
The OSGi Alliance
OSGi Enterprise

Release 7
December 2018

Copyright © OSGi Alliance (2000, 2018).
All Rights Reserved.

OSGi Specification License, Version 2.0

License Grant
OSGi Alliance ("OSGi") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited li-
cense (without the right to sublicense), under OSGi's applicable intellectual property rights to view, download,
and reproduce this OSGi Specification ("Specification") which follows this License Agreement ("Agreement"). You
are not authorized to create any derivative work of the Specification. However, to the extent that an implemen-
tation of the Specification would necessarily be a derivative work of the Specification, OSGi also grants you a
perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights, to create and/or distribute an implementation of the Specification that: (i) ful-
ly implements the Specification including all its required interfaces and functionality; (ii) does not modify, sub-
set, superset or otherwise extend the OSGi Name Space, or include any public or protected packages, classes, Ja-
va interfaces, fields or methods within the OSGi Name Space other than those required and authorized by the
Specification. An implementation that does not satisfy limitations (i)-(ii) is not considered an implementation
of the Specification, does not receive the benefits of this license, and must not be described as an implementa-
tion of the Specification. An implementation of the Specification must not claim to be a compliant implementa-
tion of the Specification unless it passes the OSGi Compliance Tests for the Specification in accordance with OS-
Gi processes. "OSGi Name Space" shall mean the public class or interface declarations whose names begin with
"org.osgi" or any recognized successors or replacements thereof.

OSGi Participants (as such term is defined in the OSGi Intellectual Property Rights Policy) have made non-as-
sert and licensing commitments regarding patent claims necessary to implement the Specification, if any, un-
der the OSGi Intellectual Property Rights Policy which is available for examination on the OSGi public web site
(www.osgi.org).

No Warranties and Limitation of Liability
THE SPECIFICATION IS PROVIDED "AS IS," AND OSGi AND ANY OTHER AUTHORS MAKE NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS. OSGi AND ANY OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SPECIFICATION
OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

Covenant Not to Assert
As a material condition to this license you hereby agree, to the extent that you have any patent claims which are
necessarily infringed by an implementation of the Specification, not to assert any such patent claims against the
creation, distribution or use of an implementation of the Specification.

General
The name and trademarks of OSGi or any other Authors may NOT be used in any manner, including advertis-
ing or publicity pertaining to the Specification or its contents without specific, written prior permission. Title to
copyright in the Specification will at all times remain with OSGi.

No other rights are granted by implication, estoppel or otherwise.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi Alliance in the US and other countries.
Java is a trademark, registered trademark, or service mark of Oracle Corporation in the US and other countries.
All other trademarks, registered trademarks, or service marks used in this document are the property of their re-
spective owners and are hereby recognized.

Feedback
This specification can be downloaded from the OSGi Alliance web site:

https://www.osgi .org
Comments about this specification can be raised at:

