except its native Protocol Adapter. For example, the
Broadband Forum’s ExecutionUnit could be browsed on the foreign OMA DM protocol.

In a foreign Protocol Adapter the object model should be browsable but it would not map to one of its
native object models. Browsable means that the information is available to the Protocol Adapter’s
remote manager but not recognized as a standard model for the manager. Browse can include, poten-
tially limited, manipulation.

Remote
Manager

Protocol
Adapter

Dmt Admin

Plugin

protocol
object models

Dmt Admin object models

Dmt Admin object model
OSGi Service Platform Release 4, Version 4.3 Page 327

OSGi Object Modeling Dmt Admin Service Specification Version 2.0
In a native Protocol Adapter it is paramount that the mapping from the DMT to the native object is
fully correct. It is the purpose of this part of the Dmt Admin service specification to allow the native
Protocol Adapter to map the intentions of the Plugin without requiring knowledge of the specific
native object model. That is, a TR-069 Plugin implementing a WAN interface must be available over
the TR-069 protocol without the Protocol Adapter having explicit knowledge about the WAN inter-
faces object models from Broadband Forum.

Therefore, the following use cases are recognized:

• Foreign Mapping – Foreign mapping can is best-effort as there is no object model to follow. Each
Protocol Adapter must define how the Dmt Admin model is mapped for this browse mode.

• Native Mapping – Native mapping must be 100% correct. As it is impossible automatically map
DMTs to arbitrary protocols this specification provides the concept of a mapping model that
allows a Plugin to instruct its native Protocol Adapter using Meta Nodes.

117.12.2 Protocol Mapping
The OSGi Alliance specifies an Execution Environment that can be used as a basis for residential gate-
ways, mobiles, or other devices. This raises the issue how to expose the manageability of an OSGi
device and the objects, the units of manageability, that are implemented through Plugins. Ideally, an
object should be able to expose its management interface once and then Protocol Adapters convert
the management interface to specific device management stacks. For example, an object can be
exposed through the Dmt Admin service where then a TR-069 Protocol Adapter maps the DMT to the
TR-069 Remote Procedure Calls (RPC).

Figure 117.24 shows an example of a TR-069 Protocol Adapter and an OMA DM Protocol Adapter. The
TR-069 Protocol Adapter should be able to map native TR-069 objects in the DMT (the Software
Modules Impl in the figure) to Broadband Forum’s object models. It should also be able to browse the
foreign DMT and other objects that are not defined in Broadband forum but can be accessed with the
TR-069 RPCs.

Figure 117.24 Implementing & Browsing

A Protocol Mapping is a document that describes the default mapping and the native mechanism for
exact mapping.

The following sections specify how Plugins must implement an object model that is exposed through
the Dmt Admin service. This model is limited from the full Dmt Admin service capabilities so that
for each protocol it is possible to specify a default mapping for browsing as well as a mechanism to
ensure that special conversion requirements can be communicated from a Plugin to its native Proto-
col Adapter.

TR-157a3
 Software
Module Impl

OSGi RMT Impl

Dmt Admin

TR-069
Protocol Adapter

OMA DM
Protocol Adapter

ACS OMA DM Man-
agerOMA DM Man-

ager

nativenative

foreign
Page 328 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling
117.12.3 Hierarchy
The Dmt Admin model provides an hierarchy of nodes. Each node has a type that is reflected by its
Meta Node. A node is addressed with a URI. The flexibility of the Dmt Admin service allows a large
number of constructs, for example, the name of the node can be used as a value, a feature that some
management standards support. To simplify mapping to foreign Protocol Adapters, some of the fun-
damental constructs have been defined in the following sections.

117.12.4 General Restriction Guidelines
The Dmt Admin service provides a very rich tool to model complex object structures. Many choices
can be made that would make it very hard to browse DMTs on non-OMA DM protocols or make the
DMT hard to use through the Dmt Admin service. As Plugins can always signal special case handling
to their native Protocol Adapter, any object model design should strive to be easy to use for the devel-
opers and managers. Therefore, this section provides a number of guidelines for the design of such
object models that will improve the browsing experience for many Protocol Adapters.

• Reading of a node must not change the state of a device – Management systems must be able to browse
a tree without causing any side effects. If reading modified the DMT, a management system would
have no way to warn the user that the system is modified. There are a number of technical reasons
as well (race conditions, security holes, and eventing) but the most important reason is the
browseability of the device.

• No use of recursive structures – The Dmt Admin service provides a very rich tree model that has no
problem with recursion. However, this does not have to be true for other models. To increase the
changes that a model is browsable on another device it is strongly recommended to prevent
recursive models. For example, TR-069 cannot handle recursive models.

• Only a single format per meta node – Handling different types in different nodes simplifies the data
conversion for both foreign and native protocols. Having a single choice from the Meta Node
makes the conversion straightforward and does not require guessing.

• All nodes must provide a Meta Node – Conversion without a Meta Node makes the conversion very
hard since object model schemas are often not available in the Protocol Adapter.

• Naming – Structured node members must have names only consisting of [a-zA-Z0-9] and must
always start with a character [a-zA-z] . Member names must be different regardless of the case,
that is Abc and ABC must not both be members of the same structured node. The reason for this
restriction is that it makes it more likely that the chosen names are compatible with the sup-
ported protocols and do not require escaping.

• Typing – Restrict the used formats to formats that maximize both the interoperability as the ease
of use for Java developers. The following type are widely supported and are easy to use from Java:

• FORMAT_STRING
• FORMAT_BOOLEAN
• FORMAT_INTEGER
• FORMAT_LONG
• FORMAT_FLOAT
• FORMAT_DATE_TIME
• FORMAT_BINARY

117.12.5 DDF
The Data Description Format is part of OMA DM; it provides a description language for the object
model. The following table provides an example of the Data Description Format as used in the OSGi
specifications.

Name Actions Type Card. S Description

FaultType Get integer 1 P . . .
OSGi Service Platform Release 4, Version 4.3 Page 329

OSGi Object Modeling Dmt Admin Service Specification Version 2.0
The columns have the following meanings:

• Name – The name of the node
• Actions – The set of actions that can be executed on the node, see Operations on page 299.
• Type – The type of the node. All lower case are primitives, a name starting with an upper case is an

interior node type. MAP, LIST, and SCAFFOLD are the special types. The NODE type is like an
ANY type. Other type names are then further specified in the document. See Types on page 330.

• Cardinality – The number of occurrences of the node, see Cardinality on page 300.
• Scope – The scope of the node, see Scope on page 300.
• Description – A description of the node.

117.12.6 Types
Each node is considered to have a type. The Dmt Admin service has a number of constructs that have
typing like behavior. There are therefore the following kind of types:

• Primitives – Primitives are data types like integers and strings; they include all the Dmt Admin
data formats. See Primitives on page 331. Primitive type names are always lower case to distinguish
them from the interior node type names.

• Structured Types – A structured type types a structured node. See Structured Nodes on page 331. A
structured type has a type name that starts with an uppercase. Object models generally consist of
defining these types.

• NODE – A general unqualified Dmt Admin node.
• LIST – A node that represents a homogeneous collection of child nodes; the name of the child

nodes is the index in the collection. See LIST Nodes on page 331.
• MAP – A node that represents a mapping from a key, the name of the child node, and a value, the

value of the child node. All values have the same type. See MAP Nodes on page 333.
• SCAFFOLD – A node provided by the Dmt Admin service or a Parent Plugin to make it possible to

discover a DMT, see Scaffold Nodes on page 305.

Nodes are treated as if there is a single type system. However, the Dmt Admin type system has the fol-
lowing mechanisms to type a node:

• Format – The Dmt Admin primitive types used for leaf nodes, as defined on Dmt Data.
• MIME – A MIME type on a leaf node which is available through getNodeType(Str ing) .
• DDF Document URI – A Data Description Format URI that provides a type name for an interior

node. The URI provides a similar role as the MIME type for the leaf node and is also available
through getNodeType(Str ing) .

The Dmt Admin service provides the MIME type for leaf nodes and the DDF Document URI for inte-
rior nodes through the getNodeType(Str ing) method. As both are strings they can both be used as
type identifiers. The different types are depicted in Figure 117.25.

Figure 117.25 Type inheritance and structure

Type

Structured
Type

PrimitiveLIST MAP NODE

value type

1

index type

1

n

members

SCAFFOLD
Page 330 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling
117.12.7 Primitives
A primitive is a value stored in a leaf node. In the Dmt Admin service, the type of the primitive is
called the format. The Dmt Admin service supports a large number of types that have semantic over-
lap. A Protocol Mapping must provide a unique mapping from each Dmt Admin format to the corre-
sponding protocol type and provide conversion from a protocol type to the corresponding Dmt
Admin types defined in a Meta Node.

Primitives are documented in OSGi object models with a lower case name that is the last part of their
format definition. For example, for FORMAT_STRING the DDF type name is str ing . A primitive DDF
for an integer leaf node therefore looks like:

117.12.8 Structured Nodes
A structured node is like a struct in C or a class in an object oriented languages. A structured node is an
interior node with a set of members (child nodes) with fixed names, it is never possible to add or
remove such members dynamically. The meaning of each named node and its type is usually defined
in a management specification. For example, a node representing the OSGi Bundle could have a
BundleId child-node that maps to the getBundleId() method on the Bundle interface.

It is an error to add or delete members to a Structured node, this must be reflected in the correspond-
ing Meta Node, that is, Structured nodes must never have the Add or Delete action.

A structured node is defined in a structured type to allow the reuse of the same information in differ-
ent places in an object model. A structured type defines the members and their behaviors. A struc-
tured type can be referred by its name. The name of the type is often, but not required, the name of
the member.

For example, a Unit structured type could look like:

117.12.9 LIST Nodes
A LIST node is an interior node representing a collection of elements. The elements are stored in the
child nodes of the LIST node, they are called the index nodes. All index nodes must have the same type.
The names of the index nodes are synthesized and represent the index of the index node. The first
node is always named 0 and the sibling is 1, 2, etc. The sequence must be continuous and must have
no missing indexes. A node name is always a string, it is therefore the responsibility of the plugin to
provide the proper names. The index is assumed to be a signed positive integer limiting the LIST
nodes size to Integer.MAX_VALUE elements.

Name Act Type Card. S Description

FaultType Get integer 1 P . . .

Name Act Type Card. S Description

Id Get long 1 P ...
URL Get Set str ing 1 P ...
Name Get str ing 1 P ...
Certi f icate Get LIST 1 P

 [index] Get Cert i f icate 1 D Note the use of a structured type.
OSGi Service Platform Release 4, Version 4.3 Page 331

OSGi Object Modeling Dmt Admin Service Specification Version 2.0
Figure 117.26 LIST Nodes

Index nodes should only be used for types where the value of the index node is the identity. For exam-
ple, a network interface has an identity; a manager will expect that a node representing such as a net-
work interface node will always have the same URI even if other interfaces are added and deleted.
Since LIST nodes renumber the index node names when an element is deleted or added, the URI
would fail if a network interface was added or removed. If such a case, a MAP node should be used, see
MAP Nodes on page 333, as they allow the key to be managed by the remote manager.

LIST nodes can be mutable if the Meta Node of its index nodes support the Add or Delete action. A
LIST node is modeled after a java.ut i l .L ist that can automatically accomodate new elements. Get and
Replace operations use the node name to index in this list.

To rearrange the list the local manager can Add and Delete nodes or rename them as it sees fit. At any
moment in time the underlying implementation must maintain a list that runs from 0 to max(index)
(inclusive), where index is the name of the LIST child nodes. Inserting a node requires renaming all
subsequent nodes. Any missing indexes must automatically be provided by the plugin when the
child node names are retrieved.

For example, a LIST node named L contains the following nodes:

L/0 A

L/1 B

L/2 C

To insert a node after B , L/2 must be renamed to L/3 . This will automatically extend the LIST node to 4
elements. That is, even though L/2 is renamed, the implementation must automatically provide a
new L/2 node. The value of this node depends on the underlying implementation. The value of the
list will therefore then be: [A,B,?,C] . If node 1 is deleted, then the list will be [A,?,C] . If a node L/5 is
added then the list will be [A,?,C,?,?,?] . It is usually easiest to use the LIST node as a complex value,
this is discussed in the next section.

117.12.9.1 Complex Collections

An implementation of a LIST node must support a complex node value if its members are primitive;
the interior node must then have a value of a Java object implementing the Col lection interface from
java.ut i l . The elements in this map must be converted according to Table 117.11.

1

LIST node

1

0..n

org.osgi/1.0/.LIST)

0..n
index nodes

(name is int >= 0 and cont.)

structured LIST primitive LIST

Table 117.11 Conversion for Collections

Format Associated Java Type

FORMAT_STRING Str ing

FORMAT_BOOLEAN Boolean

FORMAT_INTEGER Integer

FORMAT_LONG Long

FORMAT_FLOAT Float

FORMAT_DATE_TIME Date

FORMAT_BINARY byte[]
Page 332 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling
Alternatively, the Collection may contain Dmt Data objects but the collection must be homoge-
neous. The collection must always be a copy and changes made to the collection must not affect the
DMT.

For example, a LIST type for a list of URIs could look like:

Replacing a complex value will generate a single EVENT_TOPIC_REPLACED event for the LIST node.

117.12.10 MAP Nodes
A MAP node represents a mapping from a key to a value. The key is the name of the node and the value
is the node’s value. A MAP node performs the same functions as a Java Map. See Figure 117.27.

Figure 117.27 MAP Nodes

A MAP node has key nodes as children. A key node is an association between the name of the key node
(which is the key) and the value of the key node. Key nodes are depicted with [<type>] , where the
<type> indicates the type used for the string name. For example, a long type will have node names
that can be converted to a long . A key type must always be one of the primitive types. For example, a
list of Bundle locations can be handled with a MAP with [str ing] key nodes that have a value type of
string. Since the key is used in URIs it must always be escaped, see The DMT Addressing URI on page
291.

For example:

117.12.10.1 Complex Value

An implementation of a MAP node must support an interior node value if its child nodes are primi-
tive; the interior node must then be associated with a Java object implementing the Map interface
from java.uti l . The values in this Map must homogeneous and be converted according to Table
117.11 or the given values must of type DmtData . The Map object must a copy and does not track
changes in the DMT or vice-versa.

Replacing a complex value will generate a single EVENT_TOPIC_REPLACED event for that node.

Name Act Type Card. S Description

URIs Get L IST 1 P A List of URIs
 [index] Get Set

Add Del
str ing 0. .n D A primit ive index node

1

MAP node

1

0..n 0..n
key nodes

(name is anything)

structured MAP primitive MAP

(org.osgi/1.0/MAP)

Name Act Type Card. S Description

Location Get MAP 1 P A MAP of location where the index node is the
Bundle Id.

 [long] Get Set
Add Del

str ing 0. .n D Name is the Bundle Id and the value is the loca-
tion.
OSGi Service Platform Release 4, Version 4.3 Page 333

OSGi Object Modeling Dmt Admin Service Specification Version 2.0
117.12.11 Instance Id
Some protocols cannot handle arbitrary names in the access URI, they need a well defined instance id
to index in a table or put severe restrictions on the node name’s character set, length, or other aspects.
For example, TR-069 can access an object with the following URI:

Device.VOIP.12.Name

The more natural model for the DMT is to use:

Device.VOIP.<Name>...

To provide assistance to these protocols this section defines a mechanism that can be used by Proto-
col Adapters to simplify access.

An Object Model can define a child node InstanceId . The InstanceId node, if present, holds a long
value that has the following qualities:

• Its value must be between 1 and Long.MAX_VALUE .
• No other index/key node on the same level must have the same value for the InstanceId node
• The value must be persistent between sessions and restarts of the plugin
• A value must not be reused when a node is deleted until the number space is exhausted

Protocol Adapters can use this information to provide alternative access paths for the DMT.

117.12.12 Conversions
Each Protocol Mapping document should define a default conversion from the Dmt Admin data for-
mats to the protocol types and vice versa, including the LIST and MAP nodes. However, this default
mapping is likely to be too constraining in real world models since different protocols support differ-
ent data types and a 1:1 mapping is likely to be impossible.

For this reason, the Protocol Mapping document should define a number of protocol specific MIME
types for each unique data type that they support. A Data Plugin can associate such a MIME type with
a node. The Protocol Adapter can then look for this MIME type. If none of the Protocol Adapter spe-
cific MIME types are available in a node the default conversion is used.

For example, in the TR-069 Protocol Adapter specification there is a MIME type for each TR-069 data
type. If for a given leaf node the Meta Node’s type specifies TR069_MIME_UNSIGNED_INTand the
node specifies the format FORMAT_INTEGER then the Protocol Adapter must convert the integer to
an unsigned integer and encode the value as such in the response message. The Protocol Adapter
there does not have to have specific knowledge of the object model, the Plugin drives the Protocol
Adapter by providing the protocol specific MIME types on the leaf node Meta Nodes. This model is
depicted in Figure 117.28.

Figure 117.28 Conversions

Since a Meta Node can contain multiple MIME types, there is no restrictions on the number of Proto-
col Adapters; a Plugin can specify the MIME types of multiple Protocol Adapters.

Dmt Admin
FORMAT_
INTEGER

TR-069
unsignedInteger

Meta Node
MIME type
UNSIGNED_INT
Page 334 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Security
117.12.13 Extensions
All interior nodes in this specification can have a node named Ext . These nodes are the extension
nodes. If an implementation needs to expose additional details about an interior node then they
should expose these extensions under the corresponding Ext node. To reduce name conflicts, it is rec-
ommended to group together implementation specific extensions under a unique name, recom-
mended is to use the reverse domain name. For example, the following DDF defines an Ext node with
extensions for the ACME provider.

117.13 Security
A key aspect of the Dmt Admin service model is the separation from DMT clients and plugins. The
Dmt Admin service receives all the operation requests and, after verification of authority, forwards
the requests to the plugins.

Figure 117.29 Separation of clients and plugins

This architecture makes it straightforward to use the OSGi security architecture to protect the differ-
ent actors.

117.13.1 Principals
The caller of the getSession(Str ing,Str ing, int) method must have the Dmt Principal Permission with
a target that matches the given principal. This Dmt Principal Permission is used to enforce that only
trusted entities can act on behalf of remote managers.

The Dmt Admin service must verify that all operations from a session with a principal can be exe-
cuted on the given nodes using the available ACLs.

The other two forms of the getSession method are meant for local management applications where
no principal is available. No special permission is defined to restrict the usage of these methods. The
callers that want to execute device management commands, however, need to have the appropriate
Dmt Permissions.

Name Act Type Card. S Description

Framework Get Framework 1 P . . .
 Ext Get 1 P Extension node
 com.acme Get AcmeFrameworkExt 1 P The node for the ACME extensions
 Transactional Get boolean 1 P . . .

.

<<service>>
Dmt Admin

<<service>>
Data Plugin

<<service>>
Exec Plugin

Client

Data Plugin Impl

Exec Plugin Impl

forward

request
<<service>>
Dmt Session
OSGi Service Platform Release 4, Version 4.3 Page 335

Security Dmt Admin Service Specification Version 2.0
117.13.2 Operational Permissions
The operational security of a Local Manager and a remote manager is distinctly different. The distinc-
tion is made on the principal. Protocol Adapters should use the getSession method that takes an
authenticated principal. Local Managers should not specify a principal.

Figure 117.30 Access control context, for Local Manager and Protocol Adapter operation

117.13.3 Protocol Adapters
A Protocol Adapter must provide a principal to the Dmt Admin service when it gets a session. It must
use the getSession(Str ing,Str ing, int) method. The Protocol Adapter must have Dmt Principal Per-
mission for the given principal. The Dmt Admin service must then use this principal to determine
the security scope of the given principal. This security scope is a set of permissions. How these permis-
sions are found is not defined in this specification; they are usually in the management tree of a
device. For example, the Mobile Specification stores these under the $/Pol icy/ Java/
DmtPr incipalPermission sub-tree.

Additionally, a Dmt Session with a principal implies that the Dmt Admin service must verify the
ACLs on the node for all operations.

Any operation that is requested by a Protocol Adapter must be executed in a doPriv i leged block that
takes the principal’s security scope. The doPrivi leged block effectively hides the permissions of the
Protocol Adapter; all operations must be performed under the security scope of the principal.

The security check for a Protocol Adapter is therefore as follows:

• The operation method calls doPriv i leged with the security scope of the principal.
• The operation is forwarded to the appropriate plugin. The underlying service must perform its

normal security checks. For example, the Configuration Admin service must check for the appro-
priate Configuration Permission.

The Access Control context is shown in Figure 117.30 within the Protocol Adapter column.

This principal-based security model allows for minimal permissions on the Protocol Adapter,
because the Dmt Admin service performs a doPriv i leged on behalf of the principal, inserting the per-
missions for the principal on the call stack. This model does not guard against malicious Protocol
Adapters, though the Protocol Adapter must have the appropriate Dmt Principal Permission.

The Protocol Adapter is responsible for the authentication of the principal. The Dmt Admin service
must trust that the Protocol Adapter has correctly verified the identity of the other party. This specifi-
cation does not address the type of authentication mechanisms that can be used. Once it has permis-
sion to use that principal, it can use any DMT command that is permitted for that principal at any
time.

Local Manager

Protocol Adapter

Dmt Admin
Dmt Admin

Plugin

Proxied Service

Plugin

Proxied Service

Principal

Some caller

security
check

doPrivileged

security
check

Local Manager Protocol AdapterLocal Manager
Page 336 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Security
117.13.4 Local Manager
A Local Manager does not specify a principal. Security checks are therefore performed against the
security scope of the Local Manager bundle, as shown in Figure 117.30 with the Local Manager stack.
An operation is checked only with a Dmt Permission for the given node URI and operation. A thrown
Security Exception must be passed unmodified to the caller of the operation method. The Dmt
Admin service must not check the ACLs when no principal is set.

A Local Manager, and all its callers, must therefore have sufficient permission to handle the DMT
operations as well as the permissions required by the plugins when they proxy other services (which
is likely an extensive set of Permissions).

117.13.5 Plugin Security
Plugins are required to hold the maximum security scope for any services they proxy. For example,
the plugin that manages the Configuration Admin service must have Configurat ionPermiss ion("*",
"*") to be effective.

Plugins should not make doPriv i leged calls, but should use the caller’s context on the stack for per-
mission checks.

117.13.6 Events and Permissions
Dmt Event Listener services must have the appropriate Dmt Permission to receive the event since
this must be verified with the hasPermiss ion() method on Bundle.

The Dmt Event Listener services registered with a FILTER_PRINCIPAL service property requires Dmt
Principal Permission for the given principal. In this case, the principal must have Get access to see
the nodes for the event. Any nodes that the listener does not have access to must be removed from the
event.

Plugins are not required to have access to the Event Admin service. If they send an event through the
MountPointinterface then the Dmt Admin service must use a doPriv i leged block to send the event to
the Event Admin service.

117.13.7 Dmt Principal Permission
Execution of the getSession methods of the Dmt Admin service featuring an explicit principal name
is guarded by the Dmt Principal Permission. This permission must be granted only to Protocol Adapt-
ers that open Dmt Sessions on behalf of remote management servers.

The DmtPrincipalPermission class does not have defined actions; it must always be created with a *
to allow future extensions. The target is the principal name. A wildcard character is allowed at the
end of the string to match a prefix.

Example:

new DmtPrincipalPermission("com.acme.dep*", "*")

117.13.8 Dmt Permission
The Dmt Permission controls access to management objects in the DMT. It is intended to control
only the local access to the DMT. The Dmt Permission target string identifies the target node’s URI
(absolute path is required, starting with the ’ . / ’ prefix) and the action field lists the management com-
mands that are permitted on the node.

The URI can end in a wildcard character * to indicate it is a prefix that must be matched. This com-
parison is string based so that node boundaries can be ignored.

The following actions are defined:

• ADD
• DELETE
OSGi Service Platform Release 4, Version 4.3 Page 337

Security Dmt Admin Service Specification Version 2.0
• EXEC
• GET
• REPLACE

For example, the following code creates a Dmt Permission for a bundle to add and replace nodes in
any URI that starts with . /D .

new DmtPermission("./D*", "Add,Replace")

This permission must imply the following permission:

new DmtPermission("./Dev/Operator/Name", "Replace")

117.13.9 Alert Permission
The Alert Permission permits the holder of this permission to send a notification to a specific target
principal. The target is identical to Dmt Principal Permission on page 337. No actions are defined for
Alert Permission.

117.13.10 Security Summary
117.13.10.1 Dmt Admin Service and Notification Service

The Dmt Admin service is likely to require All Permission. This requirement is caused by the plugin
model. Any permission required by any of the plugins must be granted to the Dmt Admin service.
This set of permissions is large and hard to define. The following list shows the minimum permis-
sions required if the plugin permissions are left out.

ServicePermission ..DmtAdmin REGISTER

ServicePermission ..NotificationService REGISTER

ServicePermission ..DataPlugin GET

ServicePermission ..ExecPlugin GET

ServicePermission ..EventAdmin GET

ServicePermission ..RemoteAlertSender GET

ServicePermission ..DmtEventListener GET

DmtPermission * *

DmtPrincipal

 Permission * *

PackagePermission org.osgi.service.dmt EXPORTONLY

PackagePermission org.osgi.service.dmt.spi EXPORTONLY

PackagePermission org.osgi.service.dmt.notificationEXPORTONLY

PackagePermission org.osgi.service.dmt.notification.spiEXPORTONLY

PackagePermission org.osgi.service.dmt.registryEXPORTONLY

PackagePermission org.osgi.service.dmt.securityEXPORTONLY

117.13.10.2 Dmt Event Listener Service
ServicePermission ..DmtEventListener REGISTER

PackagePermission org.osgi.service.dmt IMPORT

Dmt Event Listeners must have the appropriate DmtPermission to see the nodes in the events. If they
are registered with a principal then they also need DmtPrincipalPermission for the given principals.

117.13.10.3 Data and Exec Plugin
ServicePermission ..NotificationService GET

ServicePermission ..DataPlugin REGISTER

ServicePermission ..ExecPlugin REGISTER

PackagePermission org.osgi.service.dmt IMPORT

PackagePermission org.osgi.service.dmt.notificationIMPORT

PackagePermission org.osgi.service.dmt.spi IMPORT
Page 338 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 Changes
PackagePermission org.osgi.service.dmt.securityIMPORT

The plugin is also required to have any permissions to call its underlying services.

117.13.10.4 Local Manager
ServicePermission ..DmtAdmin GET

PackagePermission org.osgi.service.dmt IMPORT

PackagePermission org.osgi.service.dmt.securityIMPORT

DmtPermission <scope> ...

Additionally, the Local Manager requires all permissions that are needed by the plugins it addresses.

117.13.10.5 Protocol Adapter

The Protocol Adapter only requires Dmt Principal Permission for the instances that it is permitted to
manage. The other permissions are taken from the security scope of the principal.

ServicePermission ..DmtAdmin GET

ServicePermission ..RemoteAlertSender REGISTER

PackagePermission org.osgi.service.dmt IMPORT

PackagePermission org.osgi.service.dmt.notification.spiIMPORT

PackagePermission org.osgi.service.dmt.notificationIMPORT

DmtPrincipalPermission<scope>

117.14 Changes
The changes to this document are quite large, even the package has been renamed. Despite the
rename, package version 2.0 is taken to indicate that this is a major update. The following items pro-
vide a general overview of the changes. However, this update is major and no backward compatibility
should be expected.

• Renamed the info.dmtree package to org.osgi .service.dmt .
• Removed the static factory methods needed to provide a service registry in non-OSGi environ-

ments.
• Overlapping sub-trees. It is now possible to create parent-child relations between plugins. API was

added to manage the sharing, see Sharing the DMT on page 307.
• A format FORMAT_DATE_TIME was added to support actual time of day, see Data Types on page

300.
• A general assumption was added that the Dmt Admin nodes had not artificial limits on their URI

length nor their segment length.
• Introduced so called scaffold nodes that provide intermediate nodes to allow discovery of plugins,

Scaffold Nodes on page 305.
• Allow Plugins to send events about internal changes, see Mount Points on page 307.
• Changed the event model of atomic session to allow accurately track changes to the DMT, see

Notifications on page 319.
• Introduced a section about modeling with the Dmt Admin service, see OSGi Object Modeling on

page 327.
• Clarifications throughout the specification.

117.15 org.osgi.service.dmt
Device Management Tree Package Version 2.0.

This package contains the public API for the Device Management Tree manipulations. Permission
classes are provided by the org.osgi .service.dmt.security package, and DMT plugin interfaces can be
found in the org.osgi .service.dmt.spi package. Asynchronous notifications to remote management
servers can be sent using the interfaces in the org.osgi .serv ice.dmt.noti f icat ion package.
OSGi Service Platform Release 4, Version 4.3 Page 339

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt; version=”[2.0,3.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt; version=”[2.0,2.1)”

117.15.1 Summary
• Acl – Acl is an immutable class representing structured access to DMT ACLs.
• DmtAdmin – An interface providing methods to open sessions and register listeners.
• DmtConstants – Defines standard names for DmtAdmin .
• DmtData – An immutable data structure representing the contents of a leaf or interior node.
• DmtEvent – Event class storing the details of a change in the tree.
• DmtEventListener – Registered implementations of this class are notified via DmtEvent objects

about important changes in the tree.
• DmtException – Checked exception received when a DMT operation fails.
• DmtI l legalStateException – Unchecked illegal state exception.
• DmtSession – DmtSession provides concurrent access to the DMT.
• MetaNode – The MetaNode contains meta data as standardized by OMA DM but extends it

(without breaking the compatibility) to provide for better DMT data quality in an environment
where many software components manipulate this data.

• Uri – This class contains static utility methods to manipulate DMT URIs.

117.15.2 Permissions
Acl

117.15.3 public final class Acl
Acl is an immutable class representing structured access to DMT ACLs. Under OMA DM the ACLs are
defined as strings with an internal syntax.

The methods of this class taking a principal as parameter accept remote server IDs (as passed to
DmtAdmin.getSession), as well as “* “indicating any principal.

The syntax for valid remote server IDs:
 <server-identifier> ::= All printable characters except ‘=’ , ‘&‘ , ‘* ’ , ‘+’ or white-space characters.
ADD

117.15.3.1 public static final int ADD = 2

Principals holding this permission can issue ADD commands on the node having this ACL.
ALL_PERMISSION

117.15.3.2 public static final int ALL_PERMISSION = 31

Principals holding this permission can issue any command on the node having this ACL. This per-
mission is the logical OR of ADD , DELETE , EXEC , GET and REPLACE permissions.
DELETE

117.15.3.3 public static final int DELETE = 8

Principals holding this permission can issue DELETE commands on the node having this ACL.
EXEC

117.15.3.4 public static final int EXEC = 16

Principals holding this permission can issue EXEC commands on the node having this ACL.
GET

117.15.3.5 public static final int GET = 1

Principals holding this permission can issue GET command on the node having this ACL.
Page 340 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
REPLACE

117.15.3.6 public static final int REPLACE = 4

Principals holding this permission can issue REPLACE commands on the node having this ACL.
Acl(String)

117.15.3.7 public Acl (String acl)

acl The string representation of the ACL as defined in OMA DM. If null or empty then it represents an
empty list of principals with no permissions.

 Create an instance of the ACL from its canonical string representation.

Throws IllegalArgumentException – if acl is not a valid OMA DM ACL string
Acl(String[],int[])

117.15.3.8 public Acl (String[] principals , int[] permissions)

principals The array of principals

permissions The array of permissions

 Creates an instance with a specified list of principals and the permissions they hold. The two arrays
run in parallel, that is principals[i] will hold permissions[i] in the ACL.

A principal name may not appear multiple times in the ‘principals’ argument. If the “*” principal
appears in the array, the corresponding permissions will be granted to all principals (regardless of
whether they appear in the array or not).

Throws IllegalArgumentException – if the length of the two arrays are not the same, if any array element is
invalid, or if a principal appears multiple times in the principals array
addPermission(String,int)

117.15.3.9 public synchronized Acl addPermission (String principal , int permissions)

principal The entity to which permissions should be granted, or “*” to grant permissions to all principals.

permissions The permissions to be given. The parameter can be a logical or of more permission constants defined
in this class.

 Create a new Acl instance from this Acl with the given permission added for the given principal. The
already existing permissions of the principal are not affected.

Returns a new Acl instance

Throws IllegalArgumentException – if principal is not a valid principal name or if permissions is not a valid
combination of the permission constants defined in this class
deletePermission(String,int)

117.15.3.10 public synchronized Acl deletePermission (String principal , int permissions)

principal The entity from which permissions should be revoked, or “*” to revoke permissions from all princi-
pals.

permissions The permissions to be revoked. The parameter can be a logical or of more permission constants de-
fined in this class.

 Create a new Acl instance from this Acl with the given permission revoked from the given principal.
Other permissions of the principal are not affected.

Note, that it is not valid to revoke a permission from a specific principal if that permission is granted
globally to all principals.

Returns a new Acl instance

Throws IllegalArgumentException – if principal is not a valid principal name, if permissions is not a valid
combination of the permission constants defined in this class, or if a globally granted permission
would have been revoked from a specific principal
equals(Object)

117.15.3.11 public boolean equals (Object obj)

obj the object to compare with this Acl instance
OSGi Service Platform Release 4, Version 4.3 Page 341

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
 Checks whether the given object is equal to this Acl instance. Two Acl instances are equal if they
allow the same set of permissions for the same set of principals.

Returns true if the parameter represents the same ACL as this instance
getPermissions(String)

117.15.3.12 public synchronized int getPermissions (String principal)

principal The entity whose permissions to query, or “*” to query the permissions that are granted globally, to all
principals

 Get the permissions associated to a given principal.

Returns The permissions of the given principal. The returned int is a bitmask of the permission constants de-
fined in this class

Throws IllegalArgumentException – if principal is not a valid principal name
getPrincipals()

117.15.3.13 public String[] getPrincipals ()

 Get the list of principals who have any kind of permissions on this node. The list only includes those
principals that have been explicitly assigned permissions (so “*” is never returned), globally set per-
missions naturally apply to all other principals as well.

Returns The array of principals having permissions on this node.
hashCode()

117.15.3.14 public int hashCode ()

 Returns the hash code for this ACL instance. If two Acl instances are equal according to the
equals(Object) method, then calling this method on each of them must produce the same integer
result.

Returns hash code for this ACL
isPermitted(String,int)

117.15.3.15 public synchronized boolean isPermitted (String principal , int permissions)

principal The entity to check, or “*” to check whether the given permissions are granted to all principals global-
ly

permissions The permissions to check

 Check whether the given permissions are granted to a certain principal. The requested permissions
are specified as a bitfield, for example (Acl .ADD | Acl .DELETE | Acl .GET) .

Returns true if the principal holds all the given permissions

Throws IllegalArgumentException – if principal is not a valid principal name or if permissions is not a valid
combination of the permission constants defined in this class
setPermission(String,int)

117.15.3.16 public synchronized Acl setPermission (String principal , int permissions)

principal The entity to which permissions should be granted, or “*” to globally grant permissions to all princi-
pals.

permissions The set of permissions to be given. The parameter is a bitmask of the permission constants defined in
this class.

 Create a new Acl instance from this Acl where all permissions for the given principal are overwritten
with the given permissions.

Note, that when changing the permissions of a specific principal, it is not allowed to specify a set of
permissions stricter than the global set of permissions (that apply to all principals).

Returns a new Acl instance

Throws IllegalArgumentException – if principal is not a valid principal name, if permissions is not a valid
combination of the permission constants defined in this class, or if a globally granted permission
would have been revoked from a specific principal
toString()
Page 342 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
117.15.3.17 public synchronized String toString ()

 Give the canonical string representation of this ACL. The operations are in the following order: {Add,
Delete, Exec, Get, Replace}, principal names are sorted alphabetically.

Returns The string representation as defined in OMA DM.
DmtAdmin

117.15.4 public interface DmtAdmin
An interface providing methods to open sessions and register listeners. The implementation of
DmtAdmin should register itself in the OSGi service registry as a service. DmtAdmin is the entry point
for applications to use the DMT API.

The getSession methods are used to open a session on a specified subtree of the DMT. A typical way
of usage:

serviceRef = context.getServiceReference(DmtAdmin.class.getName());

DmtAdmin admin = (DmtAdmin) context.getService(serviceRef);

DmtSession session = admin.getSession(”./OSGi/Configuration”);

session.createInteriorNode(”./OSGi/Configuration/my.table”);

The methods for opening a session take a node URI (the session root) as a parameter. All segments of
the given URI must be within the segment length limit of the implementation, and the special char-
acters ‘/’ and ‘\’must be escaped (preceded by a ‘\’).

See the Uri .encode(Str ing) method for support on escaping invalid characters in a URI.

It is possible to specify a lock mode when opening the session (see lock type constants in DmtSes-
sion). This determines whether the session can run in parallel with other sessions, and the kinds of
operations that can be performed in the session. All Management Objects constituting the device
management tree must support read operations on their nodes, while support for write operations
depends on the Management Object. Management Objects supporting write access may support
transactional write, non-transactional write or both. Users of DmtAdmin should consult the Manage-
ment Object specification and implementation for the supported update modes. If Management
Object definition permits, implementations are encouraged to support both update modes.
getSession(String)

117.15.4.1 public DmtSession getSession (String subtreeUri) throws DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

 Opens a DmtSession for local usage on a given subtree of the DMT with non transactional write lock.
This call is equivalent to the following: getSession(nul l , subtreeUri ,
DmtSession.LOCK_TYPE_EXCLUSIVE)

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session is
opened with the default session root, “.”, that gives access to the whole tree.

To perform this operation the caller must have DmtPermission for the subtreeUri node with the Get
action present.

Returns a DmtSession object for the requested subtree

Throws DmtException – with the following possible error codes:
INVALID_URI if subtreeUri is syntactically invalid
URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if subtreeUri specifies a non-existing node
SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session
COMMAND_FAILED if subtreeUri specifies a relative URI, or some unspecified error is encountered
while attempting to complete the command

SecurityException – if the caller does not have DmtPermission for the given root node with the Get
action present
getSession(String,int)
OSGi Service Platform Release 4, Version 4.3 Page 343

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
117.15.4.2 public DmtSession getSession (String subtreeUri , int lockMode) throws DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

lockMode one of the lock modes specified in DmtSession

 Opens a DmtSession for local usage on a specific DMT subtree with a given lock mode. This call is
equivalent to the following: getSession(nul l , subtreeUri , lockMode)

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session is
opened with the default session root, “.”, that gives access to the whole tree.

To perform this operation the caller must have DmtPermission for the subtreeUri node with the Get
action present.

Returns a DmtSession object for the requested subtree

Throws DmtException – with the following possible error codes:
INVALID_URI if subtreeUri is syntactically invalid
URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if subtreeUri specifies a non-existing node
FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the implementation and lock-
Mode requests an atomic session
SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session
COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is unknown, or some unspec-
ified error is encountered while attempting to complete the command

SecurityException – if the caller does not have DmtPermiss ion for the given root node with the Get
action present
getSession(String,String,int)

117.15.4.3 public DmtSession getSession (String principal , String subtreeUri , int lockMode) throws
DmtException

principal the identifier of the remote server on whose behalf the data manipulation is performed, or nul l for lo-
cal sessions

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

lockMode one of the lock modes specified in DmtSession

 Opens a DmtSession on a specific DMT subtree using a specific lock mode on behalf of a remote prin-
cipal. If local management applications are using this method then they should provide null as the
first parameter. Alternatively they can use other forms of this method without providing a principal
string.

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session is
opened with the default session root, “.”, that gives access to the whole tree.

This method is guarded by DmtPrincipalPermission in case of remote sessions. In addition, the caller
must have Get access rights (ACL in case of remote sessions, DmtPermiss ion in case of local sessions)
on the subtreeUri node to perform this operation.

Returns a DmtSession object for the requested subtree

Throws DmtException – with the following possible error codes:
INVALID_URI if subtreeUri is syntactically invalid
URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if subtreeUri specifies a non-existing node
PERMISSION_DENIED if principal is not null and the ACL of the node does not allow the Get opera-
tion for the principal on the given root node
FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the implementation and lock-
Mode requests an atomic session
Page 344 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session
COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is unknown, or some unspec-
ified error is encountered while attempting to complete the command

SecurityException – in case of remote sessions, if the caller does not have the required
DmtPrincipalPermission with a target matching the principal parameter, or in case of local sessions, if
the caller does not have DmtPermission for the given root node with the Get action present
DmtConstants

117.15.5 public class DmtConstants
Defines standard names for DmtAdmin .

Since 2.0
DDF_LIST

117.15.5.1 public static final String DDF_LIST = “org.osgi/1.0/LIST”

A string defining a DDF URI, indicating that the node is a LIST node.
DDF_MAP

117.15.5.2 public static final String DDF_MAP = “org.osgi/1.0/MAP”

A string defining a DDF URI, indicating that the node is a MAP node node.
DDF_SCAFFOLD

117.15.5.3 public static final String DDF_SCAFFOLD = “org.osgi/1.0/SCAFFOLD”

A string defining a DDF URI, indicating that the node is a SCAFFOLD node.
EVENT_PROPERTY_NEW_NODES

117.15.5.4 public static final String EVENT_PROPERTY_NEW_NODES = “newnodes”

A string defining the property key for the newnodes property in node related events.
EVENT_PROPERTY_NODES

117.15.5.5 public static final String EVENT_PROPERTY_NODES = “nodes”

A string defining the property key for the @{code nodes} property in node related events.
EVENT_PROPERTY_SESSION_ID

117.15.5.6 public static final String EVENT_PROPERTY_SESSION_ID = “session.id”

A string defining the property key for the session. id property in node related events.
EVENT_TOPIC_ADDED

117.15.5.7 public static final String EVENT_TOPIC_ADDED = “org/osgi/service/dmt/DmtEvent/ADDED”

A string defining the topic for the event that is sent for added nodes.
EVENT_TOPIC_COPIED

117.15.5.8 public static final String EVENT_TOPIC_COPIED = “org/osgi/service/dmt/DmtEvent/COPIED”

A string defining the topic for the event that is sent for copied nodes.
EVENT_TOPIC_DELETED

117.15.5.9 public static final String EVENT_TOPIC_DELETED = “org/osgi/service/dmt/DmtEvent/DELETED”

A string defining the topic for the event that is sent for deleted nodes.
EVENT_TOPIC_RENAMED

117.15.5.10 public static final String EVENT_TOPIC_RENAMED = “org/osgi/service/dmt/DmtEvent/RENAMED”

A string defining the topic for the event that is sent for renamed nodes.
EVENT_TOPIC_REPLACED

117.15.5.11 public static final String EVENT_TOPIC_REPLACED = “org/osgi/service/dmt/DmtEvent/REPLACED”

A string defining the topic for the event that is sent for replaced nodes.
EVENT_TOPIC_SESSION_CLOSED

117.15.5.12 public static final String EVENT_TOPIC_SESSION_CLOSED = “org/osgi/service/dmt/DmtEvent/
SESSION_CLOSED”

A string defining the topic for the event that is sent for a closed session.
EVENT_TOPIC_SESSION_OPENED

117.15.5.13 public static final String EVENT_TOPIC_SESSION_OPENED = “org/osgi/service/dmt/DmtEvent/
OSGi Service Platform Release 4, Version 4.3 Page 345

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
SESSION_OPENED”

A string defining the topic for the event that is sent for a newly opened session.
DmtData

117.15.6 public final class DmtData
An immutable data structure representing the contents of a leaf or interior node. This structure rep-
resents only the value and the format property of the node, all other properties (like MIME type) can
be set and read using the DmtSession interface.

Different constructors are available to create nodes with different formats. Nodes of null format can
be created using the static NULL_VALUE constant instance of this class.

FORMAT_RAW_BINARY and FORMAT_RAW_STRING enable the support of future data formats. When
using these formats, the actual format name is specified as a Str ing . The application is responsible for
the proper encoding of the data according to the specified format.

Concurrency Immutable
FALSE_VALUE

117.15.6.1 public static final DmtData FALSE_VALUE

Constant instance representing a boolean fa lse value.

Since 2.0
FORMAT_BASE64

117.15.6.2 public static final int FORMAT_BASE64 = 128

The node holds an OMA DM b64 value. Like FORMAT_BINARY , this format is also represented by the
Java byte[] type, the difference is only in the corresponding OMA DM format. This format does not
affect the internal storage format of the data as byte[] . It is intended as a hint for the external repre-
sentation of this data. Protocol Adapters can use this hint for their further processing.
FORMAT_BINARY

117.15.6.3 public static final int FORMAT_BINARY = 64

The node holds an OMA DM bin value. The value of the node corresponds to the Java byte[] type.
FORMAT_BOOLEAN

117.15.6.4 public static final int FORMAT_BOOLEAN = 8

The node holds an OMA DM bool value.
FORMAT_DATE

117.15.6.5 public static final int FORMAT_DATE = 16

The node holds an OMA DM date value.
FORMAT_DATE_TIME

117.15.6.6 public static final int FORMAT_DATE_TIME = 16384

The node holds a Date object. If the getTime() equals zero then the date time is not known. If the get-
Time() is negative it must be interpreted as a relative number of milliseconds.

Since 2.0
FORMAT_FLOAT

117.15.6.7 public static final int FORMAT_FLOAT = 2

The node holds an OMA DM f loat value.
FORMAT_INTEGER

117.15.6.8 public static final int FORMAT_INTEGER = 1

The node holds an OMA DM int value.
FORMAT_LONG

117.15.6.9 public static final int FORMAT_LONG = 8192

The node holds a long value. The getFormatName() method can be used to get the actual format
name.

Since 2.0
FORMAT_NODE
Page 346 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
117.15.6.10 public static final int FORMAT_NODE = 1024

Format specifier of an internal node. An interior node can hold a Java object as value (see Dmt-
Data.DmtData(Object) and DmtData.getNode()). This value can be used by Java programs that
know a specific URI understands the associated Java type. This type is further used as a return value
of the MetaNode.getFormat() method for interior nodes.
FORMAT_NULL

117.15.6.11 public static final int FORMAT_NULL = 512

The node holds an OMA DM nul l value. This corresponds to the Java nul l type.
FORMAT_RAW_BINARY

117.15.6.12 public static final int FORMAT_RAW_BINARY = 4096

The node holds raw protocol data encoded in binary format. The getFormatName() method can be
used to get the actual format name.
FORMAT_RAW_STRING

117.15.6.13 public static final int FORMAT_RAW_STRING = 2048

The node holds raw protocol data encoded as Str ing . The getFormatName() method can be used to
get the actual format name.
FORMAT_STRING

117.15.6.14 public static final int FORMAT_STRING = 4

The node holds an OMA DM chr value.
FORMAT_TIME

117.15.6.15 public static final int FORMAT_TIME = 32

The node holds an OMA DM t ime value.
FORMAT_XML

117.15.6.16 public static final int FORMAT_XML = 256

The node holds an OMA DM xml value.
NULL_VALUE

117.15.6.17 public static final DmtData NULL_VALUE

Constant instance representing a leaf node of nul l format.
TRUE_VALUE

117.15.6.18 public static final DmtData TRUE_VALUE

Constant instance representing a boolean true value.

Since 2.0
DmtData(String)

117.15.6.19 public DmtData (String string)

string the string value to set

 Create a DmtData instance of chr format with the given string value. The nul l string argument is
valid.
DmtData(Date)

117.15.6.20 public DmtData (Date date)

date the Date object to set

 Create a DmtData instance of dateTime format with the given Date value. The given Date value must
be a non-null Date object.
DmtData(Object)

117.15.6.21 public DmtData (Object complex)

complex the complex data object to set

 Create a DmtData instance of node format with the given object value. The value represents complex
data associated with an interior node.

Certain interior nodes can support access to their subtrees through such complex values, making it
simpler to retrieve or update all leaf nodes in a subtree.
OSGi Service Platform Release 4, Version 4.3 Page 347

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
The given value must be a non-nul l immutable object.
DmtData(String,int)

117.15.6.22 public DmtData (String value , int format)

value the string, XML, date, or time value to set

format the format of the DmtData instance to be created, must be one of the formats specified above

 Create a DmtData instance of the specified format and set its value based on the given string. Only
the following string-based formats can be created using this constructor:

• FORMAT_STRING - value can be any string
• FORMAT_XML - value must contain an XML fragment (the validity is not checked by this con-

structor)
• FORMAT_DATE - value must be parsable to an ISO 8601 calendar date in complete representation,

basic format (pattern CCYYMMDD)
• FORMAT_TIME - value must be parsable to an ISO 8601 time of day in either local time, complete

representation, basic format (pattern hhmmss) or Coordinated Universal Time, basic format
(pattern hhmmssZ)

nul l string argument is only valid if the format is string or XML.

Throws IllegalArgumentException – if format is not one of the allowed formats, or value is not a valid string
for the given format

NullPointerException – if a string, XML, date, or time is constructed and value is nul l
DmtData(int)

117.15.6.23 public DmtData (int integer)

integer the integer value to set

 Create a DmtData instance of int format and set its value.
DmtData(float)

117.15.6.24 public DmtData (float flt)

flt the float value to set

 Create a DmtData instance of f loat format and set its value.
DmtData(long)

117.15.6.25 public DmtData (long lng)

lng the long value to set

 Create a DmtData instance of long format and set its value.

Since 2.0
DmtData(boolean)

117.15.6.26 public DmtData (boolean bool)

bool the boolean value to set

 Create a DmtData instance of bool format and set its value.
DmtData(byte[])

117.15.6.27 public DmtData (byte[] bytes)

bytes the byte array to set, must not be nul l

 Create a DmtData instance of bin format and set its value.

Throws NullPointerException – if bytes is nul l
DmtData(byte[],boolean)

117.15.6.28 public DmtData (byte[] bytes , boolean base64)

bytes the byte array to set, must not be nul l

base64 if true , the new instance will have b64 format, if fa lse , it will have bin format
Page 348 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
 Create a DmtData instance of bin or b64 format and set its value. The chosen format is specified by
the base64 parameter.

Throws NullPointerException – if bytes is nul l
DmtData(byte[],int)

117.15.6.29 public DmtData (byte[] bytes , int format)

bytes the byte array to set, must not be null

format the format of the DmtData instance to be created, must be one of the formats specified above

 Create a DmtData instance of the specified format and set its value based on the given byte[] . Only
the following byte[] based formats can be created using this constructor:

• FORMAT_BINARY
• FORMAT_BASE64

Throws IllegalArgumentException – if format is not one of the allowed formats

NullPointerException – if bytes is nul l
DmtData(String,String)

117.15.6.30 public DmtData (String formatName , String data)

formatName the name of the format, must not be nul l

data the data encoded according to the specified format, must not be nul l

 Create a DmtData instance in FORMAT_RAW_STRING format. The data is provided encoded as a
Str ing . The actual data format is specified in formatName . The encoding used in data must conform
to this format.

Throws NullPointerException – if formatName or data is nul l
DmtData(String,byte[])

117.15.6.31 public DmtData (String formatName , byte[] data)

formatName the name of the format, must not be nul l

data the data encoded according to the specified format, must not be nul l

 Create a DmtData instance in FORMAT_RAW_BINARY format. The data is provided encoded as binary.
The actual data format is specified in formatName . The encoding used in data must conform to this
format.

Throws NullPointerException – if formatName or data is nul l
equals(Object)

117.15.6.32 public boolean equals (Object obj)

obj the object to compare with this DmtData

 Compares the specified object with this DmtData instance. Two DmtData objects are considered
equal if their format is the same, and their data (selected by the format) is equal.

In case of FORMAT_RAW_BINARY and FORMAT_RAW_STRING the textual name of the data format - as
returned by getFormatName() - must be equal as well.

Returns true if the argument represents the same DmtData as this object
getBase64()

117.15.6.33 public byte[] getBase64 ()

 Gets the value of a node with base 64 (b64) format.

Returns the binary value

Throws DmtIllegalStateException – if the format of the node is not base 64.
getBinary()

117.15.6.34 public byte[] getBinary ()

 Gets the value of a node with binary (bin) format.

Returns the binary value

Throws DmtIllegalStateException – if the format of the node is not binary
OSGi Service Platform Release 4, Version 4.3 Page 349

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
getBoolean()

117.15.6.35 public boolean getBoolean ()

 Gets the value of a node with boolean (bool) format.

Returns the boolean value

Throws DmtIllegalStateException – if the format of the node is not boolean
getDate()

117.15.6.36 public String getDate ()

 Gets the value of a node with date format. The returned date string is formatted according to the ISO
8601 definition of a calendar date in complete representation, basic format (pattern CCYYMMDD).

Returns the date value

Throws DmtIllegalStateException – if the format of the node is not date
getDateTime()

117.15.6.37 public Date getDateTime ()

 Gets the value of a node with dateTime format.

Returns the Date value

Throws DmtIllegalStateException – if the format of the node is not time

Since 2.0
getFloat()

117.15.6.38 public float getFloat ()

 Gets the value of a node with f loat format.

Returns the float value

Throws DmtIllegalStateException – if the format of the node is not f loat
getFormat()

117.15.6.39 public int getFormat ()

 Get the node’s format, expressed in terms of type constants defined in this class. Note that the ‘format’
term is a legacy from OMA DM, it is more customary to think of this as ‘type’.

Returns the format of the node
getFormatName()

117.15.6.40 public String getFormatName ()

 Returns the format of this DmtData as Str ing . For the predefined data formats this is the OMA DM
defined name of the format. For FORMAT_RAW_STRING and FORMAT_RAW_BINARY this is the for-
mat specified when the object was created.

Returns the format name as Str ing
getInt()

117.15.6.41 public int getInt ()

 Gets the value of a node with integer (int) format.

Returns the integer value

Throws DmtIllegalStateException – if the format of the node is not integer
getLong()

117.15.6.42 public long getLong ()

 Gets the value of a node with long format.

Returns the long value

Throws DmtIllegalStateException – if the format of the node is not long

Since 2.0
getNode()

117.15.6.43 public Object getNode ()

 Gets the complex data associated with an interior node (node format).
Page 350 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
Certain interior nodes can support access to their subtrees through complex values, making it sim-
pler to retrieve or update all leaf nodes in the subtree.

Returns the data object associated with an interior node

Throws DmtIllegalStateException – if the format of the data is not node
getRawBinary()

117.15.6.44 public byte[] getRawBinary ()

 Gets the value of a node in raw binary (FORMAT_RAW_BINARY) format.

Returns the data value in raw binary format

Throws DmtIllegalStateException – if the format of the node is not raw binary
getRawString()

117.15.6.45 public String getRawString ()

 Gets the value of a node in raw Str ing (FORMAT_RAW_STRING) format.

Returns the data value in raw Str ing format

Throws DmtIllegalStateException – if the format of the node is not raw Str ing
getSize()

117.15.6.46 public int getSize ()

 Get the size of the data. The returned value depends on the format of data in the node:

• FORMAT_STRING , FORMAT_XML , FORMAT_BINARY , FORMAT_BASE64 , FORMAT_RAW_STRING ,
and FORMAT_RAW_BINARY : the length of the stored data, or 0 if the data is nul l

• FORMAT_INTEGER and FORMAT_FLOAT : 4
• FORMAT_LONG and FORMAT_DATE_TIME : 8
• FORMAT_DATE and FORMAT_TIME : the length of the date or time in its string representation
• FORMAT_BOOLEAN : 1
• FORMAT_NODE : -1 (unknown)
• FORMAT_NULL : 0

Returns the size of the data stored by this object
getString()

117.15.6.47 public String getString ()

 Gets the value of a node with string (chr) format.

Returns the string value

Throws DmtIllegalStateException – if the format of the node is not string
getTime()

117.15.6.48 public String getTime ()

 Gets the value of a node with time format. The returned time string is formatted according to the ISO
8601 definition of the time of day. The exact format depends on the value the object was initialized
with: either local time, complete representation, basic format (pattern hhmmss) or Coordinated Uni-
versal Time, basic format (pattern hhmmssZ).

Returns the time value

Throws DmtIllegalStateException – if the format of the node is not time
getXml()

117.15.6.49 public String getXml ()

 Gets the value of a node with xml format.

Returns the XML value

Throws DmtIllegalStateException – if the format of the node is not xml
hashCode()

117.15.6.50 public int hashCode ()

 Returns the hash code value for this DmtData instance. The hash code is calculated based on the data
(selected by the format) of this object.

Returns the hash code value for this object
OSGi Service Platform Release 4, Version 4.3 Page 351

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
toString()

117.15.6.51 public String toString ()

 Gets the string representation of the DmtData . This method works for all formats.

For string format data - including FORMAT_RAW_STRING - the string value itself is returned, while
for XML, date, time, integer, float, boolean, long and node formats the string form of the value is
returned. Binary - including FORMAT_RAW_BINARY - base64 data is represented by two-digit hexadec-
imal numbers for each byte separated by spaces. The NULL_VALUE data has the string form of “nul l“.
Data of string or XML format containing the Java nul l value is represented by an empty string.
DateTime data is formatted as yyyy-MM-dd’T’HH:mm:SS’Z’).

Returns the string representation of this DmtData instance
DmtEvent

117.15.7 public interface DmtEvent
Event class storing the details of a change in the tree. DmtEvent is used by DmtAdmin to notify regis-
tered EventListeners services about important changes. Events are generated after every successful
DMT change, and also when sessions are opened or closed. If a DmtSession is opened in atomic
mode, DMT events are only sent when the session is committed, when the changes are actually per-
formed.

The type of the event describes the change that triggered the event delivery. Each event carries the
unique identifier of the session in which the described change happened or -1 when the change origi-
nated outside a session. The events describing changes in the DMT carry the list of affected nodes. In
case of COPIED or RENAMED events, the event carries the list of new nodes as well.
ADDED

117.15.7.1 public static final int ADDED = 1

Event type indicating nodes that were added.
COPIED

117.15.7.2 public static final int COPIED = 2

Event type indicating nodes that were copied.
DELETED

117.15.7.3 public static final int DELETED = 4

Event type indicating nodes that were deleted.
RENAMED

117.15.7.4 public static final int RENAMED = 8

Event type indicating nodes that were renamed.
REPLACED

117.15.7.5 public static final int REPLACED = 16

Event type indicating nodes that were replaced.
SESSION_CLOSED

117.15.7.6 public static final int SESSION_CLOSED = 64

Event type indicating that a session was closed. This type of event is sent when the session is closed
by the client or becomes inactive for any other reason (session timeout, fatal errors in business meth-
ods, etc.).
SESSION_OPENED

117.15.7.7 public static final int SESSION_OPENED = 32

Event type indicating that a new session was opened.
getNewNodes()

117.15.7.8 public String[] getNewNodes ()

 This method can be used to query the new nodes, when the type of the event is COPIED or RENAMED .
For all other event types this method returns nul l .
Page 352 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
The array returned by this method runs parallel to the array returned by getNodes() , the elements in
the two arrays contain the source and destination URIs for the renamed or copied nodes in the same
order. All returned URIs are absolute.

This method returns only those nodes where the caller has the GET permission for the source or des-
tination node of the operation. Therefore, it is possible that the method returns an empty array.

Returns the array of newly created nodes
getNodes()

117.15.7.9 public String[] getNodes ()

 This method can be used to query the subject nodes of this event. The method returns null for
SESSION_OPENED and SESSION_CLOSED .

The method returns only those affected nodes that the caller has the GET permission for (or in case of
COPIED or RENAMED events, where the caller has GET permissions for either the source or the desti-
nation nodes). Therefore, it is possible that the method returns an empty array. All returned URIs are
absolute.

Returns the array of affected nodes

See Also getNewNodes()
getProperty(String)

117.15.7.10 public Object getProperty (String key)

key the name of the requested property

 This method can be used to get the value of a single event property.

Returns the requested property value or null, if the key is not contained in the properties

See Also getPropertyNames()

Since 2.0
getPropertyNames()

117.15.7.11 public String[] getPropertyNames ()

 This method can be used to query the names of all properties of this event.

The returned names can be used as key value in subsequent calls to getProperty(Str ing) .

Returns the array of property names

See Also getProperty(String)

Since 2.0
getSessionId()

117.15.7.12 public int getSessionId ()

 This method returns the identifier of the session in which this event took place. The ID is guaranteed
to be unique on a machine.

For events that do not result from a session, the session id is -1.

The availability of a session.id can also be check by using getProperty() with “session.id” as key.

Returns the unique identifier of the session that triggered the event or -1 if there is no session associated
getType()

117.15.7.13 public int getType ()

 This method returns the type of this event.

Returns the type of this event.
DmtEventListener

117.15.8 public interface DmtEventListener
Registered implementations of this class are notified via DmtEvent objects about important changes
in the tree. Events are generated after every successful DMT change, and also when sessions are
opened or closed. If a DmtSession is opened in atomic mode, DMT events are only sent when the ses-
sion is committed, when the changes are actually performed.
OSGi Service Platform Release 4, Version 4.3 Page 353

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
Dmt Event Listener services must have permission DmtPermiss ion.GET for the nodes in the nodes
and newNodes property in the Dmt Event.
FILTER_EVENT

117.15.8.1 public static final String FILTER_EVENT = “osgi.filter.event”

A number of event types packed in a bitmap. If this service property is provided with a Dmt Event Lis-
tener service registration than that listener must only receive events where one of the Dmt Event
types occur in the bitmap. The type of this service property must be Integer .
FILTER_PRINCIPAL

117.15.8.2 public static final String FILTER_PRINCIPAL = “osgi.filter.principal”

A number of names of principals. If this service property is provided with a Dmt Event Listener ser-
vice registration than that listener must only receive events for which at least one of the given princi-
pals has Get rights. The type of this service property is Str ing+ .
FILTER_SUBTREE

117.15.8.3 public static final String FILTER_SUBTREE = “osgi.filter.subtree”

A number of sub-tree top nodes that define the scope of the Dmt Event Listener. If this service prop-
erty is registered then the service must only receive events for nodes that are part of one of the sub-
trees. The type of this service property is Str ing+ .
changeOccurred(DmtEvent)

117.15.8.4 public void changeOccurred (DmtEvent event)

event the DmtEvent describing the change in detail

 DmtAdmin uses this method to notify the registered listeners about the change. This method is called
asynchronously from the actual event occurrence.
DmtException

117.15.9 public class DmtException
extends Exception
Checked exception received when a DMT operation fails. Beside the exception message, a
DmtException always contains an error code (one of the constants specified in this class), and may
optionally contain the URI of the related node, and information about the cause of the exception.

Some of the error codes defined in this class have a corresponding error code defined in OMA DM, in
these cases the name and numerical value from OMA DM is used. Error codes without counterparts
in OMA DM were given numbers from a different range, starting from 1.

The cause of the exception (if specified) can either be a single Throwable instance, or a list of such
instances if several problems occurred during the execution of a method. An example for the latter is
the close method of DmtSession that tries to close multiple plugins, and has to report the exceptions
of all failures.

Each constructor has two variants, one accepts a Str ing node URI, the other accepts a Str ing[] node
path. The former is used by the DmtAdmin implementation, the latter by the plugins, who receive
the node URI as an array of segment names. The constructors are otherwise identical.

Getter methods are provided to retrieve the values of the additional parameters, and the
printStackTrace(Pr intWriter) method is extended to print the stack trace of all causing throwables as
well.
ALERT_NOT_ROUTED

117.15.9.1 public static final int ALERT_NOT_ROUTED = 5

An alert can not be sent from the device to the given principal. This can happen if there is no Remote
Alert Sender willing to forward the alert to the given principal, or if no principal was given and the
DmtAdmin did not find an appropriate default destination.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 “Command Failed” when transferring over OMA DM.
COMMAND_FAILED
Page 354 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
117.15.9.2 public static final int COMMAND_FAILED = 500

The recipient encountered an error which prevented it from fulfilling the request.

This error code is only used in situations not covered by any of the other error codes that a method
may use. Some methods specify more specific error situations for this code, but it can generally be
used for any unexpected condition that causes the command to fail.

This error code corresponds to the OMA DM response status code 500 “Command Failed”.
COMMAND_NOT_ALLOWED

117.15.9.3 public static final int COMMAND_NOT_ALLOWED = 405

The requested command is not allowed on the target node. This includes the following situations:

• an interior node operation is requested for a leaf node, or vice versa (e.g. trying to retrieve the
children of a leaf node)

• an attempt is made to create a node where the parent is a leaf node
• an attempt is made to rename or delete the root node of the tree
• an attempt is made to rename or delete the root node of the session
• a write operation (other than setting the ACL) is performed in a non-atomic write session on a

node provided by a plugin that is read-only or does not support non-atomic writing
• a node is copied to its descendant
• the ACL of the root node is changed not to include Add rights for all principals

This error code corresponds to the OMA DM response status code 405 “Command not allowed”.
CONCURRENT_ACCESS

117.15.9.4 public static final int CONCURRENT_ACCESS = 4

An error occurred related to concurrent access of nodes. This can happen for example if a configura-
tion node was deleted directly through the Configuration Admin service, while the node was manip-
ulated via the tree.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 “Command Failed” when transferring over OMA DM.
DATA_STORE_FAILURE

117.15.9.5 public static final int DATA_STORE_FAILURE = 510

An error related to the recipient data store occurred while processing the request. This error code may
be thrown by any of the methods accessing the tree, but whether it is really used depends on the
implementation, and the data store it uses.

This error code corresponds to the OMA DM response status code 510 “Data store failure”.
FEATURE_NOT_SUPPORTED

117.15.9.6 public static final int FEATURE_NOT_SUPPORTED = 406

The requested command failed because an optional feature required by the command is not sup-
ported. For example, opening an atomic session might return this error code if the DmtAdmin imple-
mentation does not support transactions. Similarly, accessing the optional node properties (Title,
Timestamp, Version, Size) might not succeed if either the DmtAdmin implementation or the under-
lying plugin does not support the property.

When getting or setting values for interior nodes (an optional optimization feature), a plugin can use
this error code to indicate that the given interior node does not support values.

This error code corresponds to the OMA DM response status code 406 “Optional feature not sup-
ported”.
INVALID_URI

117.15.9.7 public static final int INVALID_URI = 3

The requested command failed because the target URI or node name is nul l or syntactically invalid.
This covers the following cases:

• the URI or node name ends with the ‘\’or ‘/’ character
OSGi Service Platform Release 4, Version 4.3 Page 355

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
• the URI is an empty string (only invalid if the method does not accept relative URIs)
• the URI contains the segment “.“ at a position other than the beginning of the URI
• the node name is “. .“ or the URI contains such a segment
• the node name contains an unescaped ‘/’ character

See the Uri .encode(Str ing) method for support on escaping invalid characters in a URI.

This code is only used if the URI or node name does not match any of the criteria for URI_TOO_LONG .
This error code does not correspond to any OMA DM response status code. It should be translated to
the code 404 “Not Found” when transferring over OMA DM.
LIMIT_EXCEEDED

117.15.9.8 public static final int LIMIT_EXCEEDED = 413

The requested operation failed because a specific limit was exceeded, e.g. if a requested resource
exceeds a size limit.

This error code corresponds to the OMA DM response status code 413 “Request entity too large”.

Since 2.0
METADATA_MISMATCH

117.15.9.9 public static final int METADATA_MISMATCH = 2

Operation failed because of meta data restrictions. This covers any attempted deviation from the
parameters defined by the MetaNode objects of the affected nodes, for example in the following situ-
ations:

• creating, deleting or renaming a permanent node, or modifying its type
• creating an interior node where the meta-node defines it as a leaf, or vice versa
• any operation on a node which does not have the required access type (e.g. executing a node that

lacks the MetaNode.CMD_EXECUTE access type)
• any node creation or deletion that would violate the cardinality constraints
• any leaf node value setting that would violate the allowed formats, values, mime types, etc.
• any node creation that would violate the allowed node names

This error code can also be used to indicate any other meta data violation, even if it cannot be
described by the MetaNode class. For example, detecting a multi-node constraint violation while
committing an atomic session should result in this error.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 405 “Command not allowed” when transferring over OMA DM.
NODE_ALREADY_EXISTS

117.15.9.10 public static final int NODE_ALREADY_EXISTS = 418

The requested node creation operation failed because the target already exists. This can occur if the
node is created directly (with one of the create. . . methods), or indirectly (during a copy operation).

This error code corresponds to the OMA DM response status code 418 “Already exists”.
NODE_NOT_FOUND

117.15.9.11 public static final int NODE_NOT_FOUND = 404

The requested target node was not found. No indication is given as to whether this is a temporary or
permanent condition, unless otherwise noted.

This is only used when the requested node name is valid, otherwise the more specific error codes
URI_TOO_LONG or INVALID_URI are used. This error code corresponds to the OMA DM response sta-
tus code 404 “Not Found”.
PERMISSION_DENIED

117.15.9.12 public static final int PERMISSION_DENIED = 425

The requested command failed because the principal associated with the session does not have ade-
quate access control permissions (ACL) on the target. This can only appear in case of remote sessions,
i.e. if the session is associated with an authenticated principal.

This error code corresponds to the OMA DM response status code 425 “Permission denied”.
Page 356 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
REMOTE_ERROR

117.15.9.13 public static final int REMOTE_ERROR = 1

A device initiated remote operation failed. This is used when the protocol adapter fails to send an
alert for any reason.

Alert routing errors (that occur while looking for the proper protocol adapter to use) are indicated by
ALERT_NOT_ROUTED , this code is only for errors encountered while sending the routed alert. This
error code does not correspond to any OMA DM response status code. It should be translated to the
code 500 “Command Failed” when transferring over OMA DM.
ROLLBACK_FAILED

117.15.9.14 public static final int ROLLBACK_FAILED = 516

The rollback command was not completed successfully. The tree might be in an inconsistent state
after this error.

This error code corresponds to the OMA DM response status code 516 “Atomic roll back failed”.
SESSION_CREATION_TIMEOUT

117.15.9.15 public static final int SESSION_CREATION_TIMEOUT = 7

Creation of a session timed out because of another ongoing session. The length of time while the
DmtAdmin waits for the blocking session(s) to finish is implementation dependent.

This error code does not correspond to any OMA DM response status code. OMA has several status
codes related to timeout, but these are meant to be used when a request times out, not if a session can
not be established. This error code should be translated to the code 500 “Command Failed” when
transferring over OMA DM.
TRANSACTION_ERROR

117.15.9.16 public static final int TRANSACTION_ERROR = 6

A transaction-related error occurred in an atomic session. This error is caused by one of the following
situations:

• an updating method within an atomic session can not be executed because the underlying plugin
is read-only or does not support atomic writing

• a commit operation at the end of an atomic session failed because one of the underlying plugins
failed to close

The latter case may leave the tree in an inconsistent state due to the lack of a two-phase commit sys-
tem, see DmtSession.commit() for details.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 “Command Failed” when transferring over OMA DM.
UNAUTHORIZED

117.15.9.17 public static final int UNAUTHORIZED = 401

The originator’s authentication credentials specify a principal with insufficient rights to complete
the command.

This status code is used as response to device originated sessions if the remote management server
cannot authorize the device to perform the requested operation.

This error code corresponds to the OMA DM response status code 401 “Unauthorized”.
URI_TOO_LONG

117.15.9.18 public static final int URI_TOO_LONG = 414

The requested command failed because the target URI is too long for what the recipient is able or
willing to process.

This error code corresponds to the OMA DM response status code 414 “URI too long”.

See Also OSGi Service Platform, Mobile Specification Release 4
DmtException(String,int,String)
OSGi Service Platform Release 4, Version 4.3 Page 357

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
117.15.9.19 public DmtException (String uri , int code , String message)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated with
a node

code the error code of the failure

message the message associated with the exception, or null if there is no error message

 Create an instance of the exception. The uri and message parameters are optional. No originating
exception is specified.
DmtException(String,int,String,Throwable)

117.15.9.20 public DmtException (String uri , int code , String message , Throwable cause)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated with
a node

code the error code of the failure

message the message associated with the exception, or null if there is no error message

cause the originating exception, or nul l if there is no originating exception

 Create an instance of the exception, specifying the cause exception. The uri , message and cause
parameters are optional.
DmtException(String,int,String,Vector,boolean)

117.15.9.21 public DmtException (String uri , int code , String message , Vector causes , boolean fatal)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated with
a node

code the error code of the failure

message the message associated with the exception, or null if there is no error message

causes the list of originating exceptions, or empty list or nul l if there are no originating exceptions

fatal whether the exception is fatal

 Create an instance of the exception, specifying the list of cause exceptions and whether the exception
is a fatal one. This constructor is meant to be used by plugins wishing to indicate that a serious error
occurred which should invalidate the ongoing atomic session. The uri , message and causes parame-
ters are optional.

If a fatal exception is thrown, no further business methods will be called on the originator plugin. In
case of atomic sessions, all other open plugins will be rolled back automatically, except if the fatal
exception was thrown during commit.
DmtException(String[],int,String)

117.15.9.22 public DmtException (String[] path , int code , String message)

path the path of the node on which the failed DMT operation was issued, or null if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or null if there is no error message

 Create an instance of the exception, specifying the target node as an array of path segments. This
method behaves in exactly the same way as if the path was given as a URI string.

See Also DmtException(String, int, String)
DmtException(String[],int,String,Throwable)

117.15.9.23 public DmtException (String[] path , int code , String message , Throwable cause)

path the path of the node on which the failed DMT operation was issued, or null if the operation is not as-
sociated with a node

code the error code of the failure
Page 358 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
message the message associated with the exception, or null if there is no error message

cause the originating exception, or null if there is no originating exception

 Create an instance of the exception, specifying the target node as an array of path segments, and spec-
ifying the cause exception. This method behaves in exactly the same way as if the path was given as a
URI string.

See Also DmtException(String, int, String, Throwable)
DmtException(String[],int,String,Vector,boolean)

117.15.9.24 public DmtException (String[] path , int code , String message , Vector causes , boolean fatal)

path the path of the node on which the failed DMT operation was issued, or null if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or null if there is no error message

causes the list of originating exceptions, or empty list or nul l if there are no originating exceptions

fatal whether the exception is fatal

 Create an instance of the exception, specifying the target node as an array of path segments, the list of
cause exceptions, and whether the exception is a fatal one. This method behaves in exactly the same
way as if the path was given as a URI string.

See Also DmtException(String, int, String, Vector, boolean)
getCause()

117.15.9.25 public Throwable getCause ()

 Get the cause of this exception. Returns non-nul l , if this exception is caused by one or more other
exceptions (like a NullPointerException in a DmtPlugin). If there are more than one cause excep-
tions, the first one is returned.

Returns the cause of this exception, or nul l if no cause was given
getCauses()

117.15.9.26 public Throwable[] getCauses ()

 Get all causes of this exception. Returns the causing exceptions in an array. If no cause was specified,
an empty array is returned.

Returns the list of causes of this exception
getCode()

117.15.9.27 public int getCode ()

 Get the error code associated with this exception. Most of the error codes within this exception corre-
spond to OMA DM error codes.

Returns the error code
getMessage()

117.15.9.28 public String getMessage ()

 Get the message associated with this exception. The returned string also contains the associated URI
(if any) and the exception code. The resulting message has the following format (parts in square
brackets are only included if the field inside them is not nul l):

<exception_code>[: ‘<uri>‘][: <error_message>]

Returns the error message in the format described above
getURI()

117.15.9.29 public String getURI ()

 Get the node on which the failed DMT operation was issued. Some operations like
DmtSession.c lose() don’t require an URI, in this case this method returns nul l .

Returns the URI of the node, or nul l
isFatal()
OSGi Service Platform Release 4, Version 4.3 Page 359

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
117.15.9.30 public boolean isFatal ()

 Check whether this exception is marked as fatal in the session. Fatal exceptions trigger an automatic
rollback of atomic sessions.

Returns whether the exception is marked as fatal
printStackTrace(PrintStream)

117.15.9.31 public void printStackTrace (PrintStream s)

s Pr intStream to use for output

 Prints the exception and its backtrace to the specified print stream. Any causes that were specified for
this exception are also printed, together with their backtraces.
DmtIllegalStateException

117.15.10 public class DmtIllegalStateException
extends RuntimeException
Unchecked illegal state exception. This class is used in DMT because java.lang.IllegalStateException
does not exist in CLDC.
DmtIllegalStateException()

117.15.10.1 public DmtIllegalStateException ()

 Create an instance of the exception with no message.
DmtIllegalStateException(String)

117.15.10.2 public DmtIllegalStateException (String message)

message the reason for the exception

 Create an instance of the exception with the specified message.
DmtIllegalStateException(Throwable)

117.15.10.3 public DmtIllegalStateException (Throwable cause)

cause the cause of the exception

 Create an instance of the exception with the specified cause exception and no message.
DmtIllegalStateException(String,Throwable)

117.15.10.4 public DmtIllegalStateException (String message , Throwable cause)

message the reason for the exception

cause the cause of the exception

 Create an instance of the exception with the specified message and cause exception.
DmtSession

117.15.11 public interface DmtSession
DmtSession provides concurrent access to the DMT. All DMT manipulation commands for manage-
ment applications are available on the DmtSession interface. The session is associated with a root
node which limits the subtree in which the operations can be executed within this session.

Most of the operations take a node URI as parameter, which can be either an absolute URI (starting
with “./”) or a URI relative to the root node of the session. The empty string as relative URI means the
root URI the session was opened with. All segments of a URI must be within the segment length limit
of the implementation, and the special characters ‘/’ and ‘\’must be escaped (preceded by a ‘\’).

See the Uri .encode(Str ing) method for support on escaping invalid characters in a URI.

If the URI specified does not correspond to a legitimate node in the tree an exception is thrown. The
only exception is the isNodeUri(Str ing) method which returns fa lse in case of an invalid URI.

Each method of DmtSession that accesses the tree in any way can throw DmtI l legalStateException if
the session has been closed or invalidated (due to timeout, fatal exceptions, or unexpectedly unregis-
tered plugins).
LOCK_TYPE_ATOMIC
Page 360 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
117.15.11.1 public static final int LOCK_TYPE_ATOMIC = 2

LOCK_TYPE_ATOMIC is an exclusive lock with transactional functionality. Commands of an atomic
session will either fail or succeed together, if a single command fails then the whole session will be
rolled back.
LOCK_TYPE_EXCLUSIVE

117.15.11.2 public static final int LOCK_TYPE_EXCLUSIVE = 1

LOCK_TYPE_EXCLUSIVE lock guarantees full access to the tree, but can not be shared with any other
locks.
LOCK_TYPE_SHARED

117.15.11.3 public static final int LOCK_TYPE_SHARED = 0

Sessions created with LOCK_TYPE_SHARED lock allows read-only access to the tree, but can be shared
between multiple readers.
STATE_CLOSED

117.15.11.4 public static final int STATE_CLOSED = 1

The session is closed, DMT manipulation operations are not available, they throw
DmtI l legalStateException if tried.
STATE_INVALID

117.15.11.5 public static final int STATE_INVALID = 2

The session is invalid because a fatal error happened. Fatal errors include the timeout of the session,
any DmtException with the ‘fatal’ flag set, or the case when a plugin service is unregistered while in
use by the session. DMT manipulation operations are not available, they throw
DmtI l legalStateException if tried.
STATE_OPEN

117.15.11.6 public static final int STATE_OPEN = 0

The session is open, all session operations are available.
close()

117.15.11.7 public void close () throws DmtException

 Closes a session. If the session was opened with atomic lock mode, the DmtSession must first persist
the changes made to the DMT by calling commit() on all (transactional) plugins participating in the
session. See the documentation of the commit() method for details and possible errors during this
operation.

The state of the session changes to DmtSession.STATE_CLOSED if the close operation completed
successfully, otherwise it becomes DmtSession.STATE_INVALID .

Throws DmtException – with the following possible error codes:
METADATA_MISMATCH in case of atomic sessions, if the commit operation failed because of meta-
data restrictions
CONCURRENT_ACCESS in case of atomic sessions, if the commit operation failed because of some
modification outside the scope of the DMT to the nodes affected in the session
TRANSACTION_ERROR in case of atomic sessions, if an underlying plugin failed to commit
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if an underlying plugin failed to close, or if some unspecified error is encoun-
tered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
commit()

117.15.11.8 public void commit () throws DmtException

 Commits a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all subse-
quent commit() and rol lback() calls.
OSGi Service Platform Release 4, Version 4.3 Page 361

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
This method can fail even if all operations were successful. This can happen due to some multi-node
semantic constraints defined by a specific implementation. For example, node A can be required to
always have children A/B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.

An error situation can arise due to the lack of a two phase commit mechanism in the underlying plu-
gins. As an example, if plugin A has committed successfully but plugin B failed, the whole session
must fail, but there is no way to undo the commit performed by A. To provide predictable behaviour,
the commit operation should continue with the remaining plugins even after detecting a failure. All
exceptions received from failed commits are aggregated into one TRANSACTION_ERROR exception
thrown by this method.

In many cases the tree is not the only way to manage a given part of the system. It may happen that
while modifying some nodes in an atomic session, the underlying settings are modified in parallel
outside the scope of the DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException – with the following possible error codes:
METADATA_MISMATCH if the operation failed because of meta-data restrictions
CONCURRENT_ACCESS if it is detected that some modification has been made outside the scope of
the DMT to the nodes affected in the session’s operations
TRANSACTION_ERROR if an error occurred during the commit of any of the underlying plugins
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

DmtIllegalStateException – if the session was not opened using the LOCK_TYPE_ATOMIC lock
type, or if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
copy(String,String,boolean)

117.15.11.9 public void copy (String nodeUri , String newNodeUri , boolean recursive) throws DmtException

nodeUri the node or root of a subtree to be copied

newNodeUri the URI of the new node or root of a subtree

recursive fa lse if only a single node is copied, true if the whole subtree is copied

 Create a copy of a node or a whole subtree. Beside the structure and values of the nodes, most proper-
ties are also copied, with the exception of the ACL (Access Control List), Timestamp and Version
properties.

The copy method is essentially a convenience method that could be substituted with a sequence of
retrieval and update operations. This determines the permissions required for copying. However,
some optimization can be possible if the source and target nodes are all handled by DmtAdmin or by
the same plugin. In this case, the handler might be able to perform the underlying management oper-
ation more efficiently: for example, a configuration table can be copied at once instead of reading
each node for each entry and creating it in the new tree.

This method may result in any of the errors possible for the contributing operations. Most of these
are collected in the exception descriptions below, but for the full list also consult the documentation
of getChi ldNodeNames(Str ing) , isLeafNode(Str ing) , getNodeValue(Str ing) , getNodeType(Str ing) ,
getNodeTit le(Str ing) , setNodeTit le(Str ing, Str ing) , createLeafNode(String, DmtData, Str ing) and
createInteriorNode(Str ing, Str ing) .