https://osgi .org/bugzi l la/

https://www.osgi.org
https://osgi.org/bugzilla/

OSGi Enterprise Release 7 Page 3

Table of Contents

1 Introduction 15
1.1 Overview of Services. 15

1.2 Application and Provisioning Support. 19

1.3 Reader Level. 19

1.4 Version Information. 20

1.5 References. 22

1.6 Changes. 22

100 Remote Services 25
100.1 The Fallacies. 25

100.2 Remote Service Properties. 26

100.3 Intents. 30

100.4 General Usage. 32

100.5 Configuration Types. 33

100.6 Security. 36

100.7 References. 37

100.8 Changes. 37

101 Log Service Specification 39
101.1 Introduction. 39

101.2 The Logger Interface. 39

101.3 Obtaining a Logger. 41

101.4 Logger Configuration. 42

101.5 Log Stream Provider. 45

101.6 Log Reader Service. 46

101.7 Log Entry Interface. 46

101.8 Mapping of Events. 47

101.9 Log Service. 49

101.10 Capabilities. 50

101.11 Security. 50

101.12 org.osgi.service.log. 51

101.13 org.osgi.service.log.admin. 63

101.14 org.osgi.service.log.stream. 66

101.15 References. 67

101.16 Changes. 67

102 Http Service Specification 69
102.1 Introduction. 69

102.2 Registering Servlets. 70

102.3 Registering Resources. 72

Page 4 OSGi Enterprise Release 7

102.4 Mapping HTTP Requests to Servlet and Resource Registrations. 73

102.5 The Default Http Context Object. 74

102.6 Multipurpose Internet Mail Extension (MIME) Types. 75

102.7 Authentication. 76

102.8 Security. 77

102.9 Configuration Properties. 78

102.10 org.osgi.service.http. 78

102.11 References. 83

104 Configuration Admin Service Specification 85
104.1 Introduction. 85

104.2 Configuration Targets. 87

104.3 The Persistent Identity. 88

104.4 The Configuration Object. 91

104.5 Managed Service. 94

104.6 Managed Service Factory. 97

104.7 Configuration Admin Service. 101

104.8 Configuration Events. 106

104.9 Configuration Plugin. 107

104.10 Meta Typing. 109

104.11 Coordinator Support. 110

104.12 Capabilities. 110

104.13 Security. 111

104.14 org.osgi.service.cm. 113

104.15 org.osgi.service.cm.annotations. 133

104.16 Changes. 133

105 Metatype Service Specification 135
105.1 Introduction. 135

105.2 Attributes Model. 136

105.3 Object Class Definition. 137

105.4 Attribute Definition. 137

105.5 Meta Type Service. 138

105.6 Meta Type Provider Service. 140

105.7 Using the Meta Type Resources. 140

105.8 Meta Type Resource XML Schema. 146

105.9 Meta Type Annotations. 149

105.10 Limitations. 151

105.11 Related Standards. 151

105.12 Capabilities. 151

105.13 Security Considerations. 152

105.14 org.osgi.service.metatype. 152

105.15 org.osgi.service.metatype.annotations. 159

105.16 References. 166

OSGi Enterprise Release 7 Page 5

105.17 Changes. 166

107 User Admin Service Specification 167
107.1 Introduction. 167

107.2 Authentication. 169

107.3 Authorization. 171

107.4 Repository Maintenance. 173

107.5 User Admin Events. 173

107.6 Security. 174

107.7 Relation to JAAS. 175

107.8 org.osgi.service.useradmin. 175

107.9 References. 186

110 Initial Provisioning Specification 187
110.1 Introduction. 187

110.2 Procedure. 188

110.3 Special Configurations. 191

110.4 The Provisioning Service. 192

110.5 Management Agent Environment. 192

110.6 Mapping To File Scheme. 193

110.7 Mapping To HTTP(S) Scheme. 193

110.8 Mapping To RSH Scheme. 195

110.9 Exception Handling. 199

110.10 Security. 199

110.11 org.osgi.service.provisioning. 200

110.12 References. 203

112 Declarative Services Specification 205
112.1 Introduction. 205

112.2 Components. 208

112.3 References to Services. 211

112.4 Component Description. 223

112.5 Component Life Cycle. 234

112.6 Component Properties. 244

112.7 Deployment. 246

112.8 Annotations. 249

112.9 Service Component Runtime. 256

112.10 Security. 260

112.11 Component Description Schema. 261

112.12 org.osgi.service.component. 265

112.13 org.osgi.service.component.annotations. 271

112.14 org.osgi.service.component.runtime. 285

112.15 org.osgi.service.component.runtime.dto. 287

112.16 org.osgi.service.component.propertytypes. 293

Page 6 OSGi Enterprise Release 7

112.17 References. 296

112.18 Changes. 296

113 Event Admin Service Specification 299
113.1 Introduction. 299

113.2 Event Admin Architecture. 300

113.3 The Event. 301

113.4 Event Handler. 302

113.5 Event Publisher. 304

113.6 Specific Events. 305

113.7 Event Admin Service. 307

113.8 Reliability. 309

113.9 Interoperability with Native Applications. 309

113.10 Capabilities. 309

113.11 Security. 310

113.12 org.osgi.service.event. 311

113.13 org.osgi.service.event.annotations. 320

113.14 org.osgi.service.event.propertytypes. 320

113.15 Changes. 322

122 Remote Service Admin Service Specification 323
122.1 Introduction. 323

122.2 Actors. 326

122.3 Topology Managers. 327

122.4 Endpoint Description. 328

122.5 Remote Service Admin. 332

122.6 Discovery. 337

122.7 Events. 341

122.8 Endpoint Description Extender Format. 343

122.9 Capability Namespaces. 348

122.10 Advice to implementations. 350

122.11 Security. 351

122.12 org.osgi.service.remoteserviceadmin. 352

122.13 org.osgi.service.remoteserviceadmin.namespace. 368

122.14 References. 369

123 JTA Transaction Services Specification 371
123.1 Introduction. 371

123.2 JTA Overview. 373

123.3 Application. 375

123.4 Resource Managers. 378

123.5 The JTA Provider. 378

123.6 Life Cycle. 379

123.7 Security. 380

OSGi Enterprise Release 7 Page 7

123.8 References. 380

124 Management Model Specification for JMX™ Technology 381
124.1 Introduction. 381

124.2 JMX Overview. 383

124.3 OSGi JMX Management. 385

124.4 MBeans. 388

124.5 Item. 388

124.6 Security. 389

124.7 org.osgi.jmx. 389

124.8 org.osgi.jmx.framework. 394

124.9 org.osgi.jmx.service.cm. 417

124.10 org.osgi.jmx.service.permissionadmin. 419

124.11 org.osgi.jmx.service.provisioning. 420

124.12 org.osgi.jmx.service.useradmin. 422

124.13 org.osgi.jmx.framework.wiring. 429

124.14 References. 435

125 Data Service Specification for JDBC™ Technology 437
125.1 Introduction. 437

125.2 Database Driver. 438

125.3 Applications. 439

125.4 Security. 441

125.5 org.osgi.service.jdbc. 441

125.6 References. 444

126 JNDI Services Specification 445
126.1 Introduction. 445

126.2 JNDI Overview. 448

126.3 JNDI Context Manager Service. 450

126.4 JNDI Provider Admin service. 453

126.5 JNDI Providers. 453

126.6 OSGi URL Scheme. 456

126.7 Traditional Client Model. 458

126.8 Security. 460

126.9 org.osgi.service.jndi. 461

126.10 References. 463

127 JPA Service Specification 465
127.1 Introduction. 465

127.2 JPA Overview. 467

127.3 Bundles with Persistence. 470

127.4 Extending a Persistence Bundle. 473

127.5 JPA Provider. 477

Page 8 OSGi Enterprise Release 7

127.6 Static Access. 479

127.7 Capabilities. 480

127.8 Security. 481

127.9 org.osgi.service.jpa. 482

127.10 org.osgi.service.jpa.annotations. 483

127.11 References. 484

127.12 Changes. 484

128 Web Applications Specification 485
128.1 Introduction. 485

128.2 Web Container. 487

128.3 Web Application Bundle. 488

128.4 Web URL Handler. 492

128.5 Events. 495

128.6 Interacting with the OSGi Environment. 496

128.7 Security. 497

128.8 References. 497

130 Coordinator Service Specification 499
130.1 Introduction. 499

130.2 Usage. 500

130.3 Coordinator Service. 509

130.4 Security. 514

130.5 org.osgi.service.coordinator. 515

132 Repository Service Specification 527
132.1 Introduction. 527

132.2 Using a Repository. 528

132.3 Repository. 532

132.4 osgi.content Namespace. 532

132.5 XML Repository Format. 533

132.6 XML Repository Schema. 537

132.7 Capabilities. 540

132.8 Security. 540

132.9 org.osgi.service.repository. 541

132.10 References. 547

132.11 Changes. 547

133 Service Loader Mediator Specification 549
133.1 Introduction. 549

133.2 Java Service Loader API. 551

133.3 Consumers. 552

133.4 Service Provider Bundles. 554

133.5 Service Loader Mediator. 556

OSGi Enterprise Release 7 Page 9

133.6 osgi.serviceloader Namespace. 559

133.7 Use of the osgi.extender Namespace. 559

133.8 Security. 560

133.9 org.osgi.service.serviceloader. 560

133.10 References. 561

134 Subsystem Service Specification 563
134.1 Introduction. 563

134.2 Subsystems. 566

134.3 Subsystem Region. 573

134.4 Subsystem Relationships. 574

134.5 Determining Content. 577

134.6 Determining Dependencies. 582

134.7 Accepting Dependencies. 583

134.8 Sharing Capabilities. 585

134.9 Region Context Bundle. 586

134.10 Explicit and Implicit Resources. 586

134.11 Resource References. 590

134.12 Starting and Stopping Resources. 591

134.13 Subsystem Service. 593

134.14 Subsystem Life Cycle. 596

134.15 Pre-Calculated Deployment. 601

134.16 Subsystem Types. 606

134.17 Weaving Hooks. 610

134.18 Stopping and Uninstalling Subsystems Implementation. 611

134.19 Capabilities. 611

134.20 Security. 611

134.21 org.osgi.service.subsystem. 613

134.22 References. 629

135 Common Namespaces Specification 631
135.1 Introduction. 631

135.2 osgi.extender Namespace. 631

135.3 osgi.contract Namespace. 633

135.4 osgi.service Namespace. 635

135.5 osgi.implementation Namespace. 635

135.6 osgi.unresolvable Namespace. 636

135.7 org.osgi.namespace.contract. 636

135.8 org.osgi.namespace.extender. 637

135.9 org.osgi.namespace.service. 637

135.10 org.osgi.namespace.implementation. 638

135.11 org.osgi.namespace.unresolvable. 639

135.12 References. 640

135.13 Changes. 640

Page 10 OSGi Enterprise Release 7

137 REST Management Service Specification 641
137.1 Introduction. 641

137.2 Interacting with the REST Management Service. 642

137.3 Resources. 644

137.4 Representations. 649

137.5 Clients. 654

137.6 Extending the REST Management Service. 655

137.7 XML Schema. 656

137.8 Capabilities. 660

137.9 Security. 661

137.10 org.osgi.service.rest. 661

137.11 org.osgi.service.rest.client. 662

137.12 JavaScript Client API. 667

137.13 References. 670

138 Asynchronous Service Specification 671
138.1 Introduction. 671

138.2 Usage. 672

138.3 Async Service. 675

138.4 The Async Mediator. 676

138.5 Fire and Forget Invocations. 677

138.6 Delegating to Asynchronous Implementations. 678

138.7 Capabilities. 679

138.8 Security. 679

138.9 org.osgi.service.async. 680

138.10 org.osgi.service.async.delegate. 682

140 Http Whiteboard Specification 685
140.1 Introduction. 685

140.2 The Servlet Context. 686

140.3 Common Whiteboard Properties. 692

140.4 Registering Servlets. 692

140.5 Registering Servlet Filters. 697

140.6 Registering Resources. 700

140.7 Registering Listeners. 701

140.8 Life Cycle. 702

140.9 The Http Service Runtime Service. 703

140.10 Integration with Http Service Contexts. 705

140.11 Configuration Properties. 706

140.12 Capabilities. 706

140.13 Security. 707

140.14 org.osgi.service.http.context. 708

140.15 org.osgi.service.http.runtime. 712

OSGi Enterprise Release 7 Page 11

140.16 org.osgi.service.http.runtime.dto. 713

140.17 org.osgi.service.http.whiteboard. 725

140.18 org.osgi.service.http.whiteboard.annotations. 732

140.19 org.osgi.service.http.whiteboard.propertytypes. 732

140.20 References. 740

140.21 Changes. 741

147 Transaction Control Service Specification 743
147.1 Introduction. 743

147.2 Usage. 744

147.3 Transaction Control Service. 747

147.4 The TransactionContext. 752

147.5 Resource Providers. 756

147.6 Transaction Recovery. 762

147.7 Capabilities. 764

147.8 Security. 764

147.9 org.osgi.service.transaction.control. 764

147.10 org.osgi.service.transaction.control.jdbc. 774

147.11 org.osgi.service.transaction.control.jpa. 776

147.12 org.osgi.service.transaction.control.recovery. 779

148 Cluster Information Specification 781
148.1 Introduction. 781

148.2 OSGi frameworks in a cluster. 782

148.3 Node Status Service. 783

148.4 Framework Node Status Service. 785

148.5 Application-specific Node Status metadata. 786

148.6 Security. 786

148.7 org.osgi.service.clusterinfo. 787

148.8 org.osgi.service.clusterinfo.dto. 791

150 Configurator Specification 795
150.1 Introduction. 795

150.2 Entities. 795

150.3 Configuration Resources. 796

150.4 Bundle Configuration Resources. 801

150.5 Initial Configurations. 802

150.6 Life Cycle. 802

150.7 Grouping and Coordinations. 803

150.8 Security. 803

150.9 Capabilities. 804

150.10 osgi.configuration Namespace. 805

150.11 Configuration Resources in a Repository. 805

150.12 org.osgi.service.configurator. 805

Page 12 OSGi Enterprise Release 7

150.13 org.osgi.service.configurator.annotations. 807

150.14 org.osgi.service.configurator.namespace. 808

150.15 References. 808

151 JAX-RS Whiteboard Specification 809
151.1 Introduction. 809

151.2 The JAX-RS Whiteboard. 810

151.3 Common Whiteboard Properties. 812

151.4 Registering JAX-RS Resources. 814

151.5 Registering JAX-RS Extensions. 818

151.6 Registering JAX-RS Applications. 822

151.7 Advertising JAX-RS Endpoints. 824

151.8 Whiteboard Error Handling. 825

151.9 The JAX-RS Client API. 825

151.10 Portability and Interoperability. 827

151.11 Capabilities. 829

151.12 Security. 830

151.13 org.osgi.service.jaxrs.client. 831

151.14 org.osgi.service.jaxrs.runtime. 833

151.15 org.osgi.service.jaxrs.runtime.dto. 835

151.16 org.osgi.service.jaxrs.whiteboard. 840

151.17 org.osgi.service.jaxrs.whiteboard.annotations. 842

151.18 org.osgi.service.jaxrs.whiteboard.propertytypes. 843

151.19 References. 846

152 CDI Integration Specification 849
152.1 Introduction. 849

152.2 Components. 852

152.3 Component Scope. 853

152.4 Container Component. 856

152.5 Standard Definitions. 856

152.6 Single Component. 857

152.7 Factory Component. 859

152.8 Component Properties. 861

152.9 Bean Property Types. 863

152.10 Providing Services. 867

152.11 Component Property Injection Points. 871

152.12 Reference Injection Points. 872

152.13 Interacting with Service Events. 879

152.14 CDI Component Runtime. 880

152.15 Capabilities. 883

152.16 Relationship to CDI features. 885

152.17 Security. 888

152.18 org.osgi.service.cdi. 888

OSGi Enterprise Release 7 Page 13

152.19 org.osgi.service.cdi.annotations. 892

152.20 org.osgi.service.cdi.propertytypes. 901

152.21 org.osgi.service.cdi.reference. 904

152.22 org.osgi.service.cdi.runtime. 908

152.23 org.osgi.service.cdi.runtime.dto. 909

152.24 org.osgi.service.cdi.runtime.dto.template. 913

152.25 References. 917

702 XML Parser Service Specification 919
702.1 Introduction. 919

702.2 JAXP. 920

702.3 XML Parser service. 921

702.4 Properties. 921

702.5 Getting a Parser Factory. 921

702.6 Adapting a JAXP Parser to OSGi. 922

702.7 Usage of JAXP. 923

702.8 Security. 924

702.9 org.osgi.util.xml. 924

702.10 References. 927

705 Promises Specification 929
705.1 Introduction. 929

705.2 Promise. 930

705.3 Deferred. 930

705.4 Callbacks. 931

705.5 Chaining Promises. 932

705.6 Monad. 933

705.7 Timing. 934

705.8 Functional Interfaces. 935

705.9 Utility Methods. 935

705.10 Security. 935

705.11 org.osgi.util.promise. 935

705.12 org.osgi.util.function. 948

705.13 References. 949

705.14 Changes. 949

706 Push Stream Specification 951
706.1 Introduction. 951

706.2 Asynchronous Event Streams. 952

706.3 The Push Stream. 953

706.4 The Push Stream Provider. 962

706.5 Simple Push Event Sources. 963

706.6 Security. 964

706.7 org.osgi.util.pushstream. 964

Page 14 OSGi Enterprise Release 7

706.8 References. 984

707 Converter Specification 985
707.1 Introduction. 985

707.2 Entities. 985

707.3 Standard Converter. 986

707.4 Conversions. 986

707.5 Repeated or Deferred Conversions. 996

707.6 Customizing converters. 997

707.7 Conversion failures. 998

707.8 Security. 998

707.9 org.osgi.util.converter. 998

707.10 References. 1005

Introduction Overview of Services

OSGi Enterprise Release 7 Page 15

1 Introduction
The OSGi Enterprise Expert Group (EEG) is chartered to define the technical requirements and spec-
ifications to tailor and extend the OSGi framework to address information technology software in-
frastructure use cases found in enterprise scenarios.

The EEG technical areas of concern include:

• Scaling, including multi-container and multi-process environments
• Distributed and/or federated service model for:

• Multiple OSGi frameworks
• External, heterogeneous systems

• Requirements for extensions to the OSGi publish/find/bind service model
• Enterprise-class life cycle and configuration management
• Integration of established Java EE technology into OSGi

This specification is based on OSGi Core Release 7. The specification combines previously published,
as well as new, OSGi services that address the common use cases of enterprise application and appli-
cation server developers. It serves as a first reference point for the suggested audience when consid-
ering the use of OSGi in their environment to fulfill their own needs or to better serve the needs of
their customers. This collection of services is taken from the complete set of available specifications
and narrowed down to what can be relevant to the enterprise domain.

The services of the Enterprise Specification have been designed to integrate with OSGi and cooper-
ate with each other. None of the listed service specifications is mandatory; all service specifications
are optional. However, services provided must follow their specification completely.

It is not suggested, or expected, that an enterprise solution will incorporate support for all listed
specifications, instead a customized subset to satisfy the requirements at hand is recommended. A
solution can further include other core and compendium services that are not listed as part of the
Enterprise Specification. The selection of appropriate services should be driven by requirements and
use cases.

The Enterprise Specification includes the recommended specifications for a number of areas. To-
gether they address use-cases found in the enterprise context and provide a powerful set of tools to
build enterprise OSGi deployments.

These Enterprise Specification areas are described in the following sections.

1.1 Overview of Services

1.1.1 Dependency Injection Models
While the OSGi framework API is relatively simple to use, it is still considered infrastructure that
can bleed into the application code of a bundle. The OSGi Enterprise Specification therefore pro-
vides Dependency Injection models. This ensures decoupling of the application code from the OSGi
APIs; they provide an OSGi bundle programming model with minimal implementation dependen-
cies and virtually no accidental complexity in the Java code.

• Declarative Services Specification - The Declarative Services specification provides dependency
injection for services. It handles the service life cycle dynamics by notifying the component or
managing the component's life cycle. See chapter Declarative Services Specification on page 205.

Overview of Services Introduction

Page 16 OSGi Enterprise Release 7

• CDI Integration Specification - The CDI Integration Specification describes how OSGi is integrat-
ed into the CDI programming model, allowing developer to leverage CDI annotations, injection
and extensions with OSGi bundles and services. See chapter CDI Integration Specification on page
849.

1.1.2 Distributed Services
The OSGi framework provides a local service registry for bundles to communicate through service
objects, where a service is an object that one bundle registers and another bundle looks up. The En-
terprise Specification enhances this model by defining endpoints that represent services hosted in
a remote systems. It allows for seamless access to remote services within the OSGi framework with-
out changing the service layer. The remote system may or may not be based on OSGi.

The Enterprise Specification includes the specifications of:

• Remote Services - The Remote Services specification defines a number of service properties that
participating bundles can use to convey information to a distribution provider. The distribution
provider creates endpoints that are accessible to remote clients or registers proxies that access
services hosted external to the OSGi framework. See chapter Remote Services on page 25.

• Remote Service Admin Service Specification - The Remote Services Admin Service Specification de-
fines an API for the distribution provider and discovery of services in a network. A management
agent can use this API to provide an actual distribution policy. This management agent can ex-
port and import services as well as discovering services in the network. See Remote Service Admin
Service Specification on page 323.

• Cluster Information Specification - This specification defines services that facilitate the discovery,
introspection and management of a cluster of nodes in a networked environment. This applies to
Cloud environments as well as Embedded and IoT use cases where multiple nodes are exist that
need to be orchestrated into performing a coordinated set of functionalities. See Cluster Informa-
tion Specification on page 781.

• JAX-RS Whiteboard Specification - Support for the development of REST-style microservices is pro-
vided through the integration of JAX-RS technology in the JAX-RS Whiteboard Specification.
This defines a model to provide microservice endpoints using the OSGi services-based white-
board model. See JAX-RS Whiteboard Specification on page 809.

1.1.3 Web Applications and HTTP Servlets
Current Enterprise Java architectures almost always require support for web technologies in the
form of Java Servlets or Web Applications. The Enterprise Specification includes three complemen-
tary service specifications in support of web technologies.

• Web Applications Specification - The Web Application specification provides support for web appli-
cations written to the Servlet 2.5 specification as well as the JSP 2.1 specification. This specifica-
tion details how web applications packaged as a WAR or as bundles (WABs) can be installed into
an OSGi framework, as well as how this application can use OSGi services. See Web Applications
Specification on page 485.

• Http Service Specification - Bundle developers typically need to develop communication and user
interface solutions for standard technologies such as HTTP, HTML, XML, and servlets. The Http
Service supports two standard techniques for this purpose: registering servlets and registering re-
sources. See Http Service Specification on page 69.

• Http Whiteboard Specification - The [1] Whiteboard Pattern pattern has shown to be a powerful and
flexible mechanism for registering customized functionality with a container. The Http White-
board Specification allows the registration of Servlets, Servlet Filters, Resources and Servlet-re-
lated listeners via the Whiteboard pattern, providing a convenient approach to working with
servlets to the Http Service Specification. See Http Whiteboard Specification on page 685.

Introduction Overview of Services

OSGi Enterprise Release 7 Page 17

1.1.4 Asynchronous Processing and Event models
A number of specifications focus specifically on asynchronous programming and executing of com-
ponents, as well as the sending and receiving of events.

• Event Admin Service Specification - The Event Admin service provides an inter-bundle communica-
tion mechanism. It is based on a event publish and subscribe model, popular in many message
based systems. See Event Admin Service Specification on page 299.

• Asynchronous Service Specification - Asynchronous processing can be the key to scalability for large
enterprise applications, especially under heavy load. OSGi Services have traditionally followed
the Java interface-based design which by default provides synchronous semantics. The Asyn-
chronous Services specification adds an asynchronous programming model to new and existing
OSGi services. See Asynchronous Service Specification on page 671.

• Promises Specification - Many JavaScript applications use Promises-based APIs to facilitate asyn-
chronous processing of a workflow in which executions are time consuming or subject to wait-
ing for I/O operations. The Promises specification defines a Promises API for use in OSGi applica-
tions. The Promises API is used by other specifications, such as the Asynchronous Services speci-
fication, but can also be used independently. See Promises Specification on page 929.

• Push Stream Specification - This specification defines a library supporting the handling of push-
based event streams. It focuses on reactive programming and builds on the Promises specifica-
tion. As with Promises, the Push Streams can be used both inside an OSGi framework as well as
outside. See Push Stream Specification on page 951.

1.1.5 Management and Configuration services
Support for managing the servers and their applications is essential to all enterprise systems. The
Enterprise Specification includes several services addressing the need to manage the framework
from the outside as well as configuring individual bundles and applications from within the OSGi
framework.

• Management Model Specification for JMX™ Technology - The Java Management Extensions (JMX) is
the standard API specification for providing a management interface to Java SE and Java EE ap-
plications. This specification provides an MBean interface adaptation of the existing OSGi frame-
work artifacts; these can then be used to expose an OSGi Framework manipulation API over JMX.
See Management Model Specification for JMX™ Technology on page 381.

• REST Management Service Specification - REST is a powerful paradigm for accessing resources over
a network and is widely used in Enterprise and Cloud settings as a protocol of choice, especially
since it generally avoids problems with internet firewalls, from which other protocols may suf-
fer. The REST Management Service Specification provides an API to manage and control an OSGi
framework using REST operations. See REST Management Service Specification on page 641.

• User Admin Service Specification - The User Admin Service Specification provides authorization for
OSGi framework actions based on authenticated users, instead of using the Java code-based per-
mission model. See User Admin Service Specification on page 167.

• Initial Provisioning Specification - This specification defines how the Management Agent can make
its way into the OSGi framework, and gives a structured view of the problems and their corre-
sponding resolution methods. The purpose of this specification is to enable the management of
a OSGi framework by an operator, and (optionally) to hand over the management of the OSGi
framework later to another operator. See Initial Provisioning Specification on page 187.

• Configuration Admin Service Specification - The Configuration Admin service allows an operator to
set the configuration information of bundles. See Configuration Admin Service Specification on page
85.

• Metatype Service Specification - The Metatype specification defines interfaces that allow bundle
developers to describe attribute types in a computer readable form using metadata. It is mostly
used in conjunction with the Configuration Admin Service. See Metatype Service Specification on
page 135.

Overview of Services Introduction

Page 18 OSGi Enterprise Release 7

• Configurator Specification - The Configurator Specification defines a convenient way to provide
Configuration Admin with configuration information based on JSON-based resources in bun-
dles. It specifies the format of the JSON configuration resources, and defines how these are
processed and submitted to the Configuration Admin service. See Configurator Specification on
page 795.

1.1.6 Naming and Directory services
Naming and directory services are well established and useful tools in enterprise applications. The
Enterprise Specification includes the:

• JNDI Services Specification - The Java Naming and Directory Interface (JNDI) is a registry technolo-
gy in Java applications, both in the Java SE and Java EE space. JNDI provides a vendor-neutral set
of APIs that allow clients to interact with a naming service. See JNDI Services Specification on page
445.

1.1.7 Database Access
There are multiple approaches available to model and persist data in databases. The Enterprise Spec-
ification includes support for the common technologies:

• Data Service Specification for JDBC™ Technology - provides an API for applications to interact with
relational database systems from different vendors. See Data Service Specification for JDBC™ Tech-
nology on page 437.

• JPA Service Specification - The Java Persistence API (JPA) is a specification that sets a standard for
persistence in enterprise and non-enterprise JRE™-based environments. The JPA Service Specifi-
cation defines how bundles may access and use JPA persistence units in applications, as well as
how a JPA implementation can become available and be invoked within an OSGi framework. See
JPA Service Specification on page 465.

1.1.8 Transaction Support
The support for transactions in Java is well defined outside of the OSGi specification. The Enterprise
Specification includes the:

• JTA Transaction Services Specification - This specification provides the User Transaction, Transac-
tion Manager, and Synchronization Registry services, which are based on their counterparts in
the Java EE™ JTA Specifications. These services can be used to demarcate transaction bound-
aries, enlists durable and volatile resources, and provides transactional aware code to influence
the outcome of a transaction and synchronize with the ending of a transaction. See JTA Transac-
tion Services Specification on page 371.

• Transaction Control Service Specification - This specification adds a concise and convenient pro-
gramming model to work with ACID Transactions. Rather than taking a purely declarative ap-
proach as is done in some other Transaction solutions, the Transaction Control Service Specifica-
tion defines a simple programming model to execute specific parts of code under transactional
scope. It works very well with Java™ lambdas. See Transaction Control Service Specification on page
743.

1.1.9 Miscellaneous Supporting Services
Services providing solutions to common infrastructure requirements include:

• Log Service Specification - Provides a general purpose message logger for the OSGi framework. See
Log Service Specification on page 39.

• XML Parser Service Specification - Addresses how the classes defined in JAXP can be used in an OS-
Gi framework. See XML Parser Service Specification on page 919.

• Service Loader Mediator Specification - Addresses common problems of bundles that rely on the JRE
provided Service Loader API to load custom Service Provider Implementations. This specifica-

Introduction Application and Provisioning Support

OSGi Enterprise Release 7 Page 19

tion describes how to use the service registry for lookup of Service Providers as well as a solution
for existing code to continue functioning using Service Loader API in a OSGi environment. See
Service Loader Mediator Specification on page 549.

• Coordinator Service Specification - The Coordinator service provides a mechanism for multiple par-
ties to collaborate on a common task without a priori knowledge of who will collaborate in that
task. The service provides a rendezvous for an initiator to create a Coordination where collabora-
tors can decide to participate. When the Coordination is ended, all participants are informed. See
Coordinator Service Specification on page 499.

• Converter Specification - The Converter Specification provides a uniform API to convert a given Ja-
va object into a myriad of other representations. Conversions include from untyped data, such
as a configuration map, into a typed instance such as an annotation or interface. Or between var-
ious types of scalars, arrays or collections. The converter can also be customized to perform do-
main-specific conversions. See Converter Specification on page 985.