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri or newNodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node, or if newNodeUri points to a node that
Page 362 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
cannot exist in the tree according to the meta-data (see getMetaNode(String))
NODE_ALREADY_EXISTS if newNodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the ACL of the copied node(s)
does not allow the Get operation, or the ACL of the parent of the target node does not allow the Add
operation for the associated principal
COMMAND_NOT_ALLOWED if nodeUri is an ancestor of newNodeUri, or if any of the implied re-
trieval or update operations are not allowed
METADATA_MISMATCH if any of the meta-data constraints of the implied retrieval or update oper-
ations are violated
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if either URI is not within the current session’s subtree, or if some unspecified
error is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
copied node(s) with the Get action present, or for the parent of the target node with the Add action
createInteriorNode(String)

117.15.11.10 public void createInteriorNode (String nodeUri) throws DmtException

nodeUri the URI of the node to create

 Create an interior node. If the parent node does not exist, it is created automatically, as if this method
were called for the parent URI. This way all missing ancestor nodes leading to the specified node are
created. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for the node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent interior node, the node
name must conform to the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree (it is not
defined in the specification), the NODE_NOT_FOUND error code is returned (see getMetaN-
ode(Str ing)).

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node
does not allow the Add operation for the associated principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions if
the underlying plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see
above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated
OSGi Service Platform Release 4, Version 4.3 Page 363

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
parent node with the Add action present
createInteriorNode(String,String)

117.15.11.11 public void createInteriorNode (String nodeUri , String type) throws DmtException

nodeUri the URI of the node to create

type the type URI of the interior node, can be nul l if no node type is defined

 Create an interior node with a given type. The type of interior node, if specified, is a URI identifying a
DDF document. If the parent node does not exist, it is created automatically, as if createInteriorN-
ode(String) were called for the parent URI. This way all missing ancestor nodes leading to the speci-
fied node are created. Any exceptions encountered while creating the ancestors are propagated to the
caller of this method, these are not explicitly listed in the error descriptions below.

If meta-data is available for the node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent interior node, the node
name must conform to the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree (it is not
defined in the specification), the NODE_NOT_FOUND error code is returned (see getMetaN-
ode(String)).

Interior node type identifiers must follow the format defined in section 7.7.7.2 of the OMA Device
Management Tree and Description document. Checking the validity of the type string does not have
to be done by the DmtAdmin, this can be left to the plugin handling the node (if any), to avoid unnec-
essary double-checks.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node
does not allow the Add operation for the associated principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions if
the underlying plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see
above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if the type string is invalid
(see above), or if some unspecified error is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
parent node with the Add action present

See Also createInteriorNode(String) , OMA Device Management Tree and Description v1.2 draft (http://
member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-
TND-V1_2-20050615-C.zip)
createLeafNode(String)

117.15.11.12 public void createLeafNode (String nodeUri) throws DmtException

nodeUri the URI of the node to create
Page 364 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
 Create a leaf node with default value and MIME type. If a node does not have a default value or MIME
type, this method will throw a DmtException with error code METADATA_MISMATCH . Note that a
node might have a default value or MIME type even if there is no meta-data for the node or its meta-
data does not specify the default.

If the parent node does not exist, it is created automatically, as if createInter iorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, and the creation of the new node must not cause the maximum
occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree (it is not
defined in the specification), the NODE_NOT_FOUND error code is returned (see getMetaN-
ode(Str ing)).

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node
does not allow the Add operation for the associated principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions if
the underlying plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see
above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
parent node with the Add action present

See Also createLeafNode(String, DmtData)
createLeafNode(String,DmtData)

117.15.11.13 public void createLeafNode (String nodeUri , DmtData value) throws DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be nul l

 Create a leaf node with a given value and the default MIME type. If the specified value is nul l , the
default value is taken. If the node does not have a default MIME type or value (if needed), this method
will throw a DmtException with error code METADATA_MISMATCH . Note that a node might have a
default value or MIME type even if there is no meta-data for the node or its meta-data does not specify
the default.
OSGi Service Platform Release 4, Version 4.3 Page 365

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
If the parent node does not exist, it is created automatically, as if createInter iorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, the node value must conform to the value constraints, and the cre-
ation of the new node must not cause the maximum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree (it is not
defined in the specification), the NODE_NOT_FOUND error code is returned (see getMetaN-
ode(String)).

Nodes of nul l format can be created by using DmtData.NULL_VALUE as second argument.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node
does not allow the Add operation for the associated principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions if
the underlying plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see
above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
parent node with the Add action present
createLeafNode(String,DmtData,String)

117.15.11.14 public void createLeafNode (String nodeUri , DmtData value , String mimeType) throws
DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be nul l

mimeType the MIME type to be given to the new node, can be nul l

 Create a leaf node with a given value and MIME type. If the specified value or MIME type is nul l , their
default values are taken. If the node does not have the necessary defaults, this method will throw a
DmtException with error code METADATA_MISMATCH . Note that a node might have a default value
or MIME type even if there is no meta-data for the node or its meta-data does not specify the default.

If the parent node does not exist, it is created automatically, as if createInter iorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.
Page 366 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, the node value must conform to the value constraints, the MIME
type must be among the listed types, and the creation of the new node must not cause the maximum
occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree (it is not
defined in the specification), the NODE_NOT_FOUND error code is returned (see getMetaN-
ode(Str ing)).

Nodes of nul l format can be created by using DmtData.NULL_VALUE as second argument.

The MIME type string must conform to the definition in RFC 2045. Checking its validity does not
have to be done by the DmtAdmin, this can be left to the plugin handling the node (if any), to avoid
unnecessary double-checks.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node
does not allow the Add operation for the associated principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions if
the underlying plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see
above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if mimeType is not a prop-
er MIME type string (see above), or if some unspecified error is encountered while attempting to com-
plete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
parent node with the Add action present

See Also createLeafNode(String, DmtData) , RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt)
deleteNode(String)

117.15.11.15 public void deleteNode (String nodeUri) throws DmtException

nodeUri the URI of the node

 Delete the given node. Deleting interior nodes is recursive, the whole subtree under the given node is
deleted. It is not allowed to delete the root node of the session.

If meta-data is available for a node, several checks are made before deleting it. The node must be non-
permanent, it must have the MetaNode.CMD_DELETE access type, and if zero occurrences of the
node are not allowed, it must not be the last one.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
OSGi Service Platform Release 4, Version 4.3 Page 367

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
allow the Delete operation for the associated principal
COMMAND_NOT_ALLOWED if the target node is the root of the session, or in non-atomic sessions
if the underlying plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node could not be deleted because of meta-data restrictions (see
above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Delete action present
execute(String,String)

117.15.11.16 public void execute (String nodeUri , String data) throws DmtException

nodeUri the node on which the execute operation is issued

data the parameter of the execute operation, can be nul l

 Executes a node. This corresponds to the EXEC operation in OMA DM. This method cannot be called
in a read-only session.

The semantics of an execute operation and the data parameter it takes depends on the definition of
the managed object on which the command is issued.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if the node does not exist and the plugin does not allow executing unexisting
nodes
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Execute operation for the associated principal
METADATA_MISMATCH if the node cannot be executed according to the meta-data (does not have
MetaNode.CMD_EXECUTE access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if no DmtExecPlugin is as-
sociated with the node and the DmtAdmin can not execute the node, or if some unspecified error is
encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Exec action present

See Also execute(String, String, String)
execute(String,String,String)

117.15.11.17 public void execute (String nodeUri , String correlator , String data) throws DmtException

nodeUri the node on which the execute operation is issued

correlator an identifier to associate this operation with any notifications sent in response to it, can be nul l if not
needed

data the parameter of the execute operation, can be nul l
Page 368 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
 Executes a node, also specifying a correlation ID for use in response notifications. This operation cor-
responds to the EXEC command in OMA DM. This method cannot be called in a read-only session.

The semantics of an execute operation and the data parameter it takes depends on the definition of
the managed object on which the command is issued. If a correlation ID is specified, it should be used
as the correlator parameter for notifications sent in response to this execute operation.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if the node does not exist and the plugin does not allow executing unexisting
nodes
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Execute operation for the associated principal
METADATA_MISMATCH if the node cannot be executed according to the meta-data (does not have
MetaNode.CMD_EXECUTE access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if no DmtExecPlugin is as-
sociated with the node, or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Exec action present

See Also execute(String, String)
getChildNodeNames(String)

117.15.11.18 public String[] getChildNodeNames (String nodeUri) throws DmtException

nodeUri the URI of the node

 Get the list of children names of a node. The returned array contains the names - not the URIs - of the
immediate children nodes of the given node. The elements are in no particular order. The returned
array must not contain nul l entries.

Returns the list of child node names as a string array or an empty string array if the node has no children

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Get operation for the associated principal
COMMAND_NOT_ALLOWED if the specified node is not an interior node
METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Get action present
getEffectiveNodeAcl(String)
OSGi Service Platform Release 4, Version 4.3 Page 369

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
117.15.11.19 public Acl getEffectiveNodeAcl (String nodeUri) throws DmtException

nodeUri the URI of the node

 Gives the Access Control List in effect for a given node. The returned Acl takes inheritance into
account, that is if there is no ACL defined for the node, it will be derived from the closest ancestor
having an ACL defined.

Returns the Access Control List belonging to the node

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially on
systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (the
node does not have MetaNode.CMD_GET access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – in case of local sessions, if the caller does not have DmtPermiss ion for the node
with the Get action present

See Also getNodeAcl(String)
getLockType()

117.15.11.20 public int getLockType ()

 Gives the type of lock the session has.

Returns the lock type of the session, one of LOCK_TYPE_SHARED , LOCK_TYPE_EXCLUSIVE and
LOCK_TYPE_ATOMIC
getMetaNode(String)

117.15.11.21 public MetaNode getMetaNode (String nodeUri) throws DmtException

nodeUri the URI of the node

 Get the meta data which describes a given node. Meta data can only be inspected, it can not be
changed.

The MetaNode object returned to the client is the combination of the meta data returned by the data
plugin (if any) plus the meta data returned by the DmtAdmin. If there are differences in the meta data
elements known by the plugin and the DmtAdmin then the plugin specific elements take prece-
dence.

Note, that a node does not have to exist for having meta-data associated with it. This method may pro-
vide meta-data for any node that can possibly exist in the tree (any node defined in the specification).
For nodes that are not defined, it may throw DmtException with the error code NODE_NOT_FOUND .
To allow easier implementation of plugins that do not provide meta-data, it is allowed to return nul l
for any node, regardless of whether it is defined or not.

Returns a MetaNode which describes meta data information, can be nul l if there is no meta data available for
the given node

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a node that is not defined in the tree (see above)
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
Page 370 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
allow the Get operation for the associated principal
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Get action present
getNodeAcl(String)

117.15.11.22 public Acl getNodeAcl (String nodeUri) throws DmtException

nodeUri the URI of the node

 Get the Access Control List associated with a given node. The returned Acl object does not take inher-
itance into account, it gives the ACL specifically given to the node.

Returns the Access Control List belonging to the node or nul l if none defined

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (the
node does not have MetaNode.CMD_GET access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – in case of local sessions, if the caller does not have DmtPermiss ion for the node
with the Get action present

See Also getEffectiveNodeAcl(String)
getNodeSize(String)

117.15.11.23 public int getNodeSize (String nodeUri) throws DmtException

nodeUri the URI of the leaf node

 Get the size of the data in a leaf node. The returned value depends on the format of the data in the
node, see the description of the DmtData.getSize() method for the definition of node size for each
format.

Returns the size of the data in the node

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Get operation for the associated principal
COMMAND_NOT_ALLOWED if the specified node is not a leaf node
METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the Size property is not supported by the DmtAdmin implementa-
tion or the underlying plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
OSGi Service Platform Release 4, Version 4.3 Page 371

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Get action present

See Also DmtData.getSize()
getNodeTimestamp(String)

117.15.11.24 public Date getNodeTimestamp (String nodeUri) throws DmtException

nodeUri the URI of the node

 Get the timestamp when the node was created or last modified.

Returns the timestamp of the last modification

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the Timestamp property is not supported by the DmtAdmin imple-
mentation or the underlying plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Get action present
getNodeTitle(String)

117.15.11.25 public String getNodeTitle (String nodeUri) throws DmtException

nodeUri the URI of the node

 Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or nul l if the node has no title

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the Title property is not supported by the DmtAdmin implementa-
tion or the underlying plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command
Page 372 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Get action present
getNodeType(String)

117.15.11.26 public String getNodeType (String nodeUri) throws DmtException

nodeUri the URI of the node

 Get the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document; a nul l type means that there is no DDF document
overriding the tree structure defined by the ancestors.

Returns the type of the node, can be nul l

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Get action present
getNodeValue(String)

117.15.11.27 public DmtData getNodeValue (String nodeUri) throws DmtException

nodeUri the URI of the node to retrieve

 Get the data contained in a leaf or interior node. When retrieving the value associated with an inte-
rior node, the caller must have rights to read all nodes in the subtree under the given node.

Returns the data of the node, can not be nul l

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node (and the
ACLs of all its descendants in case of interior nodes) do not allow the Get operation for the associated
principal
METADATA_MISMATCH if the node value cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java ob-
ject values
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated
OSGi Service Platform Release 4, Version 4.3 Page 373

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node (and all its descendants in case of interior nodes) with the Get action present
getNodeVersion(String)

117.15.11.28 public int getNodeVersion (String nodeUri) throws DmtException

nodeUri the URI of the node

 Get the version of a node. The version can not be set, it is calculated automatically by the device. It is
incremented modulo 0x10000 at every modification of the value or any other property of the node,
for both leaf and interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the Version property is not supported by the DmtAdmin implemen-
tation or the underlying plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Get action present
getPrincipal()

117.15.11.29 public String getPrincipal ()

 Gives the name of the principal on whose behalf the session was created. Local sessions do not have
an associated principal, in this case nul l is returned.

Returns the identifier of the remote server that initiated the session, or nul l for local sessions
getRootUri()

117.15.11.30 public String getRootUri ()

 Get the root URI associated with this session. Gives “.“ if the session was created without specifying a
root, which means that the target of this session is the whole DMT.

Returns the root URI
getSessionId()

117.15.11.31 public int getSessionId ()

 The unique identifier of the session. The ID is generated automatically, and it is guaranteed to be
unique on a machine for a specific Dmt Admin. A session id must be larger than 0.

Returns the session identification number
getState()

117.15.11.32 public int getState ()

 Get the current state of this session.

Returns the state of the session, one of STATE_OPEN , STATE_CLOSED and STATE_INVALID
isLeafNode(String)

117.15.11.33 public boolean isLeafNode (String nodeUri) throws DmtException

nodeUri the URI of the node
Page 374 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
 Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Get action present
isNodeUri(String)

117.15.11.34 public boolean isNodeUri (String nodeUri)

nodeUri the URI to check

 Check whether the specified URI corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT

Throws DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Get action present
renameNode(String,String)

117.15.11.35 public void renameNode (String nodeUri , String newName) throws DmtException

nodeUri the URI of the node to rename

newName the new name property of the node

 Rename a node. This operation only changes the name of the node (updating the timestamp and ver-
sion properties if they are supported), the value and the other properties are not changed. The new
name of the node must be provided, the new URI is constructed from the base of the old URI and the
given name. It is not allowed to rename the root node of the session.

If available, the meta-data of the original and the new nodes are checked before performing the
rename operation. Neither node can be permanent, their leaf/interior property must match, and the
name change must not violate any of the cardinality constraints. The original node must have the
MetaNode.CMD_REPLACE access type, and the name of the new node must conform to the valid
names.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri or newName is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node, or if the new node is not defined in the
tree according to the meta-data (see getMetaNode(String))
NODE_ALREADY_EXISTS if there already exists a sibling of nodeUri with the name newName
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Replace operation for the associated principal
COMMAND_NOT_ALLOWED if the target node is the root of the session, or in non-atomic sessions
OSGi Service Platform Release 4, Version 4.3 Page 375

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
if the underlying plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node could not be renamed because of meta-data restrictions (see
above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Replace action present
rollback()

117.15.11.36 public void rollback () throws DmtException

 Rolls back a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all subse-
quent commit() and rol lback() calls.

Throws DmtException – with the error code ROLLBACK_FAILED in case the rollback did not succeed

DmtIllegalStateException – if the session was not opened using the LOCK_TYPE_ATOMIC lock
type, or if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
setDefaultNodeValue(String)

117.15.11.37 public void setDefaultNodeValue (String nodeUri) throws DmtException

nodeUri the URI of the node

 Set the value of a leaf or interior node to its default. The default can be defined by the node’s
MetaNode . The method throws a METADATA_MISMATCH exception if the node does not have a
default value.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Replace operation for the associated principal
COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does
not support non-atomic writing
METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-data
(does not have the MetaNode.CMD_REPLACE access type), or if there is no default value defined for
this node
FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java ob-
ject values
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated
Page 376 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Replace action present

See Also setNodeValue(String, DmtData)
setNodeAcl(String,Acl)

117.15.11.38 public void setNodeAcl (String nodeUri , Acl acl) throws DmtException

nodeUri the URI of the node

acl the Access Control List to be set on the node, can be nul l

 Set the Access Control List associated with a given node. To perform this operation, the caller needs
to have replace rights (Acl.REPLACE or the corresponding Java permission depending on the session
type) as described below:

• if nodeUri specifies a leaf node, replace rights are needed on the parent of the node
• if nodeUri specifies an interior node, replace rights on either the node or its parent are sufficient

If the given acl is nul l or an empty ACL (not specifying any permissions for any principals), then the
ACL of the node is deleted, and the node will inherit the ACL from its parent node.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node or its par-
ent (see above) does not allow the Replace operation for the associated principal
COMMAND_NOT_ALLOWED if the command attempts to set the ACL of the root node not to in-
clude Add rights for all principals
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – in case of local sessions, if the caller does not have DmtPermiss ion for the node
or its parent (see above) with the Replace action present
setNodeTitle(String,String)

117.15.11.39 public void setNodeTitle (String nodeUri , String title) throws DmtException

nodeUri the URI of the node

title the title text of the node, can be nul l

 Set the title property of a node. The length of the title string in UTF-8 encoding must not exceed 255
bytes.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Replace operation for the associated principal
COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does
not support non-atomic writing
METADATA_MISMATCH if the node cannot be modified according to the meta-data (does not have
the MetaNode.CMD_REPLACE access type)
FEATURE_NOT_SUPPORTED if the Title property is not supported by the DmtAdmin implementa-
tion or the underlying plugin
OSGi Service Platform Release 4, Version 4.3 Page 377

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the title string is too long, if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Replace action present
setNodeType(String,String)

117.15.11.40 public void setNodeType (String nodeUri , String type) throws DmtException

nodeUri the URI of the node

type the type of the node, can be nul l

 Set the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document.

For interior nodes, a nul l type string means that there is no DDF document overriding the tree struc-
ture defined by the ancestors. For leaf nodes, it requests that the default MIME type is used for the
given node. If the node does not have a default MIME type this method will throw a DmtException
with error code METADATA_MISMATCH . Note that a node might have a default MIME type even if
there is no meta-data for the node or its meta-data does not specify the default.

MIME types must conform to the definition in RFC 2045. Interior node type identifiers must follow
the format defined in section 7.7.7.2 of the OMA Device Management Tree and Description docu-
ment. Checking the validity of the type string does not have to be done by the DmtAdmin, this can be
left to the plugin handling the node (if any), to avoid unnecessary double-checks.

Throws DmtException – with the following possible error codes:
INVALID_URI if nodeUri is null or syntactically invalid
URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especially
on systems with limited resources)
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does not
allow the Replace operation for the associated principal
COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does
not support non-atomic writing
METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-data
(does not have the MetaNode.CMD_REPLACE access type), and in case of leaf nodes, if null is given
and there is no default MIME type, or the given MIME type is not allowed
TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not support
atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if the type string is invalid
(see above), or if some unspecified error is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Replace action present

See Also RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt) , OMA Device Management Tree and Description v1.2
draft (http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/
OMA-TS-DM-TND-V1_2-20050615-C.zip)
setNodeValue(String,DmtData)
Page 378 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
117.15.11.41 public void setNodeValue (String nodeUri , DmtData data) throws DmtException

nodeUri the URI of the node

data the data to be set, can be nul l

 Set the value of a leaf or interior node. The format of the node is contained in the DmtData object. For
interior nodes, the format must be FORMAT_NODE , while for leaf nodes this format must not be
used.

If the specified value is nul l , the default value is taken. In this case, if the node does not have a default
value, this method will throw a DmtException with error code METADATA_MISMATCH . Nodes of
null format can be set by using DmtData.NULL_VALUE as second argument.

An Event of type REPLACE is sent out for a leaf node. A replaced interior node sends out events for
each of its children in depth first order and node names sorted with Arrays.sort(String[]). When set-
ting a value on an interior node, the values of the leaf nodes under it can change, but the structure of
the subtree is not modified by the operation.

Throws DmtException – with the following possible error codes: INVALID_URI if nodeUri is nul l or syntacti-
cally invalid URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation
(especially on systems with limited resources) NODE_NOT_FOUND if nodeUri points to a non-exist-
ing node PERMISSION_DENIED if the session is associated with a principal and the ACL of the node
does not allow the Replace operation for the associated principal COMMAND_NOT_ALLOWED if the
given data has FORMAT_NODE format but the node is a leaf node (or vice versa), or in non-atomic ses-
sions if the underlying plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-data
(does not have the MetaNode.CMD_REPLACE access type), or if the given value does not conform to
the meta-data value constraints FEATURE_NOT_SUPPORTED if the specified node is an interior node
and does not support Java object values TRANSACTION_ERROR in an atomic session if the underlying
plugin is read-only or does not support atomic writing DATA_STORE_FAILURE if an error occurred
while accessing the data store COMMAND_FAILED if the URI is not within the current session’s sub-
tree, or if some unspecified error is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the LOCK_TYPE_SHARED lock type, or
if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for the
node with the Replace action present
MetaNode

117.15.12 public interface MetaNode
The MetaNode contains meta data as standardized by OMA DM but extends it (without breaking the
compatibility) to provide for better DMT data quality in an environment where many software com-
ponents manipulate this data.

The interface has several types of functions to describe the nodes in the DMT. Some methods can be
used to retrieve standard OMA DM metadata such as access type, cardinality, default, etc., others are
for data extensions such as valid names and values. In some cases the standard behaviour has been
extended, for example it is possible to provide several valid MIME types, or to differentiate between
normal and automatic dynamic nodes.

Most methods in this interface receive no input, just return information about some aspect of the
node. However, there are two methods that behave differently, isVal idName(Str ing) and isVal id-
Value(DmtData) . These validation methods are given a potential node name or value (respectively),
and can decide whether it is valid for the given node. Passing the validation methods is a necessary
condition for a name or value to be used, but it is not necessarily sufficient: the plugin may carry out
more thorough (more expensive) checks when the node is actually created or set.
OSGi Service Platform Release 4, Version 4.3 Page 379

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
If a MetaNode is available for a node, the DmtAdmin must use the information provided by it to filter
out invalid requests on that node. However, not all methods on this interface are actually used for
this purpose, as many of them (e.g. getFormat() or getValidNames()) can be substituted with the val-
idating methods. For example, isVal idValue(DmtData) can be expected to check the format, mini-
mum, maximum, etc. of a given value, making it unnecessary for the DmtAdmin to call getFormat() ,
getMin() , getMax() etc. separately. It is indicated in the description of each method if the DmtAdmin
does not enforce the constraints defined by it - such methods are only for external use, for example in
user interfaces.

Most of the methods of this class return null if a certain piece of meta information is not defined for
the node or providing this information is not supported. Methods of this class do not throw excep-
tions.
AUTOMATIC

117.15.12.1 public static final int AUTOMATIC = 2

Constant for representing an automatic node in the tree. This must be returned by getScope() .
AUTOMATIC nodes are part of the life cycle of their parent node, they usually describe attributes/
properties of the parent.
CMD_ADD

117.15.12.2 public static final int CMD_ADD = 0

Constant for the ADD access type. If can(int) returns true for this operation, this node can potentially
be added to its parent. Nodes with PERMANENT or AUTOMATIC scope typically do not have this
access type.
CMD_DELETE

117.15.12.3 public static final int CMD_DELETE = 1

Constant for the DELETE access type. If can(int) returns true for this operation, the node can poten-
tially be deleted.
CMD_EXECUTE

117.15.12.4 public static final int CMD_EXECUTE = 2

Constant for the EXECUTE access type. If can(int) returns true for this operation, the node can poten-
tially be executed.
CMD_GET

117.15.12.5 public static final int CMD_GET = 4

Constant for the GET access type. If can(int) returns true for this operation, the value, the list of child
nodes (in case of interior nodes) and the properties of the node can potentially be retrieved.
CMD_REPLACE

117.15.12.6 public static final int CMD_REPLACE = 3

Constant for the REPLACE access type. If can(int) returns true for this operation, the value and other
properties of the node can potentially be modified.
DYNAMIC

117.15.12.7 public static final int DYNAMIC = 1

Constant for representing a dynamic node in the tree. This must be returned by getScope() . Dynamic
nodes can be added and deleted.
PERMANENT

117.15.12.8 public static final int PERMANENT = 0

Constant for representing a PERMANENT node in the tree. This must be returned by getScope() if the
node cannot be added, deleted or modified in any way through tree operations. PERMANENT nodes in
general map to the roots of Plugins.
can(int)

117.15.12.9 public boolean can (int operation)

operation One of the MetaNode.CMD_.. . constants.
Page 380 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
 Check whether the given operation is valid for this node. If no meta-data is provided for a node, all
operations are valid.

Returns fa lse if the operation is not valid for this node or the operation code is not one of the allowed constants
getDefault()

117.15.12.10 public DmtData getDefault ()

 Get the default value of this node if any.

Returns The default value or nul l if not defined
getDescription()

117.15.12.11 public String getDescription ()

 Get the explanation string associated with this node. Can be nul l if no description is provided for this
node.

Returns node description string or nul l for no description
getExtensionProperty(String)

117.15.12.12 public Object getExtensionProperty (String key)

key the key for the extension property

 Returns the value for the specified extension property key. This method only works if the provider of
this MetaNode provides proprietary extensions to node meta data.

Returns the value of the requested property, cannot be null

Throws IllegalArgumentException – if the specified key is not supported by this MetaNode
getExtensionPropertyKeys()

117.15.12.13 public String[] getExtensionPropertyKeys ()

 Returns the list of extension property keys, if the provider of this MetaNode provides proprietary
extensions to node meta data. The method returns nul l if the node doesn’t provide such extensions.

Returns the array of supported extension property keys
getFormat()

117.15.12.14 public int getFormat ()

 Get the node’s format, expressed in terms of type constants defined in DmtData . If there are multiple
formats allowed for the node then the format constants are OR-ed. Interior nodes must have Dmt-
Data.FORMAT_NODE format, and this code must not be returned for leaf nodes. If no meta-data is
provided for a node, all applicable formats are considered valid (with the above constraints regarding
interior and leaf nodes).

Note that the ‘format’ term is a legacy from OMA DM, it is more customary to think of this as ‘type’.

The formats returned by this method are not checked by DmtAdmin, they are only for external use,
for example in user interfaces. DmtAdmin only calls isVal idValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed format(s) of the node
getMax()

117.15.12.15 public double getMax ()

 Get the maximum allowed value associated with a node of numeric format. If no meta-data is pro-
vided for a node, there is no upper limit to its value. This method is only meaningful if the node has
one of the numeric formats: integer, float, or long. format. The returned limit has double type, as this
can be used to denote all numeric limits with full precision. The actual maximum should be the larg-
est integer, float or long number that does not exceed the returned value.

The information returned by this method is not checked by DmtAdmin, it is only for external use, for
example in user interfaces. DmtAdmin only calls isVal idValue(DmtData) for checking the value, its
behavior should be consistent with this method.

Returns the allowed maximum, or Double.MAX_VALUE if there is no upper limit defined or the node’s format
is not one of the numeric formats integer, float, or long
getMaxOccurrence()
OSGi Service Platform Release 4, Version 4.3 Page 381

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
117.15.12.16 public int getMaxOccurrence ()

 Get the number of maximum occurrences of this type of nodes on the same level in the DMT. Returns
Integer.MAX_VALUE if there is no upper limit. Note that if the occurrence is greater than 1 then this
node can not have siblings with different metadata. In other words, if different types of nodes coexist
on the same level, their occurrence can not be greater than 1. If no meta-data is provided for a node,
there is no upper limit on the number of occurrences.

Returns The maximum allowed occurrence of this node type
getMimeTypes()

117.15.12.17 public String[] getMimeTypes ()

 Get the list of MIME types this node can hold. The first element of the returned list must be the
default MIME type.

All MIME types are considered valid if no meta-data is provided for a node or if nul l is returned by this
method. In this case the default MIME type cannot be retrieved from the meta-data, but the node may
still have a default. This hidden default (if it exists) can be utilized by passing nul l as the type parame-
ter of DmtSession.setNodeType(Str ing, Str ing) or DmtSession.createLeafNode(Str ing, DmtData,
Str ing) .

Returns the list of allowed MIME types for this node, starting with the default MIME type, or nul l if all types
are allowed
getMin()

117.15.12.18 public double getMin ()

 Get the minimum allowed value associated with a node of numeric format. If no meta-data is pro-
vided for a node, there is no lower limit to its value. This method is only meaningful if the node has
one of the numeric formats: integer, float, or long format. The returned limit has double type, as this
can be used to denote both integer and float limits with full precision. The actual minimum should
be the smallest integer, float or long value that is equal or larger than the returned value.

The information returned by this method is not checked by DmtAdmin, it is only for external use, for
example in user interfaces. DmtAdmin only calls isVal idValue(DmtData) for checking the value, its
behavior should be consistent with this method.

Returns the allowed minimum, or Double.MIN_VALUE if there is no lower limit defined or the node’s format
is not one of the numeric formats integer, float, or long
getRawFormatNames()

117.15.12.19 public String[] getRawFormatNames ()

 Get the format names for any raw formats supported by the node. This method is only meaningful if
the list of supported formats returned by getFormat() contains DmtData.FORMAT_RAW_STRING or
DmtData.FORMAT_RAW_BINARY : it specifies precisely which raw format(s) are actually supported. If
the node cannot contain data in one of the raw types, this method must return nul l .

The format names returned by this method are not checked by DmtAdmin, they are only for external
use, for example in user interfaces. DmtAdmin only calls isVal idValue(DmtData) for checking the
value, its behavior should be consistent with this method.

Returns the allowed format name(s) of raw data stored by the node, or nul l if raw formats are not supported
getScope()

117.15.12.20 public int getScope ()

 Return the scope of the node. Valid values are MetaNode.PERMANENT , MetaNode.DYNAMIC and
MetaNode.AUTOMATIC . Note that a permanent node is not the same as a node where the DELETE
operation is not allowed. Permanent nodes never can be deleted, whereas a non-deletable node can
disappear in a recursive DELETE operation issued on one of its parents. If no meta-data is provided for
a node, it can be assumed to be a dynamic node.

Returns PERMANENT for permanent nodes, AUTOMATIC for nodes that are automatically created, and DY-
NAMIC otherwise
getValidNames()
Page 382 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
117.15.12.21 public String[] getValidNames ()

 Return an array of Strings if valid names are defined for the node, or null if no valid name list is
defined or if this piece of meta info is not supported. If no meta-data is provided for a node, all names
are considered valid.

The information returned by this method is not checked by DmtAdmin, it is only for external use, for
example in user interfaces. DmtAdmin only calls isVal idName(Str ing) for checking the name, its
behavior should be consistent with this method.

Returns the valid values for this node name, or nul l if not defined
getValidValues()

117.15.12.22 public DmtData[] getValidValues ()

 Return an array of DmtData objects if valid values are defined for the node, or null otherwise. If no
meta-data is provided for a node, all values are considered valid.

The information returned by this method is not checked by DmtAdmin, it is only for external use, for
example in user interfaces. DmtAdmin only calls isVal idValue(DmtData) for checking the value, its
behavior should be consistent with this method.

Returns the valid values for this node, or nul l if not defined
isLeaf()

117.15.12.23 public boolean isLeaf ()

 Check whether the node is a leaf node or an internal one.

Returns true if the node is a leaf node
isValidName(String)

117.15.12.24 public boolean isValidName (String name)

name the node name to check for validity

 Checks whether the given name is a valid name for this node. This method can be used for example
to ensure that the node name is always one of a predefined set of valid names, or that it matches a spe-
cific pattern. This method should be consistent with the values returned by getVal idNames() (if any),
the DmtAdmin only calls this method for name validation.

This method may return true even if not all aspects of the name have been checked, expensive opera-
tions (for example those that require external resources) need not be performed here. The actual node
creation may still indicate that the node name is invalid.

Returns fa lse if the specified name is found to be invalid for the node described by this meta-node, true other-
wise
isValidValue(DmtData)

117.15.12.25 public boolean isValidValue (DmtData value)

value the value to check for validity

 Checks whether the given value is valid for this node. This method can be used to ensure that the
value has the correct format and range, that it is well formed, etc. This method should be consistent
with the constraints defined by the getFormat() , getVal idValues() , getMin() and getMax() methods
(if applicable), as the Dmt Admin only calls this method for value validation.

This method may return true even if not all aspects of the value have been checked, expensive opera-
tions (for example those that require external resources) need not be performed here. The actual
value setting method may still indicate that the value is invalid.

Returns fa lse if the specified value is found to be invalid for the node described by this meta-node, true other-
wise
isZeroOccurrenceAllowed()

117.15.12.26 public boolean isZeroOccurrenceAllowed ()

 Check whether zero occurrence of this node is valid. If no meta-data is returned for a node, zero
occurrences are allowed.

Returns true if zero occurrence of this node is valid
Uri
OSGi Service Platform Release 4, Version 4.3 Page 383

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0
117.15.13 public final class Uri
This class contains static utility methods to manipulate DMT URIs.

Syntax of valid DMT URIs:

• A slash (‘ / ’ \u002F) is the separator of the node names. Slashes used in node name must therefore
be escaped using a backslash slash (“\/”). The backslash must be escaped with a double backslash
sequence. A backslash found must be ignored when it is not followed by a slash or backslash.

• The node name can be constructed using full Unicode character set (except the Supplementary
code, not being supported by CLDC/CDC). However, using the full Unicode character set for node
names is discouraged because the encoding in the underlying storage as well as the encoding
needed in communications can create significant performance and memory usage overhead.
Names that are restricted to the URI set [-a-zA-Z0-9_. !~*’()] are most efficient.

• URIs used in the DMT must be treated and interpreted as case sensitive.
• No End Slash: URI must not end with the delimiter slash (‘ / ’ \u002F). This implies that the root

node must be denoted as “.” and not “./” .
• No parent denotation: URI must not be constructed using the character sequence “. . /” to traverse

the tree upwards.
• Single Root: The character sequence “ ./” must not be used anywhere else but in the beginning of a

URI.
PATH_SEPARATOR

117.15.13.1 public static final String PATH_SEPARATOR = “/”

This constant stands for a string identifying the path separator in the DmTree (”/”).

Since 2.0
PATH_SEPARATOR_CHAR

117.15.13.2 public static final char PATH_SEPARATOR_CHAR = 47

This constant stands for a char identifying the path separator in the DmTree (’/’).

Since 2.0
ROOT_NODE

117.15.13.3 public static final String ROOT_NODE = “.”

This constant stands for a string identifying the root of the DmTree (”.”).

Since 2.0
ROOT_NODE_CHAR

117.15.13.4 public static final char ROOT_NODE_CHAR = 46

This constant stands for a char identifying the root of the DmTree (’.’).

Since 2.0
decode(String)

117.15.13.5 public static String decode (String nodeName)

nodeName the node name to be decoded

 Decode the node name so that back slash and forward slash are un-escaped from a back slash.

Returns the decoded node name

Since 2.0
encode(String)

117.15.13.6 public static String encode (String nodeName)

nodeName the node name to be encoded

 Encode the node name so that back slash and forward slash are escaped with a back slash. This
method is the reverse of decode(Str ing) .

Returns the encoded node name

Since 2.0
isAbsoluteUri(String)
Page 384 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt
117.15.13.7 public static boolean isAbsoluteUri (String uri)

uri the URI to be checked, must not be nul l and must contain a valid URI

 Checks whether the specified URI is an absolute URI. An absolute URI contains the complete path to
a node in the DMT starting from the DMT root (”.”).

Returns whether the specified URI is absolute

Throws NullPointerException – if the specified URI is nul l

IllegalArgumentException – if the specified URI is malformed
isValidUri(String)

117.15.13.8 public static boolean isValidUri (String uri)

uri the URI to be validated

 Checks whether the specified URI is valid. A URI is considered valid if it meets the following con-
straints:

• the URI is not nul l ;
• the URI follows the syntax defined for valid DMT URIs;

getMaxUriLength() and getMaxSegmentNameLength() methods.

Returns whether the specified URI is valid
mangle(String)

117.15.13.9 public static String mangle (String nodeName)

nodeName the node name to be mangled (if necessary), must not be nul l or empty

 Returns a node name that is valid for the tree operation methods, based on the given node name. This
transformation is not idempotent, so it must not be called with a parameter that is the result of a pre-
vious mangle method call.

Node name mangling is needed in the following cases:

• if the name contains ‘/’ or ‘\’characters

A node name that does not suffer from either of these problems is guaranteed to remain unchanged
by this method. Therefore the client may skip the mangling if the node name is known to be valid
(though it is always safe to call this method).

The method returns the normalized nodeName as described below. Invalid node names are normal-
ized in different ways, depending on the cause. If the name contains ‘/’ or ‘\’characters, then these are
simply escaped by inserting an additional ‘\’before each occurrence. If the length of the name does
exceed the limit, the following mechanism is used to normalize it:

• the SHA 1 digest of the name is calculated
• the digest is encoded with the base 64 algorithm
• all ‘/’ characters in the encoded digest are replaced with ‘_’
• trailing ‘=’ signs are removed

Returns the normalized node name that is valid for tree operations

Throws NullPointerException – if nodeName is null

IllegalArgumentException – if nodeName is empty
toPath(String)

117.15.13.10 public static String[] toPath (String uri)

uri the URI to be split, must not be nul l

 Split the specified URI along the path separator ‘/’ characters and return an array of URI segments.
Special characters in the returned segments are escaped. The returned array may be empty if the spec-
ified URI was empty.

Returns an array of URI segments created by splitting the specified URI

Throws NullPointerException – if the specified URI is nul l
OSGi Service Platform Release 4, Version 4.3 Page 385

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0
IllegalArgumentException – if the specified URI is malformed
toUri(String[])

117.15.13.11 public static String toUri (String[] path)

path a possibly empty array of URI segments, must not be nul l

 Construct a URI from the specified URI segments. The segments must already be mangled.

If the specified path is an empty array then an empty URI (“”) is returned.

Returns the URI created from the specified segments

Throws NullPointerException – if the specified path or any of its segments are null

IllegalArgumentException – if the specified path contains too many or malformed segments or the
resulting URI is too long

117.16 org.osgi.service.dmt.spi
Device Management Tree SPI Package Version 2.0.

This package contains the interface classes that compose the Device Management SPI (Service Pro-
vider Interface). These interfaces are implemented by DMT plugins; users of the DmtAdmin interface
do not interact directly with these.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.spi ; version=”[2.0,3.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.spi ; version=”[2.0,2.1)”

117.16.1 Summary
• DataPlugin – An implementation of this interface takes the responsibility of handling data

requests in a subtree of the DMT.
• ExecPlugin – An implementation of this interface takes the responsibility of handling node

execute requests requests in a subtree of the DMT.
• MountPlugin – This interface can be optionally implemented by a DataPlugin or ExecPlugin in

order to get information about its absolute mount points in the overall DMT.
• MountPoint – This interface can be implemented to represent a single mount point.
• ReadableDataSession – Provides read-only access to the part of the tree handled by the plugin

that created this session.
• ReadWriteDataSession – Provides non-atomic read-write access to the part of the tree handled by

the plugin that created this session.
• Transact ionalDataSession – Provides atomic read-write access to the part of the tree handled by

the plugin that created this session.

117.16.2 Permissions
DataPlugin

117.16.3 public interface DataPlugin
An implementation of this interface takes the responsibility of handling data requests in a subtree of
the DMT.
Page 386 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi
In an OSGi environment such implementations should be registered at the OSGi service registry
specifying the list of root node URIs in a Str ing array or in case of a single value as Str ing in the
dataRootURIs registration parameter.

When the first reference in a session is made to a node handled by this plugin, the DmtAdmin calls
one of the open.. . methods to retrieve a plugin session object for processing the request. The called
method depends on the lock type of the current session. In case of openReadWriteSession(Str ing[],
DmtSession) and openAtomicSession(Str ing[], DmtSession) , the plugin may return null to indicate
that the specified lock type is not supported. In this case the DmtAdmin may call openReadOnlySes-
sion(Str ing[] , DmtSession) to start a read-only plugin session, which can be used as long as there are
no write operations on the nodes handled by this plugin.

The sessionRoot parameter of each method is a String array containing the segments of the URI
pointing to the root of the session. This is an absolute path, so the first segment is always “.”. Special
characters appear escaped in the segments.
DATA_ROOT_URIS

117.16.3.1 public static final String DATA_ROOT_URIS = “dataRootURIs”

The string to be used as key for the “ dataRootURIs” property when an DataPlugin is registered.

Since 2.0
MOUNT_POINTS

117.16.3.2 public static final String MOUNT_POINTS = “mountPoints”

The string to be used as key for the mount points property when a DataPlugin is registered with
mount points.
openAtomicSession(String[],DmtSession)

117.16.3.3 public TransactionalDataSession openAtomicSession (String[] sessionRoot , DmtSession session
) throws DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

 This method is called to signal the start of an atomic read-write session when the first reference is
made within a DmtSession to a node which is handled by this plugin. Session information is given as
it is needed for sending alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree that has any overlap with
the subtree of this session.