1.2 Application and Provisioning Support
The term 'application' may mean different things to different people, therefore, rather than defining
what an application is, the OSGi specification provides a set of enabling services and specifications
to aid in the definition, composition, deployment, and governance of a group of bundles and re-
sources in an OSGi environment. The specifications are essential building blocks and provide from
low level resolution to higher level composition abstractions that a management agent can use to
build the necessary tools for managing OSGi applications.

• Repository Service Specification - The Repository specification provides a standard API to access
(possibly remote) repositories. Resources can be obtained from the repository by specifying de-
clarative requirements, which might include for example 'provide all resources that export a giv-
en package' or 'provide the bundle with the given symbolic name and version', but can also be
used with any other generic capabilities. While the Repository API can be used on its own, in
conjunction with the Resolver Specification it provides the capability to manage retrieval of ex-
ternal resources during the resolution process. Typically one or multiple repositories provide the
metadata for the Resolver service to draw the resolution from. A management agent can then use
the repositories to apply the result of the resolution. See Repository Service Specification on page
527.

• Subsystem Service Specification - The core framework defines the life cycle of bundles and their re-
lationships, but it is missing the ability to define a common life cycle and scoping rules for a set
of bundles that are conceptually tied together. The Subsystems Specification provides the ability
not only to group multiple bundles into a single manageable entity, but furthermore include ar-
bitrary resources in this grouping. This allows for complete isolation as well as various sharing
models of code, services, and resources through a management agent. See Subsystem Service Speci-
fication on page 563.

1.3 Reader Level
This specification is written for the following audiences:

• Application developers
• Framework and system service developers (system developers)
• Architects

This specification assumes that the reader has at least one year of practical experience in writing Ja-
va programs. Experience with enterprise systems and server-environments is a plus. Application de-

Version Information Introduction

Page 20 OSGi Enterprise Release 7

velopers must be aware that the OSGi environment is significantly more dynamic than traditional
desktop or server environments.

System developers require a very deep understanding of Java. At least three years of Java coding ex-
perience in a system environment is recommended. A Framework implementation will use areas
of Java that are not normally encountered in traditional applications. Detailed understanding is re-
quired of class loaders, garbage collection, Java 2 security, and Java native library loading.

Architects should focus on the introduction of each subject. This introduction contains a general
overview of the subject, the requirements that influenced its design, and a short description of its
operation as well as the entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experience.

Most of these specifications are equally applicable to application developers and system developers.

1.4 Version Information
This document is the Enterprise Specification for the OSGi Enterprise Release 7.

1.4.1 OSGi Core Release 7
This specification is based on the OSGi Core Release 7. This specification can be downloaded from:

https://www.osgi.org/developer/specifications/

1.4.2 Component Versions
Components in this specification have their own specification version, independent of this speci-
fication. The following table summarizes the packages and specification versions for the different
subjects.

Table 1.1 Packages and versions

Item Package Version
100 Remote Services - Version 1.1
101 Log Service Specification org.osgi .service. log

org.osgi .service. log.admin

org.osgi .service. log.stream

Version 1.4

102 Http Service Specification org.osgi .service.http Version 1.2
104 Configuration Admin Service Specification org.osgi .service.cm

org.osgi .service.cm.annotations

Version 1.6

105 Metatype Service Specification org.osgi .service.metatype

org.osgi .service.metatype.annotations

Version 1.4

107 User Admin Service Specification org.osgi .service.useradmin Version 1.1
110 Initial Provisioning Specification org.osgi .service.provis ioning Version 1.2
112 Declarative Services Specification org.osgi .service.component

org.osgi .service.component.annotations

org.osgi .service.component.propertytypes

org.osgi .service.component.runtime

org.osgi .service.component.runtime.dto

Version 1.4

https://www.osgi.org/developer/specifications/

Introduction Version Information

OSGi Enterprise Release 7 Page 21

Item Package Version
113 Event Admin Service Specification org.osgi .service.event

org.osgi .service.event.annotations

org.osgi .service.event.propertytypes

Version 1.4

122 Remote Service Admin Service Specification org.osgi .service.remoteserviceadmin

org.osgi .service.remoteserviceadmin.namespace

Version 1.1

123 JTA Transaction Services Specification - Version 1.0
124 Management Model Specification for JMX™
Technology

org.osgi . jmx1 Version 1.1

125 Data Service Specification for JDBC™ Technol-
ogy

org.osgi .service. jdbc Version 1.0

126 JNDI Services Specification org.osgi .service. jndi Version 1.0
127 JPA Service Specification org.osgi .service. jpa

org.osgi .service. jpa.annotations

Version 1.1

128 Web Applications Specification - Version 1.0
130 Coordinator Service Specification org.osgi .service.coordinator Version 1.0
132 Repository Service Specification org.osgi .service.repository Version 1.1
133 Service Loader Mediator Specification org.osgi .service.serviceloader Version 1.0
134 Subsystem Service Specification org.osgi .service.subsystem Version 1.1
135 Common Namespaces Specification org.osgi .namespace.contract

org.osgi .namespace.extender

org.osgi .namespace. implementation

org.osgi .namespace.service

org.osgi .namespace.unresolvable

Version 1.2

137 REST Management Service Specification org.osgi .service.rest

org.osgi .service.rest .c l ient

Version 1.0

138 Asynchronous Service Specification org.osgi .service.async

org.osgi .service.async.delegate

Version 1.0

140 Http Whiteboard Specification org.osgi .service.http.whiteboard

org.osgi .service.http.whiteboard.annotations

org.osgi .service.http.whiteboard.propertytypes

org.osgi .service.http.context

org.osgi .service.http.runtime

org.osgi .service.http.runtime.dto

Version 1.1

147 Transaction Control Service Specification org.osgi .service.transact ion.control

org.osgi .service.transact ion.control . jdbc

org.osgi .service.transact ion.control . jpa

org.osgi .service.transact ion.control . recovery

Version 1.0

148 Cluster Information Specification org.osgi .service.c luster info

org.osgi .service.c luster info.dto

Version 1.0

References Introduction

Page 22 OSGi Enterprise Release 7

Item Package Version
150 Configurator Specification org.osgi .service.configurator

org.osgi .service.configurator.annotations

org.osgi .service.configurator.namespace

Version 1.0

151 JAX-RS Whiteboard Specification org.osgi .service. jaxrs .runtime

org.osgi .service. jaxrs .runtime.dto

org.osgi .service. jaxrs .whiteboard

org.osgi .service. jaxrs .whiteboard.annotations

org.osgi .service. jaxrs .whiteboard.propertytypes

org.osgi .service. jaxrs .c l ient

Version 1.0

152 CDI Integration Specification org.osgi .service.cdi

org.osgi .service.cdi .annotat ions

org.osgi .service.cdi .propertytypes

org.osgi .service.cdi . reference

org.osgi .service.cdi . runtime

org.osgi .service.cdi . runtime.dto

org.osgi .service.cdi . runtime.dto.template

Version 1.0

702 XML Parser Service Specification org.osgi .ut i l .xml Version 1.0
705 Promises Specification org.osgi .ut i l .promise

org.osgi .ut i l .function

Version 1.1

706 Push Stream Specification org.osgi .ut i l .pushstream Version 1.0
707 Converter Specification org.osgi .ut i l .converter Version 1.0

When a component is represented in a bundle, a version attribute is needed in the declaration of the
Import-Package or Export-Package manifest headers.

1.4.3 Note

1. The org.osgi . jmx sub-packages are individually versioned to be aligned with the service they
manage.

1.5 References
[1] Whiteboard Pattern

https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

1.6 Changes
• Added Transaction Control Service Specification.
• Added Cluster Information Specification.
• Added Configurator Specification.
• Added JAX-RS Whiteboard Specification.
• Added CDI Integration Specification.
• Added Push Stream Specification.

https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

Introduction Changes

OSGi Enterprise Release 7 Page 23

• Added Converter Specification.
• Updated Remote Services to define new intents.
• Updated Log Service Specification to add new Loggers and LogStream service.
• Updated Configuration Admin Service Specification to support new Configurator service.
• Updated Metatype Service Specification to support enhancements to component property type

naming.
• Updated Declarative Services Specification to add new features including constructor injection.
• Updated Event Admin Service Specification to add component property types and define capabili-

ties.
• Updated JPA Service Specification to add support for JPA 2.1 and other enhancements.
• Updated Common Namespaces Specification to add an unresolvable namespace.
• Updated Http Whiteboard Specification to add multipart configuration support, component prop-

erty types and other enhancements.
• Updated Promises Specification to support controlling executors and added new methods.
• Resolver Service Specification moved to OSGi Core, Chapter 58.
• Blueprint Container Specification is available in OSGi Compendium, Chapter 121.

Changes Introduction

Page 24 OSGi Enterprise Release 7

Remote Services Version 1.1 The Fallacies

OSGi Enterprise Release 7 Page 25

100 Remote Services

Version 1.1
The OSGi framework provides a local service registry for bundles to communicate through service
objects, where a service is an object that one bundle registers and another bundle gets. A distribution
provider can use this loose coupling between bundles to export a registered service by creating an
endpoint. Vice versa, the distribution provider can create a proxy that accesses an endpoint and then
registers this proxy as an imported service. A Framework can contain multiple distribution providers
simultaneously, each independently importing and exporting services.

An endpoint is a communications access mechanisms to a service in another framework, a (web)
service, another process, or a queue or topic destination, etc., requiring some protocol for commu-
nications. The constellation of the mapping between services and endpoints as well as their com-
munication characteristics is called the topology. A common case for distribution providers is to be
present on multiple frameworks importing and exporting services; effectively distributing the ser-
vice registry.

The local architecture for remote services is depicted in Figure 100.1 on page 25.

Figure 100.1 Architecture

Service Consumer
Impl

Service Producer
Impl

service.imported

service.exported.interfaces

=...

=*

Distribution
Provider Impl

imported
service

exported
serviceto an endpoint endpoint

Local services imply in-VM call semantics. Many of these semantics cannot be supported over a
communications connection, or require special configuration of the communications connection. It
is therefore necessary to define a mechanism for bundles to convey their assumptions and require-
ments to the distribution provider. This chapter defines a number of service properties that a distrib-
ution provider can use to establish a topology while adhering to the given constraints.

100.1 The Fallacies
General abstractions for distributed systems have been tried before and often failed. Well known are
the fallacies described in [1] The Fallacies of Distributed Computing Explained:

• The network is reliable

Remote Service Properties Remote Services Version 1.1

Page 26 OSGi Enterprise Release 7

• Latency is zero
• Bandwidth is infinite
• The network is secure
• Topology doesn't change
• There is one administrator
• Transport cost is zero
• The network is homogeneous

Most fallacies represent non-functional trade-offs that should be considered by administrators, their
decisions can then be reflected in the topology. For example, in certain cases limited bandwidth is
acceptable and the latency in a datacenter is near zero. However, the reliability fallacy is the hard-
est because it intrudes into the application code. If a communication channel is lost, the application
code needs to take specific actions to recover from this failure.

This reliability aspect is also addressed with OSGi services because services are dynamic. Failures in
the communications layer can be mapped to the unregistration of the imported service. OSGi bun-
dles are already well aware of these dynamics, and a number of programming models have been de-
veloped to minimize the complexity of writing these dynamic applications.

100.2 Remote Service Properties
This section introduces a number of properties that participating bundles can use to convey infor-
mation to the distribution provider according to this Remote Service specification.

The following table lists the properties that must be listed by a distribution provider.

Table 100.1 Remote Service Properties registered by the Distribution Provider

Service Property Name Type Description
remote.configs.supported Str ing+ Registered by the distribution provider on one of

its services to indicate the supported configuration
types. See Configuration Types on page 33 and De-
pendencies on page 36.

remote. intents.supported Str ing+ Registered by the distribution provider on one of its
services to indicate the vocabulary of implemented
intents. See Dependencies on page 36.

service. imported * Must be set by a distribution provider to any value
when it registers the endpoint proxy as an imported
service. A bundle can use this property to filter out
imported services.

service. imported.configs Str ing+ The configuration information used to import this
service, as described in service.exported.configs .
Any associated properties for this configuration
types must be properly mapped to the importing
system. For example, a URL in these properties must
point to a valid resource when used in the importing
framework.

If multiple configuration types are listed in this
property, then they must be synonyms for exactly
the same remote endpoint that is used to export this
service.

Remote Services Version 1.1 Remote Service Properties

OSGi Enterprise Release 7 Page 27

Service Property Name Type Description
service. intents Str ing+ A distribution provider must use this property to

convey the combined intents of:

• The exporting service, and
• The intents that the exporting distribution

provider adds.
• The intents that the importing distribution

provider adds.

The properties for bundles providing services to be exported or require services to be imported are
listed alphabetically in the following table. The scenarios that these properties are used in are dis-
cussed in later sections.

Table 100.2 Remote Service Properties registered by Exporting bundles

Service Property Name Type Description
service.exported.configs Str ing+ A list of configuration types that should be used to

export the service. Each configuration type repre-
sents the configuration parameters for one or more
Endpoints. A distribution provider should create
endpoints for each configuration type that it sup-
ports. See Configuration Types on page 33 for
more details. If this property is not set or empty a
distribution provider is free to choose a default con-
figuration type for the service.

service.exported. intents Str ing+ A list of intents that the distribution provider must
implement to distribute the service. Intents listed in
this property are reserved for intents that are critical
for the code to function correctly, for example, order-
ing of messages. These intents should not be config-
urable. For more information about intents, see In-
tents on page 30. This property is optional.

service.exported. intents.extra Str ing+ This property is merged with the
service.exported. intents property before the dis-
tribution provider interprets the listed intents; it
has therefore the same semantics but the proper-
ty should be configurable so the administrator can
choose the intents based on the topology. Bundles
should therefore make this property configurable,
for example through the Configuration Admin ser-
vice. See Intents on page 30. This property is op-
tional. If absent or empty no specific intents are re-
quired.

service.exported. interfaces Str ing+ Setting this property marks this service for export. It
defines the interfaces under which this service can
be exported. This list must be a subset of the types
listed in the objectClass service property. The single
value of an asterisk ('* ' \u002A) indicates all inter-
faces in the registration's objectClass property and
ignore the classes. It is strongly recommended to on-
ly export interfaces and not concrete classes due to
the complexity of creating proxies for some type of
concrete classes. See Registering a Service for Export on
page 28.

Remote Service Properties Remote Services Version 1.1

Page 28 OSGi Enterprise Release 7

Service Property Name Type Description
service. intents Str ing+ A list of intents that this service implements. A dis-

tribution provider must use this property to convey
the combined intents of:

• The exporting service, and
• The intents that the exporting distribution

provider adds.
• The intents that the importing distribution

provider adds.

To export a service, a distribution provider must ex-
pand any qualified intents to include those support-
ed by the endpoint. This can be a subset of all known
qualified intents. See Intents on page 30. This
property is optional for registering bundles.

service.pid Str ing+ Services that are exported should have a service.pid
property. The service.pid (PID) is a unique persistent
identity for the service, the PID is defined in Persis-
tent Identifier (PID) of OSGi Core Release 7. This prop-
erty enables a distribution provider to associate per-
sistent proprietary data with a service registration.

The properties and their treatment by the distribution provider is depicted in Figure 100.2.

Figure 100.2 Distribution Service Properties

service.imported=...

<other service properties>

service.exported.interfaces

service.exported.intents.extra

service.exported.intents

service.intents

service.intents

<other service properties>

service.exported.configs

importexport
Framework A Framework B

Distribution Provider

remote.intents.supported

remote.configs.supported

objectClass

service.imported.configs

endpoint

1 *

100.2.1 Registering a Service for Export
A distribution provider should create one or more endpoints for an exported service when the fol-
lowing conditions are met:

• The service has the service property service.exported. interfaces set.
• All intents listed in service.exported. intents , service.exported. intents.extra and service. intents

are part of the distributed provider's vocabulary
• None of the intents are mutually exclusive.
• The distribution provider can use the configuration types in service.exported.configs to create

one or more endpoints.

Remote Services Version 1.1 Remote Service Properties

OSGi Enterprise Release 7 Page 29

The endpoint must at least implement all the intents that are listed in the service.exported. intents
and service.exported. intents.extra properties.

The configuration types listed in the service.exported.configs can contain alternatives and/or syn-
onyms. Alternatives describe different endpoints for the same service while a synonym describes a
different configuration type for the same endpoint.

A distribution provider should create endpoints for each of the configuration types it supports;
these configuration types should be alternatives. Synonyms are allowed.

If no configuration types are recognized, the distribution provider should create an endpoint with a
default configuration type except when one of the listed configuration types is <<nodefault>> .

For more information about the configuration types, see further Configuration Types on page 33.

100.2.2 Getting an Imported Service
An imported service must be a normal service, there are therefore no special rules for getting it.
An imported service has a number of additional properties that must be set by the distribution
provider.

If the endpoint for an exported service is imported as an OSGi service in another framework, then
the following properties must be treated as special.

• service. imported - Must be set to some value.
• service. intents - This must be the combination of the following:

• The service. intents property on the exported service
• The service.exported. intents and service.exported. intents.extra properties on the exported

service
• Any additional intents implemented by the distribution providers on both sides.

• service. imported.configs - Contains the configuration types that can be used to import this ser-
vice. The types listed in this property must be synonymous, that is, they must refer to exactly the
same endpoint that is exporting the service. See Configuration Types on page 33.

• service.exported.* - Properties starting with service.exported. must not be set on the imported
service.

• service.exported. interfaces - This property must not be set, its content is reflected in the object-
Class property.

All other public service properties (not starting with a full stop ('.' \u002E)) must be listed on the im-
ported service if they use the basic service property types. If the service property cannot be commu-
nicated because, for example, it uses a type that can not be marshaled by the distribution provider
then the distribution provider must ignore this property.

The service. imported property indicates that a service is an imported service. If this service proper-
ty is set to any value, then the imported service is a proxy for an endpoint. If a bundle wants to filter
out imported services, then it can add the following filter:

(&(!(service.imported=*)) <previousfilter>)

Distribution providers can also use the Service Hook Service Specification of OSGi Core Release 7 to hide
services from specific bundles.

100.2.3 On Demand Import
The Service Hooks Service Specification of OSGi Core Release 7, allows a distribution provider to de-
tect when a bundle is listening for specific services. Bundles can request imported services with spe-
cific intents by building an appropriate filter. The distribution provider can use this information to
import a service on demand.

Intents Remote Services Version 1.1

Page 30 OSGi Enterprise Release 7

The following example creates a Service Tracker that is interested in an imported service.

Filter f = context.createFilter(
 "(&(objectClasss=com.acme.Foo)"
 + "(service.intents=confidentiality))"
);
ServiceTracker tracker =
 new ServiceTracker(context, f, null);
tracker.open();

Such a Service Tracker will inform the Listener Hook and will give it the filter expression. If the dis-
tribution provider has registered such a hook, it will be informed about the need for an imported
com.acme.Foo service that has a confidential i ty intent. It can then use some proprietary means to
find a service to import that matches the given object class and intent.

How the distribution provider finds an appropriate endpoint is out of scope for this specification.

100.3 Intents
An intent is a name for an abstract distribution capability. An intent can be implemented by a service;
this can then be reflected in the service. intents property. An intent can also constrain the possible
communication mechanisms that a distribution provider can choose to distribute a service. This is
reflected in the service.export . intents and service.exported. intents.extra properties.

The purpose of the intents is to have a vocabulary that is shared between distribution aware bundles
and the distribution provider. This vocabulary allows the bundles to express constraints on the ex-
port of their services as well as providing information on what intents are implemented by a service.

Intents have the following syntax

intent ::= token ('.' token)?

Qualified intents use a full stop ('.' \u002E) to separate the intent from the qualifier. A qualifier pro-
vides additional details, however, it implies its prefix. For example:

confidentiality.message

This example, can be expanded into confidential i ty and confidential i ty.message . Qualified in-
tents can be used to provide additional details how an intent is achieved. However, a Distribution
Provider must expand any qualified intents to include those supported by the endpoint. This can be
a subset of all known qualified intents.

The concept of intents is derived from the [3] SCA Policy Framework specification. When designing a
vocabulary for a distribution provider it is recommended to closely follow the vocabulary of intents
defined in the SCA Policy Framework.

100.3.1 Basic Remote Services: osgi.basic
Remote Services implementations have a large amount of freedom. For example, they may use
any mechanism that they choose to transmit data between the caller of the remote service and the
provider of the service. This freedom means that there can be a large variation in the behaviors sup-
ported by different Remote Services implementations.

The purpose of the osgi .basic intent is to provide a common set of rules that can be relied upon
when exporting a simple remote service. This includes rules about the service interface, including
supported parameter and return types, as well as a means of configuring a timeout for remote invo-
cations.

Remote Services Version 1.1 Intents

OSGi Enterprise Release 7 Page 31

100.3.1.1 Minimum Supported Service Signature

Remote Services implementations which offer the osgi .basic intent must support remote services
which advertise a single Java interface containing zero or more methods.

The following types must be supported as declared parameters or returns from methods on the re-
mote service:

• Primitive values
• The OSGi scalar types, OSGi Version objects, Java enums, and types which conform to the OS-

Gi DTO rules as described in the OSGi core specification. In the rest of this section these will be
known as the basic types.

• Arrays of primitive values or the basic types
• Lists, Collections or Iterables of the basic types, however the implementation of the collection

may not be preserved in transit. For example a LinkedList may be converted to an ArrayList .
• Sets of the OSGi basic types where equals is used to determine identity. SortedSet is not required

to be supported due to the difficulties associated with serializing comparators. The implementa-
tion of the set may not be preserved in transit. For example a LinkedHashSet may be converted to
a HashSet .

• Maps where the keys and values are the OSGi basic types, and equals is used to determine identi-
ty for the keys. SortedMap is not required to be supported due to the difficulties associated with
serializing comparators. The implementation of the map may not be preserved in transit. For ex-
ample a LinkedHashMap may be converted to a HashMap .

• Methods with no arguments, and methods with a void return

100.3.1.2 Remote Invocation Timeout

The implementation of a Remote Services provider is entirely opaque. In many cases there will be
no feedback mechanism if the remote call hangs, or if the remote node fails. The local client must
therefore decide at what point to fail after a certain amount of time has elapsed.

A single Remote Services implementation must be able to handle a wide variety of different remote
service invocations across many services, therefore it is difficult to identify a sensible timeout for
the remote service invocation. Some calls may be quick, and so a ten second timeout is desirable for
rapid failure detection, other calls may be long-running, and a two minute timeout too short. The re-
mote service must therefore be able to declare its own timeout.

To declare a timeout the remoteable service may provide a service property osgi .basic .t imeout
which provides a timeout value in milliseconds. The value may be declared as a Str ing or as a Num-
ber , which will be converted into a Long. The timeout value is used to limit the maximum time for
which a remote service client will be blocked waiting for a response. The same timeout value ap-
plies to all methods on the service. In the event that the invocation reaches the timeout value the
client must fail the method call with a ServiceException with its type set to REMOTE.

100.3.2 Asynchronous Remote Services: osgi.async
Some service invocations operate asynchronously, returning quickly and continuing to process in
the background. For void methods with no completion notifications this is simple to achieve re-
motely, but more useful scenarios are difficult to support without using higher-level abstractions to
represent the eventual result.

The purpose of the osgi .async intent is to provide a common set of rules that can be relied upon for
remote services which return types representing an asynchronously executing method.

The osgi .async intent makes no guarantees about the service interface(s) or method parameters sup-
ported by the remote services implementation. It is therefore recommended that it be used in con-
junction with another intent, such as the osgi.basic intent.

General Usage Remote Services Version 1.1

Page 32 OSGi Enterprise Release 7

100.3.2.1 Supported Return Types

Asynchronous returns are implemented using a holder type. The holder represents the state of the
asynchronous execution, and can be queried for its completion state. When the execution is com-
plete the holder can be queried for the result of the execution, or for its failure.

The following holder types must be supported as return types from methods on the remote service:

• org.osgi .ut i l .promise.Promise
• java.ut i l .concurrent.Future
• java.ut i l .concurrent.CompletionStage
• java.ut i l .concurrent.CompletableFuture

The full set of supported types for the eventual return value encapsulated by the holder object are
not defined by the osgi .async intent. Instead the full set of supported types can be inferred from
the other supported intents supported by the Remote Services implementation. For example the
osgi.basic intent would ensure support for a return value of Promise<List<Str ing>>

100.3.2.2 Asynchronous Failures

If an asynchronous remote execution fails then the holder type must be failed with the same excep-
tion that would have been thrown in a synchronous call.

The reason for the failure may be as a result of a failure in communications, a timeout, or because
the remote invocation resulted in an exception

100.3.3 Confidential Remote Services: osgi.confidential
The osgi .confidential intent can be used to state that the remote service communications must only
be readable by the intended recipient, for example, through the use of TLS-based transport encryp-
tion.

If a Remote Services implementation does not support confidential communications, or is not con-
figured as such, it must not expose the service remotely.

100.3.4 Private Remote Services: osgi.private
In many deployment scenarios, including cloud, embedded or IoT deployments, hosts may be acces-
sible via a public network and via a private network. In such cases hosts will have multiple IP ad-
dresses to separate public network access from private network access. Private IP addresses normal-
ly in one of the following blocks: 10.0.0.0/8 , 172.16.0.0/12 or 192.168.0.0/16 .

In many cases it is desirable to expose remote services only on the private network so that these ser-
vices cannot be accessed from the outside world. This is especially useful if this service is used as a
microservice within a larger application. The osgi .pr ivate intent can be specified for this purpose.

If the osgi .pr ivate intent is required on the remote service, it will only be exposed as a remote ser-
vice on a private network on the host. If the host does not support a private IP address or if the Re-
mote Services implementation does not have the information to decide whether a host IP is private,
the service should not be exposed.

100.4 General Usage

100.4.1 Call by Value
Normal service semantics are call-by-reference. An object passed as an argument in a service call is a
direct reference to that object. Any changes to this object will be shared on both sides of the service
registry.

Remote Services Version 1.1 Configuration Types

OSGi Enterprise Release 7 Page 33

Distributed services are different. Arguments are normally passed by value, which means that a
copy is sent to the remote system, changes to this value are not reflected in the originating frame-
work. When using distributed services, call-by-value should always be assumed by all participants
in the distribution chain.

100.4.2 Data Fencing
Services are syntactically defined by their Java interfaces. When exposing a service over a remote
protocol, typically such an interface is mapped to a protocol-specific interface definition. For exam-
ple, in CORBA the Java interfaces would be converted to a corresponding IDL definition. This map-
ping does not always result in a complete solution.

Therefore, for many practical distributed applications it will be necessary to constrain the possible
usage of data types in service interfaces. A distribution provider must at least support interfaces (not
classes) that only use the basic types as defined for the service properties. These are the primitive
types and their wrappers as well as arrays and collections. See Filter Syntax of OSGi Core Release 7 for
a list of service property types.

Distribution providers will in general provide a richer set of types that can be distributed.

100.4.3 Remote Services Life Cycle
A distributed service must closely track any modifications on the corresponding service registra-
tion. If service properties are modified, these modifications should be propagated to the distributed
service and associated service proxies. If the exported service is unregistered, the endpoint must be
withdrawn as soon as possible and any imported service proxies unregistered.

100.4.4 Runtime
An imported service is just like any other service and can be used as such. However, certain non-
functional characteristics of this service can differ significantly from what is normal for an in-VM
object call. Many of these characteristics can be mapped to the normal service operations. That is,
if the connection fails in any way, the service can be unregistered. According to the standard OSGi
contract, this means that the users of that service must perform the appropriate cleanup to prevent
stale references.

100.4.5 Exceptions
It is impossible to guarantee that a service is not used when it is no longer valid. Even with the syn-
chronous callbacks from the Service Listeners, there is always a finite window where a service can
be used while the underlying implementation has failed. In a distributed environment, this window
can actually be quite large for an imported service.

Such failure situations must be exposed to the application code that uses a failing imported service.
In these occasions, the distribution provider must notify the application by throwing a Service Ex-
ception, or subclass thereof, with the reason REMOTE . The Service Exception is a Runtime Excep-
tion, it can be handled higher up in the call chain. The cause of this Service Exception must be the
Exception that caused the problem.

A distribution provider should log any problems with the communications layer to the Log Service,
if available.

100.5 Configuration Types
An exported service can have a service.exported.configs service property. This property lists config-
uration types for endpoints that are provided for this service. Each type provides a specification that
defines how the configuration data for one or more endpoints is provided. For example, a hypotheti-
cal configuration type could use a service property to hold a URL for the RMI naming registry.

Configuration Types Remote Services Version 1.1

Page 34 OSGi Enterprise Release 7

Configuration types that are not defined by the OSGi Alliance should use a name that follows the
reverse capabi l i t ies domain name scheme defined in [4] Java Language Specification for Java pack-
ages. For example, com.acme.wsdl would be the proprietary way for the ACME company to specify a
WSDL configuration type.

100.5.1 Configuration Type Properties
The service.exported.configs and service. imported.configs use the configuration types
in very different ways. That is, the service. imported.configs property is not a copy of the
service.exported.configs as the name might seem to imply.

An exporting service can list its desired configuration types in the service.exported.configs prop-
erty. This property is potentially seen and interpreted by multiple distribution providers. Each of
these providers can independently create endpoints from the configuration types. In principle, the
service.exported.configs lists alternatives for a single distribution provider and can list synonyms to
support alternative distribution providers. If only one of the synonyms is useful, there is an implic-
it assumption that when the service is exported, only one of the synonyms should be supported by
the installed distribution providers. If it is detected that this assumption is violated, then an error
should be logged and the conflicting configuration is further ignored.

The interplay of synonyms and alternatives is depicted in Table 100.3. In this table, the first columns
on the left list different combinations of the configuration types in the service.exported.configs
property. The next two columns list two distribution providers that each support an overlapping set
of configuration types. The x 's in this table indicate if a configuration type or distribution provider
is active in a line. The description then outlines the issues, if any. It is assumed in this table that
hypothetical configuration types net.rmi and com.rmix map to an identical endpoint, just like
net.soap and net.soapx .

Table 100.3 Synonyms and Alternatives in Exported Configurations

service.exported.
configs

Distribution
Provider A

Distribution
Provider B

Description

ne
t.

rm
i

co
m

.r
m

ix

ne
t.

so
ap

co
m

.s
oa

px

<<
no

 d
ef

au
lt

>> Supports:

net.rmi

com.rmix

com.soapx

Supports:

net.rmi

net.soap

x x x OK, A will create an endpoint for the RMI and
SOAP alternatives.

x x x Configuration error. There is a clash for net.rmi be-
cause A and B can both create an endpoint for the
same configuration. It is likely that one will fail.

x x x OK, exported on com.soapx by A, the net.soap is ig-
nored.

x x x x Synonym error because A and B export to same
SOAP endpoint, it is likely that one will fail.

x x x x OK, two alternative endpoints over RMI (by A) and
SOAP (by B) are created. This is a typical use case.

x x x OK. Synonyms are used to allow frameworks that
have either A or B installed. In this case A exports
over SOAP.

x x x OK. Synonyms are used to allow frameworks that
have either A or B installed. In this case B exports.

x OK. A creates an endpoint with default configura-
tion type.

Remote Services Version 1.1 Configuration Types

OSGi Enterprise Release 7 Page 35

service.exported.
configs

Distribution
Provider A

Distribution
Provider B

Description

x x OK. Both A and B each create an endpoint with
their default configuration type.

x x OK. No endpoint is created.
x x x Provider B does not recognize the configuration

types it should therefore use a default configura-
tion type.

To summarize, the following rules apply for a single distribution provider:

• Only configuration types that are supported by this distribution provider must be used. All other
configuration types must be ignored.

• All of the supported configuration types must be alternatives, that is, they must map to different
endpoints. Synonyms for the same distribution provider should be logged as errors.

• If a configuration type results in an endpoint that is already in use, then an error should be
logged. It is likely then that another distribution provider already had created that endpoint.

An export of a service can therefore result in multiple endpoints being created. For example, a ser-
vice can be exported over RMI as well as SOAP. Creating an endpoint can fail, in that case the distrib-
ution provider must log this information in the Log Service, if available, and not export the service
to that endpoint. Such a failure can, for example, occur when two configuration types are synonym
and multiple distribution providers are installed that supporting this type.

On the importing side, the service. imported.configs property lists configuration types that must re-
fer to the same endpoint. That is, it can list alternative configuration types for this endpoint but all
configuration types must result in the same endpoint.

For example, there are two distribution providers installed at the exporting and importing frame-
works. Distribution provider A supports the hypothetical configuration type net.rmi and net.soap .
Distribution provider B supports the hypothetical configuration type net.smart . A service is regis-
tered that list all three of those configuration types.