Returns a plugin session capable of executing read-write operations in an atomic block, or nul l if the plugin
does not support atomic read-write sessions

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if sessionRoot points to a non-existing node
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if some underlying operation failed because of lack of permissions
openReadOnlySession(String[],DmtSession)

117.16.3.4 public ReadableDataSession openReadOnlySession (String[] sessionRoot , DmtSession session)
throws DmtException

sessionRoot the path to the subtree which is accessed in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

 This method is called to signal the start of a read-only session when the first reference is made within
a DmtSession to a node which is handled by this plugin. Session information is given as it is needed
for sending alerts back from the plugin.

The plugin can assume that there are no writing sessions open on any subtree that has any overlap
with the subtree of this session.
OSGi Service Platform Release 4, Version 4.3 Page 387

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0
Returns a plugin session capable of executing read operations

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if sessionRoot points to a non-existing node
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if some underlying operation failed because of lack of permissions
openReadWriteSession(String[],DmtSession)

117.16.3.5 public ReadWriteDataSession openReadWriteSession (String[] sessionRoot , DmtSession session
) throws DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

 This method is called to signal the start of a non-atomic read-write session when the first reference is
made within a DmtSession to a node which is handled by this plugin. Session information is given as
it is needed for sending alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree that has any overlap with
the subtree of this session.

Returns a plugin session capable of executing read-write operations, or nul l if the plugin does not support non-
atomic read-write sessions

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if sessionRoot points to a non-existing node
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if some underlying operation failed because of lack of permissions
ExecPlugin

117.16.4 public interface ExecPlugin
An implementation of this interface takes the responsibility of handling node execute requests
requests in a subtree of the DMT.

In an OSGi environment such implementations should be registered at the OSGi service registry
specifying the list of root node URIs in a Str ing array or in case of a single value as Str ing in the
execRootURIs registration parameter.
EXEC_ROOT_URIS

117.16.4.1 public static final String EXEC_ROOT_URIS = “execRootURIs”

The string to be used as key for the “ execRootURIs” property when an ExecPlugin is registered.

Since 2.0
MOUNT_POINTS

117.16.4.2 public static final String MOUNT_POINTS = “mountPoints”

The string to be used as key for the mount points property when an Exec Plugin is registered with
mount points.
execute(DmtSession,String[],String,String)

117.16.4.3 public void execute (DmtSession session , String[] nodePath , String correlator , String data)
throws DmtException

session a reference to the session in which the operation was issued, must not be nul l

nodePath the absolute path of the node to be executed, must not be nul l

correlator an identifier to associate this operation with any alerts sent in response to it, can be nul l

data the parameter of the execute operation, can be nul l

 Execute the given node with the given data. This operation corresponds to the EXEC command in
OMA DM.
Page 388 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi
The semantics of an execute operation and the data parameter it takes depends on the definition of
the managed object on which the command is issued. Session information is given as it is needed for
sending alerts back from the plugin. If a correlation ID is specified, it should be used as the correlator
parameter for alerts sent in response to this execute operation.

The nodePath parameter contains an array of path segments identifying the node to be executed in
the subtree of this plugin. This is an absolute path, so the first segment is always “.”. Special charac-
ters appear escaped in the segments.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if the node does not exist
METADATA_MISMATCH if the command failed because of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

See Also DmtSession.execute(String, String) , DmtSession.execute(String, String, String)
MountPlugin

117.16.5 public interface MountPlugin
This interface can be optionally implemented by a DataPlugin or ExecPlugin in order to get informa-
tion about its absolute mount points in the overall DMT.

This is especially interesting, if the plugin is mapped to the tree as part of a list. In such a case the id
for this particular data plugin is determined by the DmtAdmin after the registration of the plugin
and therefore unknown to the plugin in advance.

This is not a service interface, the Data or Exec Plugin does not also have to register this interface as a
service, the Dmt Admin should use an instanceof to detect that a Plugin is also a Mount Plugin.

Since 2.0
mountPointAdded(MountPoint)

117.16.5.1 public void mountPointAdded (MountPoint mountPoint)

mountPoint the newly mapped mount point

 Provides the MountPoint describing the path where the plugin is mapped in the overall DMT. The
given mountPoint is withdrawn with the mountPointRemoved(MountPoint) method. Correspond-
ing mount points must compare equal and have an appropriate hash code.
mountPointRemoved(MountPoint)

117.16.5.2 public void mountPointRemoved (MountPoint mountPoint)

mountPoint The unmapped mount point array of MountPoint objects that have been removed from the mapping

 Informs the plugin that the provided MountPoint objects have been removed from the mapping. The
given mountPoint is withdrawn method. Mount points must compare equal and have an appropriate
hash code with the given Mount Point in mountPointAdded(MountPoint) .

NOTE: attempts to invoke the postEvent method on the provided MountPoint must be ignored.
MountPoint

117.16.6 public interface MountPoint
This interface can be implemented to represent a single mount point.

It provides function to get the absolute mounted uri and a shortcut method to post events via the
DmtAdmin.

Since 2.0
equals(Object)

117.16.6.1 public boolean equals (Object other)

 This object must provide a suitable hash function such that a Mount Point given in MountPlu-
gin.mountPointAdded(MountPoint) is equal to the corresponding Mount Point in MountPlu-
gin.mountPointRemoved(MountPoint) . Object.equals(Object)
OSGi Service Platform Release 4, Version 4.3 Page 389

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0
getMountPath()

117.16.6.2 public String[] getMountPath ()

 Provides the absolute mount path of this MountPoint

Returns the absolute mount path of this MountPoint
hashCode()

117.16.6.3 public int hashCode ()

 This object must provide a suitable hash function such that a Mount Point given in MountPlu-
gin.mountPointAdded(MountPoint) has the same hashCode as the corresponding Mount Point in
MountPlugin.mountPointRemoved(MountPoint) . Object.hashCode()
postEvent(String,String[],Dictionary)

117.16.6.4 public void postEvent (String topic , String[] relativeURIs , Dictionary properties)

topic the topic of the event to send. Valid values are:
org/osgi/service/dmt/DmtEvent/ADDED if the change was caused by a rename action org/osgi/
service/dmt/DmtEvent/DELETED if the change was caused by a copy action org/osgi/service/dmt/
DmtEvent/REPLACED if the change was caused by a copy action Must not be nul l .

relativeURIs an array of affected node URI ‘s. All URI ‘s specified here are relative to the current MountPoint ‘s mount-
Path. The value of this parameter determines the value of the event property
EVENT_PROPERTY_NODES . An empty array or nul l is permitted. In both cases the value of the events
EVENT_PROPERTY_NODES property will be set to an empty array.

properties an optional parameter that can be provided to add properties to the Event that is going to be send by
the DMTAdmin. If the properties contain a key EVENT_PROPERTY_NODES , then the value of this
property is ignored and will be overwritten by relat iveURIs .

 Posts an event via the DmtAdmin about changes in the current plugins subtree.

This method distributes Events asynchronously to the EventAdmin as well as to matching local
DmtEventListeners.

Throws IllegalArgumentException – if the topic has not one of the defined values
postEvent(String,String[],String[],Dictionary)

117.16.6.5 public void postEvent (String topic , String[] relativeURIs , String[] newRelativeURIs , Dictionary
properties)

topic the topic of the event to send. Valid values are:
org/osgi/service/dmt/DmtEvent/RENAMED if the change was caused by a rename action org/osgi/
service/dmt/DmtEvent/COPIED if the change was caused by a copy action Must not be nul l .

relativeURIs an array of affected node URI ‘s. All URI ‘s specified here are relative to the current MountPoint ‘s mount-
Path. The value of this parameter determines the value of the event property
EVENT_PROPERTY_NODES . An empty array or nul l is permitted. In both cases the value of the events
EVENT_PROPERTY_NODES property will be set to an empty array.

newRelativeURIs an array of affected node URI ‘s.The value of this parameter determines the value of the event property
EVENT_PROPERTY_NEW_NODES . An empty array or null is permitted. In both cases the value of the
events EVENT_PROPERTY_NEW_NODES property will be set to an empty array.

properties an optional parameter that can be provided to add properties to the Event that is going to be send by
the DMTAdmin. If the properties contain the keys EVENT_PROPERTY_NODES or
EVENT_PROPERTY_NEW_NODES , then the values of these properties are ignored and will be overwrit-
ten by relat iveURIs and newRelativeURIs .

 Posts an event via the DmtAdmin about changes in the current plugins subtree.

This method distributes Events asynchronously to the EventAdmin as well as to matching local
DmtEventListeners.

Throws IllegalArgumentException – if the topic has not one of the defined values
ReadableDataSession
Page 390 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi
117.16.7 public interface ReadableDataSession
Provides read-only access to the part of the tree handled by the plugin that created this session.

Since the ReadWriteDataSession and TransactionalDataSession interfaces inherit from this inter-
face, some of the method descriptions do not apply for an instance that is only a
ReadableDataSession . For example, the close() method description also contains information about
its behaviour when invoked as part of a transactional session.

The nodePath parameters appearing in this interface always contain an array of path segments iden-
tifying a node in the subtree of this plugin. This parameter contains an absolute path, so the first seg-
ment is always “.”. Special characters appear escaped in the segments.

Error handling

When a tree access command is called on the DmtAdmin service, it must perform an extensive set of
checks on the parameters and the authority of the caller before delegating the call to a plugin. There-
fore plugins can take certain circumstances for granted: that the path is valid and is within the sub-
tree of the plugin and the session, the command can be applied to the given node (e.g. the target of
getChi ldNodeNames is an interior node), etc. All errors described by the error codes DmtExcep-
tion. INVALID_URI , DmtException.URI_TOO_LONG , DmtException.PERMISSION_DENIED , DmtEx-
ception.COMMAND_NOT_ALLOWED and DmtException.TRANSACTION_ERROR are fully filtered
out before control reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must also check the constraints
specified by it, as described in MetaNode . If the plugin does not provide meta-data, it must perform
the necessary checks for itself and use the DmtException.METADATA_MISMATCH error code to indi-
cate such discrepancies.

The DmtAdmin does not check that the targeted node exists before calling the plugin. It is the
responsibility of the plugin to perform this check and to throw a DmtExcep-
tion.NODE_NOT_FOUND if needed. In this case the DmtAdmin must pass through this exception to
the caller of the corresponding DmtSession method.

The plugin can use the remaining error codes as needed. If an error does not fit into any other cate-
gory, the DmtException.COMMAND_FAILED code should be used.
close()

117.16.7.1 public void close () throws DmtException

 Closes a session. This method is always called when the session ends for any reason: if the session is
closed, if a fatal error occurs in any method, or if any error occurs during commit or rollback. In case
the session was invalidated due to an exception during commit or rollback, it is guaranteed that no
methods are called on the plugin until it is closed. In case the session was invalidated due to a fatal
exception in one of the tree manipulation methods, only the rollback method is called before this
(and only in atomic sessions).

This method should not perform any data manipulation, only cleanup operations. In non-atomic
read-write sessions the data manipulation should be done instantly during each tree operation, while
in atomic sessions the DmtAdmin always calls Transact ionalDataSession.commit() automatically
before the session is actually closed.

Throws DmtException – with the error code COMMAND_FAILED if the plugin failed to close for any reason
getChildNodeNames(String[])

117.16.7.2 public String[] getChildNodeNames (String[] nodePath) throws DmtException

nodePath the absolute path of the node

 Get the list of children names of a node. The returned array contains the names - not the URIs - of the
immediate children nodes of the given node. The returned array may contain nul l entries, but these
are removed by the DmtAdmin before returning it to the client.

Returns the list of child node names as a string array or an empty string array if the node has no children
OSGi Service Platform Release 4, Version 4.3 Page 391

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0
Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
getMetaNode(String[])

117.16.7.3 public MetaNode getMetaNode (String[] nodePath) throws DmtException

nodePath the absolute path of the node

 Get the meta data which describes a given node. Meta data can be only inspected, it can not be
changed.

Meta data support by plugins is an optional feature. It can be used, for example, when a data plugin is
implemented on top of a data store or another API that has their own metadata, such as a relational
database, in order to avoid metadata duplication and inconsistency. The meta data specific to the plu-
gin returned by this method is complemented by meta data from the DmtAdmin before returning it
to the client. If there are differences in the meta data elements known by the plugin and the
DmtAdmin then the plugin specific elements take precedence.

Note, that a node does not have to exist for having meta-data associated with it. This method may pro-
vide meta-data for any node that can possibly exist in the tree (any node defined by the Management
Object provided by the plugin). For nodes that are not defined, a DmtException may be thrown with
the NODE_NOT_FOUND error code. To allow easier implementation of plugins that do not provide
meta-data, it is allowed to return nul l for any node, regardless of whether it is defined or not.

Returns a MetaNode which describes meta data information, can be nul l if there is no meta data available for
the given node

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodeUri points to a node that is not defined in the tree (see above)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
getNodeSize(String[])

117.16.7.4 public int getNodeSize (String[] nodePath) throws DmtException

nodePath the absolute path of the leaf node

 Get the size of the data in a leaf node. The value to return depends on the format of the data in the
node, see the description of the DmtData.getSize() method for the definition of node size for each
format.

Returns the size of the data in the node

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because of meta-data restrictions
FEATURE_NOT_SUPPORTED if the Size property is not supported by the plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
Page 392 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi
See Also DmtData.getSize()
getNodeTimestamp(String[])

117.16.7.5 public Date getNodeTimestamp (String[] nodePath) throws DmtException

nodePath the absolute path of the node

 Get the timestamp when the node was last modified.

Returns the timestamp of the last modification

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because of meta-data restrictions
FEATURE_NOT_SUPPORTED if the Timestamp property is not supported by the plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
getNodeTitle(String[])

117.16.7.6 public String getNodeTitle (String[] nodePath) throws DmtException

nodePath the absolute path of the node

 Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or nul l if the node has no title

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because of meta-data restrictions
FEATURE_NOT_SUPPORTED if the Title property is not supported by the plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
getNodeType(String[])

117.16.7.7 public String getNodeType (String[] nodePath) throws DmtException

nodePath the absolute path of the node

 Get the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document; a nul l type means that there is no DDF document
overriding the tree structure defined by the ancestors.

Returns the type of the node, can be nul l

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
getNodeValue(String[])

117.16.7.8 public DmtData getNodeValue (String[] nodePath) throws DmtException

nodePath the absolute path of the node to retrieve

 Get the data contained in a leaf or interior node.

Returns the data of the leaf node, must not be nul l
OSGi Service Platform Release 4, Version 4.3 Page 393

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0
Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because of meta-data restrictions
FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java ob-
ject values
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
getNodeVersion(String[])

117.16.7.9 public int getNodeVersion (String[] nodePath) throws DmtException

nodePath the absolute path of the node

 Get the version of a node. The version can not be set, it is calculated automatically by the device. It is
incremented modulo 0x10000 at every modification of the value or any other property of the node,
for both leaf and interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because of meta-data restrictions
FEATURE_NOT_SUPPORTED if the Version property is not supported by the plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
isLeafNode(String[])

117.16.7.10 public boolean isLeafNode (String[] nodePath) throws DmtException

nodePath the absolute path of the node

 Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
isNodeUri(String[])

117.16.7.11 public boolean isNodeUri (String[] nodePath)

nodePath the absolute path to check

 Check whether the specified path corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT
nodeChanged(String[])

117.16.7.12 public void nodeChanged (String[] nodePath) throws DmtException

nodePath the absolute path of the node that has changed
Page 394 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi
 Notifies the plugin that the given node has changed outside the scope of the plugin, therefore the
Version and Timestamp properties must be updated (if supported). This method is needed because
the ACL property of a node is managed by the DmtAdmin instead of the plugin. The DmtAdmin
must call this method whenever the ACL property of a node changes.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand
ReadWriteDataSession

117.16.8 public interface ReadWriteDataSession
extends ReadableDataSession
Provides non-atomic read-write access to the part of the tree handled by the plugin that created this
session.

The nodePath parameters appearing in this interface always contain an array of path segments iden-
tifying a node in the subtree of this plugin. This parameter contains an absolute path, so the first seg-
ment is always “.”. Special characters appear escaped in the segments.

Error handling

When a tree manipulation command is called on the DmtAdmin service, it must perform an exten-
sive set of checks on the parameters and the authority of the caller before delegating the call to a plu-
gin. Therefore plugins can take certain circumstances for granted: that the path is valid and is within
the subtree of the plugin and the session, the command can be applied to the given node (e.g. the tar-
get of setNodeValue is a leaf node), etc. All errors described by the error codes DmtExcep-
tion. INVALID_URI , DmtException.URI_TOO_LONG , DmtException.PERMISSION_DENIED ,
DmtException.COMMAND_NOT_ALLOWED and DmtException.TRANSACTION_ERROR are fully fil-
tered out before control reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must also check the constraints
specified by it, as described in MetaNode . If the plugin does not provide meta-data, it must perform
the necessary checks for itself and use the DmtException.METADATA_MISMATCH error code to indi-
cate such discrepancies.

The DmtAdmin does not check that the targeted node exists (or that it does not exist, in case of a node
creation) before calling the plugin. It is the responsibility of the plugin to perform this check and to
throw a DmtException.NODE_NOT_FOUND or DmtException.NODE_ALREADY_EXISTS if needed.
In this case the DmtAdmin must pass through this exception to the caller of the corresponding Dmt-
Session method.

The plugin can use the remaining error codes as needed. If an error does not fit into any other cate-
gory, the DmtException.COMMAND_FAILED code should be used.
copy(String[],String[],boolean)

117.16.8.1 public void copy (String[] nodePath , String[] newNodePath , boolean recursive) throws
DmtException

nodePath an absolute path specifying the node or the root of a subtree to be copied

newNodePath the absolute path of the new node or root of a subtree

recursive fa lse if only a single node is copied, true if the whole subtree is copied

 Create a copy of a node or a whole subtree. Beside the structure and values of the nodes, most proper-
ties managed by the plugin must also be copied, with the exception of the Timestamp and Version
properties.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node, or if newNodePath points to a node
that cannot exist in the tree
OSGi Service Platform Release 4, Version 4.3 Page 395

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0
NODE_ALREADY_EXISTS if newNodePath points to a node that already exists
METADATA_MISMATCH if the node could not be copied because of meta-data restrictions
FEATURE_NOT_SUPPORTED if the copy operation is not supported by the plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.copy(String, String, boolean)
createInteriorNode(String[],String)

117.16.8.2 public void createInteriorNode (String[] nodePath , String type) throws DmtException

nodePath the absolute path of the node to create

type the type URI of the interior node, can be nul l if no node type is defined

 Create an interior node with a given type. The type of interior node, if specified, is a URI identifying a
DDF document.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a node that cannot exist in the tree
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
METADATA_MISMATCH if the node could not be created because of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.createInteriorNode(String) , DmtSession.createInteriorNode(String, String)
createLeafNode(String[],DmtData,String)

117.16.8.3 public void createLeafNode (String[] nodePath , DmtData value , String mimeType) throws
DmtException

nodePath the absolute path of the node to create

value the value to be given to the new node, can be nul l

mimeType the MIME type to be given to the new node, can be nul l

 Create a leaf node with a given value and MIME type. If the specified value or MIME type is nul l , their
default values must be taken.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a node that cannot exist in the tree
NODE_ALREADY_EXISTS if nodePath points to a node that already exists
METADATA_MISMATCH if the node could not be created because of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.createLeafNode(String) , DmtSession.createLeafNode(String, DmtData) ,
DmtSession.createLeafNode(String, DmtData, String)
deleteNode(String[])

117.16.8.4 public void deleteNode (String[] nodePath) throws DmtException

nodePath the absolute path of the node to delete
Page 396 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi
 Delete the given node. Deleting interior nodes is recursive, the whole subtree under the given node is
deleted.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the node could not be deleted because of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.deleteNode(String)
renameNode(String[],String)

117.16.8.5 public void renameNode (String[] nodePath , String newName) throws DmtException

nodePath the absolute path of the node to rename

newName the new name property of the node

 Rename a node. This operation only changes the name of the node (updating the timestamp and ver-
sion properties if they are supported), the value and the other properties are not changed. The new
name of the node must be provided, the new path is constructed from the base of the old path and the
given name.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node, or if the new node is not defined in
the tree
NODE_ALREADY_EXISTS if there already exists a sibling of nodePath with the name newName
METADATA_MISMATCH if the node could not be renamed because of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.renameNode(String, String)
setNodeTitle(String[],String)

117.16.8.6 public void setNodeTitle (String[] nodePath , String title) throws DmtException

nodePath the absolute path of the node

title the title text of the node, can be nul l

 Set the title property of a node. The length of the title is guaranteed not to exceed the limit of 255
bytes in UTF-8 encoding.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the title could not be set because of meta-data restrictions
FEATURE_NOT_SUPPORTED if the Title property is not supported by the plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeTitle(String, String)
setNodeType(String[],String)

117.16.8.7 public void setNodeType (String[] nodePath , String type) throws DmtException

nodePath the absolute path of the node
OSGi Service Platform Release 4, Version 4.3 Page 397

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0
type the type of the node, can be nul l

 Set the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document.

For interior nodes, the nul l type should remove the reference (if any) to a DDF document overriding
the tree structure defined by the ancestors. For leaf nodes, it requests that the default MIME type is
used for the given node.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the type could not be set because of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeType(String, String)
setNodeValue(String[],DmtData)

117.16.8.8 public void setNodeValue (String[] nodePath , DmtData data) throws DmtException

nodePath the absolute path of the node

data the data to be set, can be nul l

 Set the value of a leaf or interior node. The format of the node is contained in the DmtData object. For
interior nodes, the format is FORMAT_NODE , while for leaf nodes this format is never used.

If the specified value is nul l , the default value must be taken; if there is no default value, a
DmtException with error code METADATA_MISMATCH must be thrown.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the value could not be set because of meta-data restrictions
FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java ob-
ject values
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeValue(String, DmtData)
TransactionalDataSession

117.16.9 public interface TransactionalDataSession
extends ReadWriteDataSession
Provides atomic read-write access to the part of the tree handled by the plugin that created this ses-
sion.
commit()

117.16.9.1 public void commit () throws DmtException

 Commits a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all subse-
quent commit() and rol lback() calls.

This method can fail even if all operations were successful. This can happen due to some multi-node
semantic constraints defined by a specific implementation. For example, node A can be required to
always have children A/B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.
Page 398 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.notification
In many cases the tree is not the only way to manage a given part of the system. It may happen that
while modifying some nodes in an atomic session, the underlying settings are modified parallelly
outside the scope of the DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException – with the following possible error codes
METADATA_MISMATCH if the operation failed because of meta-data restrictions
CONCURRENT_ACCESS if it is detected that some modification has been made outside the scope of
the DMT to the nodes affected in the session’s operations
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while attempting to complete the com-
mand

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation
rollback()

117.16.9.2 public void rollback () throws DmtException

 Rolls back a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all subse-
quent commit and rol lback calls.

Throws DmtException – with the error code ROLLBACK_FAILED in case the rollback did not succeed

SecurityException – if the caller does not have the necessary permissions to execute the underlying
management operation

117.17 org.osgi.service.dmt.notification
Device Management Tree Notification Package Version 2.0.

This package contains the public API of the Notification service. This service enables the sending of
asynchronous notifications to management servers. Permission classes are provided by the
org.osgi .service.dmt.security package.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion; vers ion=”[2.0,3.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion; vers ion=”[2.0,2.1)”

117.17.1 Summary
• Alert Item – Immutable data structure carried in an alert (client initiated notification).
• Notif icationService – NotificationService enables sending aynchronous notifications to a man-

agement server.

117.17.2 Permissions
AlertItem
OSGi Service Platform Release 4, Version 4.3 Page 399

org.osgi.service.dmt.notification Dmt Admin Service Specification Version 2.0
117.17.3 public class AlertItem
Immutable data structure carried in an alert (client initiated notification). The AlertItem describes
details of various notifications that can be sent by the client, for example as alerts in the OMA DM
protocol. The use cases include the client sending a session request to the server (alert 1201), the cli-
ent notifying the server of completion of a software update operation (alert 1226) or sending back
results in response to an asynchronous EXEC command.

The data syntax and semantics varies widely between various alerts, so does the optionality of partic-
ular parameters of an alert item. If an item, such as source or type, is not defined, the corresponding
getter method returns nul l . For example, for alert 1201 (client-initiated session) all elements will be
nul l .

The syntax used in Alert I tem class corresponds to the OMA DM alert format. Notif icationService
implementations on other management protocols should map these constructs to the underlying
protocol.
AlertItem(String,String,String,DmtData)

117.17.3.1 public AlertItem (String source , String type , String mark , DmtData data)

source the URI of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert item

mark the mark parameter of the alert item

 Create an instance of the alert item. The constructor takes all possible data entries as parameters. Any
of these parameters can be nul l . The semantics of the parameters may be refined by the definition of a
specific alert, identified by its alert code (see Notif icat ionService.sendNotif icat ion(Str ing, int,
Str ing, AlertItem[])). In case of Generic Alerts for example (code 1226), the mark parameter contains
a severity string.
AlertItem(String[],String,String,DmtData)

117.17.3.2 public AlertItem (String[] source , String type , String mark , DmtData data)

source the path of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert item

mark the mark parameter of the alert item

 Create an instance of the alert item, specifying the source node URI as an array of path segments. The
constructor takes all possible data entries as parameters. Any of these parameters can be nul l . The
semantics of the parameters may be refined by the definition of a specific alert, identified by its alert
code (see Notif icat ionService.sendNotif icat ion(Str ing, int, Str ing, Alert Item[])). In case of Generic
Alerts for example (code 1226), the mark parameter contains a severity string.
getData()

117.17.3.3 public DmtData getData ()

 Get the data associated with the alert item. The returned DmtData object contains the format and the
value of the data in the alert item. There might be no data associated with the alert item.

Returns the data associated with the alert item, or nul l if there is no data
getMark()

117.17.3.4 public String getMark ()

 Get the mark parameter associated with the alert item. The interpretation of the mark parameter
depends on the alert being sent, as identified by the alert code in Notif icationService.sendNotif ica-
t ion(String, int , Str ing, Alert Item[]) . There might be no mark associated with the alert item.

Returns the mark associated with the alert item, or nul l if there is no mark
getSource()
Page 400 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.notification
117.17.3.5 public String getSource ()

 Get the node which is the source of the alert. There might be no source associated with the alert item.

Returns the URI of the node which is the source of this alert, or nul l if there is no source
getType()

117.17.3.6 public String getType ()

 Get the type associated with the alert item. The type string is a MIME type or a URN that identifies
the type of the data in the alert item (returned by getData()). There might be no type associated with
the alert item.

Returns the type type associated with the alert item, or nul l if there is no type
toString()

117.17.3.7 public String toString ()

 Returns the string representation of this alert item. The returned string includes all parameters of the
alert item, and has the following format:

AlertItem(<source>, <type>, <mark>, <data>)

The last parameter is the string representation of the data value. The format of the data is not explic-
itly included.

Returns the string representation of this alert item
NotificationService

117.17.4 public interface NotificationService
NotificationService enables sending aynchronous notifications to a management server. The imple-
mentation of Notif icat ionService should register itself in the OSGi service registry as a service.
sendNotification(String,int,String,AlertItem[])

117.17.4.1 public void sendNotification (String principal , int code , String correlator , AlertItem[] items)
throws DmtException

principal the principal name which is the recipient of this notification, can be nul l

code the alert code, can be 0 if not needed

correlator optional field that contains the correlation identifier of an associated exec command, can be nul l if not
needed

items the data of the alert items carried in this alert, can be nul l or empty if not needed

 Sends a notification to a named principal. It is the responsibility of the Notif icat ionService to route
the notification to the given principal using the registered org.osgi .service.dmt.noti f ica-
t ion.spi .RemoteAlertSender services.

In remotely initiated sessions the principal name identifies the remote server that created the ses-
sion, this can be obtained using the session’s getPr incipal call.

The principal name may be omitted if the client does not know the principal name. Even in this case
the routing might be possible if the Notification Service finds an appropriate default destination (for
example if it is only connected to one protocol adapter, which is only connected to one management
server).

Since sending the notification and receiving acknowledgment for it is potentially a very time-con-
suming operation, notifications are sent asynchronously. This method should attempt to ensure that
the notification can be sent successfully, and should throw an exception if it detects any problems. If
the method returns without error, the notification is accepted for sending and the implementation
must make a best-effort attempt to deliver it.

In case the notification is an asynchronous response to a previous execute command, a correlation
identifier can be specified to provide the association between the execute and the notification.
OSGi Service Platform Release 4, Version 4.3 Page 401

org.osgi.service.dmt.notification.spi Dmt Admin Service Specification Version 2.0
In order to send a notification using this method, the caller must have an AlertPermission with a tar-
get string matching the specified principal name. If the principal parameter is nul l (the principal
name is not known), the target of the AlertPermission must be “*”.

When this method is called with null correlator, null or empty AlertItem array, and a 0 code as val-
ues, it should send a protocol specific default notification to initiate a management session. For
example, in case of OMA DM this is alert 1201 “Client Initiated Session”. The principal parameter can
be used to determine the recipient of the session initiation request.

Throws DmtException – with the following possible error codes:
UNAUTHORIZED when the remote server rejected the request due to insufficient authorization
ALERT_NOT_ROUTED when the alert can not be routed to the given principal
REMOTE_ERROR in case of communication problems between the device and the destination
COMMAND_FAILED for unspecified errors encountered while attempting to complete the command
FEATURE_NOT_SUPPORTED if the underlying management protocol doesn’t support asynchronous
notifications

SecurityException – if the caller does not have the required AlertPermission with a target matching
the principal parameter, as described above

117.18 org.osgi.service.dmt.notification.spi
Device Management Tree Notification SPI Package Version 2.0.

This package contains the SPI (Service Provider Interface) of the Notification service. These interfaces
are implemented by Protocol Adapters capable of delivering notifications to management servers on
a specific protocol. Users of the Notif icat ionService interface do not interact directly with this pack-
age.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion.spi ; vers ion=”[2.0,3.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion.spi ; vers ion=”[2.0,2.1)”
RemoteAlertSender

117.18.1 public interface RemoteAlertSender
The RemoteAlertSender can be used to send notifications to (remote) entities identified by principal
names. This service is provided by Protocol Adapters, and is used by the org.osgi .service.dmt.noti f i-
cation.Notif icationService when sending alerts. Implementations of this interface have to be able to
connect and send alerts to one or more management servers in a protocol specific way.

The properties of the service registration should specify a list of destinations (principals) where the
service is capable of sending alerts. This can be done by providing a Str ing array of principal names in
the principals registration property. If this property is not registered, the service will be treated as the
default sender. The default alert sender is only used when a more specific alert sender cannot be
found.
Page 402 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security
The principals registration property is used when the org.osgi .service.dmt.noti f icat ion.Noti f ica-
tionService.sendNotif icat ion(Str ing, int , Str ing, AlertItem[]) method is called, to find the proper
RemoteAlertSender for the given destination. If the caller does not specify a principal, the alert is
only sent if the Notification Sender finds a default alert sender, or if the choice is unambiguous for
some other reason (for example if only one alert sender is registered).
sendAlert(String,int,String,AlertItem[])

117.18.1.1 public void sendAlert (String principal , int code , String correlator , AlertItem[] items) throws
Exception

principal the name identifying the server where the alert should be sent, can be nul l

code the alert code, can be 0 if not needed

correlator the correlation identifier of an associated EXEC command, or nul l if there is no associated EXEC

items the data of the alert items carried in this alert, can be empty or null if no alert items are needed

 Sends an alert to a server identified by its principal name. In case the alert is sent in response to a pre-
vious execute command, a correlation identifier can be specified to provide the association between
the execute and the alert.

The principal parameter specifies which server the alert should be sent to. This parameter can be nul l
if the client does not know the name of the destination. The alert should still be delivered if possible;
for example if the alert sender is only connected to one destination.

Any exception thrown on this method will be propagated to the original sender of the event,
wrapped in a DmtException with the code REMOTE_ERROR .

Since sending the alert and receiving acknowledgment for it is potentially a very time-consuming
operation, alerts are sent asynchronously. This method should attempt to ensure that the alert can be
sent successfully, and should throw an exception if it detects any problems. If the method returns
without error, the alert is accepted for sending and the implementation must make a best-effort
attempt to deliver it.

Throws Exception – if the alert can not be sent to the server

117.19 org.osgi.service.dmt.security
Device Management Tree Security Package Version 2.0.

This package contains the permission classes used by the Device Management API in environments
that support the Java 2 security model.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.security ; version=”[2.0,3.0)”

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.security ; version=”[2.0,2.1)”

117.19.1 Summary
• AlertPermission – Indicates the callers authority to send alerts to management servers, identified

by their principal names.
• DmtPermission – Controls access to management objects in the Device Management Tree (DMT).
OSGi Service Platform Release 4, Version 4.3 Page 403

org.osgi.service.dmt.security Dmt Admin Service Specification Version 2.0
• DmtPrincipalPermission – Indicates the callers authority to create DMT sessions on behalf of a
remote management server.

117.19.2 Permissions
AlertPermission

117.19.3 public class AlertPermission
extends Permission
Indicates the callers authority to send alerts to management servers, identified by their principal
names.

AlertPermiss ion has a target string which controls the principal names where alerts can be sent. A
wildcard is allowed at the end of the target string, to allow sending alerts to any principal with a
name matching the given prefix. The “*” target means that alerts can be sent to any destination.
AlertPermission(String)

117.19.3.1 public AlertPermission (String target)

target the name of a principal, can end with * to match any principal identifier with the given prefix

 Creates a new AlertPermiss ion object with its name set to the target string. Name must be non-null
and non-empty.

Throws NullPointerException – if name is nul l

IllegalArgumentException – if name is empty
AlertPermission(String,String)

117.19.3.2 public AlertPermission (String target , String actions)

target the name of the server, can end with * to match any server identifier with the given prefix

actions no actions defined, must be “*” for forward compatibility

 Creates a new AlertPermiss ion object using the ‘canonical’ two argument constructor. In this version
this class does not define any actions, the second argument of this constructor must be “*” so that this
class can later be extended in a backward compatible way.

Throws NullPointerException – if name or act ions is nul l

IllegalArgumentException – if name is empty or act ions is not “*”
equals(Object)

117.19.3.3 public boolean equals (Object obj)

obj the object to compare to this AlertPermission instance

 Checks whether the given object is equal to this AlertPermission instance. Two AlertPermission
instances are equal if they have the same target string.

Returns true if the parameter represents the same permissions as this instance
getActions()

117.19.3.4 public String getActions ()

 Returns the action list (always * in the current version).

Returns the action string “*”
hashCode()

117.19.3.5 public int hashCode ()

 Returns the hash code for this permission object. If two AlertPermission objects are equal according
to the equals(Object) method, then calling this method on each of the two AlertPermission objects
must produce the same integer result.

Returns hash code for this permission object
implies(Permission)

117.19.3.6 public boolean implies (Permission p)

p the permission to check for implication
Page 404 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security
 Checks if this AlertPermission object implies the specified permission. Another AlertPermission
instance is implied by this permission either if the target strings are identical, or if this target can be
made identical to the other target by replacing a trailing “*” with any string.

Returns true if this AlertPermission instance implies the specified permission
newPermissionCollection()

117.19.3.7 public PermissionCollection newPermissionCollection ()

 Returns a new PermissionCollection object for storing AlertPermission objects.

Returns the new PermissionCollection
DmtPermission

117.19.4 public class DmtPermission
extends Permission
Controls access to management objects in the Device Management Tree (DMT). It is intended to con-
trol local access to the DMT. DmtPermission target string identifies the management object URI and
the action field lists the OMA DM commands that are permitted on the management object. Exam-
ple:

DmtPermission(”./OSGi/bundles”, “Add,Replace,Get”);

This means that owner of this permission can execute Add, Replace and Get commands on the ./
OSGi/bundles management object. It is possible to use wildcards in both the target and the actions
field. Wildcard in the target field means that the owner of the permission can access children nodes
of the target node. Example:

DmtPermission(”./OSGi/bundles/*”, “Get”);

This means that owner of this permission has Get access on every child node of ./OSGi/bundles. The
asterix does not necessarily have to follow a ‘/’ character. For example the “./OSGi/a*” target matches
the . /OSGi/appl ications subtree.

If wildcard is present in the actions field, all legal OMA DM commands are allowed on the designated
nodes(s) by the owner of the permission. Action names are interpreted case-insensitively, but the
canonical action string returned by getActions() uses the forms defined by the action constants.
ADD

117.19.4.1 public static final String ADD = “Add”

Holders of DmtPermission with the Add action present can create new nodes in the DMT, that is they
are authorized to execute the createInteriorNode() and createLeafNode() methods of the DmtSession.
This action is also required for the copy() command, which needs to perform node creation opera-
tions (among others).
DELETE

117.19.4.2 public static final String DELETE = “Delete”

Holders of DmtPermission with the Delete action present can delete nodes from the DMT, that is
they are authorized to execute the deleteNode() method of the DmtSession.
EXEC

117.19.4.3 public static final String EXEC = “Exec”

Holders of DmtPermission with the Exec action present can execute nodes in the DMT, that is they
are authorized to call the execute() method of the DmtSession.
GET

117.19.4.4 public static final String GET = “Get”

Holders of DmtPermission with the Get action present can query DMT node value or properties, that
is they are authorized to execute the isLeafNode(), getNodeAcl(), getEffectiveNodeAcl(), getMetaN-
ode(), getNodeValue(), getChildNodeNames(), getNodeTitle(), getNodeVersion(), getNodeTimeS-
tamp(), getNodeSize() and getNodeType() methods of the DmtSession. This action is also required for
the copy() command, which needs to perform node query operations (among others).
REPLACE
OSGi Service Platform Release 4, Version 4.3 Page 405

org.osgi.service.dmt.security Dmt Admin Service Specification Version 2.0
117.19.4.5 public static final String REPLACE = “Replace”

Holders of DmtPermission with the Replace action present can update DMT node value or properties,
that is they are authorized to execute the setNodeAcl(), setNodeTitle(), setNodeValue(), setNode-
Type() and renameNode() methods of the DmtSession. This action is also be required for the copy()
command if the original node had a title property (which must be set in the new node).
DmtPermission(String,String)

117.19.4.6 public DmtPermission (String dmtUri , String actions)

dmtUri URI of the management object (or subtree)

actions OMA DM actions allowed

 Creates a new DmtPermission object for the specified DMT URI with the specified actions. The given
URI can be:

• “*” , which matches all valid (see Uri. isVal idUri(Str ing)) absolute URIs;
• the prefix of an absolute URI followed by the * character (for example “./OSGi/L*”), which

matches all valid absolute URIs beginning with the given prefix;
• a valid absolute URI, which matches itself.

Since the * character is itself a valid URI character, it can appear as the last character of a valid abso-
lute URI. To distinguish this case from using * as a wildcard, the * character at the end of the URI
must be escaped with the \ charater. For example the URI “./a*” matches “./a” , “./aa” , “./a/b” etc.
while “./a*” matches “ ./a*” only.

The actions string must either be “*” to allow all actions, or it must contain a non-empty subset of the
valid actions, defined as constants in this class.

Throws NullPointerException – if any of the parameters are null

IllegalArgumentException – if any of the parameters are invalid
equals(Object)

117.19.4.7 public boolean equals (Object obj)

obj the object to compare to this DmtPermission instance

 Checks whether the given object is equal to this DmtPermission instance. Two DmtPermission
instances are equal if they have the same target string and the same action mask. The “*” action mask
is considered equal to a mask containing all actions.

Returns true if the parameter represents the same permissions as this instance
getActions()

117.19.4.8 public String getActions ()

 Returns the String representation of the action list. The allowed actions are listed in the following
order: Add, Delete, Exec, Get, Replace. The wildcard character is not used in the returned string, even
if the class was created using the “*” wildcard.

Returns canonical action list for this permission object
hashCode()

117.19.4.9 public int hashCode ()

 Returns the hash code for this permission object. If two DmtPermission objects are equal according to
the equals(Object) method, then calling this method on each of the two DmtPermission objects
must produce the same integer result.

Returns hash code for this permission object
implies(Permission)

117.19.4.10 public boolean implies (Permission p)

p the permission to check for implication

 Checks if this DmtPermission object “implies” the specified permission. This method returns fa lse if
and only if at least one of the following conditions are fulfilled for the specified permission:

• it is not a DmtPermission
Page 406 OSGi Service Platform Release 4, Version 4.3

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security
• its set of actions contains an action not allowed by this permission
• the set of nodes defined by its path contains a node not defined by the path of this permission

Returns true if this DmtPermission instance implies the specified permission
newPermissionCollection()

117.19.4.11 public PermissionCollection newPermissionCollection ()

 Returns a new PermissionCollection object for storing DmtPermission objects.

Returns the new PermissionCollection
DmtPrincipalPermission

117.19.5 public class DmtPrincipalPermission
extends Permission
Indicates the callers authority to create DMT sessions on behalf of a remote management server.
Only protocol adapters communicating with management servers should be granted this permis-
sion.

DmtPrincipalPermission has a target string which controls the name of the principal on whose
behalf the protocol adapter can act. A wildcard is allowed at the end of the target string, to allow
using any principal name with the given prefix. The “*” target means the adapter can create a session
in the name of any principal.
DmtPrincipalPermission(String)

117.19.5.1 public DmtPrincipalPermission (String target)

target the name of the principal, can end with * to match any principal with the given prefix

 Creates a new DmtPrincipalPermission object with its name set to the target string. Name must be
non-null and non-empty.