Distribution provider A will create two endpoints, one for RMI and one for SOAP. Distribution
provider B will create one endpoint for the smart protocol. The distribution provider A knows how
to create the configuration data for the com.acme.rmi configuration type as well and can therefore
create a synonymous description of the endpoint in that configuration type. It will therefore set the
imported configuration type for the RMI endpoint to:

service.imported.configs = net.rmi, com.acme.rmi
net.rmi.url = rmi://172.25.25.109:1099/service-id/24
com.acme.rmi.address = 172.25.25.109
com.acme.rmi.port = 1099
com.acme.rmi.path = service-id/24

Security Remote Services Version 1.1

Page 36 OSGi Enterprise Release 7

Figure 100.3 Relation between imported and exported configuration types

service.exported.configs=[net.rmi,net.soap,net.smart]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24
net.soap.wsdl=/wsdl/remote.xml
net.smart.name=remote

service.imported.configs=smart
net.smart.name=remote

service.imported.configs=[net.rmi,com.acme.rmi]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24

service.imported.configs=net.soap
net.soap.wsdl=http://172.25.25.109/wsdls/24.wsdl

service.imported.configs=[net.rmi,com.acme.rmi]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24
com.acme.rmi.*=...

B A

smart

rmi

soap

A

100.5.2 Dependencies
A bundle that uses a configuration type has an implicit dependency on the distribution provider. To
make this dependency explicit, the distribution provider must register a service with the following
properties:

• remote. intents.supported - (Str ing+) The vocabulary of the given distribution provider.
• remote.configs.supported - (Str ing+) The configuration types that are implemented by the dis-

tribution provider.

A bundle that depends on the availability of specific intents or configuration types can create a ser-
vice dependency on an anonymous service with the given properties. The following filter is an ex-
ample of depending on a hypothetical net.rmi configuration type:

(remote.configs.supported=net.rmi)

100.6 Security
The distribution provider will be required to invoke methods on any exported service. This implies
that it must have the combined set of permissions of all methods it can call. It also implies that the
distribution provider is responsible for ensuring that a bundle that calls an imported service is not
granted additional permissions through the fact that the distribution provider will call the exported
service, not the original invoker.

The actual mechanism to ensure that bundles can get additional permissions through the distrib-
ution is out of scope for this specification. However, distribution providers should provide mecha-
nisms to limit the set of available permissions for a remote invocation, preferably on a small granu-
larity basis.

One possible means is to use the getAccessControlContext method on the Conditional Permission
Admin service to get an Access Control Context that is used in a doPriv i leged block where the invo-
cation takes place. The getAccessControlContext method takes a list of signers which could repre-

Remote Services Version 1.1 References

OSGi Enterprise Release 7 Page 37

sent the remote bundles that cause an invocation. How these are authenticated is up to the distribu-
tion provider.

A distribution provider is a potential attack point for intruders. Great care should be taken to prop-
erly setup the permissions or topology in an environment that requires security.

100.6.1 Limiting Exports and Imports
Service registration and getting services is controlled through the ServicePermission class. This per-
mission supports a filter based constructor that can assert service properties. This facility can be
used to limit bundles from being able to register exported services or get imported services if they
are combined with Conditional Permission Admin's ALLOW facility. The following example shows
how all bundles except from www.acme.com are denied the registration and getting of distributed
services.

DENY {
 [...BundleLocationCondition("http://www.acme.com/*" "!")]
 (...ServicePermission "(service.imported=*)" "GET")
 (...ServicePermission "(service.exported.interfaces=*)"
 "REGISTER")
}

100.7 References

[1] The Fallacies of Distributed Computing Explained
http://www.rgoarchitects.com/Files/fallacies.pdf

[2] Service Component Architecture (SCA)
http://www.oasis-opencsa.org/

[3] SCA Policy Framework specification
http://www.oasis-open.org/committees/sca-policy/

[4] Java Language Specification
http://docs.oracle.com/javase/specs/

100.8 Changes
• Added intents: osgi .basic , osgi .async , osgi .confidential , and osgi .pr ivate . See Intents on page

30.

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.oasis-opencsa.org/
http://www.oasis-open.org/committees/sca-policy/
http://docs.oracle.com/javase/specs/

Changes Remote Services Version 1.1

Page 38 OSGi Enterprise Release 7

Log Service Specification Version 1.4 Introduction

OSGi Enterprise Release 7 Page 39

101 Log Service Specification

Version 1.4

101.1 Introduction
The Log Service provides a general purpose message logger for the OSGi framework. It consists of
several services: a service for obtaining Loggers to log information and other services for retrieving
current or previously recorded log information.

This specification defines the methods and semantics of interfaces which bundle developers can use
to log entries and to retrieve log entries.

Bundles can use the Logger Factory to log information for the Operator. Other bundles, oriented to-
ward management of the environment, can use the Log Stream Provider or Log Reader Service to
retrieve Log Entry objects that were recorded recently or to receive Log Entry objects as they are
logged by other bundles.

101.1.1 Entities

• Logger - An interface that allows a bundle to log information, including a message, a level, an ex-
ception, and a ServiceReference object.

• LoggerFactory - The service interface that allows a bundle to obtain a Logger. A Logger is named
and associated with a Bundle object.

• LogService - The legacy service interface that allows a bundle to log information, including a mes-
sage, a level, an exception, a ServiceReference object, and a Bundle object. The methods of this
service are deprecated and it is recommended to use LoggerFactory and Loggers instead.

• LogEntry - An interface that allows access to a log entry in the log. It includes all the information
that can be logged through the Logger as well as a time stamp, a sequence number, thread infor-
mation, and location information.

• LogStreamProvider - A service interface that allows access to a PushStream of LogEntry objects.
• LogReaderService - A service interface that allows access to a list of recent LogEntry objects, and al-

lows the registration of a LogListener object that receives LogEntry objects as they are created.
• LogListener - The interface for the listener to LogEntry objects. Must be registered with the Log

Reader Service.
• LoggerContext - An interface that allows the configuration of effective logging levels for a Bundle.

The configuration can be set in Configuration Admin and via method calls.
• LoggerAdmin - A service interface that allows for the configuration of logging. The service pro-

vides access to Logger Context objects.

101.2 The Logger Interface
The Logger interface allows bundle developers to log messages that can be distributed to other bun-
dles, which in turn can forward the logged entries to a file system, remote system, or some other des-
tination. It is inspired by the ideas used in [1] SLF4J.

The Logger Interface Log Service Specification Version 1.4

Page 40 OSGi Enterprise Release 7

Figure 101.1 Logger Class Diagram org.osgi.service.log package

<<interface>>
LogService

<<interface>>
LogReader
Service

<<interface>>
LogEntry

<<interface>>
LogListener

Log Reader
Service impl.

LogEntry impl

a Log user bundle

Log Service
impl

a Log reader user

Log a
message

send new log entry

retrieve log
or register
listener

1 1

1

0..n

Log implementation bundle

<<interface>>
LoggerFactory

Logger impl

<<interface>>
Logger

<<interface>>
FormatterLogger <<enum>>

LogLevel

Get a
Logger

0..n 1 0..n

1 1

0..n

1

The Logger interface allows the bundle developer to:

• Specify a message, message parameters, and an exception to be logged.
• Define the log level representing the severity of the message being logged. If the effective log lev-

el for the Logger does not imply the requested log level, then the logging request is ignored. See
Effective Log Level on page 44.

• Specify the Service associated with the message being logged.
• Query if a log level is effective.

By obtaining a Logger object from the LoggerFactory service, a bundle can start logging messages to
the Log Service by calling one of the Logger methods.

The Logger interface defines several methods for each of the defined LogLevels.

Table 101.1 Log Levels

Log Level Descriptions
AUDIT This log level is used for information that must always be logged.
ERROR This log level is used for information about an error situation.
WARN This log level is used for information about a failure or unwanted situation that

is not blocking.
INFO This log level is used for information about normal operation.
DEBUG This log level is used for detailed output for debugging operations.
TRACE This log level is used for large volume of output for tracing operations.

Log Service Specification Version 1.4 Obtaining a Logger

OSGi Enterprise Release 7 Page 41

Many of the Logger methods take a message format string and message parameters which are for-
matted together to create the log message. In the format string, use a left curly bracket (' { ' \u007B)
followed by a right curly bracket (' } ' \u007D) as a place holder for a message parameter: "{}" . If you
need to use the literal "{}" in the formatted message, precede the place holder with a reverse solidus
(' \ ' \u005C): "\\{}" . If you need to place a backslash before the place holder, precede the reverse
solidus with a reverse solidus: "\\\\{}" .

You can also add a Throwable and/or ServiceReference to the generated LogEntry by passing them to
the logging methods as additional arguments to the Logger method. If the last argument is a Throw-
able or a ServiceReference, it is added to the generated LogEntry and then, if the next to last argu-
ment is a ServiceReference or Throwable and not the same type as the last argument, it is also added
to the generated LogEntry . These arguments will not be used as message parameters. For example:

logger.info("Found service {}.", serviceReference, serviceReference);
logger.warn("Something named {} happened.", name, serviceReference, throwable);
logger.error("Failed.", exception);

The following example code records error conditions as log messages.

try (InputStream in = Files.newInputStream(myFile)) {
 int b;
 while ((b = in.read()) != -1) {
 ...
 }
} catch (IOException e) {
 logger.error("Cannot access file {}", myFile, e);
}

Notice that in addition to the error message, the exception itself is also logged. Providing this infor-
mation can significantly simplify problem determination by the Operator.

Sometimes message parameters can be expensive to compute, so avoiding computation is impor-
tant if the log level is not effective. This can be done using either an i f block or a LoggerConsumer .
The latter is convenient as a lambda expression. For example, both of the following examples avoid
computation if the log level is not effective.

if (logger.isInfoEnabled()) {
 logger.info("Max {}", Collections.max(processing));
}

logger.info(l -> l.info("Max {}", Collections.max(processing)));

The latter example only calls the lambda expression if the log level is effective.

101.3 Obtaining a Logger
Logger objects can be obtained from the LoggerFactory service. Loggers are named. Logger names
should be in the form of a fully qualified Java class names with segments separated by full stop ('.'
\u002E). For example:

com.foo.Bar

Logger names form a hierarchy. A logger name is said to be an ancestor of another logger name if the
logger name followed by a full stop ('.' \u002E) is a prefix of the descendant logger name. The root
logger name (ROOT_LOGGER_NAME) is the top ancestor of the logger name hierarchy. For example:

Logger Configuration Log Service Specification Version 1.4

Page 42 OSGi Enterprise Release 7

com.foo.Bar
com.foo
com
ROOT

Normally the name of the class which is doing the logging is used as the logger name. There are Log-
ger Factory methods which take Class objects to simplify this.

Logger logger = loggerFactory.getLogger(Bar.class);

The LoggerFactory service can be used to obtain two types of Logger objects: Logger and Formatter-
Logger . The Logger object uses SLF4J-style ("{}") place holders for message formatting. The Format-
terLogger object use printf-style place holders from java.ut i l .Formatter for message formatting.

FormatterLogger logger = loggerFactory.getLogger(Bar.class,
 FormatterLogger.class);
logger.error("Cannot access file %s", myFile);

Some bundles, such as the Service Component Runtime implementation, may need to log on behalf
of other bundles. The getLogger(Bundle,Str ing,Class) method can be used to obtain a Logger object
associated with the specified bundle.

Logger logger = loggerFactory.getLogger(componentBundle,
 componentImplClassName,
 Logger.class);

As long as the LoggerFactory service, from which the Logger is obtained, is active, that is, the Log-
gerFactory service has not been unregistered, then the Logger is valid and can be used to log. How-
ever, once the LoggerFactory service has been unregistered, then Logger objects obtained from the
LoggerFactory service must enter a "no-op" state where no log level is effective and no logging oc-
curs.

101.4 Logger Configuration
A Logger Admin service is defined which allows for the configuration of Loggers.

Log Service Specification Version 1.4 Logger Configuration

OSGi Enterprise Release 7 Page 43

Figure 101.2 Log Admin Class Diagram org.osgi.service.log.admin package

<<interface>>
LoggerAdmin

<<interface>>
Configuration
Admin

a Log Admin
user bundle

Logger Admin
impl 1

Log implementation bundle

Logger Context
impl

<<interface>>
LoggerContext

Get a
Logger Context

0..n

Use a
Logger Context

Get Logger Context
configuration

1 1root

1 0..n
named

Log Service
impl

1

1

Get effective
log level1 0..n

The LoggerAdmin service can be used to obtain the LoggerContext for a bundle. Each bundle may
have its own named LoggerContext based upon its bundle symbolic name, bundle version, and bun-
dle location. There is also a root LoggerContext from which all named LoggerContexts inherit. The
root LoggerContext has no name.

The LoggerAdmin service is associated with the LoggerFactory service it administrates via the
LOG_SERVICE_ID service property whose value is a Long containing the service.id of the LoggerFac-
tory service.

A Logger implementation must locate the LoggerContext for the bundle to determine the effective
log level of the Logger when a log method is called. See Effective Log Level on page 44. The best
matching name for the LoggerContext is the longest name, which has a non-empty LoggerContext ,
according to the following syntax:

name ::= symbolic-name (’|’ version (’|’ location)?)?

The version must be formatted canonically, that is, according to the toStr ing() method of the Ver-
sion class. So the LoggerContext for a bundle is searched for using the following names in the given
order:

<symbolic-name>|<version>|<location>
<symbolic-name>|<version>
<symbolic-name>

The search stops at the first non-empty LoggerContext . If no non-empty LoggerContext is found us-
ing the above search order, the LoggerContext with the symbolic name of the bundle must be used.

This allows a bundle to have no LoggerContext configured. In this case it will use the root
LoggerContext 's configuration. It also allows a bundle to be configured based upon bundle symbol-

Logger Configuration Log Service Specification Version 1.4

Page 44 OSGi Enterprise Release 7

ic name, bundle symbolic name and bundle version or even bundle symbolic name, bundle version,
and bundle location. The latter forms may be of interest if there are multiple versions of a bundle in-
stalled.

LoggerContexts can be configured using the getLogLevels() and setLogLevels(Map) methods of the
LoggerContext . Logger names, including the root logger name (ROOT_LOGGER_NAME), can be con-
figured to a specific log level.

Any change to the configuration of a LoggerContext must be effective immediately for all loggers
that would rely upon the configuration of the LoggerContext . Changes to the configuration of a
LoggerContext via the setLogLevels(Map) method are not persisted.

101.4.1 Configuration Admin Integration
The configured log levels for a LoggerContext can be set by both the setLogLevels(Map) method and
by configuration information in Configuration Admin, if Configuration Admin is present. The con-
figured log levels for a LoggerContext are based upon the last technique used to update the config-
ured log levels.

If Configuration Admin is present, LoggerContext configuration information in Configuration Ad-
min must be used. This allows external LoggerContext configuration such as via Configurator Specifi-
cation on page 795. The name of the LoggerContext is mapped to a Configuration Admin targeted
PID as follows:

• The root LoggerContext , which has no name, is mapped to the PID LOGGER_CONTEXT_PID .
• A named LoggerContext is mapped to a targeted PID by prefixing the LoggerContext 's name

with LOGGER_CONTEXT_PID followed by vertical line (' | ' \u007c). For example, the LoggerCon-
text named com.foo.bar is mapped to the targeted PID org.osgi .service. log.admin|com.foo.bar .

In the Configuration for the targeted PID, the dictionary keys are Logger names having a key type of
Str ing , and the values are the names of the LogLevel values having a value type of Str ing . If the Con-
figuration contains any key/value pairs whose value is not the name of a LogLevel value, that key/
value pair must be ignored when setting the configuration into the LoggerContext .

Any change to the Configuration for a LoggerContext must be set into the LoggerContext as soon as
possible. Since notification of Configuration changes happen asynchronously, it may take a brief pe-
riod of time before Configuration changes can be made effective.

This section is not meant to require that a Log Service implementation must require Configuration
Admin. But if Configuration Admin is present, the Configurations must be used to set the log levels
in the mapped LoggerContexts.

101.4.2 Effective Log Level
Once the LoggerContext for the logging bundle is determined, the effective log level for the Logger
is found using the getEffect iveLogLevel(Str ing) method:

1. If the logger name is configured with a log level, return the configured log level.
2. For each ancestor logger name of the logger name, if the ancestor logger name is configured

with a log level, return the configured log level.
3. If the LoggerContext is named, return the result of calling the getEffect iveLogLevel(Str ing)

method on the root LoggerContext with the logger name.
4. If the LoggerContext is the root Logger Context, return the default log level for the root Logger-

Context .