Throws NullPointerException – if name is nul l

IllegalArgumentException – if name is empty
DmtPrincipalPermission(String,String)

117.19.5.2 public DmtPrincipalPermission (String target , String actions)

target the name of the principal, can end with * to match any principal with the given prefix

actions no actions defined, must be “*” for forward compatibility

 Creates a new DmtPrincipalPermission object using the ‘canonical’ two argument constructor. In this
version this class does not define any actions, the second argument of this constructor must be “*” so
that this class can later be extended in a backward compatible way.

Throws NullPointerException – if name or act ions is nul l

IllegalArgumentException – if name is empty or act ions is not “*”
equals(Object)

117.19.5.3 public boolean equals (Object obj)

obj the object to compare to this DmtPrincipalPermission instance

 Checks whether the given object is equal to this DmtPrincipalPermission instance. Two DmtPrinci-
palPermission instances are equal if they have the same target string.

Returns true if the parameter represents the same permissions as this instance
getActions()

117.19.5.4 public String getActions ()

 Returns the action list (always * in the current version).

Returns the action string “*”
hashCode()

117.19.5.5 public int hashCode ()

 Returns the hash code for this permission object. If two DmtPrincipalPermission objects are equal
according to the equals(Object) method, then calling this method on each of the two DmtPrincipalP-
ermission objects must produce the same integer result.
OSGi Service Platform Release 4, Version 4.3 Page 407

References Dmt Admin Service Specification Version 2.0
Returns hash code for this permission object
implies(Permission)

117.19.5.6 public boolean implies (Permission p)

p the permission to check for implication

 Checks if this DmtPrincipalPermission object implies the specified permission. Another DmtPrinci-
palPermission instance is implied by this permission either if the target strings are identical, or if this
target can be made identical to the other target by replacing a trailing “*” with any string.

Returns true if this DmtPrincipalPermission instance implies the specified permission
newPermissionCollection()

117.19.5.7 public PermissionCollection newPermissionCollection ()

 Returns a new PermissionCollection object for storing DmtPrincipalPermission objects.

Returns the new PermissionCollection

117.20 References
[1] OMA DM-TND v1.2 draft

http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-
DM-TND-V1_2-20050615-C.zip

[2] OMA DM-RepPro v1.2 draft:
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-
DM-RepPro-V1_2_0-20050131-D.zip

[3] IETF RFC2578. Structure of Management Information
Version 2 (SMIv2), http://www.ietf.org/rfc/rfc2578.txt

[4] Java™ Management Extensions Instrumentation and Agent Specification v1.2, October 2002,
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

[5] JSR 9 - Federated Management Architecture (FMA) Specification
Version 1.0, January 2000, http://www.jcp.org/en/jsr/detailid=9

[6] WBEM Profile Template, DSP1000
Status: Draft, Version 1.0 Preliminary, March 11, 2004
http://www.dmtf.org/standards/wbem

[7] SNMP
http://www.wtcs.org/snmp4tpc/snmp_rfc.htm#rfc

[8] RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

[9] MIME Media Types
http://www.iana.org/assignments/media-types/

[10] RFC 3548 The Base16, Base32, and Base64 Data Encodings
http://www.ietf.org/rfc/rfc3548.txt

[11] Secure Hash Algorithm 1
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[12] TR-069 CPE WAN Management Protocol (CWMP)
Customer Premises Equipment Wide Area Network Management Protocol (CWMP)
http://en.wikipedia.org/wiki/TR-069

[13] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/
Page 408 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 Introduction
131 TR069 Connector Service
Specification
Version 1.0

131.1 Introduction
This chapter provides a specification for the TR069 Connector, an assistant to a Protocol Adapter
based on [1] TR-069 Amendment 3. A TR069 Connector provides a mapping of TR-069 concepts to/from
the Dmt Admin Service Specification on page 285. It mainly handles the low level details of Object/
Parameter Name to Dmt Admin URI mapping, and vice versa. TR-069 Protocol Adapter developers
can use this service to simplify the use the Dmt Admin service. The TR069 Connector service is based
on the definition of a Protocol Mapping in Protocol Mapping on page 328. It is assumed that the reader
understands TR-069 and has a basic understanding of the Dmt Admin service.

The examples in this specification are not from a Broadband Forum Technical Report and are purely
fictional.

131.1.1 Essentials
• Connector – Provide a TR-069 view on top of the Dmt Admin service.
• Simplify – Simplify the handling of data models implemented through the DMT through the TR-

069 protocol.
• Browse – Implement the constructs for MAP and LIST handling.
• Native – Provide a mechanism for Data Plugins to convey conversion information to the Protocol

Adapter so that native TR-069 object models can be implemented as Data Plugins.

131.1.2 Entities
• TR069ConnectorFactory – Provides a way to create a TR069Connector that is bound to an active

Dmt Session.
• TR069Connector – Created by TR069ConnectorFactory on a Dmt Session; provides methods that

helps in using the TR-069 namespace and RPCs on a Dmt Admin DMT.
• ParameterValue – The value of a parameter, maps to the TR-069 ParameterValueStruct .
• Parameter Info – Information about the parameter, maps to the TR-069 Parameter InfoStruct .
• DMT – The Device Management Tree as available through the Dmt Admin service.

Figure 131.1 TR-069 Entities

TR069
Connector
Factory impl

TR-069 Protocol
Adapter Impl

TR069
Connector

Dmt Admin
Service Impl

Dmt
Admin

Remote Manager

Factory
OSGi Service Platform Release 4, Version 4.3 Page 409

TR-069 Protocol Primer TR069 Connector Service Specification Version 1.0
131.1.3 Synopsis
A TR-069 Protocol Adapter first creates a Dmt Session on the node in the DMT that maps to an object
model that should be visible to the TR-069 Management Server. A Protocol Adapter can choose to
map a whole sub-tree or it can create a virtual object model based on different nodes, this depends on
the implementation of the Protocol Adapter.

When a TR-069 RPC arrives, the Protocol Adapter must parse the SOAP message and analyze the
request. In general, an RPC can request the update or retrieval of multiple values. The Protocol
Adapter must decompose these separate requests into single requests and execute them as a single
unit. If the request is a retrieval or update of a data model maintained in the Dmt Admin service then
the Protocol Adapter can use a TR069 Connector to simplify implementing this request. The TR069
Connector Factory service can be used to create an instance of a TR069 Connector that is based on a
specific Dmt Session.

The TR069 Connector maps the Object or Parameter Name to a URI and perform the requested opera-
tion on the corresponding node. The name-to-URI conversion supports the LIST and MAP concepts as
defined in OSGi Object Modeling on page 327.

The TR069 Connector handles conversion from the Dmt Admin data types to the TR-069 data types.
There is a default mapping for the standard Dmt Admin formats including the comma separated list
supported by TR-069. However, Data Plugins that implement TR-069 aware object models can
instruct the TR069 Connector by providing specific MIME types on the Meta Node.

Objects can be added and deleted but are, in general, not added immediately. These objects are lazily
created when they are accessed. The reason is that TR-069 does not support the concept of a session
with atomic semantics, a fact leveraged by certain object models in the DMT. Therefore, adding an
object will assign a instance id to an object but the creation of the object is delayed until the object is
used.

After all the requests in an RPC are properly handled the TR069 Connector must be closed, the Dmt
Session must be closed separately.

Errors are reported to the caller as they happen, if a Dmt Admin service error is fatal then the Dmt
Session will be closed and it will be necessary to create a new TR069 Connector.

131.2 TR-069 Protocol Primer
The [6] Broadband Forum is an organization for broadband wire-line solutions. They develop multi-
service broadband packet networking specifications addressing inter-operability, architecture, and
management. Their specifications enable home, business and converged broadband services, encom-
passing customer, access and backbone networks. One of the specifications of the Broadband Forum
is the Technical Report No 69, also called TR-069, a specification of a management model.

131.2.1 Architecture
[1] TR-069 Amendment 3 is a technical report (Broadband Forum’s specification model) that specifies a
management protocol based on [4] SOAP 1.1 over HTTP. The TR-069 technical report defines a num-
ber of mandatory Remote Procedure Calls (RPCs) that allow a management system, the Auto-Config-
uration Server (ACS), to discover the capabilities of the Consumer Premises Equipment (CPE) and do
basic management. This model is depicted in Figure 131.2.

Figure 131.2 TR-069 Reference Architecture

ACS CPE
get/set/...

Inform

SOAP/HTTP
Page 410 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 TR-069 Protocol Primer
In TR-069, the CPE is always initiating the conversation with the ACS though the ACS can request a
session.

Inside the CPE there is a Protocol Adapter that implements the TR-069 RPCs. These RPCs read and
modify the objects models present in the CPE. There is usually a mechanism that allows the different
modules in the CPE to contribute a management object to the Protocol Adapter so that the Protocol
Adapter does not require knowledge about highly specialized domains.

[2] TR-106 Amendment 3 specifies object model guidelines to be followed by all TR-069-enabled
devices as well as a formal model to document these object models.

131.2.2 Object Model
The object model of TR-069 consists of objects that contain parameters as well as tables that contain
objects. TR-106 says:

• Object – A named collection of parameters and/or other objects.
• Parameter – A name-value pair.
• Table – An enumeration of objects identified by an instance id.

Figure 131.3 Type Model TR-069

Objects can also occur in tables, in that case the object name is suffixed with an instance id. An object
that has no instance id is a singleton, with an instance id they are referred to as tables. In the Broad-
band Forum technical reports tables end in the special suffix {i} , the instance id.

This provides the following structural definition for this specification:

named-value ::= NAME (object | table | parameter)

object ::= named-value +

table ::= (instance object)*

parameter ::=

instance ::= INTEGER > 0

TR-069 talks about partial paths and parameter names. In this specification, a name is reserved for the
short relative name used inside an object, also called the local name. The term path is reserved for the
combination of object names, table names, and instance ids that are separated by a full stop
(’ . ’ \u022D) and used to traverse an instance model.

path ::= parameter-path | object-path | table-path

segment ::= NAME ’.’ (instance ’.’)?

object-path ::= segment+

table-path ::= segment* NAME ’.’ // expect INTEGER next

parameter-path ::= object-path NAME

instance-path ::= table-path instance ’.’

In this specification the following terms are used consistently:

• Object – Refers to a named type defining a certain set of parameters, objects, and tables.

Object

Table

name

Parameter

instance id

0..n 1
1

111

1

1

1

OSGi Service Platform Release 4, Version 4.3 Page 411

TR-069 Protocol Primer TR069 Connector Service Specification Version 1.0
• Table – A list of instances for a given object.
• Instance – An object element in a table at a certain id.
• Instance Id – The integer id used to identify an instance in a table.
• Alias – A name chosen by the ACS that uniquely identifies an instance.
• Singleton – An object that is not in a table.
• Name – The name of an object, table, or parameter refers to the local name only and not the path.
• Segment – A component in a path that always ends in a full stop. A segment can contain instance

ids to identify an instance.
• Path – A string uniquely identifying a path in the tree to either a parameter, an object, or a table.
• Object Path – A path that uniquely identifies an instance or a singleton. An object path must

always ends in a full stop. This maps to the TR-069 concept of an ObjectName .
• Parameter Path – The name of the parameter preceded by the owning object. A path that does not

end in a full stop is always a parameter path.
• Table Path – An object path that lacks the last instance id. In TR-069 this is also sometimes called a

partial path. The last segment is an object path that must be followed by an instance id to address
an instance.

• Instance Path – A path to an instance in a table

This provides a hierarchy as depicted in Figure 131.4.

Figure 131.4 TR-069 Object and Parameter naming relative to the parameter MemoryStatus

131.2.3 Parameter Names
The grammars for parameter names and object names are as follows:

NAME ::= (Letter | ’_’)

 (Letter | Digit | ’-’ | ’_’ | CombiningChar | Extender)*

The productions Letter , Digit , CombiningChar , and Extender are defined in [5] Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). The name basically supports the full unicode character set for letters
and digits (including digits for other languages), including sets for languages like Hebrew and Chi-
nese. Examples of different parameter names are:

name // simple name

Name // case sensitive

_

--_

ångstrom

þingsten

InternetGateWayDevice

DeviceInfo

Memory
siblings

ancestors

descendants
children sub-tree

parameter

Services

VendorConfigFile.{i}

object

Device
Log Status

Free
Page 412 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 TR-069 Protocol Primer
131.2.4 Parameter Type
A parameter value can have one of the data types defined in[2] TR-106 Amendment 3, they are summa-
rized in Table 131.1

SOAP messages always provide a type for the parameter value. For example:

<ParameterValueStruct>

 <name>Parameter1</name>

 <value xsi:type="long">1234</value>

</ParameterValueStruct>

The xsi prefix refers to the http://www.w3.org/2001/XMLSchema-instance namespace. However,
this makes not all TR-106 types well defined, for example in XML Schema base64 is called
base64Binary . This specification assumes that the names and definitions in Table 131.1 and provides
appropriate constants for the Protocol Adapter.

Parameters can be read-only or read-write. All writable Parameters must also be readable although
security can cause certain parameters to be read as an empty string, for example passwords. Parame-
ters can reflect configuration as well as status of the device. External causes can cause parameters to
change at any time. The TR-069 protocol has the facility to call an Inform RPC to provide the ACS
with a notification of changed parameters.

131.2.5 Parameter Attributes
Parameter attributes provide the meta data for a parameter. In TR-069, the attributes are used to man-
age notifications and access control. Each parameter in TR-069 can be watched by the ACS by setting
the corresponding parameter attribute to active or passive notifications. Passive notifications are passed
whenever the CPE communicates with the ACS and active notifications initiate a session. Parameters
that have a notification are said to be watched.

Access to the parameters can be managed by setting Access Control Lists via the corresponding
parameter attribute.

Table 131.1 TR-106 Data types

TR-106 Type Description

object Represents a structured type
str ing A Unicode string, optionally restricted in length
int 32 bit integer
long 64 bit integer
unsignedInt 32 bit unsigned integer
unsignedLong 64 bit unsigned integer
boolean Can have values 0 or false (fa lse) or 1 or true (true)
dateTime TR-069 recognizes three different date times. These three cases are differenti-

ated in the following way:

• Unknown time – If the time is not known.
• Relative time – Relative time is the time since boot time.
• Absolute time – Normal date and time.

base64 An array of bytes
hexBinary An array of bytes
OSGi Service Platform Release 4, Version 4.3 Page 413

TR-069 Protocol Primer TR069 Connector Service Specification Version 1.0
131.2.6 Objects and Tables
TR-106 has the concept of an object stored in a table to allow multiple instances of the same type. It is
part of the object definition if it is stored in a table or not. An object cannot both appear as a table
instance and as a singleton.

Each instance in the table is addressed with an integer >= 1. This instance id is not chosen by the ACS
since it can be required to create a new instance due to an external event. For example the user plug-
ging in a USB device or starting a new VOIP session. The ACS must discover these instance ids by ask-
ing the device for the instance ids in a table.

For example, the parameter path Device.LAN.DHCPOption.4.Request refers to a parameter on a
DHCPOption object that has the instance id 4. Instance ids are not sequential nor predictable. It is the
responsibility of the device to choose an instance id when an object is created. Instance ids are
assumed to be persistent so that the ACS can cache results from a discovery process.

Newer TR-069 objects have been given an Alias parameter. This alias uniquely identifies the table
instance.

TR-069 defines a convention for a parameter that contains the number of entries in a table. Any
parameter name that ends with NumberOfEntr ies contains the number of entries in a table with the
name of the prefix in the same object. For example A.B.CNumberOfEntr ies provides the number of
entries in the table:

A.B.C.

131.2.7 RPCs
The object model implemented in a device is accessed and modified with RPCs. RPCs are remote pro-
cedure calls; a way to invoke a function remotely. TR-069 defines a number of mandatory RPCs and
provides a mechanism to extend and discover the set of RPCs implemented by a CPE. The mandatory
RPCs are listed in Table 131.2.

131.2.8 Authentication
The security model of TR-069 is based around the authentication taking place during the setup of a
TLS (formerly SSL) connection. This authentication is then used to manage the access control lists via
the parameter attributes.

Table 131.2 TR-069 RPCs

RPC Description

GetRPCMethods Return a list of RPC methods
SetParameterValues Set one or more parameter values
GetParameterValues Get one or more parameter values
GetParameterNames Get the parameter information for a parameter, object, or table.
SetParameterAttr ibutes Set parameter attributes
GetParameterAttr ibutes Get parameter attributes
AddObject Add a new object to a table
DeleteObject Delete an object from a table
Download Download software/firmware
Reboot Reboot the device
Page 414 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 TR069 Connector
131.2.9 Sessions and Transactions
A session with the ACS is always initiated by the CPE. The ACS can request a session, but it is always
the CPE that starts a session by opening the connection to the ACS and then sending an Inform RPC.
The session ends when the connection is closed, which happens after the ACS has informed the CPE
it has no more requests.

During a session, a CPE has the requirements that parameters must not change due to other sources
than the session and that the parameters are consistent with the changes. However, there is no trans-
actionality over the session, atomicity is only guaranteed for one RPC. An RPC can consist of multiple
parameter modifications that should therefore be atomically applied.

131.2.10 Events and Notifications
TR-069 sessions always start with an Inform RPC from the CPE to the ACS. This RPC contains any
events and notifications for parameters that were watched. Events signal crucial state changes from
the CPE to the ACS. For example, if a device has rebooted it will inform the ACS. Notifications are
caused by parameter changes, the Inform RPC contains a list of events and parameters with changed
values.

131.2.11 Errors
Invoked RPCs can return a fault status if errors occur during the execution of the RPC. For ACS to CPE
RPCs these fault codes start at 9000, for the reverse direction they start at 8000. Each RPC defines the
fault codes that can occur and their semantics in that context.

131.3 TR069 Connector
A TR-069 Protocol Adapter must be able to browse foreign Data Plugins on the device and support
native TR069 objects models implemented by a Data Plugin. As Data Plugins are available through
the Dmt Admin service, the Protocol Adapter must provide a bi-directional mapping between Dmt
Admin nodes and TR-069 parameters, notifications, and error codes.The mapping must enable a Data
Plugin to provide a native Broadband Forum object model that limits itself to the required RPCs.

131.3.1 Role
Developers implementing the TR-069 protocol are not likely to be also experts in the Dmt Admin ser-
vice. This specification therefore provides a TR069 Connector Factory service that provides an object
that can map from the TR-069 concepts to the Dmt Admin concepts, supporting all the constructs
defined in the OSGi Object Modeling on page 327.

The TR069 Connector only specifies a number of primitive functions to manage the DMT. Parsing
the SOAP messages, handling the notifications, and splitting the requests for TR069 Connector is the
responsibility of the Protocol Adapter. The reason that the TR069 Connector does not work on a
higher level is that a Protocol Adapter for TR-069 will likely communicate with other subsystems in
the CPE than the OSGi framework alone. Though the Dmt Plugin model is an attractive approach to
implement object models, there is history. Existing code will likely not be rewritten just because it
can be done better as a Data Plugin.

For example, a Data Plugin could implement the Device.DeviceInfo. object. However, this object
actually resides in the DMT at a node:

./TR-069/Device/DeviceInfo
OSGi Service Platform Release 4, Version 4.3 Page 415

TR069 Connector TR069 Connector Service Specification Version 1.0
A TR-069 Protocol Adapter will therefore be confronted with a number of data models that reside in
different places. Each place provides one or more consistent data models but it is the responsibility of
the TR-069 Protocol Adapter to ensure the ACS gets a consistent and standardized view of the whole.
To create this consistent view it will be necessary to adapt the paths given in the RPCs. It is expected
that a Protocol Adapter is required to have a certain amount of domain knowledge, for example a
table, that maps TR-069 paths to their actual providers.

The basic model is depicted in Figure 131.5.

Figure 131.5 TR-069 Connector Context

The Protocol Adapter can be implemented as an OSGi Bundle or it can be implemented in native code
in the device. Both architectures are viable. For certain aspects like the TR-157a3 Software Modules a
certain amount of native code will be required to manage the OSGi Framework as an Execution Envi-
ronment.

In an environment where the Protocol Adapter is implemented outside an OSGi Framework it will be
necessary to create a link to the Dmt Admin service. This can be achieved with a proxy bundle inside
the OSGi framework that dispatches any requests from the native Protocol Adapter to the functional-
ity present in the OSGi Framework. In this specification, it is assumed that such proxies can be
present. However, the examples are all assuming that the Protocol Adapter is running as a Bundle.

131.3.2 Obtaining a TR069 Connector
A TR069 Connector is associated with a Dmt Session, the TR069ConnectorFactoryprovides the
create(DmtSession) method that will return a TR069Connector object. This object remains associ-
ated with the Dmt Session until the Dmt Session is closed, which can happen because of a fatal error
or when the TR069 Connector Factory is unregistered or un-gotten/released. Creating a TR069 Con-
nector must not be expensive, Protocol Adapters should create and close them at will. Closing the
connector must not close the corresponding Dmt Session.

The TR069 Connector must use the root of the session as its base. That is, their URI mapping all
parameters must start from the base. For example, if the session is opened at . /TR-069 then the
parameter IGD/DeviceInfo/Manufacturer must map to URI . /TR-069/IGD/DeviceInfo/
Manufacturer .

If a Protocol Adapter will modify the tree then it should use an atomic session for all RPCs even if the
RPC indicates read-only. The reason for the atomicity is that in certain cases the lazy behavior of the
TR069 Connector requires the creation of objects during a read operation. If a non-atomic session is
used then the TR069 Connector must not attempt to lazily create objects and reject any
addObject(Str ing) and deleteObject(Str ing) methods. See also Lazy and Sessions on page 420.

TR-069
Protocol Adapter

ACS Dmt Admin
Impl

TR-069 Foreign
Data Plugin Impl

TR-069 Native
Data Plugin Impl

Dmt Admin

Dmt Event
Listener

Data Plugin

TR069 Connec-
torFactory Impl

TR069
Connector Factory

Other object
model providers

Notification
Service Impl

Notification
Service

Remote
Alert Sender
Page 416 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 TR069 Connector
131.3.3 Supported RPCs
The TR069 Connector supports a limited number of RPCs, and for those RPCs it only supports the sin-
gleton case. The TR069 Connector provides support for the RPCs primitives listed in Table 131.2.

131.3.4 Name Escaping
An object or parameter path describes a traversal through a set of objects, this is almost the same
model that Dmt Admin provides. The difference is that the characters allowed in a TR-069 parameter
name are different from the Dmt Admin node names and that TR-069 does not support application
specific parameter/object names like the Dmt Admin service does.

A path consist of a number segments, where each segment identifies a name or instance id. TR-069
names can always be mapped to Dmt Admin node names as the character set of TR-069 parameter
names is restricted and falls within the character set of the Dmt Admin node names. The length of a
segment could be a problem but TR-069 paths are generally limited to have a length of less than 256
bytes. This specification therefore assumes that a segment of a TR-069 path is never too long to fit in a
Dmt Admin node name.

Mapping a Dmt Admin node name to a parameter name, needed for browsing, is more complicated as
Dmt Admin node names allow virtually every Unicode character except the forward slash (’ / ’
\u002F). It is therefore necessary to escape Dmt Admin URIs into a path that is acceptable for the TR-
069 protocol. It is assumed that escaping is only used in a browsing mode since native object models
will never require escaping. The TR069 Connector must return names from the
getParameterNames(Str ing,boolean) call that the ACS can handle, optionally show to the user, and
then use to construct new paths for subsequent RPCs.

There is no obvious escape character defined in TR-069, like for example the backward slash that the
Dmt Admin uses for escaping. The character for escaping is the latin small letter thorn (’þ’ \u00FE)
because his character is highly unlikely to ever be used in a TR-069 path for a native object model,
however, even if it is then it would be no problem for the escaping algorithm. The thorn is a letter,
allowing it to be used as the first character in a parameter name, this allows escaping the first charac-
ter.

A character in a segment that is not allowed must be escaped into the following sequence:

þ[0-9A-Z][0-9A-Z][0-9A-Z][0-9A-Z]

Table 131.3 Supported TR-069 RPCs

RPC Related Method Description

SetParameterValues setParameterValue(Str ing,Str ing, int) Set one or more parameter values. The connector sup-
ports setting a single value, ensuring the proper path
traversal and data type conversion

GetParameterValues getParameterValue(Str ing) Get one or more parameter values. The connector sup-
ports getting a single value, converting it to a
ParameterValue object, which contains the value and
the type.

GetParameterNames getParameterNames(Str ing,boolean) Get the paths of objects and parameters from the sub-
tree or children that begins at the parameter path. The
TR-069 Connector supports the full traversal of the
given path and the next level option.

AddObject addObject(Str ing) Add a new object to a table. The fully supports the
semantics, taking the MAP and LIST nodes into
account. Node creation can be delayed until a node is
really needed.

DeleteObject deleteObject(Str ing) Delete an object from a table.
OSGi Service Platform Release 4, Version 4.3 Page 417

TR069 Connector TR069 Connector Service Specification Version 1.0
The 4 hexadecimal upper case digits form a hexadecimal number that is the Unicode for that charac-
ter. Each character that does not conform to the syntax specified in Parameter Names on page 412 or
the thorn character itself must be replaced with the escape sequence. For example, the name 3ABCþ
must be translated to:

þ0033ABCþ00FE

If the segment is an instance id then the segment must not be escaped. Otherwise, if the segment does
not start with a Letter or underscore, then the first character must be escaped with the thorn.

Unescaping must undo the escaping. Any sequence of þ[0-9A-Z][0-9A-Z][0-9A-Z][0-9A-Z] must
be replaced with the character with the corresponding Unicode. A thorn found without the subse-
quent 4 hexadecimal upper case digits must be treated as a single thorn. For readability it is best to
minimize the escaping. However, any name given to the TR069 Connector that is escaped must be
properly interpreted even if the unescaped string did not require escaping. For example,
þ0031þ0032þ0033 must be usable as an object instance id as the unescaped form is 123, which is a
number.

A number of examples of the escaping are shown in Table 131.4.

The TR069 Connector only accepts escaped paths and returns escaped paths. When a method returns
a path it must be properly escaped and suitable as a TR-069 path.

131.3.5 Root
In general, the TR-069 Protocol Adapter is free to choose what parts of the DMT it wants to expose. A
simple mapping table containing path prefixes can be used to define the handler for the given data
model. However, since the intention is to allow TR-069 object models to be implemented in Dmt
Admin Data Plugins there is a need to know where those plugins should reside in the DMT. This root
is defined as:

./TR-069

Any Data Plugin that wants to provide an object model in the TR-069 family of object models should
provide a Data Plugin rooted at the TR-069 root. For example, a Data Plugin implementing the
InternetGatewayDevice.DeviceInfo. object should register its Data Plugin under the data Root URI . /
TR-069/ InternetGatewayDevice/DeviceInfo

Table 131.4 Escaping Parameter Names

Segment Dmt Admin Escaped TR-069 Escaped Notes

DeviceInfo DeviceInfo DeviceInfo Most common case.
3x Hel lo World 3x Hel lo World þ0033xþ0020Hel loþ0020World The initial digit and the spaces must be

escaped in TR-069.
þorn þorn þorn

þ00FEorn
A single thorn does not require escaping
as it is not followed by 4 hexadecimal dig-
its. So both forms are valid for unescap-
ing although escaping must deliver the
þ00FE form.

appl icat ion/bin appl ication\/bin applicat ionþ002Fbin The solidus must be escaped in both.
234 234 234 A numeral does not require escaping, it is

assumed to be an instance id.
234x 234x þ003234x A name that starts with a digit requires

the first digit to be escaped.
þ00FEorn þ00FEorn þ00FE00FEorn It is possible to encode even already

escaped names.
Page 418 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 TR069 Connector
131.3.6 DMT Traversal
A path must be mapped from the TR-069 hierarchy to the Dmt Admin nodes URI. The Protocol
Adapter decides the base in the DMT by opening the Dmt Session with a session root parameter. The
TR-069 Connector must then traverse the tree from this base based on the TR-069 path. The Protocol
Adapter must use the Instance Id on page 334 for MAP and LIST nodes to traverse the DMT.

Assume that the URI of a node is requested for a given path P . The path P must be traversed from the
root node. The root node can find the child, the first segment in P, and then use the same routine
recursively for the remainder. This recursive routine must perform the following actions on each cur-
rent node:

• If path P is empty, then this is the requested node.
• S = first segment of path P up to the first full stop.
• R = remainder of path P after the first full stop or empty if no full stop.
• If S is an alias (surrounded by ’ [’ and ’] ’), replace S with the alias inside the brackets. For Dmt

Admin nodes aliases are identical to normal node names.
• unescape S (replace the thorns)
• If the current node is a MAP or a LIST and S is an integer

• Get the list L of children of the current nodes
• If the nodes in L have an InstanceId node find the node where the InstanceId matches the seg-

ment S as integer, this becomes then the next level node N and the algorithm is repeated with
path R .

• If no next node N was found then make it the child node of the current node with the name S .
• Repeat the algorithm with N with path R

Since each node that is traversed this way knows the node name it corresponds to it is easy to create
an encoded URI for Dmt Admin.

For example, the TR-069 path:

Device.DeviceInfo.Interface.14.Connections.3.BytesSent

Assuming that Interface node is a MAP node and its children have an InstanceId node, where the
WAN_1 node has an InstanceId of 14.

The Connections node is a LIST and the children have no InstanceId , therefore the name is the index.
The translated URI then looks like:

Device/DeviceInfo/Interface/WAN_1/Connections/3/BytesSent

The toURI(Str ing,boolean) method can take a TR-069 path and perform the substitutions. If the cre-
ate parameter is true then the TR069 Connector will create missing nodes if possible. Missing nodes
can only be created under a LIST or MAP node.

A missing node is a node that is addressed by a path but not present in the DMT. For example, the root
of the session is . /TR-069 and the parameter path is A.B.C . If the DMT contains . /TR-069/A but not . /
TR-069/A/B then node B is a missing node.

131.3.7 Synthetic Nodes
The Protocol Adapter must synthesize an Alias parameter and for any MAP or LIST node called X it
must provide a sibling XNumberOfEntries parameter that provides the number of entries in table X .
OSGi Service Platform Release 4, Version 4.3 Page 419

TR069 Connector TR069 Connector Service Specification Version 1.0
131.3.7.1 Alias

The Alias node is a read-write parameter that must map to the actual node name of its parent. For
example, . /A/B/C/Al ias must map to C . Reading it must provide the this parent’s node name and writ-
ing it must rename this parent’s node name. The Alias must be automatically provided on any child
of a MAP node. The Al ias parameter must also be returned in the result of
getParameterNames(Str ing,boolean) if its parent’s children are included. It is not possible to convert
an Alias parameter name to a URI as the Al ias node is synthetic and does not exist in the DMT. The
model of aliases are depicted in Figure 131.6.

Figure 131.6 Aliases

Aliases can be used by the ACS to set the key of a MAP . For example, if a set of properties is defined as
a MAP :

An ACS can first add an object to the table. This will create an entry with a calculated instance id.
However, the ACS can then rename the node with the Alias node. In pseudo code:

AddObject ..Properties. (returns node name = 3421)

SetParameterValue ..Properties.3421.Alias = MyKey

Alternatively, addressing with an alias in the parameter name would be simpler:

AddObject ..Properties.[MyKey]

131.3.7.2 Number Of Entries

TR-069 has the convention of parameters that end with NumberOfEntr ies . For example, the parame-
ter UserNumberOfEntr ies in the object InternetGatewayDevice object contains the number of
entries of the InternetGatewayDevice.User table.

The Protocol Adapter must synthesize these NumberOfEntries parameters for each MAP or LIST
node. The NumberOfEntries parameter must be a sibling of the MAP or LIST node. Any such parame-
ter must also be returned in the result of the getParameterNames(Str ing,boolean) method.

131.3.8 Lazy and Sessions
In the Dmt Admin service the session plays an important role in how the object model operates. Espe-
cially atomic sessions have a clear point to commit any changes so that many actions can be deferred
until all the information is available. In TR-069 there is no real session concept although one RPC
must be executed atomically even if it changes multiple parameters. As there are different RPCs to
create objects and set their parameters it is impossible to create and parameterize an object in a single
session. This creates problems with general DMT models.

It is recommended to operate all RPCs in an atomic session to allow these DMT models to leverage
the session commit phase. However, a TR-069 Connector must also accept a read only or exclusive
session. The session can then of course cause exceptions to be thrown at certain operations.

Alias

child
1

1

(synthetic)

node
name

Name Act Type Card. S Description

Propert ies Get MAP 1 P A Properties map
 [str ing] Get Set

Add Del
str ing 0. .n A Key/Value
Page 420 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 TR069 Connector
The connector must lazily create instances. An addObject(Str ing) method must not actually create
the object, it only has to create an instance id and ensure the uniqueness of this id over time. The id
must follow the rules from TR-069, it must not clash with an existing id even after such an id has
been used in the past.

This id is then returned to the ACS who will then use it in subsequent RPCs. When one of the subse-
quent RPCs tries to access this not-yet existent node, for example a get or set, then the TR069 Connec-
tor must create it before it sets or gets the value of this node. This lazy strategy allows the node
creation and the parameterization of that node to happen in a single session/RPC.

For example, in session 100 the addObject(Str ing) creates a new node. This node is not really created
but the unique instance id 4311 is assigned to it. After this RPC, the session is closed. The ACS
receives this instance and then prepares a GetParameterValues RPC to get the . . /4311/Foo parame-
ter. The management agent receives the RPC and opens a new session 200, it then calls
getParameterValue(Str ing) . The TR069 Connector will not find the appropriate entry 4311 in the
table. Instead of raising an error it creates this node and then gets the value for the . . /4311/Foo
parameter.

A Data Plugin implementing a native TR-069 object model can override the lazy behavior by adding a
applicat ion/x-tr-069-eager MIME type to the list of MIME types in the Meta Node. If this MIME
type is present then the node must be eagerly created during the addObject(Str ing) method.

The TR069 Connector must assign the unique id according to the TR-069 rules for instance ids.

131.3.9 Data Types
This specifications assume the [2] TR-106 Amendment 3 defined data types. TR-106 defines a number
of data types, derived from XML Schema and creates a number of sub-types to discriminate between
different use cases. A Protocol Adapter must be able to understand the types defined in Table 131.5 to
be able to faithfully define a data model based on [2] TR-106 Amendment 3. Discriminating between
some of the sub-types requires inspection of the data. Each sub-type requires mapping rules that are
defined later. Each mapping is assigned a unique MIME sub-type in the appl ication media type. That
is, the TR-069 int type has a MIME type of appl ication/x-tr-069-int .

It is the responsibility of the Protocol Adapter to properly clean up the parameter values, that is,
remove any unnecessary white space, etc. The TR069 Connector must accept any lexically correct
form of the value of a parameter. However, the connector must always return the value according to
the format of the data types specified by TR-069.

Table 131.5 TR-069 Types, MIME types

TR-069 Type MIME Type Notes

base64 x-tr-069-base64 Base 64 encoded
hexBinary x-tr-069-hexBinary Hex encoded
boolean x-tr-069-boolean

str ing x-tr-069-str ing General string type.
str ing (l ist) x-tr-069-l ist A comma separated string that acts as a list.
int x-tr-069-int Signed integer
unsignedInt x-tr-069-unsignedInt Unsigned integer
long x-tr-069-long Signed long
unsignedLong x-tr-069-unsignedLong Unsigned long
dateTime x-tr-069-dateTime Absolute UTC time, relative boot time, or

unknown time
x-tr-069-eager Eager creation (not a data type, see Lazy and

Sessions on page 420).
OSGi Service Platform Release 4, Version 4.3 Page 421

TR069 Connector TR069 Connector Service Specification Version 1.0
131.3.10 DMT to TR-069 Conversion
This section describes the conversion from a DMT node (a Dmt Data) to a TR-069 Parameter value.
The source is the DMT node retrieved from the DMT. The destination is the value and its type that must
be encoded in the TR-069 response. The meta node is the Meta Node associated with the source. This
model is depicted in Figure 131.7.

Figure 131.7 DMT to TR-069

The different conversions possible for the Dmt Data to the TR-069 Parameter value are shown in
Table 131.7. This table shows vertically the Dmt Admin formats and horizontally the TR-106 types
defined in Table 131.5. Each row has a default conversion type, indicated with a bold entry. For exam-
ple, the default conversion of a FORMAT_BOOLEAN to the boolean type is the default conversion.

This default conversion can be overridden by the Data Plugin by specifying an alternative MIME type
in the list of allowed MIME types in the Meta Node getMimeTypes() . If this list contains a MIME type
that has the prefix appl icat ion/x-tr-069- then the first entry in this list must be chosen as the desti-
nation type instead of the default type. This way, a TR-069 Data Plugin can indicate the exact type to a
TR-069 Protocol Adapter.

For example, a Dmt Data has the format FORMAT_BASE64 . However, the Data Plugin for this node
has a Meta Node that contains

String[] { "application/x-tr-069-hexBinary" }

The resulting type must therefore be hexBinary in this example.

The Dmt Data nodes are leaf nodes, however, there is a special case for interior LIST nodes marked
with a applicat ion/x-tr-069-l ist type in the Meta Node. These nodes must be converted to a comma
separated string as described in List on page 424.

Cells that are empty in the table indicate an impossible conversion that must be reported. Cells with
a name refer to one of the subsequent sections.

Dmt Data Parameter Value

Meta Node

source

destination

meta node

TR069 Connector

value + type

Table 131.6 Dmt Data Format to TR-069 Data

b
a
s
e
6
4

b
o
o
l
e
a
n

d
a
t
e
T
i
m
e

h
e
x
B
i
n
a
r
y

i
n
t

l
o
n
g

s
t
r
i
n
g

u
n
i
s
g
n
e
d
I
n
t

u
n
s
i
g
n
e
d
L
o
n
g

FORMAT_BASE64 binary binary
FORMAT_BINARY binary binary
FORMAT_BOOLEAN = true |

false

FORMAT_DATE date =

FORMAT_DATE_TIME date date
Page 422 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 TR069 Connector
131.3.10.1 Date

If the destination type is str ing then a date must be formatted according to the TR-069 dateTime for-
mat. FORMAT_DATE and FORMAT_TIME must be set to a TR069_DATETIME typed destination with
just the day or just the time respectively. That is, the FORMAT_TIME must be treated as a relative time
for TR-069.

The Date object of the Dmt Data object represents the three different TR069_DATETIME types with
the getTime() method. The value of getTime() indicates what type of date time it is:

• Unknown – The getTime() method must be 0
• Relative - The getTime() method must return a negative number
• Absolute – The getTime() method must return a positive number

If a FORMAT_DATE , FORMAT_TIME , or FORMAT_DATE_TIME is converted to a string the string repre-
sentation of TR069_DATETIME must be used, including the form of unknown, relative, or absolute. A
FORMAT_NULL stands for an unknown time.

131.3.10.2 Binary

The Dmt Admin service has several binary formats (FORMAT_BASE64, FORMAT_BINARY, and
FORMAT_RAW_BINARY) that can be converted to TR069_HEXBINARY and TR069_BASE64 . All
binary formats maintain their data as a byte[] . Conversion is therefore straightforward encoding of
the byte[] into the proper encoding: hex or base 64.

131.3.10.3 Number

The TR-069 Connector must convert numeric values (FORMAT_INTEGER , FORMAT_LONG , and
FORMAT_FLOAT) to TR069_INT , TR069_LONG , TR069_UNSIGNED_INT , and
TR069_UNSIGNED_LONG values. Float values must be rounded according to the standard Java
rounding rules when converted to an integer or long .

A conversion must not exceed the range of the destination type. That is, if an integer is converted to
an unsigned int then negative values must be treated as an error. If the destination type is str ing then
the numeric value must be calculated with the Dmt Data toString method.

FORMAT_FLOAT number number number number number
FORMAT_INTEGER number number number number number
FORMAT_LONG number number number number number
 L IST list
FORMAT_NULL false date 0 0 "nul l" 0 0

FORMAT_RAW_BINARY binary binary

FORMAT_RAW_STRING =

FORMAT_STRING =

FORMAT_TIME date =

FORMAT_XML =

Table 131.6 Dmt Data Format to TR-069 Data

b
a
s
e
6
4

b
o
o
l
e
a
n

d
a
t
e
T
i
m
e

h
e
x
B
i
n
a
r
y

i
n
t

l
o
n
g

s
t
r
i
n
g

u
n
i
s
g
n
e
d
I
n
t

u
n
s
i
g
n
e
d
L
o
n
g

OSGi Service Platform Release 4, Version 4.3 Page 423

TR069 Connector TR069 Connector Service Specification Version 1.0
131.3.10.4 List

LIST nodes with primitive children must be converted to a comma separated list. If the children
nodes are interior nodes then an error must be raised. The values of the comma separated list must
come from the children of the value node. Each of these children must be converted to a string type
according to Table 131.6 on page 422. These children must then be escaped and concatenated with a
comma as separator according to the rules of TR-106 comma separated lists. Nested lists are not
allowed.

131.3.11 TR-069 to Dmt Data Conversion
A TR-069 Parameter value consists of a string and a type identifier from the set of TR-069 types, see
Data Types on page 421. The conversion is depicted in Figure 131.7.

Figure 131.8 DMT to TR-069

The destination type is obtained from the corresponding Meta Node. If multiple formats are specified
in the result of the getFormat() method then the most applicable type must be used. The following
table lists the applicability for each TR-106 data type.

base64 FORMAT_BASE64, FORMAT_BINARY, FORMAT_RAW_BINARY
boolean FORMAT_BOOLEAN, FORMAT_STRING
dateTime FORMAT_DATE_TIME, FORMAT_DATE, FORMAT_TIME
hexBinary FORMAT_BASE64, FORMAT_BINARY, FORMAT_RAW_BINARY
int FORMAT_INTEGER, FORMAT_LONG, FORMAT_FLOAT, FORMAT_STRING
long FORMAT_LONG, FORMAT_FLOAT, FORMAT_INTEGER, FORMAT_STRING
string FORMAT_STRING, FORMAT_BOOLEAN, FORMAT_INTEGER, FORMAT_LONG,
 FORMAT_FLOAT, FORMAT_RAW_STRING, FORMAT_XML
unsignedInt FORMAT_INTEGER, FORMAT_LONG, FORMAT_FLOAT, FORMAT_STRING
unsignedLong FORMAT_LONG, FORMAT_FLOAT, FORMAT_INTEGER, FORMAT_STRING

If the conversion fails and there are untried formats left then the other formats must be used.

There is a special case when the destination node is a LIST node with primitive children and the
source is a str ing type. In that case the string must be parsed according to TR-106 comma separated
lists and each element must be stored as a child node.

The conversion matrix is in Table 131.7. The equal sign indicates identity taking into account any
encoding. It is not necessary that the source type corresponds to a MIME type in the meta node.

131.3.11.1 Date

A TR069_DATETIME can be converted to a FORMAT_DATE, FORMAT_TIME, and
FORMAT_DATE_TIME . A FORMAT_DATE must take the day part and a FORMAT_TIME must take the
time part.

131.3.11.2 Num

Source numbers must be converted to their destination counterpart. The conversion result must fail
if the result falls outside the range of the destination.

TR-069 string Dmt Data

Meta Node

source

destination
Protocol Connector

TR-069 type
Page 424 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 RPCs
131.3.11.3 Bool

If the source is a str ing or boolean type and the destination FORMAT_BOOLEAN then the conversion
must parse the string ignoring the case. The strings true and fa lse map to their corresponding value.
The strings 0 must map to fa lse and 1 to true .

131.3.11.4 Binary

The source must be decoded according to its TR-069 type (TR069_BASE64 or TR069_HEXBINARY).
The resulting byte array can then be set with the DmtData(byte[] , int) with the destination format:
FORMAT_BINARY or FORMAT_BASE64 .

131.3.11.5 List

The source is a comma separated list and must be stored as children of the destination node.

131.4 RPCs
The following sections explain in more detail how the different RPCs are supported by the TR069
Connector operate.

131.4.1 Get Parameter Values
The GetParameterValues RPC retrieves the value from one or more parameters. Each request in the
RPC can request one parameter value or provides an object or table path, requesting multiple values
with one path.

The getParameterValue(Str ing) method retrieves the value of one parameter in the DMT. The
getParameterNames(Str ing,boolean) method can be used to retrieve the values of a table or object.

Table 131.7 TR-069 Value to Dmt Data

FO
RM

AT
_B

AS
E6

4

FO
RM

AT
_B

IN
AR

Y

FO
RM

AT
_B

O
O

LE
AN

FO
RM

AT
_D

AT
E

FO
RM

AT
_D

AT
E_

TI
M

E

FO
RM

AT
_F

LO
AT

FO
RM

AT
_I

N
TE

G
ER

FO
RM

AT
_L

O
N

G

FO
RM

AT
_R

AW
_B

IN
AR

Y

FO
RM

AT
_R

AW
_S

TR
IN

G

FO
RM

AT
_S

TR
IN

G

FO
RM

AT
_T

IM
E

FO
RM

AT
_X

M
L

L
I
S
T

base64 binar
y

binar
y

binar
y

boolean bool true|
false

dateTime date date = date

hexBinary binar
y

binar
y

binar
y

int num num num =

long num num num =

str ing bool num num num = = = list
unsignedInt num num num =

unsignedLon
g

num num num =
OSGi Service Platform Release 4, Version 4.3 Page 425

RPCs TR069 Connector Service Specification Version 1.0
For the getParameterValue(Str ing) method the TR069 Connector must first check for synthesized
parameters, see 131.3.7 Synthetic Nodes (Al ias and NumberOfEntr ies). Otherwise, the parameter name
must be converted to a URI, this must be done according to the toURI(Str ing,boolean) method with
the boolean set to true , creating any missing nodes if possible. The Dmt Data for this node must be
converted according to DMT to TR-069 Conversion on page 422. The returned ParameterValue con-
tains the type and value of the parameter.

For example:

ParameterValue v = connector.getParameterValue(

 "Device.DeviceInfo.Manufacturer");

String value = v.getValue();

int type = v.getType();

131.4.2 Set Parameter Values
The SetParameterValues RPC sets a number of values in one RPC. The setParameterValue(Str ing,
Str ing, int) method corresponds to setting a single parameter in the DMT. It takes a parameter path, a
value, and the type of this parameter.

The TR069 Connector must first check if the requested destination is the Alias node of a MAP child. If
the Al ias node is set, the name of the parent node must be renamed to the given value. The value of
the Al ias node must be a TR-069 string type, the Connector must ensure the value is escaped when
necessary. See Synthetic Nodes on page 419 for further information about aliases.

Otherwise, the parameter name must be converted to a URI, this must be done according to the
toURI(Str ing,boolean) method with the boolean set to true.

The given value must be converted to a Dmt Data according to the TR-069 to Dmt Data Conversion on
page 424. For example:

connector.setParameterValue("Starwars.R2D.2.Start",

 "20110805T10:15:20Z", TR069_DATETIME);

131.4.3 Get Parameter Names
The GetParameterNames RPC allows an ACS to discover the parameters accessible on a particular
CPE as well as verifying the existence of a parameter. There are modes for this RPC depending on the
path and next level arguments, See Table 131.8.

The result must include only parameters, objects, and tables that are actually implemented by the
CPE. If a parameter is listed then a getParameterValue(Str ing) method called with this parameter’s
path should succeed. As a convenience, the ParameterInfo class provides a getParameterValue()
method as a short cut to the value.

For example, assume the following instances:

IGD.LAN.1.Hosts.

IGD.LAN.1.Hosts.HostNumberOfEntries

Table 131.8 Modes based on type of path and NextLevel arguments

NextLevel Parameter Path Table or Object Path

true Invalid Argument Fault code 9003
since this field must always be fa lse
for a parameter path.

Include only the children of the object
or table.

fa lse A single ParameterInfo object is
returned that provides information
about the given parameter.

The whole sub-tree rooted at the given
object or table path, this includes the
object at the path itself. All objects must
be included even if they are empty
Page 426 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 RPCs
IGD.LAN.1.Hosts.Host.

IGD.LAN.1.Hosts.Host.1.

IGD.LAN.1.Hosts.Host.1.Active

IGD.LAN.1.Hosts.Host.2.

IGD.LAN.1.Hosts.Host.2.Active

IGD.LAN.2.Hosts.

IGD.LAN.2.Hosts.HostNumberOfEntries

Table 131.9 demonstrates some of the different results based on these example instances.

For example:

Collection<ParameterInfo> pinfos = connector.getParameterNames("Device.");

for (ParameterInfo info : pinfos) {

 if (info.isParameter()) {

 System.out.println(

 connector.getParameterValue(info.getName()).getValue());

 }

}

131.4.4 Add Object
The AddObject RPC creates a new instance in a table. There basic form for this RPC is to create an
object and return the name of this object. It is also possible to specify an alias (a name specified in
square brackets) after the table path. In that case, the alias is used as the node name. In either case, the
path must be a valid table path pointing to a an existing MAP or LIST node.

Table 131.9 Example Get Parameter Names

Parameter Name Next level Results Comments

IGD.LAN.1. fa lse IGD.LAN.1.
IGD.LAN.1.Hosts.
IGD.LAN.1.Hosts.HostNumberOfEntries
IGD.LAN.1.Hosts.Host.
IGD.LAN.1.Hosts.Host.1.
IGD.LAN.1.Hosts.Host.1.Act ive
IGD.LAN.1.Hosts.Host.2.
IGD.LAN.1.Hosts.Host.2.Act ive

The path specifies an instance in at
table and since the Next Level is
false the whole sub-tree must be
returned, including the root of the
sub-tree.

true IGD.LAN.1.Hosts. The path is the same, an instance
in a table, but now only the chil-
dren must be returned for the
source. There is only one child,
Hosts . This must be returned as an
object path.

IGD.LAN.1.Hosts .«
 1 .Act ive

false IGD.LAN.1.Hosts.Host.
 1 .Active

The path is a parameter path,
therefore only the source is
returned.

true Fault 9003 Inval id Arguments, next
level must be fa lse for a parameter
path.

Next Level must not be set to true
for a parameter path

IGD.LAN.1 false or
true

Fault 9003 Inval id Arguments, i t is not
a parameter path but an instance id

It is not allowed to specify a param-
eter path that is actual pointing to
an instance.
OSGi Service Platform Release 4, Version 4.3 Page 427

Error and Fault Codes TR069 Connector Service Specification Version 1.0
When an object is added without an alias then the TR069 Connector must assign a unique id. TR-069
mandates that this id is unique for the table. The TR069 Connector must be able to create and main-
tain such a persistent id range. The Connector must ensure that any id chosen is not actually already
in use or has been handed out recently. How such an id is calculated and maintained is implementa-
tion dependent.

If alias based addressing is used, a name between square brackets, then the alias is retrieved from the
square brackets. The DMT must then be verified that no node exists in the corresponding table. If it
does already exist, an INVALID_PARAMETER_NAME exception is thrown. Otherwise the alias is
returned as the selected name.

If the corresponding MAP or LIST node has a Meta Node with a MIME type of appl icat ion/x-tr-68-
eager then the alias or instance id must be used to create the node. Otherwise the alias or instance id
must be returned without creating the node. The purpose of this lazy creation is to allow a single Set
Parameter Values RPC to atomically create a number of nodes and set their values.

For example:

String id = connector.addObject("Starwars.CP.3.Obiwan.");

connector.setParameterValue("Starwars.CP.3.Obiwan." + id + ".Name",

"cp30", TR069_STRING);

The previous code gets an assigned id with the addObject(Str ing) method. The
setParameterValue(String,Str ing, int) then assigns the string cp30 to the Name node. This will first
create the actual node since it was not created in the addObject(Str ing) method and then sets the
value of the DMT Starwars/CP/3/Obiwan/<id>/Name node.

The addObject(Str ing) method does not require an atomic session.

131.4.5 Delete Object
The DeleteObject RPC deletes an object from the tree, it takes the instance path as argument. This
behavior is implemented in the deleteObject(Str ing) method. The corresponding node must be
deleted if it exists. No error must be raised if the node does not exist in the DMT.

For example, deleting the object created in Add Object on page 427:

connector.deleteObject("Starwars.CP.3.Obiwan.cp30.");

131.5 Error and Fault Codes
The TR069 Connector must translate any Dmt Admin codes into a TR-069 fault code. Since the meth-
ods in the TR069Connector only relate to a single value it is possible to provide a mapping from Dmt
Exception codes to TR-069 fault codes. It is the responsibility of the Protocol Adapter to aggregate
these errors in the response to a SetParameterValues RPCs.

A TR069 Connector must prevent exceptions from happening and ensure that the different applica-
ble error cases defined in the TR-069 RPCs are properly reported as a TR069 Exception with the
intended fault code. However, this section defines a list of default translations between Dmt Excep-
tions and TR-069 fault codes.

 Table 131.10 contains the exceptions and the resulting fault codes. Any obligations that are man-
dated by the TR-069 protocol are the responsibility of the TR-069 Protocol Adapter. The Dmt Excep-
tion is available from the TR-069 Exception for further inspection.
Page 428 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 Managing the RMT
131.6 Managing the RMT
The RMT is not a native TR-069 model as it is not defined by BBF and it takes advantage of the Dmt
Admin features. This section therefore shows a number of examples how the RMT can be managed
from an ACS.

For example, on a specific CPE the following bundles are installed, the given name is the location

System Bundle

org-apache-felix-webconsole

org-apache-felix-configadmin

org-eclipse-equinox-scr

jp-co-ntt-admin

de-telekom-shell

The intention is to:

• Uninstall org-apache-fel ix-conf igadmin ,
• Install and start org-ecl ipse-equinox-cm ,
• Update jp-co-ntt-admin .

After the successful reconfiguration, the framework must restart. As framework changes must hap-
pen in a atomic session, the following parameters must be set in a single RPC:

Table 131.10 Exceptions to TR-069 Fault code.

Exception Fault code Comments

ALERT_NOT_ROUTED INTERNAL_ERROR

COMMAND_FAILED INTERNAL_ERROR

COMMAND_NOT_ALLOWED REQUEST_DENIED

CONCURRENT_ACCESS INTERNAL_ERROR

DATA_STORE_FAILURE INTERNAL_ERROR

FEATURE_NOT_SUPPORTED REQUEST_DENIED

INVALID_URI INVALID_PARAMETER_NAME

LIMIT_EXCEEDED RESOURCES_EXCEEDED

METADATA_MISMATCH INVALID_PARAMETER_TYPE

NODE_ALREADY_EXISTS INTERNAL_ERROR

NODE_NOT_FOUND INVALID_PARAMETER_NAME

PERMISSION_DENIED NON_WRITABLE_PARAMETER

REMOTE_ERROR INTERNAL_ERROR

ROLLBACK_FAILED INTERNAL_ERROR

SESSION_CREATION_TIMEOUT REQUEST_DENIED

TRANSACTION_ERROR REQUEST_DENIED

UNAUTHORIZED REQUEST_DENIED

URI_TOO_LONG INVALID_PARAMETER_NAME

Dmt I l legal State Exception INTERNAL_ERROR

Security Exception REQUEST_DENIED

Other Exceptions REQUEST_DENIED
OSGi Service Platform Release 4, Version 4.3 Page 429

Native TR-069 Object Models TR069 Connector Service Specification Version 1.0
SetParameterValues {

 Framework.Bundle.org-apache-felix-configadmin.RequestedState = UNINSTALLED

 Framework.Bundle.jp-co-ntt-admin.URL = http://....

 Framework.Bundle.org-ecl ipse-equinox-cm.URL = http://....

 Framework.Bundle.org-ecl ipse-equinox-cm.RequestedState = ACTIVE

 Framework.Bundle.org-ecl ipse-equinox-cm.AutoStart = true

 Framework.Bundle.Systemþ0020Bundle.URL = ""

}

The Protocol Adapter must open an atomic session on the $ node as defined in the RMT. It will then
set all the parameters in the previous list. As the Framework/Bundle/org-ecl ipse-equinox-cm node
does not exist, the TR069 Connector will create it because it is below a writable MAP node. The Sys-
tem Bundle is updated with an empty string, signalling an update. A System Bundle update is a
framework restart.

Once the session is committed after all the SetParameterValues elements are executed the Data Plu-
gin will perform the actions and report success or failure. The handler must then restart the frame-
work after the commit has returned.

131.7 Native TR-069 Object Models
This section provides an example of a Data Plugin that provides a native TR-069 Object Model. As
example is chosen a naive implementation of the Configuration Admin service. The object model
implemented has the following definition:

The corresponding DMT sub-tree is defined like:

Table 131.11

Path Type Write Read Description

CM.{i}. Object

CM.{i}.P id str ing x x The PID
CM.{i}.Propert ies.{i} . Object Property nodes
CM.{i}.Propert ies.{i} .Key str ing x x The key
CM.{i}.Propert ies.{i} .Value str ing x x Comma separated values

Name Act Type Card. S Description

CM Get MAP 1 P Base node for the CM model
 [str ing] Get Set

Add Del
Configurat ion 0. .n D A MAP of the PID

 InstanceId Get int 1 P The persistent instance Id
 Pid Get str ing 1 P The PID of the configuration
 Propert ies Get MAP 1 P The properties
 [str ing] Get Set

Add Del
LIST 0. .n D A property definitions; a property consists of a

list of strings. Single values are just a list with
one element.

 [index] Get Set
Add Del

str ing 0. .n D An element in the list
Page 430 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt
The Protocol Adapter allows an ACS to access the data model implemented in the Dmt Plugin. It also
allows the creation of new configuration objects.

131.8 org.osgi.service.tr069todmt
TR069 Connector Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. This package has two types of users: the consumers that use the API in this package
and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.tr069todmt; version=”[1.0,2.0)”

Example import for providers of the API in this package:

Import-Package: org.osgi .service.tr069todmt; version=”[1.0,1.1)”

131.8.1 Summary
• ParameterInfo – Maps to the TR-069 Parameter InfoStruct that is returned from the

TR069Connector.getParameterNames(Str ing, boolean) method.
• ParameterValue – Maps to the TR-069 ParameterValueStruct
• TR069Connector – A TR-069 Connector is an assistant to a TR-069 Protocol Adapter developer.
• TR069ConnectorFactory – A service that can create TR069 Connector
• TR069Exception – This exception is defined in terms of applicable TR-069 fault codes.

131.8.2 Permissions
ParameterInfo

131.8.3 public interface ParameterInfo
Maps to the TR-069 Parameter InfoStruct that is returned from the TR069Connector.getParameter-
Names(String, boolean) method.
getParameterValue()

131.8.3.1 public ParameterValue getParameterValue () throws TR069Exception

 Provide the value of the node. This method throws an exception if it is called for anything but a
parameter

Returns The Parameter Value of the corresponding object

Throws TR069Exception – If there is a problem
getPath()

131.8.3.2 public String getPath ()

 The path of the parameter, either a parameter path, an instance path, a table path, or an object path.

Returns The name of the parameter
isParameter()

131.8.3.3 public boolean isParameter ()

 Returns true of this is a parameter, if it returns fa lse it is an object or table.

Returns true for a parameter, false otherwise
isWriteable()

131.8.3.4 public boolean isWriteable ()

 Return true if this parameter is writeable, otherwise false . A parameter is writeable if the SetPara-
materValue with the given name would be successful if an appropriate value was given.

Returns If this parameter is writeable
ParameterValue
OSGi Service Platform Release 4, Version 4.3 Page 431

org.osgi.service.tr069todmt TR069 Connector Service Specification Version 1.0
131.8.4 public interface ParameterValue
Maps to the TR-069 ParameterValueStruct
getPath()

131.8.4.1 public String getPath ()

 This is the path of a Parameter. In TR-069 this is called the Parameter Name.

Returns The path of the parameter
getType()

131.8.4.2 public int getType ()

 The type of the parameter. One of TR069Connector .TR069_INT ,
TR069Connector.TR069_UNSIGNED_INT , TR069Connector .TR069_LONG ,
TR069Connector.TR069_UNSIGNED_LONG , TR069Connector.TR069_STRING ,
TR069Connector.TR069_DATETIME , TR069Connector.TR069_BASE64 ,
TR069Connector.TR069_HEXBINARY . This method is not part of the ParameterValueStruct but is
necessary to encode the type in the XML.

Returns The parameter type
getValue()

131.8.4.3 public String getValue ()

 This is the value of the parameter. The returned value must be in a representation defined by the TR-
069 protocol.

Returns The value of the parameter
TR069Connector

131.8.5 public interface TR069Connector
A TR-069 Connector is an assistant to a TR-069 Protocol Adapter developer. The connector manages
the low level details of converting the different TR-069 RPCs to a Device Management Tree managed
by Dmt Admin. The connector manages the conversions from the TR-069 Object Names to a node in
the DMT and vice versa.

The connector uses a Dmt Session from the caller, which is given when the connector is created. The
connector does not implement the exact RPCs but only provides the basic functions to set and get the
parameters of an object as well as adding and deleting an object in a table. A TR-069 developer must
still parse the XML, handle the relative and absolute path issues, open a Dmt Session etc.

The connector assumes that each parameter or object path is relative to the root of the Dmt Session.

This connector must convert the TR-069 paths to Dmt Admin URIs. This conversion must take into
account the LIST and MAP concepts defined in the specifications as well as the synthetic parameters
NumberOfEntr ies and Al ias . These concepts define the use of an InstanceId node that must be used
by the connector to provide a TR-069 table view on the LIST and MAP nodes.
PREFIX

131.8.5.1 public static final String PREFIX = “application/x-tr-069-”

The MIME type prefix.
TR069_BASE64

131.8.5.2 public static final int TR069_BASE64 = 64

Constant representing the TR-069 base64 type.
TR069_BOOLEAN

131.8.5.3 public static final int TR069_BOOLEAN = 32

Constant representing the TR-069 boolean type.
TR069_DATETIME

131.8.5.4 public static final int TR069_DATETIME = 256

Constant representing the TR-069 date time type.
TR069_DEFAULT
Page 432 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt
131.8.5.5 public static final int TR069_DEFAULT = 0

Constant representing the default or unknown type. If this type is used a default conversion will take
place
TR069_HEXBINARY

131.8.5.6 public static final int TR069_HEXBINARY = 128

Constant representing the TR-069 hex binary type.
TR069_INT

131.8.5.7 public static final int TR069_INT = 1

Constant representing the TR-069 integer type.
TR069_LONG

131.8.5.8 public static final int TR069_LONG = 4

Constant representing the TR-069 long type.
TR069_MIME_BASE64

131.8.5.9 public static final String TR069_MIME_BASE64 = “application/x-tr-069-base64”

Constant representing the TR-069 base64 type.
TR069_MIME_BOOLEAN

131.8.5.10 public static final String TR069_MIME_BOOLEAN = “application/x-tr-069-boolean”

Constant representing the TR-069 boolean type.
TR069_MIME_DATETIME

131.8.5.11 public static final String TR069_MIME_DATETIME = “application/x-tr-069-dateTime”

Constant representing the TR-069 date time type.
TR069_MIME_DEFAULT

131.8.5.12 public static final String TR069_MIME_DEFAULT = “application/x-tr-069-default”

Constant representing the default or unknown type. If this type is used a default conversion will take
place
TR069_MIME_EAGER

131.8.5.13 public static final String TR069_MIME_EAGER = “application/x-tr-069-eager”

Constant representing the TR-069 eager type.
TR069_MIME_HEXBINARY

131.8.5.14 public static final String TR069_MIME_HEXBINARY = “application/x-tr-069-hexBinary”

Constant representing the TR-069 hex binary type.
TR069_MIME_INT

131.8.5.15 public static final String TR069_MIME_INT = “application/x-tr-069-int”

Constant representing the TR-069 integer type.
TR069_MIME_LONG

131.8.5.16 public static final String TR069_MIME_LONG = “application/x-tr-069-long”

Constant representing the TR-069 long type.
TR069_MIME_STRING

131.8.5.17 public static final String TR069_MIME_STRING = “application/x-tr-069-string”

Constant representing the TR-069 string type.
TR069_MIME_STRING_LIST

131.8.5.18 public static final String TR069_MIME_STRING_LIST = “application/x-tr-069-string-list”

Constant representing the TR-069 string list type.
TR069_MIME_UNSIGNED_INT

131.8.5.19 public static final String TR069_MIME_UNSIGNED_INT = “application/x-tr-069-unsignedInt”

Constant representing the TR-069 unsigned integer type.
TR069_MIME_UNSIGNED_LONG

131.8.5.20 public static final String TR069_MIME_UNSIGNED_LONG = “application/x-tr-069-unsignedLong”

Constant representing the TR-069 unsigned long type.
OSGi Service Platform Release 4, Version 4.3 Page 433

org.osgi.service.tr069todmt TR069 Connector Service Specification Version 1.0
TR069_STRING

131.8.5.21 public static final int TR069_STRING = 16

Constant representing the TR-069 string type.
TR069_UNSIGNED_INT

131.8.5.22 public static final int TR069_UNSIGNED_INT = 2

Constant representing the TR-069 unsigned integer type.
TR069_UNSIGNED_LONG

131.8.5.23 public static final int TR069_UNSIGNED_LONG = 8

Constant representing the TR-069 unsigned long type.
addObject(String)

131.8.5.24 public String addObject (String path) throws TR069Exception

path A table path with an optional alias at the end

 Add a new node to the Dmt Admin as defined by the AddObject RPC. The path must map to either a
LIST or MAP node as no other nodes can accept new children.

If the path ends in an alias ([ALIAS]) then the node name must be the alias, however, no new node
must be created. Otherwise, the Connector must calculate a unique instance id for the new node
name that follows the TR-069 rules for instance ids. That is, this id must not be reused and must not
be in use. That is, the id must be reserved persistently.

If the LIST or MAP node has a Meta Node with a MIME type application/x-tr-069-eager then the node
must be immediately created. Otherwise no new node must be created, this node must be created
when the node is accessed in a subsequent RPC.

The alias name or instance id must be returned as identifier for the ACS.

Returns The name of the new node.

Throws TR069Exception – The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.
If an AddObject request would result in exceeding the maximum number of such objects supported
by the CPE, the CPE MUST return a fault response with the Resources Exceeded (9004) fault code.
close()

131.8.5.25 public void close ()

 Close this connector. This will not close the corresponding session.
deleteObject(String)

131.8.5.26 public void deleteObject (String objectPath) throws TR069Exception

objectPath The path to an object in a table to be deleted.

 Delete an object from a table. A missing node must be ignored.

Throws TR069Exception – The following fault codes are defined for this method: 9001, 9002, 9003, 9005. If the
fault is caused by an invalid objectPath value, the Invalid Parameter Name fault code (9005) must be
used instead of the more general Invalid Arguments fault code (9003). A missing node for objectPath
must be ignored.
getParameterNames(String,boolean)

131.8.5.27 public Collection<ParameterInfo> getParameterNames (String objectOrTablePath , boolean
nextLevel) throws TR069Exception

objectOrTablePath A path to an object or table.

nextLevel If true consider only the children of the object or table addressed by path , otherwise include the whole
sub-tree, including the addressed object or table.

 Getting the ParameterInfo objects addressed by path. This method is intended to be used to imple-
ment the GetParameterNames RPC.

The connector must attempt to create any missing nodes that are needed for the objectOrTablePath
by using the toURI(Str ing, boolean) method with true .
Page 434 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt
This method must traverse the sub-tree addressed by the path and return the paths to all the objects,
tables, and parameters in that tree. If the nextLevel argument is true then only the children object,
table, and parameter information must be returned.

The returned ParameterInfo objects must be usable to discover the sub-tree.

If the child nodes have an InstanceId node then the returned names must include the InstanceId val-
ues instead of the node names.

If the parent node is a MAP , then the synthetic Alias parameter must be included.

Any MAP and LIST node must include a ParameterInfo for the corresponding NumberOfEntr ies
parameter.

Returns A collection of Parameter Info objects representing the resulting child parameter, objects, and tables
as defined by the TR-069 Parameter InfoStruct .

Throws TR069Exception – If the fault is caused by an invalid ParameterPath value, the Invalid Parameter
Name fault code (9005) MUST be used instead of the more general Invalid Arguments fault code
(9003). A ParameterPath value must be considered invalid if it is not an empty string and does not ex-
actly match a parameter or object name currently present in the data model. If nextLevel is true and
objectOrTablePath is a parameter path rather than an object/table path, the method must return a
fault response with the Invalid Arguments fault code (9003). If the value cannot be gotten for some
reason, this method can generate the following fault codes::
 9001 TR069Exception.REQUEST_DENIED
 9002 TR069Exception.INTERNAL_ERROR
 9003 TR069Exception.INVALID_ARGUMENTS
 9005 TR069Exception.INVALID_PARAMETER_NAME
getParameterValue(String)

131.8.5.28 public ParameterValue getParameterValue (String parameterPath) throws TR069Exception

parameterPath A parameter path (must refer to a valid parameter, not an object or table).

 Getting a parameter value. This method should be used to implement the GetParameterValues RPC.
This method does not handle retrieving multiple values as the corresponding RPC can request with
an object or table path, this method only accepts a parameter path. Retrieving multiple values can be
achieved with the getParameterNames(String, boolean) .

If the parameterPath ends in NumberOfEntr ies then the method must synthesize the value. The
parameterPath then has a pattern like (object-path)(table-name)NumberOfEntr ies . The returned
value must be an TR069_UNSIGNED_INT that contains the number of child nodes in the table
(object-path)(table-name) . For example, if A.B.CNumberOfEntr ies is requested the return value
must be the number of child nodes under A/B/C .

If the value of a an Al ias node is requested then the name of the parent node must be returned. For
example, if the path is M.X.Al ias then the returned value must be X .

The connector must attempt to create any missing nodes along the way, creating parent nodes on
demand.

Returns The name, value, and type triad of the requested parameter as defined by the TR-069
ParameterValueStruct .

Throws TR069Exception – The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.
 9001 TR069Exception.REQUEST_DENIED
 9002 TR069Exception.INTERNAL_ERROR
 9003 TR069Exception.INVALID_ARGUMENTS
 9004 TR069Exception.RESOURCES_EXCEEDED
 9005 TR069Exception.INVALID_PARAMETER_NAME
setParameterValue(String,String,int)

131.8.5.29 public void setParameterValue (String parameterPath , String value , int type) throws
TR069Exception

parameterPath The parameter path
OSGi Service Platform Release 4, Version 4.3 Page 435

org.osgi.service.tr069todmt TR069 Connector Service Specification Version 1.0
value A trimmed string value that has the given type. The value can be in either canonical or lexical repre-
sentation by TR069.

type The type of the parameter (TR069_INT , TR069_UNSIGNED_INT , TR069_LONG ,
TR069_UNSIGNED_LONG , TR069_STRING , TR069_DATETIME , TR069_BASE64 , TR069_HEXBINARY)

 Setting a parameter. This method should be used to provide the SetParameterValues RPC. This
method must convert the parameter Name to a URI and replace the DMT node at that place. It must
follow the type conversions as described in the specification.

The connector must attempt to create any missing nodes along the way, creating parent nodes on
demand.

If the value of a an Alias node is set then the parent node must be renamed. For example, if the value
of M/X/Alias is set to Y then the node will have a URI of M/Y/Al ias . The value must not be escaped as
the connector will escape it.

Throws TR069Exception – The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005,
9006, 9007, 9008.
 9001 TR069Exception.REQUEST_DENIED
 9002 TR069Exception.INTERNAL_ERROR
 9003 TR069Exception.INVALID_ARGUMENTS
 9004 TR069Exception.RESOURCES_EXCEEDED
 9005 TR069Exception.INVALID_PARAMETER_NAME
 9006 TR069Exception.INVALID_PARAMETER_TYPE
 9007 TR069Exception.INVALID_PARAMETER_VALUE
 9008 TR069Exception.NON_WRITABLE_PARAMETER
toPath(String)

131.8.5.30 public String toPath (String uri) throws TR069Exception

uri A Dmt Session relative URI

 Convert a Dmt Session relative Dmt Admin URI to a valid TR-069 path, either a table, object, or
parameter path depending on the structure of the DMT. The translation takes into account the spe-
cial meaning LIST , MAP , Alias , and InstanceId nodes.

Returns An object, table, or parameter path

Throws TR069Exception – If there is an error
toURI(String,boolean)

131.8.5.31 public String toURI (String name , boolean create) throws TR069Exception

name A TR-069 path

create If true , create missing nodes when they reside under a MAP or LIST

 Convert a TR-069 path to a Dmt Session relative Dmt Admin URI. The translation takes into account
the special meaning LIST , MAP , InstanceId node semantics.

The synthetic Al ias or NumberOfEntr ies parameter cannot be mapped and must throw an
TR069Exception. INVALID_PARAMETER_NAME .

The returned path is properly escaped for TR-069.

The mapping from the path to a URI requires support from the meta data in the DMT, it is not possi-
ble to use a mapping solely based on string replacements. The translation takes into account the
semantics of the MAP and LIST nodes. If at a certain point a node under a MAP node does not exist
then the Connector can create it if the create flag is set to true . Otherwise a non-existent node will
terminate the mapping.

Returns A relative Dmt Admin URI

Throws TR069Exception – If there is an error
TR069ConnectorFactory
Page 436 OSGi Service Platform Release 4, Version 4.3

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt
131.8.6 public interface TR069ConnectorFactory
A service that can create TR069 Connector
create(DmtSession)

131.8.6.1 public TR069Connector create (DmtSession session)

session The session to use for the adaption. This session must not be closed before the TR069 Connector is
closed.

 Create a TR069 connector based on the given session .

The session must be an atomic session when objects are added and/or parameters are going to be set,
otherwise it can be a read only or exclusive session. Due to the lazy creation nature of the TR069 Con-
nector it is possible that a node must be created in a read method after a node has been added, it is
therefore necessary to always provide an atomic session when an ACS session requires modifying
parameters.

Returns A new TR069 Connector bound to the given session
TR069Exception

131.8.7 public class TR069Exception
extends RuntimeException
This exception is defined in terms of applicable TR-069 fault codes. The TR-069 specification defines
the fault codes that can occur in different situations.
INTERNAL_ERROR

131.8.7.1 public static final int INTERNAL_ERROR = 9002

9002 Internal error
INVALID_ARGUMENTS

131.8.7.2 public static final int INVALID_ARGUMENTS = 9003

9003 Invalid Arguments
INVALID_PARAMETER_NAME

131.8.7.3 public static final int INVALID_PARAMETER_NAME = 9005

9005 Invalid parameter name (associated with Set/GetParameterValues, GetParameterNames, Set/
GetParameterAttributes, AddObject, and DeleteObject)
INVALID_PARAMETER_TYPE

131.8.7.4 public static final int INVALID_PARAMETER_TYPE = 9006

9006 Invalid parameter type (associated with SetParameterValues)
INVALID_PARAMETER_VALUE

131.8.7.5 public static final int INVALID_PARAMETER_VALUE = 9007

9007 Invalid parameter value (associated with SetParameterValues)
METHOD_NOT_SUPPORTED

131.8.7.6 public static final int METHOD_NOT_SUPPORTED = 9000

9000 Method not supported
NON_WRITABLE_PARAMETER

131.8.7.7 public static final int NON_WRITABLE_PARAMETER = 9008

9008 Attempt to set a non-writable parameter (associated with SetParameterValues)
NOTIFICATION_REJECTED

131.8.7.8 public static final int NOTIFICATION_REJECTED = 9009

9009 Notification request rejected (associated with SetParameterAttributes method).
REQUEST_DENIED

131.8.7.9 public static final int REQUEST_DENIED = 9001

9001 Request denied (no reason specified
RESOURCES_EXCEEDED
OSGi Service Platform Release 4, Version 4.3 Page 437

References TR069 Connector Service Specification Version 1.0
131.8.7.10 public static final int RESOURCES_EXCEEDED = 9004

9004 Resources exceeded (when used in association with SetParameterValues, this MUST NOT be
used to indicate parameters in error)
TR069Exception(String)

131.8.7.11 public TR069Exception (String message)

message The message

 A default constructor when only a message is known. This will generate a INTERNAL_ERROR fault.
TR069Exception(String,int,DmtException)

131.8.7.12 public TR069Exception (String message , int faultCode , DmtException e)

message The message

faultCode The TR-069 defined fault code

e

 A Constructor with a message and a fault code.
TR069Exception(String,int)

131.8.7.13 public TR069Exception (String message , int faultCode)

message The message

faultCode The TR-069 defined fault code

 A Constructor with a message and a fault code.
TR069Exception(DmtException)

131.8.7.14 public TR069Exception (DmtException e)

e The Dmt Exception

 Create a TR069Exception from a Dmt Exception.
getDmtException()

131.8.7.15 public DmtException getDmtException ()

Returns the corresponding Dmt Exception
getFaultCode()

131.8.7.16 public int getFaultCode ()

 Answer the associated TR-069 fault code.

Returns Answer the associated TR-069 fault code.

131.9 References
[1] TR-069 Amendment 3

http://www.broadband-forum.org/technical/download/TR-069_Amendment-3.pdf

[2] TR-106 Amendment 3
http://www.broadband-forum.org/technical/download/TR-106_Amendment-3.pdf

[3] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/xmlschema-2/

[4] SOAP 1.1
http://www.w3.org/TR/2000/NOTE- SOAP-20000508

[5] Extensible Markup Language (XML) 1.0 (Second Edition)
http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Letter

[6] Broadband Forum
http://www.broadband-forum.org/
Page 438 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 Introduction
701 Tracker Specification
Version 1.5

701.1 Introduction
The Framework provides a powerful and very dynamic programming environment: Bundles are
installed, started, stopped, updated, and uninstalled without shutting down the Framework. Depen-
dencies between bundles are monitored by the Framework, but bundles must cooperate in handling
these dependencies correctly. Two important dynamic aspects of the Framework are the service regis-
try and the set of installed bundles.

Bundle developers must be careful not to use service objects that have been unregistered and are
therefore stale. The dynamic nature of the Framework service registry makes it necessary to track the
service objects as they are registered and unregistered to prevent problems. It is easy to overlook race
conditions or boundary conditions that will lead to random errors. Similar problems exist when
tracking the set of installed bundles and their state.

This specification defines two utility classes, ServiceTracker and BundleTracker , that make tracking
services and bundles easier. A ServiceTracker class can be customized by implementing the
ServiceTrackerCustomizer interface or by sub-classing the ServiceTracker class. Similarly, a
BundleTracker class can be customized by sub-classing or implementing the
BundleTrackerCustomizer interface.

These utility classes significantly reduce the complexity of tracking services in the service registry
and the set of installed bundles.

701.1.1 Essentials
• Simplify – Simplify the tracking of services or bundles.
• Customizable – Allow a default implementation to be customized so that bundle developers can

start simply and later extend the implementation to meet their needs.
• Small – Every Framework implementation should have this utility implemented. It should

therefore be very small because some Framework implementations target minimal OSGi Service
Platforms.

• Services – Track a set of services, optionally filtered, or track a single service.
• Bundles – Track bundles based on their state.
• Cleanup – Properly clean up when tracking is no longer necessary
• Generified – Generics are used to promote type safety.

701.1.2 Operation
The fundamental tasks of a tracker are:

• To create an initial list of targets (service or bundle).
• To listen to the appropriate events so that the targets are properly tracked.
• To allow the client to customize the tracking process through programmatic selection of the ser-

vices/bundles to be tracked, as well as to perform client code when a service/bundle is added or
removed.

A ServiceTracker object is populated with a set of services that match given search criteria, and then
listens to ServiceEvent objects which correspond to those services. A Bundle Tracker is populated
with the set of installed bundles and then listens to BundleEvent objects to notify the customizer of
changes in the state of the bundles.
OSGi Service Platform Release 4, Version 4.3 Page 439

Tracking Tracker Specification Version 1.5
701.1.3 Entities

Figure 701.1 Class diagram of org.osgi.util.tracker

701.2 Tracking
The OSGi Framework is a dynamic multi-threaded environment. In such an environments callbacks
can occur on different threads at the same time. This dynamism causes many complexities. One of
the surprisingly hard aspects of this environment is to reliably track services and bundles (called tar-
gets from now on).

The complexity is caused by the fact that the BundleListener and ServiceListener interfaces are only
providing access to the changed state, not to the existing state when the listener is registered. This
leaves the programmer with the problem to merge the set of existing targets with the changes to the
state as signified by the events, without unwantedly duplicating a target or missing a remove event
that would leave a target in the tracked map while it is in reality gone. These problems are caused by
the multi-threaded nature of an OSGi service platform.

The problem is illustrated with the following (quite popular) code:

// Bad Example! Do not do this!

Bundle[] bundles = context.getBundles();

for (Bundle bundle : bundles) {

map.put(bundle.getLocation(), bundle);

}

context.addBundleListener(new BundleListener() {

public void bundleChanged(BundleEvent event) {

Bundle bundle = event.getBundle();

switch(event.getType()) {

case BundleEvent.INSTALLED:

map.put(bundle.getLocation(), bundle);

break;

case BundleEvent.UNINSTALLED:

map.remove(bundle.getLocation());

break;

default:

// ignore

}

}

});

Service
Tracker

customized by

Service
Tracker
Customizer1 0,1

Bundle
Tracker

customized by

Bundle
Tracker
Customizer1 0,1
Page 440 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 Tracking
Assume the code runs the first part, getting the existing targets. If during this time a targets state
changes, for example bundle is installed or uninstalled, then the event is missed and the map will
miss a bundle or it will contain a bundle that is already gone. An easy solution seems to be to first reg-
ister the listener and then get the existing targets. This solves the earlier problem but will be intro-
duce other problems. In this case, an uninstall event can occur before the bundle has been discovered.

Proper locking can alleviate the problem but it turns out that this easily create solutions that are very
prone to deadlocks. Solving this tracking problem is surprisingly hard. For this reason, the OSGi spec-
ifications contain a bundle tracker and a service tracker that are properly implemented. These classes
significantly reduce the complexity of the dynamics in an OSGi Service Platform.

701.2.1 Usage
Trackers can be used with the following patterns:

• As-is – Each tracker can be used without further customizing. A tracker actively tracks a map of
targets and this map can be consulted with a number of methods when the information is needed.
This is especially useful for the Service Tracker because it provides convenience methods to wait
for services to arrive.

• Callback object – Each tracker provides a call back interface that can be implemented by the client
code.

• Sub-classing – The trackers are designed to be sub-classed. Sub-classes have access to the bundle
context and only have to override the callback methods they need.

701.2.2 General API
A tracker hides the mechanisms in the way the targets are stored and evented. From a high level, a
tracker maintains a map of targets to wrapper objects. The wrapper object can be defined by the client,
though the Bundle Tracker uses the Bundle object and the Service Tracker uses the service object as
default wrapper. The tracker notifies the client of any changes in the state of the target.

A tracker must be constructed with a Bundle Context. This context is used to register listeners and
obtain the initial list of targets during the call to the open method. At the end of the life of a tracker it
must be closed to release any remaining objects. It is advised to properly close all trackers in the bun-
dle activator’s stop method.

A tracker provides a uniform callback interface, which has 3 different methods.