The default log level for the root LoggerContext can be set by the framework launch property
LOGGER_CONTEXT_DEFAULT_LOGLEVEL . The value of this property must be the name of the one of
the LogLevel values. If not specified, or the specified value is not the name of the one of the LogLevel
values, the default log level of the root LoggerContext is WARN .

Log Service Specification Version 1.4 Log Stream Provider

OSGi Enterprise Release 7 Page 45

101.5 Log Stream Provider
The Log Stream Provider service can be used to create Push Streams of Log Entries. Since the log is
basically an ongoing stream of Log Entries having asynchronous arrival, a Push Stream of LogEntry
objects can be used receive the Log Entries. See Push Stream Specification on page 951 for informa-
tion on Push Streams and how to use them.

Figure 101.3 Log Stream Diagram org.osgi.service.log.stream package

<<interface>>
Log Stream
Provider

<<interface>>
Log Entry

a Log Stream
Provider user
bundle

Log Stream
Provider impl

Log Stream Provider
implementation bundle

<<interface>>
Push Stream

Get a
Push Stream

Use a
Push Stream

1 0..n
creates

pushes

Push Streams created by the LogStreamProvider must:

• Be buffered with a buffer large enough to contain the history, if included.
• Have the QueuePol icyOption.DISCARD_OLDEST queue policy option.
• Use a shared executor.
• Have a parallelism of one.

The following code snippet show how one could get future Log Entries and print them.

logStreamProvider.createStream()
 .forEach(l -> System.out.println(l))
 .onResolve(() -> System.out.println("stream closed"));

An existing LogListener implementation can also be used with the Push Streams.

logStreamProvider.createStream()
 .forEach(logListener::logged)
 .onResolve(() -> System.out.println("stream closed"));

The LogStreamProvider service offers a HISTORY option which will prime the returned Push Stream
with the available log history, if any. The following code will process the available historical log en-
tries followed by any new log entries.

logStreamProvider.createStream(LogStreamProvider.Options.HISTORY)
 .forEach(l -> System.out.println(l))
 .onResolve(() -> System.out.println("stream closed"));

Log Reader Service Log Service Specification Version 1.4

Page 46 OSGi Enterprise Release 7

The LogStreamProvider interface is in a separate package, org.osgi .service. log.stream , so that the
org.osgi .service. log package does not have a dependency on the org.osgi .ut i l .pushstream package.
The org.osgi .ut i l .pushstream package requires org.osgi .ut i l .promise and Java 8. Having LogStream-
Provider in a separate package allows the org.osgi .service. log package to be implemented in a
framework and avoid dependencies on org.osgi .ut i l .pushstream , org.osgi .ut i l .promise and Java 8.
In this situation, LogStreamProvider can be implemented by a bundle which sources Log Entries
from the LogReaderService . Since LogStreamProvider requires Java 8, the LogStreamProvider ser-
vice is optional when implementations of this specification run on Java versions prior to Java 8.

101.6 Log Reader Service
The Log Reader Service maintains a list of LogEntry objects called the log. The Log Reader Service is a
service that bundle developers can use to retrieve information contained in this log, and receive no-
tifications about LogEntry objects when they are created through the Log Service.

The size of the log is implementation-specific, and it determines how far into the past the log entries
go.

The LogReaderService interface defines the following methods:

• getLog() - This method retrieves past log entries as an enumeration with the most recent entry
first.

• addLogListener(LogListener) - This method is used to subscribe to the Log Reader Service in or-
der to receive log messages as they occur. Unlike the previously recorded log entries, all log mes-
sages must be sent to subscribers of the Log Reader Service as they are recorded.

After a subscription to the Log Reader Service has been started, the subscriber's logged(LogEntry)
method must be called with a LogEntry object for the message each time a message is logged.

• removeLogListener(LogListener) - This method is used to unsubscribe the LogListener from the
Log Reader Service.

The LogListener interface defines the following method:

• logged(LogEntry) - This method is called for each LogEntry object created.

The delivery of LogEntry objects to the LogListener object should be done asynchronously.

101.7 Log Entry Interface
The LogEntry interface abstracts a log entry. It is a record of the information that was passed when
an event was logged as well as information captured at the time the event was logged. The LogEntry
interface defines these methods to retrieve this information.

• getBundle() - This method returns the Bundle object associated with the Logger used to create
the log entry.

• getException() - This method returns the logged exception, if any. In some implementations,
the returned exception may not be the original exception object. To avoid references to a bun-
dle-defined exception class, thus preventing an uninstalled bundle from being garbage collect-
ed, the Log Service may return an exception object of an implementation defined Throwable sub-
class. This object will attempt to return as much information as possible, such as the message
and stack trace, from the original exception object .

• getLoggerName() - This name of the Logger used to create the log entry.
• getLogLevel() - This method returns the LogLevel .
• getMessage() - This method returns the formatted message.

Log Service Specification Version 1.4 Mapping of Events

OSGi Enterprise Release 7 Page 47

• getServiceReference() - This method returns the logged ServiceReference , if any.
• getTime() - This method returns the time that the log entry was created.
• getSequence() - This method returns a sequence number which increases for each created log

entry.
• getThreadInfo() - This method returns information about the thread that created the log entry.
• getLocation() - This method returns a StackTraceElement about the caller that created the log

entry.

101.8 Mapping of Events
Implementations of a Log Service must log Framework-generated events and map the information
to LogEntry objects in a consistent way. Framework events must be treated exactly the same as other
logged events and distributed to all LogListener objects that are associated with the Log Reader Ser-
vice. Additionally, if the Event Admin service is present, implementations of a Log Service must map
LogEntry objects to events in Event Admin. The following sections define these mappings.

101.8.1 Bundle Events Mapping
A Bundle Event is mapped to a LogEntry object according to the following table.

Table 101.2 Mapping of Bundle Events to Log Entries

Log Entry method Information about Bundle Event
getLoggerName() The logger name "Events.Bundle" .
getLogLevel() INFO
getBundle() Identifies the bundle to which the event happened. In other words, it

identifies the bundle that was installed, started, stopped, updated, or
uninstalled. This identification is obtained by calling getBundle() on the
BundleEvent object.

getException() nul l
getServiceReference() nul l
getMessage() The message depends on the event type:

• INSTALLED - "BundleEvent INSTALLED"
• STARTED - "BundleEvent STARTED"
• STOPPED - "BundleEvent STOPPED"
• UPDATED - "BundleEvent UPDATED"
• UNINSTALLED - "BundleEvent UNINSTALLED"
• RESOLVED - "BundleEvent RESOLVED"
• UNRESOLVED - "BundleEvent UNRESOLVED"

101.8.2 Service Events Mapping
A Service Event is mapped to a LogEntry object according to the following table.

Table 101.3 Mapping of Service Events to Log Entries

Log Entry method Information about Service Event
getLoggerName() The logger name "Events.Service" .
getLogLevel() INFO , except for ServiceEvent.MODIFIED events. ServiceEvent.MODIFIED

events can happen frequently and contains relatively little information.
They must be logged with a level of DEBUG .

Mapping of Events Log Service Specification Version 1.4

Page 48 OSGi Enterprise Release 7

Log Entry method Information about Service Event
getBundle() Identifies the bundle that registered the service associated with this event.

It is obtained by calling getServiceReference() .getBundle() on the Ser-
viceEvent object.

getException() nul l
getServiceReference() Identifies a reference to the service associated with the event. It is ob-

tained by calling getServiceReference() on the ServiceEvent object.
getMessage() This message depends on the actual event type. The messages are mapped

as follows:

• REGISTERED - "ServiceEvent REGISTERED"
• MODIFIED - "ServiceEvent MODIFIED"
• UNREGISTERING - "ServiceEvent UNREGISTERING"

101.8.3 Framework Events Mapping
A Framework Event is mapped to a LogEntry object according to the following table.

Table 101.4 Mapping of Framework Event to Log Entries

Log Entry method Information about Framework Event
getLoggerName() The logger name "Events.Framework" .
getLogLevel() INFO , except for FrameworkEvent.ERROR events and

FrameworkEvent.WARNING events. A FrameworkEvent.ERROR
event represents an error and is logged with a level of ERROR and a
FrameworkEvent.WARNING event represents a warning and is logged with
a level of WARN .

getBundle() Identifies the bundle associated with the event. This may be the system
bundle. It is obtained by calling getBundle() on the FrameworkEvent ob-
ject.

getException() Identifies the exception associated with the error. This will be null for
event types other than FrameworkEvent.ERROR . It is obtained by calling
getThrowable() on the FrameworkEvent object.

getServiceReference() nul l
getMessage() This message depends on the actual event type. The messages are mapped

as follows:

• STARTED - "FrameworkEvent STARTED"
• ERROR - "FrameworkEvent ERROR"
• PACKAGES_REFRESHED - "FrameworkEvent PACKAGES REFRESHED"
• STARTLEVEL_CHANGED - "FrameworkEvent STARTLEVEL CHANGED"
• WARNING - "FrameworkEvent WARNING"
• INFO - "FrameworkEvent INFO"

101.8.4 Log Events
Log entries must be mapped into events by the Log Service implementation and delivered asynchro-
nously to the Event Admin service (if present). The following event topics are used based upon the
log level of the log entry:

Table 101.5 Event Topics

Event Topic Description
org/osgi/service/ log/LogEntry/LOG_AUDIT When the log level is AUDIT .

Log Service Specification Version 1.4 Log Service

OSGi Enterprise Release 7 Page 49

Event Topic Description
org/osgi/service/ log/LogEntry/LOG_ERROR When the log level is ERROR .
org/osgi/service/ log/LogEntry/LOG_WARNING When the log level is WARN .
org/osgi/service/ log/LogEntry/LOG_INFO When the log level is INFO .
org/osgi/service/ log/LogEntry/LOG_DEBUG When the log level is DEBUG .
org/osgi/service/ log/LogEntry/LOG_OTHER When the log level is TRACE .

The properties of a log event are:

• bundle. id - (Long) The source bundle's id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if not nul l .
• bundle - (Bundle) The source bundle.
• log. level - (Integer) The integer log level.
• log. loggername - (Str ing) The logger name.
• log.threadinfo - (Str ing) The thread information for the thread creating the log entry.
• log. loglevel - (LogLevel) The log level.
• message - (Str ing) The log message.
• t imestamp - (Long) The log entry's timestamp.
• log.entry - (LogEntry) The LogEntry object.

If the log entry has an associated Exception:

• exception.class - (Str ing) The fully-qualified class name of the attached exception. Only set if the
getException method returns a non-nul l value.

• exception.message - (Str ing) The message of the attached Exception. Only set if the Exception
message is not nul l .

• exception - (Throwable) The Exception returned by the getException method.

If the getServiceReference method returns a non- nul l value:

• service - (ServiceReference) The result of the getServiceReference method.
• service. id - (Long) The id of the service.
• service.pid - (Str ing) The service's persistent identity. Only set if the service.pid service property

is not nul l .
• service.objectClass - (Str ing[]) The object class of the service object.

101.9 Log Service
The members of the LogService interface are deprecated. Its log methods can still be used by bun-
dles. These log methods are now specified to log to the Logger with the logger name "LogService"
which allows legacy logging to be configured as specified above. Furthermore, the integer log level
values used with the log methods are mapped to the new LogLevels as follows:

• LOG_ERROR is mapped to ERROR .
• LOG_WARNING is mapped to WARN .
• LOG_INFO is mapped to INFO .
• LOG_DEBUG is mapped to DEBUG .
• Any other value is mapped to TRACE .

The specified integer log level value is stored in the generated LogEntry to be returned by getLevel() .

Capabilities Log Service Specification Version 1.4

Page 50 OSGi Enterprise Release 7

The implementation of this specification must use a single service registration using both the
LogService and LoggerFactory service names since both service names represent the same log and
since the LogService type extends the LoggerFactory type.

101.10 Capabilities
The bundle providing the LoggerFactory and LogService service must provide a capability in the
osgi .service namespace representing this service. This capability must also declare a uses constraint
for the org.osgi .service. log package:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.log.LoggerFactory,org.osgi.service.log.LogService";
 uses:="org.osgi.service.log"

The bundle providing the LogReaderService service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service. log package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.log.LogReaderService";
 uses:="org.osgi.service.log"

The bundle providing the LoggerAdmin service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service. log.admin package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.log.admin.LoggerAdmin";
 uses:="org.osgi.service.log.admin"

The bundle providing the LogStreamProvider service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service. log.stream package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.log.stream.LogStreamProvider";
 uses:="org.osgi.service.log.stream"

These capabilities must follow the rules defined for the osgi .service Namespace.

101.11 Security
The Log Service specification should only be implemented by trusted bundles. These bun-
dles require ServicePermission[LoggerFactory|LogReaderService|LoggerAdmin|LogStream-
Provider|LogService, REGISTER] and ServicePermission[Configurat ionAdmin|EventAdmin, GET] .

Virtually all bundles should get ServicePermission[LoggerFactory|LogService, GET] so they can
log.

Only trusted bundles who must be able to access log entries should be assigned
ServicePermission[LogStreamProvider|LogReaderService, GET] .

Only trusted bundles who must be able to change log configuration should be assigned
ServicePermission[LogAdmin, GET] .

Log Service Specification Version 1.4 org.osgi.service.log

OSGi Enterprise Release 7 Page 51

101.12 org.osgi.service.log

Log Service Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. log; vers ion="[1.4,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. log; vers ion="[1.4,1.5)"

101.12.1 Summary

• FormatterLogger - Provides methods for bundles to write messages to the log using printf-style
format strings.

• LogEntry - Provides methods to access the information contained in an individual Log Service
log entry.

• Logger - Provides methods for bundles to write messages to the log using SLF4J-style format
strings.

• LoggerConsumer - An operation that accepts a Logger argument and produces no result.
• LoggerFactory - Logger Factory service for logging information.
• LogLevel - Log Levels.
• LogListener - Subscribes to LogEntry objects from the LogReaderService .
• LogReaderService - LogReaderService for obtaining logging information.
• LogService - LogService for logging information.

101.12.2 public interface FormatterLogger
extends Logger
Provides methods for bundles to write messages to the log using printf-style format strings.

Messages can be formatted by the Logger once the Logger determines the log level is enabled. Uses
printf-style format strings as described in java.util.Formatter.

You can also add a Throwable and/or ServiceReference to the generated LogEntry by passing them
to the logging methods as additional arguments. If the last argument is a Throwable or ServiceRef-
erence , it is added to the generated LogEntry and then if the next to last argument is a ServiceRefer-
ence or Throwable and not the same type as the last argument, it is also added to the generated Lo-
gEntry. These arguments will not be used as message arguments. For example:

 logger.info("Found service %s.", serviceReference, serviceReference);
 logger.warn("Something named %s happened.", name, serviceReference,
 throwable);
 logger.error("Failed.", exception);

If an exception occurs formatting the message, the logged message will indicate the formatting fail-
ure including the format string and the arguments.

Since 1.4

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

org.osgi.service.log Log Service Specification Version 1.4

Page 52 OSGi Enterprise Release 7

101.12.3 public interface LogEntry
Provides methods to access the information contained in an individual Log Service log entry.

A LogEntry object may be acquired from the LogReaderService.getLog method or by registering a
LogListener object.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

101.12.3.1 public Bundle getBundle()

□ Returns the bundle that created this LogEntry object.

Returns The bundle that created this LogEntry object; nul l if no bundle is associated with this LogEntry ob-
ject.

101.12.3.2 public Throwable getException()

□ Returns the exception object associated with this LogEntry object.

In some implementations, the returned exception may not be the original exception. To avoid ref-
erences to a bundle defined exception class, thus preventing an uninstalled bundle from being
garbage collected, the Log Service may return an exception object of an implementation defined
Throwable subclass. The returned object will attempt to provide as much information as possible
from the original exception object such as the message and stack trace.

Returns Throwable object of the exception associated with this LogEntry ;nul l if no exception is associated
with this LogEntry object.

101.12.3.3 public int getLevel()

□ Returns the integer level of this LogEntry object.

If one of the log methods of LogService was used, this is the specified integer level. Otherwise, this is
the ordinal value of the log level.

Returns Integer level of this LogEntry object.

Deprecated Since 1.4. Replaced by getLogLevel().

101.12.3.4 public StackTraceElement getLocation()

□ Returns the location information of the creation of this LogEntry object.

Returns The location information of the creation of this LogEntry object.