• Adding – Provide a new object, obtained from the store or from an event and return the wrapper or
a related object. The adding method can decide not to track the target by returning a null object.
When null is returned, no modified or remove methods are further called. However, it is possible
that the adding method is called again for the same target.

• Modified –The target is modified. For example, the service properties have changed or the bundle
has changed state. This callback provides a mechanism for the client to update its internal struc-
tures. The callback provides the wrapper object.

• Removing – The target is no longer tracked. This callback is provided the wrapper object returned
from the adding method. This allows for simplified cleanup if the client maintains state about the
target.

Each tracker is associated with a callback interface, which it implements itself. That is, a Service
Tracker implements the ServiceTrackerCustomizer interface. By implementing this customizer, the
tracker can also be sub-classed, this can be quite useful in many cases. Sub-classing can override only
one or two of the methods instead of having to implement all methods. When overriding the call-
back methods, it must be ensured that the wrapper object is treated accordingly to the base imple-
mentation in all methods. For example, the Service Tracker’s default implementation for the adding
method checks out the service and therefore the remove method must unget this same service.
Changing the wrapper object type to something else can therefore clash with the default implemen-
tations.
OSGi Service Platform Release 4, Version 4.3 Page 441

Service Tracker Tracker Specification Version 1.5
Trackers can provide all the objects that are tracked, return the mapped wrapper from the target, and
deliver the number of tracked targets.

701.2.3 Tracking Count
The tracker also maintains a count that is updated each time that an object is added, modified, or
removed, that is any change to the implied map. This tracking count makes it straightforward to ver-
ify that a tracker has changed; just store the tracking count and compare it later to see if it has
changed.

701.2.4 Multi Threading
The dynamic environment of OSGi requires that tracker are thread safe. However, the tracker closely
interacts with the client through a callback interface. The tracker implementation must provide the
following guarantees:

• The tracker code calling a callback must not hold any locks

Clients must be aware that their callbacks are reentrant though the tracker implementations guaran-
tee that the add/modified/remove methods can only called in this order for a specific target. A tracker
must not call these methods out of order.

701.2.5 Synchronous
Trackers use synchronous listeners; the callbacks are called on the same thread as that of the initiating
event. Care should be taken to not linger in the callback and perform non-trivial work. Callbacks
should return immediately and move substantial work to other threads.

701.3 Service Tracker
The purpose of a Service Tracker is to track service references, that is, the target is the ServiceReference
object. The Service Tracker uses generics to provide a type safe interface. It has two type arguments:

• S – The service type.
• T – The type used by the program. T can differ from S if the program creates a wrapper around the

service object, a common pattern.

The ServiceTracker interface defines three constructors to create ServiceTracker objects, each pro-
viding different search criteria:

• ServiceTracker(BundleContext,Str ing,ServiceTrackerCustomizer) – This constructor takes a
service interface name as the search criterion. The ServiceTracker object must then track all ser-
vices that are registered under the specified service interface name.

• ServiceTracker(BundleContext ,F i l ter,ServiceTrackerCustomizer) – This constructor uses a Fi lter
object to specify the services to be tracked. The ServiceTracker must then track all services that
match the specified filter.

• ServiceTracker(BundleContext,ServiceReference,ServiceTrackerCustomizer) – This con-
structor takes a ServiceReference object as the search criterion. The ServiceTracker must then
track only the service that corresponds to the specified ServiceReference . Using this constructor,
no more than one service must ever be tracked, because a ServiceReference refers to a specific
service.

• ServiceTracker(BundleContext,Class ,ServiceTrackerCustomizer) – This constructor takes a class
as argument. The tracker must only track services registered with this name. This is in general the
most convenient way to use the Service Tracker.

Each of the ServiceTracker constructors takes a BundleContext object as a parameter. This
BundleContext object must be used by a ServiceTracker object to track, get, and unget services.
Page 442 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 Service Tracker
A new ServiceTracker object must not begin tracking services until its open method is called. There
are 2 versions of the open method:

• open() – This method is identical to open(false) . It is provided for backward compatibility
reasons.

• open(boolean) – The tracker must start tracking the services as were specified in its constructor.
If the boolean parameter is true , it must track all services, regardless if they are compatible with
the bundle that created the Service Tracker or not. See Section 5.9 “Multiple Version Export Con-
siderations” for a description of the compatibility issues when multiple variations of the same
package can exist. If the parameter is false , the Service Tracker must only track compatible ver-
sions.

701.3.1 Using a Service Tracker
Once a ServiceTracker object is opened, it begins tracking services immediately. A number of meth-
ods are available to the bundle developer to monitor the services that are being tracked, including the
ones that are in the service registry at that time. The ServiceTracker class defines these methods:

• getService() – Returns one of the services being tracked or nul l if there are no active services being
tracked.

• getServices() – Returns an array of all the tracked services. The number of tracked services is
returned by the size method.

• getServices(T[]) – Like getServices() but provides a convenient way to get these services into a
correctly typed array.

• getServiceReference() – Returns a ServiceReference object for one of the services being tracked.
The service object for this service may be returned by calling the ServiceTracker object’s
getService() method.

• getServiceReferences() – Returns a list of the ServiceReference objects for services being tracked.
The service object for a specific tracked service may be returned by calling the ServiceTracker
object’s getService(ServiceReference) method.

• waitForServ ice(long) – Allows the caller to wait until at least one instance of a service is tracked
or until the time-out expires. If the time-out is zero, the caller must wait until at least one instance
of a service is tracked. waitForService must not used within the BundleActivator methods, as
these methods are expected to complete in a short period of time. A Framework could wait for the
start method to complete before starting the bundle that registers the service for which the caller
is waiting, creating a deadlock situation.

• remove(ServiceReference) – This method may be used to remove a specific service from being
tracked by the ServiceTracker object, causing removedService to be called for that service.

• close() – This method must remove all services being tracked by the ServiceTracker object,
causing removedService to be called for all tracked services.

• getTrackingCount() – A Service Tracker can have services added, modified, or removed at any
moment in time. The getTrackingCount method is intended to efficiently detect changes in a
Service Tracker. Every time the Service Tracker is changed, it must increase the tracking count.

• isEmpty() – To detect that the tracker has no tracked services.
• getTracked() – Return the tracked objects.

701.3.2 Customizing the Service Tracker class
The behavior of the ServiceTracker class can be customized either by providing a
ServiceTrackerCustomizer object, implementing the desired behavior when the ServiceTracker
object is constructed, or by sub-classing the ServiceTracker class and overriding the
ServiceTrackerCustomizer methods.

The ServiceTrackerCustomizer interface defines these methods:

• addingService(ServiceReference) – Called whenever a service is being added to the
ServiceTracker object.

• modifiedService(ServiceReference,T) – Called whenever a tracked service is modified.
OSGi Service Platform Release 4, Version 4.3 Page 443

Bundle Tracker Tracker Specification Version 1.5
• removedService(ServiceReference,T) – Called whenever a tracked service is removed from the
ServiceTracker object.

When a service is being added to the ServiceTracker object or when a tracked service is modified or
removed from the ServiceTracker object, it must call addingService , modif iedService , or
removedService , respectively, on the ServiceTrackerCustomizer object (if specified when the
ServiceTracker object was created); otherwise it must call these methods on itself.

A bundle developer may customize the action when a service is tracked. Another reason for custom-
izing the ServiceTracker class is to programmatically select which services are tracked. A filter may
not sufficiently specify the services that the bundle developer is interested in tracking. By imple-
menting addingService , the bundle developer can use additional runtime information to determine
if the service should be tracked. If nul l is returned by the addingService method, the service must not
be tracked.

Finally, the bundle developer can return a specialized object from addingService that differs from the
service object. This specialized object could contain the service object and any associated informa-
tion. This returned object is then tracked instead of the service object. When the removedService
method is called, the object that is passed along with the ServiceReference object is the one that was
returned from the earlier call to the addingService method.

701.3.3 Customizing Example
An example of customizing the action taken when a service is tracked might be registering a
MyServlet object with each Http Service that is tracked. This customization could be done by sub-
classing the ServiceTracker class and overriding the addingService and removedService methods as
follows:

new ServiceTracker<HttpService,MyServlet>(context,HttpService.class,null) {

 public MyServlet addingService(ServiceReference<HttpService> reference) {

 HttpService svc = context.getService(reference);

 MyServlet ms = new MyServlet(scv);

 return ms;

 }

 public void removedService(ServiceReference<HttpService> reference,

 MyServlet ms){

ms.close();

 context.ungetService(reference);

 }

}

In this example, the service type is the HttpService class and the wrapper type is the servlet.

701.4 Bundle Tracker
The purpose of the Bundle Tracker is to simplify tracking bundles. A popular example where bundles
need to be tracked is the extender pattern. An extender uses information in other bundles to provide
its function. For example, a Declarative Services implementation reads the component XML file from
the bundle to learn of the presence of any components in that bundle.

There are, however, other places where it is necessary to track bundles. The Bundle Tracker signifi-
cantly simplifies this task.

701.4.1 Bundle States
The state diagram of a Bundle is significantly more complex than that of a service. However, the
interface is simpler because there is only a need to specify for which states the bundle tracker should
track a service.
Page 444 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 Bundle Tracker
Bundle states are defined as a bit in an integer, allowing the specifications of multiple states by set-
ting multiple bits. The Bundle Tracker therefore uses a bit mask to specify which states are of interest.
For example, if a client is interested in active and resolved bundles, it is possible to specify the Bundle
ACTIVE | RESOLVED | STARTING states in the mask.

The Bundle Tracker tracks bundles whose state matches the mask. That is, when a bundle is not
tracked it adds that bundle to the tracked map when its state matches the mask. If the bundle reaches
a new state that is not listed in the mask, the bundle will be removed from the tracked map. If the
state changes but the bundle should still be tracked, then the bundle is considered to be modified.

701.4.2 Constructor
The BundleTracker interface defines the following constructors to create BundleTracker objects:

• BundleTracker(BundleContext, int ,BundleTrackerCustomizer) – Create a Bundle Tracker that
tracks the bundles which state is listed in the mask. The customizer may be nul l , in that case the
callbacks can be implemented in a subclass.

A new BundleTracker object must not begin tracking services until its open method is called.

• open() – Start tracking the bundles, callbacks can occur before this method is called.

701.4.3 Using a Bundle Tracker
Once a BundleTracker object is opened, it begins tracking bundles immediately. A number of meth-
ods are available to the bundle developer to monitor the bundles that are being tracked. The
BundleTracker class defines the following methods:

• getBundles() – Returns an array of all the tracked bundles.
• getObject(Bundle) – Returns the wrapper object that was returned from the addingBundle

method.
• remove(Bundle) – Removes the bundle from the tracked bundles. The removedBundle method is

called when the bundle is not in the tracked map.
• size() – Returns the number of bundles being tracked.
• getTrackingCount() – A Bundle Tracker can have bundles added, modified, or removed at any

moment in time. The getTrackingCount method is intended to efficiently detect changes in a
Bundle Tracker. Every time the Bundle Tracker is changed, it must increase the tracking count.

• isEmpty() – To detect that the tracker has no tracked bundles.
• getTracked() – Return the tracked objects.

701.4.4 Customizing the Bundle Tracker class
The behavior of the BundleTracker class can be customized either by providing a
BundleTrackerCustomizer object when the BundleTracker object is constructed, or by sub-classing
the BundleTracker class and overriding the BundleTrackerCustomizer methods on the
BundleTracker class.

The BundleTrackerCustomizer interface defines these methods:

• addingBundle(Bundle,BundleEvent) – Called whenever a bundle is being added to the
BundleTracker object. This method should return a wrapper object, which can be the Bundle
object itself. If nul l is returned, the Bundle must not be further tracked.

• modifiedBundle(Bundle,BundleEvent,T) – Called whenever a tracked bundle is modified. The
object that is passed is the object returned from the addingBundle method, the wrapper object.

• removedBundle(Bundle,BundleEvent,T) – Called whenever a tracked bundle is removed from the
BundleTracker object. The passed object is the wrapper returned from the addingBundle method.

The BundleEvent object in the previous methods can be nul l .
OSGi Service Platform Release 4, Version 4.3 Page 445

Bundle Tracker Tracker Specification Version 1.5
When a bundle is being added the OSGi Framework, or when a tracked bundle is modified or unin-
stalled from the OSGi Framework, the Bundle Tracker must call addingBundle , modif iedBundle , or
removedBundle , respectively, on the BundleTrackerCustomizer object (if specified when the
BundleTracker object was created); otherwise it must call these methods on itself, allowing them to
be overridden in a subclass.

The bundle developer can return a specialized object from addingBundle that differs from the Bundle
object. This wrapper object could contain the Bundle object and any associated client specific infor-
mation. This returned object is then used as the wrapper instead of the Bundle object. When the
removedBundle method is called, the wrapper is passed as an argument.

701.4.5 Extender Model
The Bundle Tracker allows the implementation of extenders with surprisingly little effort. The fol-
lowing example checks a manifest header (Http-Mapper) in all active bundles to see if the bundle has
resources that need to be mapped to the HTTP service. This extender enables bundles that have no
code, just content.

This example is implemented with a BundleTrackerCustomizer implementation, though sub-class-
ing the BundleTracker class is slightly simpler because the open/close methods would be inherited,
the tracker field is not necessary and it is not necessary to provide a dummy implementation of
modif iedBundle method. However, the Service Tracker example already showed how to use inherit-
ance.

The Extender class must implement the customizer and declare fields for the Http Service and a Bun-
dle Tracker.

public class Extender implements BundleTrackerCustomizer<ExtenderContext> {

final HttpService http;

final BundleTracker<ExtenderContext> tracker;

It is necessary to parse the Http-Mapper header. Regular expression allow this to be done very con-
cise.

final static Pattern HTTPMAPPER=

Pattern.compile(

"\\s*([-/\\w.]+)\\s*=\\s*([-/\\w.]+)\\s*");

The Bundle Tracker requires a specialized constructor. This example only works for active bundles.
This implies that a bundle only provides contents when it is started, enabling an administrator to
control the availability.

Extender(BundleContext context, HttpService http) {

tracker = new BundleTracker<ExtenderContext>(

context,Bundle.ACTIVE, this);

this.http = http;

}

The following method implements the callback from the Bundle Tracker when a new bundle is dis-
covered. In this method a specialized HttpContext object is created that knows how to retrieve its
resources from the bundle that was just discovered. This context is registered with the Http Service. If
no header is found nul l is returned so that non-participating bundles are no longer tracked.

public ExtenderContext addingBundle(Bundle bundle,

BundleEvent event) {

String header = bundle.getHeaders()

.get("Http-Mapper") + "";

Matcher match = HTTPMAPPER.matcher(header);

if (match.matches()) {
Page 446 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 Bundle Tracker
try {

ExtenderContext wrapper =

new ExtenderContext(bundle, match.group(1));

http.registerResources(

match.group(1), // alias

match.group(2), // resource path

wrapper // the http context

);

return wrapper;

} catch (NamespaceException nspe) {

// error is handled in the fall through

}

}

 System.err.println(

 "Invalid header for Http-Mapper: " + header);

 return null;

}

The modif iedBundle method does not have to be implemented because this example is not interested
in state changes because the only state of interest is the ACTIVE state. Therefore, the remaining
method left to implement is the removedBundle method. If the wrapper object is non-null then we
need to unregister the alias to prevent collisions in the http namespace when the bundle is rein-
stalled or updated.

public void removedBundle(

Bundle bundle, BundleEvent event,

ExtenderContext wrapper) {

http.unregister(wrapper.alias);

}

The remaining methods would be unnecessary if the Extender class had extended the BundleTracker
class. The BundleTrackerCustomizer interface requires a dummy implementation of the
modif iedBundle method:

public void modifiedBundle(

Bundle bundle, BundleEvent event, ExtenderContext object) {

// Nothing to do

}

It is usually not a good idea to start a tracker in a constructor because opening a service tracker will
immediately cause a number of callbacks for the existing bundles. If the Extender class was sub-
classed, then this could call back the uninitialized sub class methods. It is therefore better to separate
the initialization from the opening. There is therefore a need for an open and close method.

public void close() {

tracker.close();

}

public void open() {

tracker.open();

}

}

The previous example uses an HttpContext subclass that can retrieve resources from the target bun-
dle:

public class ExtenderContext implements HttpContext {

final Bundle bundle;

final String alias;
OSGi Service Platform Release 4, Version 4.3 Page 447

Security Tracker Specification Version 1.5
ExtenderContext(Bundle bundle, String alias) {

this.bundle = bundle;

this.alias = alias;

}

public boolean handleSecurity(

HttpServletRequest rq, HttpServletResponse rsp) {

return true;

}

public String getMimeType(String name) {

return null;

}

public URL getResource(String name) {

return bundle.getResource(name);

}

}

701.5 Security
A tracker contains a BundleContext instance variable that is accessible to the methods in a subclass.
A BundleContext object should never be given to other bundles because it is a capability. The frame-
work makes allocations based on the bundle context with respect to security and resource manage-
ment.

The tracker implementations do not have a method to get the BundleContext object, however, sub-
classes should be careful not to provide such a method if the tracker is given to other bundles.

The services that are being tracked are available via a ServiceTracker . These services are dependent
on the BundleContext as well. It is therefore necessary to do a careful security analysis when
ServiceTracker objects are given to other bundles. The same counts for the Bundle Tracker. It is
strongly advised to not pass trackers to other bundles.

701.5.1 Synchronous Bundle Listener
The Bundle Tracker uses the synchronous bundle listener because it is impossible to provide some of
the guarantees the Bundle Tracker provides without handling the events synchronously. Synchro-
nous events can block the complete system, therefore Synchronous Bundle Listeners require
AdminPermission[*,L ISTENER] . The wildcard * can be replaced with a specifier for the bundles that
should be visible to the Bundle Tracker. See Admin Permission on page 107 for more information.

Code that calls the open and close methods of Bundle Trackers must therefore have the appropriate
Admin Permission.

701.6 Changes
• The Service Tracker is generified
• A new constructor was added that takes a Class object as criterion
• Added BundleTracker. isEmpty and getTracked methods
• Added ServiceTracker . isEmpty , getTracked , and getServices(T[]) methods.

701.7 org.osgi.util.tracker
Tracker Package Version 1.5.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest.
Page 448 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 org.osgi.util.tracker
Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l . t racker; vers ion=”[1.5,2.0)”

701.7.1 Summary
• BundleTracker – The BundleTracker class simplifies tracking bundles much like the

ServiceTracker simplifies tracking services.
• BundleTrackerCustomizer – The BundleTrackerCustomizer interface allows a BundleTracker to

customize the Bundles that are tracked.
• ServiceTracker – The ServiceTracker class simplifies using services from the Framework’s

service registry.
• ServiceTrackerCustomizer – The ServiceTrackerCustomizer interface allows a ServiceTracker

to customize the service objects that are tracked.

701.7.2 Permissions
BundleTracker

701.7.3 public class BundleTracker<T>
implements BundleTrackerCustomizer<T>

<T> The type of the tracked object.

The BundleTracker class simplifies tracking bundles much like the ServiceTracker simplifies track-
ing services.

A BundleTracker is constructed with state criteria and a BundleTrackerCustomizer object. A
BundleTracker can use the BundleTrackerCustomizer to select which bundles are tracked and to cre-
ate a customized object to be tracked with the bundle. The BundleTracker can then be opened to
begin tracking all bundles whose state matches the specified state criteria.

The getBundles method can be called to get the Bundle objects of the bundles being tracked. The
getObject method can be called to get the customized object for a tracked bundle.

The BundleTracker class is thread-safe. It does not call a BundleTrackerCustomizer while holding
any locks. BundleTrackerCustomizer implementations must also be thread-safe.

Since 1.4

Concurrency Thread-safe
context

701.7.3.1 protected final BundleContext context

The Bundle Context used by this BundleTracker .
BundleTracker(BundleContext,int,BundleTrackerCustomizer)

701.7.3.2 public BundleTracker (BundleContext context , int stateMask , BundleTrackerCustomizer<T>
customizer)

context The BundleContext against which the tracking is done.

stateMask The bit mask of the ORing of the bundle states to be tracked.

customizer The customizer object to call when bundles are added, modified, or removed in this BundleTracker . If
customizer is null , then this BundleTracker will be used as the BundleTrackerCustomizer and this
BundleTracker will call the BundleTrackerCustomizer methods on itself.

 Create a BundleTracker for bundles whose state is present in the specified state mask.

Bundles whose state is present on the specified state mask will be tracked by this BundleTracker .

See Also Bundle.getState()
addingBundle(Bundle,BundleEvent)

701.7.3.3 public T addingBundle (Bundle bundle , BundleEvent event)

bundle The Bundle being added to this BundleTracker object.
OSGi Service Platform Release 4, Version 4.3 Page 449

org.osgi.util.tracker Tracker Specification Version 1.5
event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

 Default implementation of the BundleTrackerCustomizer .addingBundle method.

This method is only called when this BundleTracker has been constructed with a null
BundleTrackerCustomizer argument.

This implementation simply returns the specified Bundle .

This method can be overridden in a subclass to customize the object to be tracked for the bundle
being added.

Returns The specified bundle.

See Also BundleTrackerCustomizer.addingBundle(Bundle, BundleEvent)
close()

701.7.3.4 public void close ()

 Close this BundleTracker .

This method should be called when this BundleTracker should end the tracking of bundles.

This implementation calls getBundles() to get the list of tracked bundles to remove.
getBundles()

701.7.3.5 public Bundle[] getBundles ()

 Return an array of Bundles for all bundles being tracked by this BundleTracker .

Returns An array of Bundles or nul l if no bundles are being tracked.
getObject(Bundle)

701.7.3.6 public T getObject (Bundle bundle)

bundle The Bundle being tracked.

 Returns the customized object for the specified Bundle if the specified bundle is being tracked by this
BundleTracker .

Returns The customized object for the specified Bundle or nul l if the specified Bundle is not being tracked.
getTracked()

701.7.3.7 public Map<Bundle,T> getTracked ()

 Return a Map with the Bundles and customized objects for all bundles being tracked by this
BundleTracker .

Returns A Map with the Bundles and customized objects for all services being tracked by this BundleTracker .
If no bundles are being tracked, then the returned map is empty.

Since 1.5
getTrackingCount()

701.7.3.8 public int getTrackingCount ()

 Returns the tracking count for this BundleTracker . The tracking count is initialized to 0 when this
BundleTracker is opened. Every time a bundle is added, modified or removed from this
BundleTracker the tracking count is incremented.

The tracking count can be used to determine if this BundleTracker has added, modified or removed a
bundle by comparing a tracking count value previously collected with the current tracking count
value. If the value has not changed, then no bundle has been added, modified or removed from this
BundleTracker since the previous tracking count was collected.

Returns The tracking count for this BundleTracker or -1 if this BundleTracker is not open.
isEmpty()

701.7.3.9 public boolean isEmpty ()

 Return if this BundleTracker is empty.

Returns true if this BundleTracker is not tracking any bundles.

Since 1.5
Page 450 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 org.osgi.util.tracker
modifiedBundle(Bundle,BundleEvent,T)

701.7.3.10 public void modifiedBundle (Bundle bundle , BundleEvent event , T object)

bundle The Bundle whose state has been modified.

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

object The customized object for the specified Bundle.

 Default implementation of the BundleTrackerCustomizer .modif iedBundle method.

This method is only called when this BundleTracker has been constructed with a null
BundleTrackerCustomizer argument.

This implementation does nothing.

See Also BundleTrackerCustomizer.modifiedBundle(Bundle, BundleEvent, Object)
open()

701.7.3.11 public void open ()

 Open this BundleTracker and begin tracking bundles.

Bundle which match the state criteria specified when this BundleTracker was created are now
tracked by this BundleTracker .

Throws IllegalStateException – If the BundleContext with which this BundleTracker was created is no
longer valid.

SecurityException – If the caller and this class do not have the appropriate
AdminPermiss ion[context bundle,L ISTENER] , and the Java Runtime Environment supports permis-
sions.
remove(Bundle)

701.7.3.12 public void remove (Bundle bundle)

bundle The Bundle to be removed.

 Remove a bundle from this BundleTracker . The specified bundle will be removed from this
BundleTracker . If the specified bundle was being tracked then the
BundleTrackerCustomizer .removedBundle method will be called for that bundle.
removedBundle(Bundle,BundleEvent,T)

701.7.3.13 public void removedBundle (Bundle bundle , BundleEvent event , T object)

bundle The Bundle being removed.

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

object The customized object for the specified bundle.

 Default implementation of the BundleTrackerCustomizer .removedBundle method.

This method is only called when this BundleTracker has been constructed with a null
BundleTrackerCustomizer argument.

This implementation does nothing.

See Also BundleTrackerCustomizer.removedBundle(Bundle, BundleEvent, Object)
size()

701.7.3.14 public int size ()

 Return the number of bundles being tracked by this BundleTracker .

Returns The number of bundles being tracked.
BundleTrackerCustomizer

701.7.4 public interface BundleTrackerCustomizer<T>
<T> The type of the tracked object.
OSGi Service Platform Release 4, Version 4.3 Page 451

org.osgi.util.tracker Tracker Specification Version 1.5
The BundleTrackerCustomizer interface allows a BundleTracker to customize the Bundles that are
tracked. A BundleTrackerCustomizer is called when a bundle is being added to a BundleTracker . The
BundleTrackerCustomizer can then return an object for the tracked bundle. A
BundleTrackerCustomizer is also called when a tracked bundle is modified or has been removed
from a BundleTracker .

The methods in this interface may be called as the result of a BundleEvent being received by a
BundleTracker . Since BundleEvents are received synchronously by the BundleTracker , it is highly
recommended that implementations of these methods do not alter bundle states while being syn-
chronized on any object.

The BundleTracker class is thread-safe. It does not call a BundleTrackerCustomizer while holding
any locks. BundleTrackerCustomizer implementations must also be thread-safe.

Since 1.4

Concurrency Thread-safe
addingBundle(Bundle,BundleEvent)

701.7.4.1 public T addingBundle (Bundle bundle , BundleEvent event)

bundle The Bundle being added to the BundleTracker .

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

 A bundle is being added to the BundleTracker .

This method is called before a bundle which matched the search parameters of the BundleTracker is
added to the BundleTracker . This method should return the object to be tracked for the specified
Bundle . The returned object is stored in the BundleTracker and is available from the getObject
method.

Returns The object to be tracked for the specified Bundle object or null if the specified Bundle object should not
be tracked.
modifiedBundle(Bundle,BundleEvent,T)

701.7.4.2 public void modifiedBundle (Bundle bundle , BundleEvent event , T object)

bundle The Bundle whose state has been modified.

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

object The tracked object for the specified bundle.

 A bundle tracked by the BundleTracker has been modified.

This method is called when a bundle being tracked by the BundleTracker has had its state modified.
removedBundle(Bundle,BundleEvent,T)

701.7.4.3 public void removedBundle (Bundle bundle , BundleEvent event , T object)

bundle The Bundle that has been removed.

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

object The tracked object for the specified bundle.

 A bundle tracked by the BundleTracker has been removed.

This method is called after a bundle is no longer being tracked by the BundleTracker .
ServiceTracker

701.7.5 public class ServiceTracker<S,T>
implements ServiceTrackerCustomizer<S,T>

<S> The type of the service being tracked.
Page 452 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 org.osgi.util.tracker
<T> The type of the tracked object.

The ServiceTracker class simplifies using services from the Framework’s service registry.

A ServiceTracker object is constructed with search criteria and a ServiceTrackerCustomizer object.
A ServiceTracker can use a ServiceTrackerCustomizer to customize the service objects to be tracked.
The ServiceTracker can then be opened to begin tracking all services in the Framework’s service reg-
istry that match the specified search criteria. The ServiceTracker correctly handles all of the details
of listening to ServiceEvents and getting and ungetting services.

The getServiceReferences method can be called to get references to the services being tracked. The
getService and getServices methods can be called to get the service objects for the tracked service.

The ServiceTracker class is thread-safe. It does not call a ServiceTrackerCustomizer while holding
any locks. ServiceTrackerCustomizer implementations must also be thread-safe.

Concurrency Thread-safe
context

701.7.5.1 protected final BundleContext context

The Bundle Context used by this ServiceTracker .
filter

701.7.5.2 protected final Filter filter

The Filter used by this ServiceTracker which specifies the search criteria for the services to track.

Since 1.1
ServiceTracker(BundleContext,ServiceReference,ServiceTrackerCustomizer)

701.7.5.3 public ServiceTracker (BundleContext context , ServiceReference<S> reference ,
ServiceTrackerCustomizer<S,T> customizer)

context The BundleContext against which the tracking is done.

reference The ServiceReference for the service to be tracked.

customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker . If
customizer is null , then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

 Create a ServiceTracker on the specified ServiceReference .

The service referenced by the specified ServiceReference will be tracked by this ServiceTracker .
ServiceTracker(BundleContext,String,ServiceTrackerCustomizer)

701.7.5.4 public ServiceTracker (BundleContext context , String clazz , ServiceTrackerCustomizer<S,T>
customizer)

context The BundleContext against which the tracking is done.

clazz The class name of the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker . If
customizer is null , then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

 Create a ServiceTracker on the specified class name.

Services registered under the specified class name will be tracked by this ServiceTracker .
ServiceTracker(BundleContext,Filter,ServiceTrackerCustomizer)

701.7.5.5 public ServiceTracker (BundleContext context , Filter filter , ServiceTrackerCustomizer<S,T>
customizer)

context The BundleContext against which the tracking is done.

filter The Fi lter to select the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker . If
customizer is null, then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.
OSGi Service Platform Release 4, Version 4.3 Page 453

org.osgi.util.tracker Tracker Specification Version 1.5
 Create a ServiceTracker on the specified Fi l ter object.

Services which match the specified Fi lter object will be tracked by this ServiceTracker .

Since 1.1
ServiceTracker(BundleContext,Class,ServiceTrackerCustomizer)

701.7.5.6 public ServiceTracker (BundleContext context , Class<S> clazz , ServiceTrackerCustomizer<S,T>
customizer)

context The BundleContext against which the tracking is done.

clazz The class of the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker . If
customizer is null , then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

 Create a ServiceTracker on the specified class.

Services registered under the name of the specified class will be tracked by this ServiceTracker .

Since 1.5
addingService(ServiceReference)

701.7.5.7 public T addingService (ServiceReference<S> reference)

reference The reference to the service being added to this ServiceTracker .

 Default implementation of the ServiceTrackerCustomizer.addingService method.

This method is only called when this ServiceTracker has been constructed with a nul l
Serv iceTrackerCustomizer argument.

This implementation returns the result of calling getService on the BundleContext with which this
ServiceTracker was created passing the specified ServiceReference .

This method can be overridden in a subclass to customize the service object to be tracked for the ser-
vice being added. In that case, take care not to rely on the default implementation of removedService
to unget the service.

Returns The service object to be tracked for the service added to this ServiceTracker .

See Also ServiceTrackerCustomizer.addingService(ServiceReference)
close()

701.7.5.8 public void close ()

 Close this ServiceTracker .

This method should be called when this ServiceTracker should end the tracking of services.

This implementation calls getServ iceReferences() to get the list of tracked services to remove.
getService(ServiceReference)

701.7.5.9 public T getService (ServiceReference<S> reference)

reference The reference to the desired service.

 Returns the service object for the specified ServiceReference if the specified referenced service is
being tracked by this ServiceTracker .

Returns A service object or nul l if the service referenced by the specified ServiceReference is not being tracked.
getService()

701.7.5.10 public T getService ()

 Returns a service object for one of the services being tracked by this ServiceTracker .

If any services are being tracked, this implementation returns the result of calling
getService(getServiceReference()) .

Returns A service object or null if no services are being tracked.
getServiceReference()
Page 454 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 org.osgi.util.tracker
701.7.5.11 public ServiceReference<S> getServiceReference ()

 Returns a ServiceReference for one of the services being tracked by this ServiceTracker .

If multiple services are being tracked, the service with the highest ranking (as specified in its
service.ranking property) is returned. If there is a tie in ranking, the service with the lowest service
ID (as specified in its service. id property); that is, the service that was registered first is returned. This
is the same algorithm used by BundleContext.getServiceReference .

This implementation calls getServiceReferences() to get the list of references for the tracked ser-
vices.

Returns A ServiceReference or null if no services are being tracked.

Since 1.1
getServiceReferences()

701.7.5.12 public ServiceReference<S>[] getServiceReferences ()

 Return an array of ServiceReferences for all services being tracked by this ServiceTracker .

Returns Array of ServiceReferences or nul l if no services are being tracked.
getServices()

701.7.5.13 public Object[] getServices ()

 Return an array of service objects for all services being tracked by this ServiceTracker .

This implementation calls getServiceReferences() to get the list of references for the tracked ser-
vices and then calls getService(ServiceReference) for each reference to get the tracked service
object.

Returns An array of service objects or nul l if no services are being tracked.
getServices(T[])

701.7.5.14 public T[] getServices (T[] array)

array An array into which the tracked service objects will be stored, if the array is large enough.

 Return an array of service objects for all services being tracked by this ServiceTracker . The runtime
type of the returned array is that of the specified array.

This implementation calls getServiceReferences() to get the list of references for the tracked ser-
vices and then calls getService(ServiceReference) for each reference to get the tracked service
object.

Returns An array of service objects being tracked. If the specified array is large enough to hold the result, then
the specified array is returned. If the specified array is longer then necessary to hold the result, the ar-
ray element after the last service object is set to nul l . If the specified array is not large enough to hold
the result, a new array is created and returned.

Since 1.5
getTracked()

701.7.5.15 public SortedMap<ServiceReference<S>,T> getTracked ()

 Return a SortedMap of the ServiceReferences and service objects for all services being tracked by
this ServiceTracker . The map is sorted in reverse natural order of ServiceReference . That is, the first
entry is the service with the highest ranking and the lowest service id.

Returns A SortedMap with the ServiceReferences and service objects for all services being tracked by this
ServiceTracker . If no services are being tracked, then the returned map is empty.

Since 1.5
getTrackingCount()

701.7.5.16 public int getTrackingCount ()

 Returns the tracking count for this ServiceTracker . The tracking count is initialized to 0 when this
ServiceTracker is opened. Every time a service is added, modified or removed from this
ServiceTracker , the tracking count is incremented.
OSGi Service Platform Release 4, Version 4.3 Page 455

org.osgi.util.tracker Tracker Specification Version 1.5
The tracking count can be used to determine if this ServiceTracker has added, modified or removed a
service by comparing a tracking count value previously collected with the current tracking count
value. If the value has not changed, then no service has been added, modified or removed from this
ServiceTracker since the previous tracking count was collected.

Returns The tracking count for this ServiceTracker or -1 if this ServiceTracker is not open.

Since 1.2
isEmpty()

701.7.5.17 public boolean isEmpty ()

 Return if this ServiceTracker is empty.

Returns true if this ServiceTracker is not tracking any services.

Since 1.5
modifiedService(ServiceReference,T)

701.7.5.18 public void modifiedService (ServiceReference<S> reference , T service)

reference The reference to modified service.

service The service object for the modified service.

 Default implementation of the ServiceTrackerCustomizer.modif iedService method.

This method is only called when this ServiceTracker has been constructed with a nul l
Serv iceTrackerCustomizer argument.

This implementation does nothing.

See Also ServiceTrackerCustomizer.modifiedService(ServiceReference, Object)
open()

701.7.5.19 public void open ()

 Open this ServiceTracker and begin tracking services.

This implementation calls open(false) .

Throws IllegalStateException – If the BundleContext with which this ServiceTracker was created is no
longer valid.

See Also open(boolean)
open(boolean)

701.7.5.20 public void open (boolean trackAllServices)

trackAllServices If true , then this ServiceTracker will track all matching services regardless of class loader accessibility.
If false , then this ServiceTracker will only track matching services which are class loader accessible
to the bundle whose BundleContext is used by this ServiceTracker .

 Open this ServiceTracker and begin tracking services.

Services which match the search criteria specified when this ServiceTracker was created are now
tracked by this ServiceTracker .

Throws IllegalStateException – If the BundleContext with which this ServiceTracker was created is no
longer valid.

Since 1.3
remove(ServiceReference)

701.7.5.21 public void remove (ServiceReference<S> reference)

reference The reference to the service to be removed.

 Remove a service from this ServiceTracker . The specified service will be removed from this
ServiceTracker . If the specified service was being tracked then the
ServiceTrackerCustomizer.removedService method will be called for that service.
removedService(ServiceReference,T)

701.7.5.22 public void removedService (ServiceReference<S> reference , T service)

reference The reference to removed service.
Page 456 OSGi Service Platform Release 4, Version 4.3

Tracker Specification Version 1.5 org.osgi.util.tracker
service The service object for the removed service.

 Default implementation of the ServiceTrackerCustomizer.removedService method.

This method is only called when this ServiceTracker has been constructed with a null
Serv iceTrackerCustomizer argument.

This implementation calls ungetService , on the BundleContext with which this ServiceTracker was
created, passing the specified ServiceReference .

This method can be overridden in a subclass. If the default implementation of addingService method
was used, this method must unget the service.

See Also ServiceTrackerCustomizer.removedService(ServiceReference, Object)
size()

701.7.5.23 public int size ()

 Return the number of services being tracked by this ServiceTracker .

Returns The number of services being tracked.
waitForService(long)

701.7.5.24 public T waitForService (long timeout) throws InterruptedException

timeout The time interval in milliseconds to wait. If zero, the method will wait indefinitely.

 Wait for at least one service to be tracked by this ServiceTracker . This method will also return when
this ServiceTracker is closed.

It is strongly recommended that waitForServ ice is not used during the calling of the BundleActivator
methods. BundleActivator methods are expected to complete in a short period of time.

This implementation calls getService() to determine if a service is being tracked.

Returns Returns the result of getService() .

Throws InterruptedException – If another thread has interrupted the current thread.

IllegalArgumentException – If the value of timeout is negative.
ServiceTrackerCustomizer

701.7.6 public interface ServiceTrackerCustomizer<S,T>
<S> The type of the service being tracked.

<T> The type of the tracked object.

The ServiceTrackerCustomizer interface allows a ServiceTracker to customize the service objects
that are tracked. A ServiceTrackerCustomizer is called when a service is being added to a
ServiceTracker . The ServiceTrackerCustomizer can then return an object for the tracked service. A
ServiceTrackerCustomizer is also called when a tracked service is modified or has been removed
from a ServiceTracker .

The methods in this interface may be called as the result of a ServiceEvent being received by a
ServiceTracker . Since ServiceEvents are synchronously delivered by the Framework, it is highly rec-
ommended that implementations of these methods do not register (BundleContext. registerService),
modify (ServiceRegistration.setProperties) or unregister (ServiceRegistrat ion.unregister) a service
while being synchronized on any object.

The ServiceTracker class is thread-safe. It does not call a ServiceTrackerCustomizer while holding
any locks. ServiceTrackerCustomizer implementations must also be thread-safe.

Concurrency Thread-safe
addingService(ServiceReference)

701.7.6.1 public T addingService (ServiceReference<S> reference)

reference The reference to the service being added to the ServiceTracker .

 A service is being added to the ServiceTracker .
OSGi Service Platform Release 4, Version 4.3 Page 457

org.osgi.util.tracker Tracker Specification Version 1.5
This method is called before a service which matched the search parameters of the ServiceTracker is
added to the ServiceTracker . This method should return the service object to be tracked for the speci-
fied ServiceReference . The returned service object is stored in the ServiceTracker and is available
from the getService and getServices methods.

Returns The service object to be tracked for the specified referenced service or nul l if the specified referenced
service should not be tracked.
modifiedService(ServiceReference,T)

701.7.6.2 public void modifiedService (ServiceReference<S> reference , T service)

reference The reference to the service that has been modified.

service The service object for the specified referenced service.

 A service tracked by the ServiceTracker has been modified.

This method is called when a service being tracked by the ServiceTracker has had it properties modi-
fied.
removedService(ServiceReference,T)

701.7.6.3 public void removedService (ServiceReference<S> reference , T service)

reference The reference to the service that has been removed.

service The service object for the specified referenced service.

 A service tracked by the ServiceTracker has been removed.

This method is called after a service is no longer being tracked by the ServiceTracker .
Page 458 OSGi Service Platform Release 4, Version 4.3

XML Parser Service Specification Version 1.0 Introduction
702 XML Parser Service
Specification
Version 1.0

702.1 Introduction
The Extensible Markup Language (XML) has become a popular method of describing data. As more
bundles use XML to describe their data, a common XML Parser becomes necessary in an embedded
environment in order to reduce the need for space. Not all XML Parsers are equivalent in function,
however, and not all bundles have the same requirements on an XML parser.

This problem was addressed in the Java API for XML Processing, see [4] JAXP for Java 2 Standard Edi-
tion and Enterprise Edition. This specification addresses how the classes defined in JAXP can be used
in an OSGi Service Platform. It defines how:

• Implementations of XML parsers can become available to other bundles
• Bundles can find a suitable parser
• A standard parser in a JAR can be transformed to a bundle

702.1.1 Essentials
• Standards – Leverage existing standards in Java based XML parsing: JAXP, SAX and DOM
• Unmodified JAXP code – Run unmodified JAXP code
• Simple – It should be easy to provide a SAX or DOM parser as well as easy to find a matching parser
• Multiple – It should be possible to have multiple implementations of parsers available
• Extendable – It is likely that parsers will be extended in the future with more functionality

702.1.2 Entities
• XMLParserActivator – A utility class that registers a parser factory from declarative information in

the Manifest file.
• SAXParserFactory – A class that can create an instance of a SAXParser class.
• DocumentBuilderFactory – A class that can create an instance of a DocumentBui lder class.
• SAXParser – A parser, instantiated by a SaxParserFactory object, that parses according to the SAX

specifications.
• DocumentBuilder – A parser, instantiated by a DocumentBui lderFactory , that parses according to

the DOM specifications.
OSGi Service Platform Release 4, Version 4.3 Page 459

JAXP XML Parser Service Specification Version 1.0
Figure 702.1 XML Parsing diagram

702.1.3 Operations
A bundle containing a SAX or DOM parser is started. This bundle registers a SAXParserFactory and/or
a DocumentBui lderFactory service object with the Framework. Service registration properties
describe the features of the parsers to other bundles. A bundle that needs an XML parser will get a
SAXParserFactory or DocumentBuilderFactory service object from the Framework service registry.
This object is then used to instantiate the requested parsers according to their specifications.

702.2 JAXP
XML has become very popular in the last few years because it allows the interchange of complex
information between different parties. Though only a single XML standard exists, there are multiple
APIs to XML parsers, primarily of two types:

• The Simple API for XML (SAX1 and SAX2)
• Based on the Document Object Model (DOM 1 and 2)

Both standards, however, define an abstract API that can be implemented by different vendors.

A given XML Parser implementation may support either or both of these parser types by implement-
ing the org.w3c.dom and/or org.xml.sax packages. In addition, parsers have characteristics such as
whether they are validating or non-validating parsers and whether or not they are name-space aware.

An application which uses a specific XML Parser must code to that specific parser and become cou-
pled to that specific implementation. If the parser has implemented [4] JAXP, however, the applica-
tion developer can code against SAX or DOM and let the runtime environment decide which parser
implementation is used.

JAXP uses the concept of a factory. A factory object is an object that abstracts the creation of another
object. JAXP defines a DocumentBui lderFactory and a SAXParserFactory class for this purpose.

SAXParser
Factory

Document
Builder
Factory

XMLParser
Activator

SAXParser
user

Document
Builder user

Subclass impl.

SAXParser Document
Builder

Document Builder
impl.

SAXParser impl.

parses withparses with

registered by registered by

instantiatesinstant. by

reads bundle META-INF
Parser Implementation
Bundle

getsgets

0..* 0..*

0..*0..*

0..* 0..*

0..*0..*

0,1 0,1

0,10,1

0..* 1 0..*1
Page 460 OSGi Service Platform Release 4, Version 4.3

XML Parser Service Specification Version 1.0 XML Parser service
JAXP is implemented in the javax.xml.parsers package and provides an abstraction layer between an
application and a specific XML Parser implementation. Using JAXP, applications can choose to use
any JAXP compliant parser without changing any code, simply by changing a System property which
specifies the SAX- and DOM factory class names.

In JAXP, the default factory is obtained with a static method in the SAXParserFactory or
DocumentBui lderFactory class. This method will inspect the associated System property and create a
new instance of that class.

702.3 XML Parser service
The current specification of JAXP has the limitation that only one of each type of parser factories can
be registered. This specification specifies how multiple SAXParserFactory objects and
DocumentBui lderFactory objects can be made available to bundles simultaneously.

Providers of parsers should register a JAXP factory object with the OSGi service registry under the fac-
tory class name. Service properties are used to describe whether the parser:

• Is validating
• Is name-space aware
• Has additional features

With this functionality, bundles can query the OSGi service registry for parsers supporting the spe-
cific functionality that they require.

702.4 Properties
Parsers must be registered with a number of properties that qualify the service. In this specification,
the following properties are specified:

• PARSER_NAMESPACEAWARE – The registered parser is aware of name-spaces. Name-spaces allow
an XML document to consist of independently developed DTDs. In an XML document, they are
recognized by the xmlns attribute and names prefixed with an abbreviated name-space identifier,
like: <xsl : i f . . .> . The type is a Boolean object that must be true when the parser supports name-
spaces. All other values, or the absence of the property, indicate that the parser does not
implement name-spaces.

• PARSER_VALIDATING – The registered parser can read the DTD and can validate the XML accord-
ingly. The type is a Boolean object that must true when the parser is validating. All other values,
or the absence of the property, indicate that the parser does not validate.

702.5 Getting a Parser Factory
Getting a parser factory requires a bundle to get the appropriate factory from the service registry. In a
simple case in which a non-validating, non-name-space aware parser would suffice, it is best to use
getServiceReference(Str ing) .

DocumentBui lder getParser(BundleContext context)
throws Exception {
Serv iceReference ref = context.getServiceReference(

DocumentBui lderFactory.c lass.getName()) ;
if (ref == null)

return null;

DocumentBuilderFactory factory =

(DocumentBuilderFactory) context.getService(ref);

return factory.newDocumentBuilder();

}

OSGi Service Platform Release 4, Version 4.3 Page 461

Adapting a JAXP Parser to OSGi XML Parser Service Specification Version 1.0
In a more demanding case, the filtered version allows the bundle to select a parser that is validating
and name-space aware:

SAXParser getParser(BundleContext context)
throws Exception {
Serv iceReference refs[] = context.getServiceReferences(

SAXParserFactory.class .getName(),
"(&(parser.namespaceAware=true)"

+ "(parser .val idat ing=true))") ;
if (refs == null)

return null;

SAXParserFactory factory =

(SAXParserFactory) context.getService(refs[O]);

return factory.newSAXParser();

}

702.6 Adapting a JAXP Parser to OSGi
If an XML Parser supports JAXP, then it can be converted to an OSGi aware bundle by adding a
BundleActivator class which registers an XML Parser Service. The utility
org.osgi .ut i l .xml.XMLParserActivator class provides this function and can be added (copied, not ref-
erenced) to any XML Parser bundle, or it can be extended and customized if desired.

702.6.1 JAR Based Services
Its functionality is based on the definition of the [5] JAR File specification, services directory. This specifi-
cation defines a concept for service providers. A JAR file can contain an implementation of an
abstractly defined service. The class (or classes) implementing the service are designated from a file in
the META-INF/services directory. The name of this file is the same as the abstract service class.

The content of the UTF-8 encoded file is a list of class names separated by new lines. White space is
ignored and the number sign (’#’ or \u0023) is the comment character.

JAXP uses this service provider mechanism. It is therefore likely that vendors will place these service
files in the META-INF/services directory.

702.6.2 XMLParserActivator
To support this mechanism, the XML Parser service provides a utility class that should be normally
delivered with the OSGi Service Platform implementation. This class is a Bundle Activator and must
start when the bundle is started. This class is copied into the parser bundle, and not imported.

The start method of the utility BundleActivator class will look in the META-INF/services service pro-
vider directory for the files javax.xml.parsers.SAXParserFactory (SAXFACTORYNAME) or
javax.xml.parsers.DocumentBui lderFactory (DOMFACTORYNAME). The full path name is specified
in the constants SAXCLASSFILE and DOMCLASSFILE respectively.

If either of these files exist, the utility BundleActivator class will parse the contents according to the
specification. A service provider file can contain multiple class names. Each name is read and a new
instance is created. The following example shows the possible content of such a file:

ACME example SAXParserFactory file

com.acme.saxparser.SAXParserFast # Fast

com.acme.saxparser.SAXParserValidating # Validates
Page 462 OSGi Service Platform Release 4, Version 4.3

XML Parser Service Specification Version 1.0 Usage of JAXP
Both the javax.xml.parsers.SAXParserFactory and the javax.xml.parsers.DocumentBui lderFactory
provide methods that describe the features of the parsers they can create. The XMLParserAct ivator
activator will use these methods to set the values of the properties, as defined in Properties on page
461, that describe the instances.

702.6.3 Adapting an Existing JAXP Compatible Parser
 To incorporate this bundle activator into a XML Parser Bundle, do the following:

• If SAX parsing is supported, create a /META-INF/services/ javax.xml.parsers .SAXParserFactory
resource file containing the class names of the SAXParserFactory classes.

• If DOM parsing is supported, create a /META-INF/services/
javax.xml.parsers .DocumentBui lderFactory file containing the fully qualified class names of the
DocumentBui lderFactory classes.

• Create manifest file which imports the packages org.w3c.dom , org.xml.sax , and
javax.xml.parsers .

• Add a Bundle-Activator header to the manifest pointing to the XMLParserAct ivator , the sub-class
that was created, or a fully custom one.

• If the parsers support attributes, properties, or features that should be registered as properties so
they can be searched, extend the XMLParserAct ivator class and override
setSAXProperties(javax.xml.parsers.SAXParserFactory,Hashtable) and
setDOMPropert ies(javax.xml.parsers.DocumentBuilderFactory,Hashtable) .

• Ensure that custom properties are put into the Hashtable object. JAXP does not provide a way for
XMLParserAct ivator to query the parser to find out what properties were added.

• Bundles that extend the XMLParserAct ivator class must call the original methods via super to cor-
rectly initialize the XML Parser Service properties.

• Compile this class into the bundle.
• Install the new XML Parser Service bundle.
• Ensure that the org.osgi .ut i l .xml.XMLParserActivator class is contained in the bundle.

702.7 Usage of JAXP
A single bundle should export the JAXP, SAX, and DOM APIs. The version of contained packages
must be appropriately labeled. JAXP 1.1 or later is required which references SAX 2 and DOM 2. See [4]
JAXP for the exact version dependencies.

This specification is related to related packages as defined in the JAXP 1.1 document. Table 702.1 con-

tains the expected minimum versions.

The Xerces project from the Apache group, [6] Xerces 2 Java Parser, contains a number libraries that
implement the necessary APIs. These libraries can be wrapped in a bundle to provide the relevant
packages.

Table 702.1 JAXP 1.1 minimum package versions

Package Minimum Version

javax.xml.parsers 1.1

org.xml.sax 2.0

org.xml.sax.helpers 2.0

org.xsml.sax.ext 1.0

org.w3c.dom 2.0
OSGi Service Platform Release 4, Version 4.3 Page 463

Security XML Parser Service Specification Version 1.0
702.8 Security
A centralized XML parser is likely to see sensitive information from other bundles. Provisioning an
XML parser should therefore be limited to trusted bundles. This security can be achieved by provid-
ing ServicePermission[javax.xml.parsers .DocumentBui lderFactory | javax.xml.parsers .SAXFactory,
REGISTER] to only trusted bundles.

Using an XML parser is a common function, and
ServicePermiss ion[javax.xml.parsers .DOMParserFactory | javax.xml.parsers.SAXFactory, GET]
should not be restricted.

The XML parser bundle will need Fi lePermission[<<ALL FILES>>,READ] for parsing of files because it
is not known beforehand where those files will be located. This requirement further implies that the
XML parser is a system bundle that must be fully trusted.

702.9 org.osgi.util.xml
XML Parser Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .xml; version=”[1.0,2.0)”
XMLParserActivator

702.9.1 public class XMLParserActivator
implements BundleActivator , ServiceFactory
A BundleActivator class that allows any JAXP compliant XML Parser to register itself as an OSGi
parser service. Multiple JAXP compliant parsers can concurrently register by using this BundleActi-
vator class. Bundles who wish to use an XML parser can then use the framework’s service registry to
locate available XML Parsers with the desired characteristics such as validating and namespace-
aware.

The services that this bundle activator enables a bundle to provide are:

• javax.xml.parsers.SAXParserFactory(SAXFACTORYNAME)
• javax.xml.parsers.DocumentBui lderFactory(DOMFACTORYNAME)

The algorithm to find the implementations of the abstract parsers is derived from the JAR file specifi-
cations, specifically the Services API.

An XMLParserActivator assumes that it can find the class file names of the factory classes in the fol-
lowing files:

• /META-INF/services/ javax.xml.parsers .SAXParserFactory is a file contained in a jar available to
the runtime which contains the implementation class name(s) of the SAXParserFactory.

• /META-INF/services/ javax.xml.parsers .DocumentBui lderFactory is a file contained in a jar
available to the runtime which contains the implementation class name(s) of the
DocumentBui lderFactory

If either of the files does not exist, XMLParserActivator assumes that the parser does not support that
parser type.

XMLParserAct ivator attempts to instantiate both the SAXParserFactory and the
DocumentBui lderFactory . It registers each factory with the framework along with service properties:

• PARSER_VALIDATING- indicates if this factory supports validating parsers. It’s value is a Boolean .
Page 464 OSGi Service Platform Release 4, Version 4.3

XML Parser Service Specification Version 1.0 org.osgi.util.xml
• PARSER_NAMESPACEAWARE- indicates if this factory supports namespace aware parsers It’s value
is a Boolean .

Individual parser implementations may have additional features, properties, or attributes which
could be used to select a parser with a filter. These can be added by extending this class and overrid-
ing the setSAXPropert ies and setDOMPropert ies methods.

Concurrency Thread-safe
DOMCLASSFILE

702.9.1.1 public static final String DOMCLASSFILE = “/META-INF/services/
javax.xml.parsers.DocumentBuilderFactory”

Fully qualified path name of DOM Parser Factory Class Name file
DOMFACTORYNAME

702.9.1.2 public static final String DOMFACTORYNAME = “javax.xml.parsers.DocumentBuilderFactory”

Filename containing the DOM Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.
PARSER_NAMESPACEAWARE

702.9.1.3 public static final String PARSER_NAMESPACEAWARE = “parser.namespaceAware”

Service property specifying if factory is configured to support namespace aware parsers. The value is
of type Boolean .
PARSER_VALIDATING

702.9.1.4 public static final String PARSER_VALIDATING = “parser.validating”

Service property specifying if factory is configured to support validating parsers. The value is of type
Boolean .
SAXCLASSFILE

702.9.1.5 public static final String SAXCLASSFILE = “/META-INF/services/
javax.xml.parsers.SAXParserFactory”

Fully qualified path name of SAX Parser Factory Class Name file
SAXFACTORYNAME

702.9.1.6 public static final String SAXFACTORYNAME = “javax.xml.parsers.SAXParserFactory”

Filename containing the SAX Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.
XMLParserActivator()

702.9.1.7 public XMLParserActivator ()
getService(Bundle,ServiceRegistration)

702.9.1.8 public Object getService (Bundle bundle , ServiceRegistration registration)

bundle The bundle using the service.

registration The ServiceRegistrat ion object for the service.

 Creates a new XML Parser Factory object.

A unique XML Parser Factory object is returned for each call to this method.

The returned XML Parser Factory object will be configured for validating and namespace aware sup-
port as specified in the service properties of the specified ServiceRegistration object. This method can
be overridden to configure additional features in the returned XML Parser Factory object.

Returns A new, configured XML Parser Factory object or null if a configuration error was encountered
setDOMProperties(javax.xml.parsers.DocumentBuilderFactory,Hashtable)

702.9.1.9 public void setDOMProperties (DocumentBuilderFactory factory , Hashtable props)

factory - the DocumentBuilderFactory object

props - Hashtable of service properties.

 Set the customizable DOM Parser Service Properties.
OSGi Service Platform Release 4, Version 4.3 Page 465

org.osgi.util.xml XML Parser Service Specification Version 1.0
This method attempts to instantiate a validating parser and a namespace aware parser to determine if
the parser can support those features. The appropriate properties are then set in the specified props
object.

This method can be overridden to add additional DOM2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put(”http://www.acme.com/
features/foo”, Boolean.TRUE);
setSAXProperties(javax.xml.parsers.SAXParserFactory,Hashtable)

702.9.1.10 public void setSAXProperties (SAXParserFactory factory , Hashtable properties)

factory - the SAXParserFactory object

properties - the properties object for the service

 Set the customizable SAX Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine if
the parser can support those features. The appropriate properties are then set in the specified proper-
ties object.

This method can be overridden to add additional SAX2 features and properties. If you want to be able
to filter searches of the OSGi service registry, this method must put a key, value pair into the proper-
ties object for each feature or property. For example, properties.put(”http://www.acme.com/features/
foo”, Boolean.TRUE);
start(BundleContext)

702.9.1.11 public void start (BundleContext context) throws Exception

context The execution context of the bundle being started.

 Called when this bundle is started so the Framework can perform the bundle-specific activities neces-
sary to start this bundle. This method can be used to register services or to allocate any resources that
this bundle needs.

This method must complete and return to its caller in a timely manner.

This method attempts to register a SAX and DOM parser with the Framework’s service registry.

Throws Exception – If this method throws an exception, this bundle is marked as stopped and the Framework
will remove this bundle’s listeners, unregister all services registered by this bundle, and release all
services used by this bundle.
stop(BundleContext)

702.9.1.12 public void stop (BundleContext context) throws Exception

context The execution context of the bundle being stopped.

 This method has nothing to do as all active service registrations will automatically get unregistered
when the bundle stops.

Throws Exception – If this method throws an exception, the bundle is still marked as stopped, and the Frame-
work will remove the bundle’s listeners, unregister all services registered by the bundle, and release
all services used by the bundle.
ungetService(Bundle,ServiceRegistration,Object)

702.9.1.13 public void ungetService (Bundle bundle , ServiceRegistration registration , Object service)

bundle The bundle releasing the service.

registration The ServiceRegistration object for the service.

service The XML Parser Factory object returned by a previous call to the getService method.

 Releases a XML Parser Factory object.
Page 466 OSGi Service Platform Release 4, Version 4.3

XML Parser Service Specification Version 1.0 References
702.10 References
[1] XML

http://www.w3.org/XML

[2] SAX
http://www.saxproject.org/

[3] DOM Java Language Binding
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

[4] JAXP
http://jaxp.java.net/

[5] JAR File specification, services directory
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html

[6] Xerces 2 Java Parser
http://xerces.apache.org/xerces2-j/
OSGi Service Platform Release 4, Version 4.3 Page 467

References XML Parser Service Specification Version 1.0
Page 468 OSGi Service Platform Release 4, Version 4.3

OSGi Service Platform Release 4, Version 4.3 Page 469

Page 470 OSGi Service Platform Release 4, Version 4.3

End Of Document

	Table Of Contents
	1 Introduction
	1.1 Overview of the Residential Specifications
	1.1.1 Remote Management
	1.1.2 Management and Configuration services
	1.1.3 Component Models
	1.1.4 HTTP and Servlets
	1.1.5 Event models
	1.1.6 Other Residential Services
	1.1.7 Miscellaneous Supporting Services

	1.2 Version Information
	1.3 References

	2 Residential Device Management Tree Specification
	2.1 Introduction
	2.1.1 Essentials
	2.1.2 Entities

	2.2 The Residential Management Tree
	2.3 Managing Bundles
	2.3.1 Bundle Life Cycle Example
	2.3.2 Framework Restart
	2.3.3 Access to Wiring
	2.3.4 Wiring Example

	2.4 Filtering
	2.4.1 Example

	2.5 Log Access
	2.6 osgi.wiring.rmt.service Namespace
	2.7 Tree Summary
	2.7.1 Framework
	2.7.2 Filters
	2.7.3 Log

	2.8 org.osgi.dmt.residential
	2.8.1 $
	2.8.2 Bundle
	2.8.3 Bundle.Certificate
	2.8.4 Bundle.Entry
	2.8.5 Filter
	2.8.6 Framework
	2.8.7 Wire
	2.8.8 Wire.Capability
	2.8.9 Wire.Requirement

	2.9 org.osgi.dmt.service.log
	2.9.1 Log
	2.9.2 LogEntry

	2.10 References

	3 TR-157 Amendment 3 Software Module Guidelines
	3.1 Management Agent
	3.2 Parameter Mapping
	3.3 References

	101 Log Service Specification
	101.1 Introduction
	101.1.1 Entities

	101.2 The Log Service Interface
	101.3 Log Level and Error Severity
	101.4 Log Reader Service
	101.5 Log Entry Interface
	101.6 Mapping of Events
	101.6.1 Bundle Events Mapping
	101.6.2 Service Events Mapping
	101.6.3 Framework Events Mapping
	101.6.4 Log Events

	101.7 Security
	101.8 org.osgi.service.log
	101.8.1 Summary
	101.8.2 Permissions
	101.8.3 public interface LogEntry
	101.8.4 public interface LogListener extends EventListener
	101.8.5 public interface LogReaderService
	101.8.6 public interface LogService

	102 Http Service Specification
	102.1 Introduction
	102.1.1 Entities

	102.2 Registering Servlets
	102.3 Registering Resources
	102.4 Mapping HTTP Requests to Servlet and Resource Registrations
	102.5 The Default Http Context Object
	102.6 Multipurpose Internet Mail Extension (MIME) Types
	102.7 Authentication
	102.8 Security
	102.8.1 Accessing Resources with the Default Http Context
	102.8.2 Accessing Other Types of Resources
	102.8.3 Servlet and HttpContext objects

	102.9 Configuration Properties
	102.10 org.osgi.service.http
	102.10.1 Summary
	102.10.2 Permissions
	102.10.3 public interface HttpContext
	102.10.4 public interface HttpService
	102.10.5 public class NamespaceException extends Exception

	102.11 References

	103 Device Access Specification
	103.1 Introduction
	103.1.1 Essentials
	103.1.2 Operation
	103.1.3 Entities

	103.2 Device Services
	103.2.1 Device Service Registration
	103.2.2 Device Service Attachment

	103.3 Device Category Specifications
	103.3.1 Device Category Guidelines
	103.3.2 Sample Device Category Specification
	103.3.3 Match Example

	103.4 Driver Services
	103.4.1 Driver Bundles
	103.4.2 Driver Taxonomy
	103.4.3 Driver Service Registration
	103.4.4 Driver Service Unregistration
	103.4.5 Driver Service Methods
	103.4.6 Idle Driver Bundles

	103.5 Driver Locator Service
	103.5.1 The DriverLocator Interface
	103.5.2 A Driver Example

	103.6 The Driver Selector Service
	103.7 Device Manager
	103.7.1 Device Manager Startup
	103.7.2 The Device Attachment Algorithm
	103.7.3 Legend
	103.7.4 Optimizations
	103.7.5 Driver Bundle Reclamation
	103.7.6 Handling Driver Bundle Updates
	103.7.7 Simultaneous Device Service and Driver Service Registration

	103.8 Security
	103.9 org.osgi.service.device
	103.9.1 Summary
	103.9.2 Permissions
	103.9.3 public interface Constants
	103.9.4 public interface Device
	103.9.5 public interface Driver
	103.9.6 public interface DriverLocator
	103.9.7 public interface DriverSelector
	103.9.8 public interface Match

	103.10 References

	104 Configuration Admin Service Specification
	104.1 Introduction
	104.1.1 Essentials
	104.1.2 Entities
	104.1.3 Synopsis

	104.2 Configuration Targets
	104.3 The Persistent Identity
	104.3.1 PID Syntax

	104.4 The Configuration Object
	104.4.1 Location Binding
	104.4.2 Dynamic Binding
	104.4.3 Configuration Properties
	104.4.4 Property Propagation
	104.4.5 Automatic Properties
	104.4.6 Equality

	104.5 Managed Service
	104.5.1 Singletons
	104.5.2 Networks
	104.5.3 Configuring Managed Services
	104.5.4 Race Conditions
	104.5.5 Examples of Managed Service
	104.5.6 Deletion

	104.6 Managed Service Factory
	104.6.1 When to Use a Managed Service Factory
	104.6.2 Registration
	104.6.3 Deletion
	104.6.4 Managed Service Factory Example
	104.6.5 Multiple Consoles Example

	104.7 Configuration Admin Service
	104.7.1 Creating a Managed Service Configuration Object
	104.7.2 Creating a Managed Service Factory Configuration Object
	104.7.3 Accessing Existing Configurations
	104.7.4 Using Multi-Locations
	104.7.5 Regions
	104.7.6 Deletion
	104.7.7 Updating a Bundle’s Own Configuration

	104.8 Configuration Events
	104.8.1 Event Admin Service and Configuration Change Events

	104.9 Configuration Plugin
	104.9.1 Limiting The Targets
	104.9.2 Example of Property Expansion
	104.9.3 Configuration Data Modifications
	104.9.4 Forcing a Callback
	104.9.5 Calling Order

	104.10 Meta Typing
	104.11 Security
	104.11.1 Configuration Permission
	104.11.2 Permissions Summary
	104.11.3 Configuration and Permission Administration

	104.12 Changes
	104.13 org.osgi.service.cm
	104.13.1 Summary
	104.13.2 Permissions
	104.13.3 public interface Configuration
	104.13.4 public interface ConfigurationAdmin
	104.13.5 public class ConfigurationEvent
	104.13.6 public class ConfigurationException extends Exception
	104.13.7 public interface ConfigurationListener
	104.13.8 public final class ConfigurationPermission extends BasicPermission
	104.13.9 public interface ConfigurationPlugin
	104.13.10 public interface ManagedService
	104.13.11 public interface ManagedServiceFactory

	104.14

	105 Metatype Service Specification
	105.1 Introduction
	105.1.1 Essentials
	105.1.2 Entities
	105.1.3 Operation

	105.2 Attributes Model
	105.3 Object Class Definition
	105.4 Attribute Definition
	105.5 Meta Type Service
	105.6 Meta Type Provider Service
	105.7 Using the Meta Type Resources
	105.7.1 XML Schema of a Meta Type Resource
	105.7.2 Use of the Designate Element
	105.7.3 Example Metadata File

	105.8 Object
	105.9 XML Schema
	105.10 Limitations
	105.11 Related Standards
	105.12 Changes
	105.13 Security Considerations
	105.14 org.osgi.service.metatype
	105.14.1 Summary
	105.14.2 Permissions
	105.14.3 public interface AttributeDefinition
	105.14.4 public interface MetaTypeInformation extends MetaTypeProvider
	105.14.5 public interface MetaTypeProvider
	105.14.6 public interface MetaTypeService
	105.14.7 public interface ObjectClassDefinition

	105.15 References

	107 User Admin Service Specification
	107.1 Introduction
	107.1.1 Essentials
	107.1.2 Entities
	107.1.3 Operation

	107.2 Authentication
	107.2.1 Repository
	107.2.2 Basic Authentication
	107.2.3 Certificates

	107.3 Authorization
	107.3.1 The Authorization Object
	107.3.2 Authorization Example

	107.4 Repository Maintenance
	107.5 User Admin Events
	107.5.1 Event Admin and User Admin Change Events

	107.6 Security
	107.6.1 UserAdminPermission

	107.7 Relation to JAAS
	107.7.1 JDK 1.3 Dependencies
	107.7.2 Existing OSGi Mechanism
	107.7.3 Future Road Map

	107.8 org.osgi.service.useradmin
	107.8.1 Summary
	107.8.2 Permissions
	107.8.3 public interface Authorization
	107.8.4 public interface Group extends User
	107.8.5 public interface Role
	107.8.6 public interface User extends Role
	107.8.7 public interface UserAdmin
	107.8.8 public class UserAdminEvent
	107.8.9 public interface UserAdminListener
	107.8.10 public final class UserAdminPermission extends BasicPermission

	107.9 References

	110 Initial Provisioning Specification
	110.1 Introduction
	110.1.1 Essentials
	110.1.2 Entities

	110.2 Procedure
	110.2.1 InitialProvisioning-Entries Manifest Header

	110.3 Special Configurations
	110.3.1 Branded Service Platform Server
	110.3.2 Non-connected Service Platform

	110.4 The Provisioning Service
	110.5 Management Agent Environment
	110.6 Mapping To File Scheme
	110.6.1 Example With File Scheme

	110.7 Mapping To HTTP(S) Scheme
	110.7.1 HTTPS Certificates
	110.7.2 Certificate Encoding
	110.7.3 URL Encoding

	110.8 Mapping To RSH Scheme
	110.8.1 Shared Secret
	110.8.2 Request Coding
	110.8.3 Response Coding
	110.8.4 RSH URL
	110.8.5 Extensions to the Provisioning Service Dictionary
	110.8.6 RSH Transport

	110.9 Exception Handling
	110.10 Security
	110.10.1 Concerns
	110.10.2 Service Platform Long-Term Security
	110.10.3 Permissions

	110.11 org.osgi.service.provisioning
	110.11.1 public interface ProvisioningService

	110.12 References

	111 UPnP™ Device Service Specification
	111.1 Introduction
	111.1.1 Essentials
	111.1.2 Entities
	111.1.3 Operation Summary

	111.2 UPnP Specifications
	111.2.1 UPnP Base Driver

	111.3 UPnP Device
	111.3.1 Root Device
	111.3.2 Exported Versus Imported Devices
	111.3.3 Icons

	111.4 Device Category
	111.5 UPnPService
	111.5.1 State Variables

	111.6 Working With a UPnP Device
	111.7 Implementing a UPnP Device
	111.8 Event API
	111.8.1 Initial Event Delivery

	111.9 UPnP Events and Event Admin service
	111.10 Localization
	111.11 Dates and Times
	111.12 UPnP Exception
	111.13 Configuration
	111.14 Networking considerations
	111.14.1 The UPnP Multicasts

	111.15 Security
	111.16 Changes
	111.17 org.osgi.service.upnp
	111.17.1 Summary
	111.17.2 Permissions
	111.17.3 public interface UPnPAction
	111.17.4 public interface UPnPDevice
	111.17.5 public interface UPnPEventListener
	111.17.6 public class UPnPException extends Exception
	111.17.7 public interface UPnPIcon
	111.17.8 public interface UPnPLocalStateVariable extends UPnPStateVariable
	111.17.9 public interface UPnPService
	111.17.10 public interface UPnPStateVariable

	111.18 References

	112 Declarative Services Specification
	112.1 Introduction
	112.1.1 Essentials
	112.1.2 Entities
	112.1.3 Synopsis
	112.1.4 Readers

	112.2 Components
	112.2.1 Declaring a Component
	112.2.2 Immediate Component
	112.2.3 Delayed Component
	112.2.4 Factory Component

	112.3 References to Services
	112.3.1 Accessing Services
	112.3.2 Event Methods
	112.3.3 Reference Cardinality
	112.3.4 Reference Policy
	112.3.5 Policy Option
	112.3.6 Selecting Target Services
	112.3.7 Circular References

	112.4 Component Description
	112.4.1 Annotations
	112.4.2 Service Component Header
	112.4.3 XML Document
	112.4.4 Component Element
	112.4.5 Implementation Element
	112.4.6 Property Element
	112.4.7 Service Element
	112.4.8 Reference Element

	112.5 Component Life Cycle
	112.5.1 Enabled
	112.5.2 Satisfied
	112.5.3 Immediate Component
	112.5.4 Delayed Component
	112.5.5 Factory Component
	112.5.6 Activation
	112.5.7 Binding Services
	112.5.8 Activate Method
	112.5.9 Component Context
	112.5.10 Bound Service Replacement
	112.5.11 Updated method
	112.5.12 Modification
	112.5.13 Modified Method
	112.5.14 Deactivation
	112.5.15 Deactivate Method
	112.5.16 Unbinding
	112.5.17 Life Cycle Example

	112.6 Component Properties
	112.6.1 Service Properties

	112.7 Deployment
	112.7.1 Modified Configurations

	112.8 Use of the Annotations
	112.9 Service Component Runtime
	112.9.1 Relationship to OSGi Framework
	112.9.2 Starting and Stopping SCR
	112.9.3 Logging Error Messages
	112.9.4 Locating Component Methods
	112.9.5 Bundle Activator Interaction

	112.10 Security
	112.10.1 Service Permissions
	112.10.2 Required Admin Permission
	112.10.3 Using hasPermission

	112.11 Component Description Schema
	112.12 Changes
	112.13 org.osgi.service.component
	112.13.1 Summary
	112.13.2 Permissions
	112.13.3 public interface ComponentConstants
	112.13.4 public interface ComponentContext
	112.13.5 public class ComponentException extends RuntimeException
	112.13.6 public interface ComponentFactory
	112.13.7 public interface ComponentInstance

	112.14 org.osgi.service.component.annotations
	112.14.1 Summary
	112.14.2 Permissions
	112.14.3 @Activate
	112.14.4 @Component
	112.14.5 enum ConfigurationPolicy
	112.14.6 @Deactivate
	112.14.7 @Modified
	112.14.8 @Reference
	112.14.9 enum ReferenceCardinality
	112.14.10 enum ReferencePolicy
	112.14.11 enum ReferencePolicyOption

	112.15 References

	113 Event Admin Service Specification
	113.1 Introduction
	113.1.1 Essentials
	113.1.2 Entities
	113.1.3 Synopsis
	113.1.4 What To Read

	113.2 Event Admin Architecture
	113.3 The Event
	113.3.1 Topics
	113.3.2 Properties
	113.3.3 High Performance

	113.4 Event Handler
	113.4.1 Ordering

	113.5 Event Publisher
	113.6 Specific Events
	113.6.1 General Conventions
	113.6.2 OSGi Events
	113.6.3 Framework Event
	113.6.4 Bundle Event
	113.6.5 Service Event
	113.6.6 Other Event Sources

	113.7 Event Admin Service
	113.7.1 Synchronous Event Delivery
	113.7.2 Asynchronous Event Delivery
	113.7.3 Order of Event Delivery

	113.8 Reliability
	113.8.1 Exceptions in callbacks
	113.8.2 Dealing with Stalled Handlers

	113.9 Inter-operability with Native Applications
	113.10 Security
	113.10.1 Topic Permission
	113.10.2 Required Permissions
	113.10.3 Security Context During Event Callbacks

	113.11 Changes
	113.12 org.osgi.service.event
	113.12.1 Summary
	113.12.2 Permissions
	113.12.3 public class Event
	113.12.4 public interface EventAdmin
	113.12.5 public interface EventConstants
	113.12.6 public interface EventHandler
	113.12.7 public class EventProperties implements Map<String,Object>
	113.12.8 public final class TopicPermission extends Permission

	117 Dmt Admin Service Specification
	117.1 Introduction
	117.1.1 Entities

	117.2 The Device Management Model
	117.2.1 Tree Terminology
	117.2.2 Actors

	117.3 The DMT Admin Service
	117.4 Manipulating the DMT
	117.4.1 The DMT Addressing URI
	117.4.2 Locking and Sessions
	117.4.3 Associating a Principal
	117.4.4 Relative Addressing
	117.4.5 Creating Nodes
	117.4.6 Node Properties
	117.4.7 Setting and Getting Data
	117.4.8 Complex Values
	117.4.9 Nodes and Types
	117.4.10 Deleting Nodes
	117.4.11 Copying Nodes
	117.4.12 Renaming Nodes
	117.4.13 Execute
	117.4.14 Closing

	117.5 Meta Data
	117.5.1 Operations
	117.5.2 Scope
	117.5.3 Description and Default
	117.5.4 Validation
	117.5.5 Data Types
	117.5.6 Cardinality
	117.5.7 Matching
	117.5.8 Numeric Ranges
	117.5.9 Name Validation
	117.5.10 User Extensions

	117.6 Plugins
	117.6.1 Data Sessions
	117.6.2 URIs and Plugins
	117.6.3 Associating a sub-tree
	117.6.4 Synchronization with Dmt Admin Service
	117.6.5 Plugin Meta Data
	117.6.6 Plugins and Transactions
	117.6.7 Side Effects
	117.6.8 Copying
	117.6.9 Scaffold Nodes

	117.7 Sharing the DMT
	117.7.1 Mount Points
	117.7.2 Parent Plugin
	117.7.3 Shared Mount Points
	117.7.4 Mount Points are Excluded
	117.7.5 Mapping a Plugin
	117.7.6 Mount Plugins

	117.8 Access Control Lists
	117.8.1 Global Permissions
	117.8.2 Ghost ACLs

	117.9 Notifications
	117.9.1 Routing Alerts

	117.10 Exceptions
	117.11 Events
	117.11.1 Event Admin
	117.11.2 Dmt Event Listeners
	117.11.3 Atomic Sessions and Events
	117.11.4 Event Types
	117.11.5 General Event Properties
	117.11.6 Session Event Properties
	117.11.7 Life Cycle Event Properties
	117.11.8 Example Event Delivery

	117.12 OSGi Object Modeling
	117.12.1 Object Models
	117.12.2 Protocol Mapping
	117.12.3 Hierarchy
	117.12.4 General Restriction Guidelines
	117.12.5 DDF
	117.12.6 Types
	117.12.7 Primitives
	117.12.8 Structured Nodes
	117.12.9 LIST Nodes
	117.12.10 MAP Nodes
	117.12.11 Instance Id
	117.12.12 Conversions
	117.12.13 Extensions

	117.13 Security
	117.13.1 Principals
	117.13.2 Operational Permissions
	117.13.3 Protocol Adapters
	117.13.4 Local Manager
	117.13.5 Plugin Security
	117.13.6 Events and Permissions
	117.13.7 Dmt Principal Permission
	117.13.8 Dmt Permission
	117.13.9 Alert Permission
	117.13.10 Security Summary

	117.14 Changes
	117.15 org.osgi.service.dmt
	117.15.1 Summary
	117.15.2 Permissions
	117.15.3 public final class Acl
	117.15.4 public interface DmtAdmin
	117.15.5 public class DmtConstants
	117.15.6 public final class DmtData
	117.15.7 public interface DmtEvent
	117.15.8 public interface DmtEventListener
	117.15.9 public class DmtException extends Exception
	117.15.10 public class DmtIllegalStateException extends RuntimeException
	117.15.11 public interface DmtSession
	117.15.12 public interface MetaNode
	117.15.13 public final class Uri

	117.16 org.osgi.service.dmt.spi
	117.16.1 Summary
	117.16.2 Permissions
	117.16.3 public interface DataPlugin
	117.16.4 public interface ExecPlugin
	117.16.5 public interface MountPlugin
	117.16.6 public interface MountPoint
	117.16.7 public interface ReadableDataSession
	117.16.8 public interface ReadWriteDataSession extends ReadableDataSession
	117.16.9 public interface TransactionalDataSession extends ReadWriteDataSession

	117.17 org.osgi.service.dmt.notification
	117.17.1 Summary
	117.17.2 Permissions
	117.17.3 public class AlertItem
	117.17.4 public interface NotificationService

	117.18 org.osgi.service.dmt.notification.spi
	117.18.1 public interface RemoteAlertSender

	117.19 org.osgi.service.dmt.security
	117.19.1 Summary
	117.19.2 Permissions
	117.19.3 public class AlertPermission extends Permission
	117.19.4 public class DmtPermission extends Permission
	117.19.5 public class DmtPrincipalPermission extends Permission

	117.20 References

	131 TR069 Connector Service Specification
	131.1 Introduction
	131.1.1 Essentials
	131.1.2 Entities
	131.1.3 Synopsis

	131.2 TR-069 Protocol Primer
	131.2.1 Architecture
	131.2.2 Object Model
	131.2.3 Parameter Names
	131.2.4 Parameter Type
	131.2.5 Parameter Attributes
	131.2.6 Objects and Tables
	131.2.7 RPCs
	131.2.8 Authentication
	131.2.9 Sessions and Transactions
	131.2.10 Events and Notifications
	131.2.11 Errors

	131.3 TR069 Connector
	131.3.1 Role
	131.3.2 Obtaining a TR069 Connector
	131.3.3 Supported RPCs
	131.3.4 Name Escaping
	131.3.5 Root
	131.3.6 DMT Traversal
	131.3.7 Synthetic Nodes
	131.3.8 Lazy and Sessions
	131.3.9 Data Types
	131.3.10 DMT to TR-069 Conversion
	131.3.11 TR-069 to Dmt Data Conversion

	131.4 RPCs
	131.4.1 Get Parameter Values
	131.4.2 Set Parameter Values
	131.4.3 Get Parameter Names
	131.4.4 Add Object
	131.4.5 Delete Object

	131.5 Error and Fault Codes
	131.6 Managing the RMT
	131.7 Native TR-069 Object Models
	131.8 org.osgi.service.tr069todmt
	131.8.1 Summary
	131.8.2 Permissions
	131.8.3 public interface ParameterInfo
	131.8.4 public interface ParameterValue
	131.8.5 public interface TR069Connector
	131.8.6 public interface TR069ConnectorFactory
	131.8.7 public class TR069Exception extends RuntimeException

	131.9 References

	701 Tracker Specification
	701.1 Introduction
	701.1.1 Essentials
	701.1.2 Operation
	701.1.3 Entities

	701.2 Tracking
	701.2.1 Usage
	701.2.2 General API
	701.2.3 Tracking Count
	701.2.4 Multi Threading
	701.2.5 Synchronous

	701.3 Service Tracker
	701.3.1 Using a Service Tracker
	701.3.2 Customizing the Service Tracker class
	701.3.3 Customizing Example

	701.4 Bundle Tracker
	701.4.1 Bundle States
	701.4.2 Constructor
	701.4.3 Using a Bundle Tracker
	701.4.4 Customizing the Bundle Tracker class
	701.4.5 Extender Model

	701.5 Security
	701.5.1 Synchronous Bundle Listener

	701.6 Changes
	701.7 org.osgi.util.tracker
	701.7.1 Summary
	701.7.2 Permissions
	701.7.3 public class BundleTracker<T> implements BundleTrackerCustomizer<T>
	701.7.4 public interface BundleTrackerCustomizer<T>
	701.7.5 public class ServiceTracker<S,T> implements ServiceTrackerCustomizer<S,T>
	701.7.6 public interface ServiceTrackerCustomizer<S,T>

	702 XML Parser Service Specification
	702.1 Introduction
	702.1.1 Essentials
	702.1.2 Entities
	702.1.3 Operations

	702.2 JAXP
	702.3 XML Parser service
	702.4 Properties
	702.5 Getting a Parser Factory
	702.6 Adapting a JAXP Parser to OSGi
	702.6.1 JAR Based Services
	702.6.2 XMLParserActivator
	702.6.3 Adapting an Existing JAXP Compatible Parser

	702.7 Usage of JAXP
	702.8 Security
	702.9 org.osgi.util.xml
	702.9.1 public class XMLParserActivator implements BundleActivator , ServiceFactory

	702.10 References

		2011-11-03T13:20:06-0400
	OSGi Alliance