Since 1.4

101.12.3.5 public String getLoggerName()

□ Returns the name of the Logger object used to create this LogEntry object.

Returns The name of the Logger object used to create this LogEntry object.

Since 1.4

101.12.3.6 public LogLevel getLogLevel()

□ Returns the level of this LogEntry object.

Returns The level of this LogEntry object.

Since 1.4

101.12.3.7 public String getMessage()

□ Returns the formatted message associated with this LogEntry object.

Log Service Specification Version 1.4 org.osgi.service.log

OSGi Enterprise Release 7 Page 53

Returns Str ing containing the formatted message associated with this LogEntry object.

101.12.3.8 public long getSequence()

□ Returns the sequence number for this LogEntry object.

A unique, non-negative value that is larger than all previously assigned values since the log imple-
mentation was started. These values are transient and are reused upon restart of the log implemen-
tation.

Returns The sequence number for this LogEntry object.

Since 1.4

101.12.3.9 public ServiceReference<?> getServiceReference()

□ Returns the ServiceReference object for the service associated with this LogEntry object.

Returns ServiceReference object for the service associated with this LogEntry object; nul l if no ServiceRefer-
ence object was provided.

101.12.3.10 public String getThreadInfo()

□ Returns a string representing the thread which created this LogEntry object.

This string must contain the name of the thread and may contain other information about the
thread.

Returns A string representing the thread which created this LogEntry object.

Since 1.4

101.12.3.11 public long getTime()

□ Returns the value of currentTimeMil l is() at the time this LogEntry object was created.

Returns The system time in milliseconds when this LogEntry object was created.

See Also System.currentTimeMil l is()

101.12.4 public interface Logger
Provides methods for bundles to write messages to the log using SLF4J-style format strings.

Messages can be formatted by the Logger once the Logger determines the log level is enabled. Use a
left curly bracket (' { ' \u007B) followed by a right curly bracket (' } ' \u007D) as a place holder for an
argument: "{}" . If you need to use the literal "{}" in the formatted message, precede the place holder
with a reverse solidus (' \ ' \u005C): "\{}" . If you need to place a backslash before the place holder, pre-
cede the reverse solidus with a reverse solidus: "\\{}" .

You can also add a Throwable and/or ServiceReference to the generated LogEntry by passing them
to the logging methods as additional arguments. If the last argument is a Throwable or a ServiceRef-
erence , it is added to the generated LogEntry and then, if the next to last argument is a ServiceRef-
erence or Throwable and not the same type as the last argument, it is also added to the generated Lo-
gEntry. These arguments will not be used as message arguments. For example:

 logger.info("Found service {}.", serviceReference, serviceReference);
 logger.warn("Something named {} happened.", name, serviceReference,
 throwable);
 logger.error("Failed.", exception);

Since 1.4

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

org.osgi.service.log Log Service Specification Version 1.4

Page 54 OSGi Enterprise Release 7

101.12.4.1 public static final String ROOT_LOGGER_NAME = "ROOT"

Root Logger Name.

101.12.4.2 public void audit(String message)

message The message to log.

□ Log a message at the LogLevel.AUDIT level.

101.12.4.3 public void audit(String format, Object arg)

format The format of the message to log.

arg The argument to format into the message.

□ Log a formatted message at the LogLevel.AUDIT level.

101.12.4.4 public void audit(String format, Object arg1, Object arg2)

format The format of the message to log.

arg1 The first argument to format into the message.

arg2 The second argument to format into the message.

□ Log a formatted message at the LogLevel.AUDIT level.

101.12.4.5 public void audit(String format, Object... arguments)

format The format of the message to log.

arguments The arguments to format into the message.

□ Log a formatted message at the LogLevel.AUDIT level.

101.12.4.6 public void debug(String message)

message The message to log.

□ Log a message at the LogLevel.DEBUG level.

101.12.4.7 public void debug(String format, Object arg)

format The format of the message to log.

arg The argument to format into the message.

□ Log a formatted message at the LogLevel.DEBUG level.

101.12.4.8 public void debug(String format, Object arg1, Object arg2)

format The format of the message to log.

arg1 The first argument to format into the message.

arg2 The second argument to format into the message.

□ Log a formatted message at the LogLevel.DEBUG level.

101.12.4.9 public void debug(String format, Object... arguments)

format The format of the message to log.

arguments The arguments to format into the message.

□ Log a formatted message at the LogLevel.DEBUG level.

101.12.4.10 public void debug(LoggerConsumer<E> consumer) throws E

Type Parameters <E extends Exception>

Log Service Specification Version 1.4 org.osgi.service.log

OSGi Enterprise Release 7 Page 55

consumer The operation to perform on this Logger.

□ Perform the specified operation if logging enabled for the LogLevel.DEBUG level.

Throws E– An exception thrown by the operation.

101.12.4.11 public void error(String message)

message The message to log.

□ Log a message at the LogLevel.ERROR level.

101.12.4.12 public void error(String format, Object arg)

format The format of the message to log.

arg The argument to format into the message.

□ Log a formatted message at the LogLevel.ERROR level.

101.12.4.13 public void error(String format, Object arg1, Object arg2)

format The format of the message to log.

arg1 The first argument to format into the message.

arg2 The second argument to format into the message.

□ Log a formatted message at the LogLevel.ERROR level.

101.12.4.14 public void error(String format, Object... arguments)

format The format of the message to log.

arguments The arguments to format into the message.

□ Log a formatted message at the LogLevel.ERROR level.

101.12.4.15 public void error(LoggerConsumer<E> consumer) throws E

Type Parameters <E extends Exception>

consumer The operation to perform on this Logger.

□ Perform the specified operation if logging enabled for the LogLevel.ERROR level.

Throws E– An exception thrown by the operation.

101.12.4.16 public String getName()

□ Return the name of this Logger.

Returns The name of this Logger.

101.12.4.17 public void info(String message)

message The message to log.

□ Log a message at the LogLevel.INFO level.

101.12.4.18 public void info(String format, Object arg)

format The format of the message to log.

arg The argument to format into the message.

□ Log a formatted message at the LogLevel.INFO level.

101.12.4.19 public void info(String format, Object arg1, Object arg2)

format The format of the message to log.

org.osgi.service.log Log Service Specification Version 1.4

Page 56 OSGi Enterprise Release 7

arg1 The first argument to format into the message.

arg2 The second argument to format into the message.

□ Log a formatted message at the LogLevel.INFO level.

101.12.4.20 public void info(String format, Object... arguments)

format The format of the message to log.

arguments The arguments to format into the message.

□ Log a formatted message at the LogLevel.INFO level.

101.12.4.21 public void info(LoggerConsumer<E> consumer) throws E

Type Parameters <E extends Exception>

consumer The operation to perform on this Logger.

□ Perform the specified operation if logging enabled for the LogLevel.INFO level.

Throws E– An exception thrown by the operation.

101.12.4.22 public boolean isDebugEnabled()

□ Is logging enabled for the LogLevel.DEBUG level?

Returns true if logging is enabled for the LogLevel.DEBUG level.

101.12.4.23 public boolean isErrorEnabled()

□ Is logging enabled for the LogLevel.ERROR level?

Returns true if logging is enabled for the LogLevel.ERROR level.

101.12.4.24 public boolean isInfoEnabled()

□ Is logging enabled for the LogLevel.INFO level?

Returns true if logging is enabled for the LogLevel.INFO level.

101.12.4.25 public boolean isTraceEnabled()

□ Is logging enabled for the LogLevel.TRACE level?

Returns true if logging is enabled for the LogLevel.TRACE level.

101.12.4.26 public boolean isWarnEnabled()

□ Is logging enabled for the LogLevel.WARN level?

Returns true if logging is enabled for the LogLevel.WARN level.

101.12.4.27 public void trace(String message)

message The message to log.

□ Log a message at the LogLevel.TRACE level.

101.12.4.28 public void trace(String format, Object arg)

format The format of the message to log.

arg The argument to format into the message.

□ Log a formatted message at the LogLevel.TRACE level.

101.12.4.29 public void trace(String format, Object arg1, Object arg2)

format The format of the message to log.

Log Service Specification Version 1.4 org.osgi.service.log

OSGi Enterprise Release 7 Page 57

arg1 The first argument to format into the message.

arg2 The second argument to format into the message.

□ Log a formatted message at the LogLevel.TRACE level.

101.12.4.30 public void trace(String format, Object... arguments)

format The format of the message to log.

arguments The arguments to format into the message.

□ Log a formatted message at the LogLevel.TRACE level.

101.12.4.31 public void trace(LoggerConsumer<E> consumer) throws E

Type Parameters <E extends Exception>

consumer The operation to perform on this Logger.

□ Perform the specified operation if logging enabled for the LogLevel.TRACE level.

Throws E– An exception thrown by the operation.

101.12.4.32 public void warn(String message)

message The message to log.

□ Log a message at the LogLevel.WARN level.

101.12.4.33 public void warn(String format, Object arg)

format The format of the message to log.

arg The argument to format into the message.

□ Log a formatted message at the LogLevel.WARN level.

101.12.4.34 public void warn(String format, Object arg1, Object arg2)

format The format of the message to log.

arg1 The first argument to format into the message.

arg2 The second argument to format into the message.

□ Log a formatted message at the LogLevel.WARN level.

101.12.4.35 public void warn(String format, Object... arguments)

format The format of the message to log.

arguments The arguments to format into the message.

□ Log a formatted message at the LogLevel.WARN level.

101.12.4.36 public void warn(LoggerConsumer<E> consumer) throws E

Type Parameters <E extends Exception>

consumer The operation to perform on this Logger.

□ Perform the specified operation if logging enabled for the LogLevel.WARN level.

Throws E– An exception thrown by the operation.

101.12.5 public interface LoggerConsumer<E extends Exception>
<E> The type of the exception that may be thrown.

An operation that accepts a Logger argument and produces no result.

org.osgi.service.log Log Service Specification Version 1.4

Page 58 OSGi Enterprise Release 7

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Since 1.4

Concurrency Thread-safe

101.12.5.1 public void accept(Logger l) throws E

l The Logger input to this operation.

□ Perform this operation on the specified Logger.

Throws E– An exception thrown by the operation.

101.12.6 public interface LoggerFactory
Logger Factory service for logging information.

Provides methods for bundles to obtain named Loggers that can be used to write messages to the log.

Logger names should be in the form of a fully qualified Java class names with segments separated by
full stop ('.' \u002E). For example:

 com.foo.Bar

Logger names exist in a hierarchy. A logger name is said to be an ancestor of another logger name
if the logger name followed by a full stop ('.' \u002E) is a prefix of the descendant logger name. The
root logger name is the top ancestor of the logger name hierarchy. For example:

 com.foo.Bar
 com.foo
 com
 ROOT

Since 1.4

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

101.12.6.1 public Logger getLogger(String name)

name The name to use for the logger name. Must not be nul l .

□ Return the Logger named with the specified name.

Returns The Logger named with the specified name. If the name parameter is equal to
Logger.ROOT_LOGGER_NAME, then the root logger is returned.

101.12.6.2 public Logger getLogger(Class<?> clazz)

clazz The class to use for the logger name. Must not be nul l .

□ Return the Logger named with the specified class.

Returns The Logger named with the name of the specified class.

101.12.6.3 public L extends Logger getLogger(String name, Class<L> loggerType)

Type Parameters <L extends Logger>

<L> The Logger type.

name The name to use for the logger name. Must not be nul l .

loggerType The type of Logger. Can be Logger or FormatterLogger.

□ Return the Logger of the specified type named with the specified name.

Log Service Specification Version 1.4 org.osgi.service.log

OSGi Enterprise Release 7 Page 59

Returns The Logger or FormatterLogger named with the specified name. If the name parameter is equal to
Logger.ROOT_LOGGER_NAME, then the root logger is returned.

Throws I l legalArgumentException– If the specified type is not a supported Logger type.

101.12.6.4 public L extends Logger getLogger(Class<?> clazz, Class<L> loggerType)

Type Parameters <L extends Logger>

<L> A Logger type.

clazz The class to use for the logger name. Must not be nul l .

loggerType The type of Logger. Can be Logger or FormatterLogger. Must not be nul l .

□ Return the Logger of the specified type named with the specified class.

Returns The Logger or FormatterLogger named with the name of the specified class.

Throws I l legalArgumentException– If the specified type is not a supported Logger type.

101.12.6.5 public L extends Logger getLogger(Bundle bundle, String name, Class<L> loggerType)

Type Parameters <L extends Logger>

<L> The Logger type.

bundle The bundle associated with the Logger. Must not be nul l .

name The name to use for the logger name. Must not be nul l .

loggerType The type of Logger. Can be Logger or FormatterLogger. Must not be nul l .

□ Return the Logger of the specified type named with the specified name for the specified bundle.

This method is not normally used. The other getLogger methods return a Logger associated with
the bundle used to obtain this Logger Factory service. This method is used to obtain a Logger for the
specified bundle which may be useful to code which is logging on behalf of another bundle.

Returns The Logger or FormatterLogger named with the specified name for the specified bundle. If the name
parameter is equal to Logger.ROOT_LOGGER_NAME, then the root logger is returned.

Throws I l legalArgumentException– If the specified type is not a supported Logger type or the specified Bun-
dle is not a resolved bundle.

101.12.7 enum LogLevel
Log Levels.

Since 1.4

101.12.7.1 AUDIT

Audit – Information that must always be logged.

101.12.7.2 ERROR

Error – Information about an error situation.

101.12.7.3 WARN

Warning – Information about a failure or unwanted situation that is not blocking.

101.12.7.4 INFO

Info – Information about normal operation.

101.12.7.5 DEBUG

Debug – Detailed output for debugging operations.

org.osgi.service.log Log Service Specification Version 1.4

Page 60 OSGi Enterprise Release 7

101.12.7.6 TRACE

Trace level – Large volume of output for tracing operations.

101.12.7.7 public boolean implies(LogLevel other)

other The other log level.

□ Returns whether this log level implies the specified log level.

Returns true If this log level implies the specified log level; fa lse otherwise.

101.12.7.8 public static LogLevel valueOf(String name)

101.12.7.9 public static LogLevel[] values()

101.12.8 public interface LogListener
extends EventListener
Subscribes to LogEntry objects from the LogReaderService .

A LogListener object may be registered with the Log Reader Service using the
LogReaderService.addLogListener method. After the listener is registered, the logged method will
be called for each LogEntry object created. The LogListener object may be unregistered by calling the
LogReaderService.removeLogListener method.

Since 1.4, org.osgi.service.log.stream.LogStreamProvider is the preferred way to obtain LogEntry ob-
jects.

Concurrency Thread-safe

101.12.8.1 public void logged(LogEntry entry)

entry A LogEntry object containing log information.

□ Listener method called for each LogEntry object created.

101.12.9 public interface LogReaderService
LogReaderService for obtaining logging information.

Since 1.4, org.osgi.service.log.stream.LogStreamProvider is the preferred way to obtain LogEntry ob-
jects.

The LogReaderService provides two ways to obtain LogEntry objects:

• The primary way to retrieve LogEntry objects is to register a LogListener object whose
LogListener.logged(LogEntry) method will be called for each entry added to the log.

• To obtain past LogEntry objects, the getLog() method can be called which will return an Enumer-
at ion of the LogEntry objects in the log.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

101.12.9.1 public void addLogListener(LogListener listener)

listener A LogListener object to register; the LogListener object is used to receive LogEntry objects.

□ Subscribes to LogEntry objects.

This method registers a LogListener object with the Log Reader Service. The
LogListener.logged(LogEntry) method will be called for each LogEntry object placed into the log.

When a bundle which registers a LogListener object is stopped or otherwise releases the Log Reader
Service, the Log Reader Service must remove all of the bundle's listeners.

Log Service Specification Version 1.4 org.osgi.service.log

OSGi Enterprise Release 7 Page 61

If this Log Reader Service's list of listeners already contains a listener l such that (l==l istener) , this
method does nothing.

Since 1.4, org.osgi.service.log.stream.LogStreamProvider is the preferred way to obtain LogEntry ob-
jects.

101.12.9.2 public Enumeration<LogEntry> getLog()

□ Returns an Enumeration of the LogEntry objects in the log.

Each element of the enumeration is a LogEntry object, ordered with the most recent entry first.
Whether the enumeration is of all LogEntry objects since the Log Service was started or some recent
past is implementation-specific.

Returns An Enumeration of the LogEntry objects in the log.

101.12.9.3 public void removeLogListener(LogListener listener)

listener A LogListener object to unregister.

□ Unsubscribes to LogEntry objects.

This method unregisters a LogListener object from the Log Reader Service.

If l istener is not contained in this Log Reader Service's list of listeners, this method does nothing.

Since 1.4, org.osgi.service.log.stream.LogStreamProvider is the preferred way to obtain LogEntry ob-
jects.

101.12.10 public interface LogService
extends LoggerFactory
LogService for logging information.

Replaced by LoggerFactory.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

101.12.10.1 public static final int LOG_DEBUG = 4

A debugging message (Value 4).

This log entry is used for problem determination and may be irrelevant to anyone but the bundle
developer.

Deprecated Since 1.4. Replaced by LogLevel.DEBUG.

101.12.10.2 public static final int LOG_ERROR = 1

An error message (Value 1).

This log entry indicates the bundle or service may not be functional.

Deprecated Since 1.4. Replaced by LogLevel.ERROR.

101.12.10.3 public static final int LOG_INFO = 3

An informational message (Value 3).

This log entry may be the result of any change in the bundle or service and does not indicate a prob-
lem.

Deprecated Since 1.4. Replaced by LogLevel.INFO.

101.12.10.4 public static final int LOG_WARNING = 2

A warning message (Value 2).

org.osgi.service.log Log Service Specification Version 1.4

Page 62 OSGi Enterprise Release 7

This log entry indicates a bundle or service is still functioning but may experience problems in the
future because of the warning condition.

Deprecated Since 1.4. Replaced by LogLevel.WARN.

101.12.10.5 public void log(int level, String message)

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message Human readable string describing the condition or nul l .

□ Logs a message.

The ServiceReference field and the Throwable field of the LogEntry object will be set to nul l .

This method will log to the Logger named "LogService" for the bundle. The specified level is mapped
to a LogLevel as follows:

• LOG_ERROR - LogLevel.ERROR
• LOG_WARNING - LogLevel.WARN
• LOG_INFO - LogLevel.INFO
• LOG_DEBUG - LogLevel.DEBUG
• Any other value - LogLevel.TRACE

In the generated log entry, LogEntry.getLevel() must return the specified level.

Deprecated Since 1.4. Replaced by Logger. See LoggerFactory.

101.12.10.6 public void log(int level, String message, Throwable exception)

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message The human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

□ Logs a message with an exception.

The ServiceReference field of the LogEntry object will be set to nul l .

This method will log to the Logger named "LogService" for the bundle. The specified level is mapped
to a LogLevel as follows:

• LOG_ERROR - LogLevel.ERROR
• LOG_WARNING - LogLevel.WARN
• LOG_INFO - LogLevel.INFO
• LOG_DEBUG - LogLevel.DEBUG
• Any other value - LogLevel.TRACE

In the generated log entry, LogEntry.getLevel() must return the specified level.

Deprecated Since 1.4. Replaced by Logger. See LoggerFactory.

101.12.10.7 public void log(ServiceReference<?> sr, int level, String message)

sr The ServiceReference object of the service that this message is associated with or nul l .

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message Human readable string describing the condition or nul l .

□ Logs a message associated with a specific ServiceReference object.

Log Service Specification Version 1.4 org.osgi.service.log.admin

OSGi Enterprise Release 7 Page 63

The Throwable field of the LogEntry will be set to nul l .

This method will log to the Logger named "LogService" for the bundle. The specified level is mapped
to a LogLevel as follows:

• LOG_ERROR - LogLevel.ERROR
• LOG_WARNING - LogLevel.WARN
• LOG_INFO - LogLevel.INFO
• LOG_DEBUG - LogLevel.DEBUG
• Any other value - LogLevel.TRACE

In the generated log entry, LogEntry.getLevel() must return the specified level.

Deprecated Since 1.4. Replaced by Logger. See LoggerFactory.

101.12.10.8 public void log(ServiceReference<?> sr, int level, String message, Throwable exception)

sr The ServiceReference object of the service that this message is associated with.

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message Human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

□ Logs a message with an exception associated and a ServiceReference object.

This method will log to the Logger named "LogService" for the bundle. The specified level is mapped
to a LogLevel as follows:

• LOG_ERROR - LogLevel.ERROR
• LOG_WARNING - LogLevel.WARN
• LOG_INFO - LogLevel.INFO
• LOG_DEBUG - LogLevel.DEBUG
• Any other value - LogLevel.TRACE

In the generated log entry, LogEntry.getLevel() must return the specified level.

Deprecated Since 1.4. Replaced by Logger. See LoggerFactory.

101.13 org.osgi.service.log.admin

Log Admin Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. log.admin; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. log.admin; vers ion="[1.0,1.1)"

101.13.1 Summary

• LoggerAdmin - LoggerAdmin service for configuring loggers.

org.osgi.service.log.admin Log Service Specification Version 1.4

Page 64 OSGi Enterprise Release 7

• LoggerContext - Logger Context for a bundle.

101.13.2 public interface LoggerAdmin
LoggerAdmin service for configuring loggers.

Each bundle may have its own named LoggerContext based upon its bundle symbolic name, bun-
dle version, and bundle location. There is also a root Logger Context from which each named Logger
Context inherits. The root Logger Context has no name.

When a bundle logs, the logger implementation must locate the Logger Context for the bundle to
determine the effective log level of the logger name. The best matching name for the Logger Context is
the longest name, which has a non-empty Logger Context, according to this syntax:

 name ::= symbolic-name ('|' version ('|' location)?)?

The version must be formatted canonically, that is, according to the toStr ing() method of the Ver-
sion class. So the Logger Context for a bundle is searched for using the following names in the given
order:

 <symbolic-name>|<version>|<location>
 <symbolic-name>|<version>
 <symbolic-name>

The search stops at the first non-empty Logger Context. If no non-empty Logger Context is found us-
ing the above search order, the Logger Context with the symbolic name of the bundle must be used
for the bundle.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

101.13.2.1 public static final String LOG_SERVICE_ID = "osgi.log.service.id"

Logger Admin service property to associate the Logger Admin service with a LoggerFactory service.

This service property is set to the service. id for the LoggerFactory service administered by this Log-
ger Admin.

The value of this service property must be of type Long .

101.13.2.2 public LoggerContext getLoggerContext(String name)

name The name of the Logger Context. Can be nul l to specify the root Logger Context.

□ Get the Logger Context for the specified name.

Returns The Logger Context for the specified name. The returned Logger Context may be empty.

101.13.3 public interface LoggerContext
Logger Context for a bundle.

Any change to the configuration of this Logger Context must be effective immediately for all log-
gers that would rely upon the configuration of this Logger Context.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

101.13.3.1 public static final String LOGGER_CONTEXT_DEFAULT_LOGLEVEL = "org.osgi.service.log.admin.loglevel"

Framework launching property specifying the default log level of the root Logger Context.

The value of this property must be the name of the one of the LogLevels.

Log Service Specification Version 1.4 org.osgi.service.log.admin

OSGi Enterprise Release 7 Page 65

If not specified, or the specified value is not the name of the one of the LogLevels, the default log lev-
el of the root Logger Context is LogLevel.WARN.

See Also LogLevel

101.13.3.2 public static final String LOGGER_CONTEXT_PID = "org.osgi.service.log.admin"

Logger Context PID.

If Configuration Admin is present, Logger Context configuration information in Configuration Ad-
min must be used. The name of the Logger Context is mapped to a Configuration Admin targeted
PID as follows:

• The root Logger Context, which has no name, is mapped to the PID org.osgi .service. log.admin .
• A named Logger Context is mapped to a targeted PID by prefixing the Logger Context's name

with org.osgi .service. log.admin followed by vertical line (' | ' \u007c). For example, the Log-
ger Context named com.foo.bar is mapped to the targeted PID org.osgi .service. log.admin|
com.foo.bar .

101.13.3.3 public void clear()

□ Clear the configuration of this Logger Context.

The configured log levels will be cleared.

101.13.3.4 public LogLevel getEffectiveLogLevel(String name)

name The logger name.

□ Returns the effective log level of the logger name in this Logger Context.

The effective log level for a logger name is found by the following steps:

1. If the specified logger name is configured with a log level, return the configured log level.
2. For each ancestor logger name of the specified logger name, if the ancestor logger name is con-

figured with a log level, return the configured log level.
3. If this Logger Context is named, return the result of calling this method on the root Logger Con-

text with the specified logger name.
4. If this Logger Context is the root Logger Context, return the default log level of the root Logger

Context.

Returns The effective log level of the logger name in this Logger Context.

101.13.3.5 public Map<String, LogLevel> getLogLevels()

□ Returns the configured log levels for this Logger Context.

Returns The configured log levels for this Logger Context. The keys are the logger names and the values are
the log levels. The returned map may be empty if no logger names are configured for this Logger
Context. The returned map is the property of the caller who can modify the map and use it as input
to setLogLevels(Map). The returned map must support all optional Map operations.

101.13.3.6 public String getName()

□ Returns the name for this Logger Context.

Returns The name for this Logger Context. The root Logger Context has no name and returns nul l .

101.13.3.7 public boolean isEmpty()

□ Returns whether the configuration of this Logger Context is empty.

Returns true if this Logger Context has no configuration. That is, the configured log levels are empty. Other-
wise fa lse is returned.

org.osgi.service.log.stream Log Service Specification Version 1.4

Page 66 OSGi Enterprise Release 7

101.13.3.8 public void setLogLevels(Map<String, LogLevel> logLevels)

logLevels The log levels to configure for this Logger Context. The keys are the logger names and the values are
the log levels. The specified map is the property of the caller and this method must not modify or re-
tain the specified map.

□ Configure the log levels for this Logger Context.

All previous log levels configured for this Logger Context are cleared and then the log levels in the
specified map are configured.

The configured log levels for this Logger Context can be set by both this method and by configura-
tion information in Configuration Admin, if Configuration Admin is present. The configured log
levels for this Logger Context are based upon the last technique used to update the configured log
levels. This method must not modify or set configuration information in Configuration Admin.

101.14 org.osgi.service.log.stream

Log Stream Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. log.stream; version="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. log.stream; version="[1.0,1.1)"

101.14.1 Summary

• LogStreamProvider - LogStreamProvider service for creating a PushStream of LogEntry objects.
• LogStreamProvider.Options - Creation options for the PushStream of LogEntry objects.

101.14.2 public interface LogStreamProvider
LogStreamProvider service for creating a PushStream of LogEntry objects.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

101.14.2.1 public PushStream<LogEntry> createStream(LogStreamProvider.Options... options)

options The options to use when creating the PushStream.

□ Create a PushStream of LogEntry objects.

The returned PushStream must:

• Be buffered with a buffer large enough to contain the history, if included.
• Have the QueuePolicyOption.DISCARD_OLDEST queue policy option.
• Use a shared executor.
• Have a parallelism of one.

When this LogStreamProvider service is released by the obtaining bundle, this LogStreamProvider
service must call PushStream.close() on the returned PushStream object if it has not already been
closed.

Log Service Specification Version 1.4 References

OSGi Enterprise Release 7 Page 67

Returns A PushStream of LogEntry objects.

101.14.3 enum LogStreamProvider.Options
Creation options for the PushStream of LogEntry objects.

101.14.3.1 HISTORY

Include history.

Prime the created PushStream with the available historical LogEntry objects. The number of avail-
able LogEntry objects is implementation specific.

The created PushStream will supply the available historical LogEntry objects followed by newly cre-
ated LogEntry objects.

101.14.3.2 public static LogStreamProvider.Options valueOf(String name)

101.14.3.3 public static LogStreamProvider.Options[] values()

101.15 References

[1] SLF4J
http://www.slf4j.org

101.16 Changes
This release of the Log Service specification includes a significant number of enhancements and
new features.

• The log methods of LogService are deprecated and replaced by the new Logger type. Loggers are
named and have dedicated methods to log to the defined log levels. The new Logger Factory ser-
vice is used to obtain Loggers.

• The new Log Stream Provider service creates Push Streams of Log Entries which can be used to
receive Log Entries as they are created. This is an alternative to using the Log Reader Service.

• Log Entry is extended to hold the name of the Logger, a sequence number which orders log en-
tries, and thread and stack trace information about the logging code.

• The LogLevel enum type specified the supported log levels which includes new log levels AUDIT
and TRACE.

• The new Logger Admin service allows the effective log levels of named loggers to be configured.
It supports integration with Configuration Admin so logger configuration can be managed in
Configuration Admin.

• Service capabilities are defined for all the specified services.

http://www.slf4j.org

Changes Log Service Specification Version 1.4

Page 68 OSGi Enterprise Release 7

Http Service Specification Version 1.2 Introduction

OSGi Enterprise Release 7 Page 69

102 Http Service Specification

Version 1.2

102.1 Introduction
An OSGi framework normally provides users with access to services on the Internet and other net-
works. This access allows users to remotely retrieve information from, and send control to, services
in an OSGi framework using a standard web browser.

Bundle developers typically need to develop communication and user interface solutions for stan-
dard technologies such as HTTP, HTML, XML, and servlets.

The Http Service supports two standard techniques for this purpose:

• Registering servlets - A servlet is a Java object which implements the Java Servlet API. Registering a
servlet in the Framework gives it control over some part of the Http Service URI name-space.

• Registering resources - Registering a resource allows HTML files, image files, and other static re-
sources to be made visible in the Http Service URI name-space by the requesting bundle.

Implementations of the Http Service can be based on:

• [1] HTTP 1.0 Specification RFC-1945
• [2] HTTP 1.1 Specification RFC-2616

Alternatively, implementations of this service can support other protocols if these protocols can
conform to the semantics of the javax.servlet API. This additional support is necessary because the
Http Service is closely related to [3] Java Servlet Technology. Http Service implementations must sup-
port at least version 2.1 of the Java Servlet API.

102.1.1 Entities
This specification defines the following interfaces which a bundle developer can implement collec-
tively as an Http Service or use individually:

• HttpContext - Allows bundles to provide information for a servlet or resource registration.
• HttpService - Allows other bundles in the Framework to dynamically register and unregister re-

sources and servlets into the Http Service URI name-space.
• NamespaceException - Is thrown to indicate an error with the caller's request to register a servlet

or resource into the Http Service URI name-space.

Registering Servlets Http Service Specification Version 1.2

Page 70 OSGi Enterprise Release 7

Figure 102.1 Http Service Overview Diagram

<<interface>>
HttpService

javax.servlet.
Servlet

javax.servlet.http.
HttpServlet
Request

javax.servlet.http.
HttpServlet
Response

an Http service
implementation

<<interface>>
HttpContext

servlet
registration

resource
registration

implementation of
Servlet

implementation of
HttpContext

default impl. of
HttpContext

Bundles main
code

1

0..n1

1

1

1

register servlet
or resources

request
resource

service
request

Name-space
alias

Bundle implementing
Http Service

Bundle using
Http Service

Namespace
Exception

102.2 Registering Servlets
javax.servlet .Servlet objects can be registered with the Http Service by using the
HttpService interface. For this purpose, the HttpService interface defines the method
registerServlet(Str ing, javax.servlet .Servlet ,Dict ionary,HttpContext) .

For example, if the Http Service implementation is listening to port 80 on the machine
www.acme.com and the Servlet object is registered with the name "/servlet" , then the Servlet
object's service method is called when the following URL is used from a web browser:

http://www.acme.com/servlet?name=bugs

All Servlet objects and resource registrations share the same name-space. If an attempt is made
to register a resource or Servlet object under the same name as a currently registered resource or
Servlet object, a NamespaceException is thrown. See Mapping HTTP Requests to Servlet and Resource
Registrations on page 73 for more information about the handling of the Http Service name-
space.

Each Servlet registration must be accompanied with an HttpContext object. This object provides
the handling of resources, media typing, and a method to handle authentication of remote requests.
See Authentication on page 76.

For convenience, a default HttpContext object is provided by the Http Service and can be obtained
with createDefaultHttpContext() . Passing a nul l parameter to the registration method achieves the
same effect.

Servlet objects require a ServletContext object. This object provides a number of functions to access
the Http Service Java Servlet environment. It is created by the implementation of the Http Service
for each unique HttpContext object with which a Servlet object is registered. Thus, Servlet objects
registered with the same HttpContext object must also share the same ServletContext object.

Http Service Specification Version 1.2 Registering Servlets

OSGi Enterprise Release 7 Page 71

Servlet objects are initialized by the Http Service when they are registered and bound to that specif-
ic Http Service. The initialization is done by calling the Servlet object's Servlet . init(ServletConfig)
method. The ServletConfig parameter provides access to the initialization parameters specified
when the Servlet object was registered.

Therefore, the same Servlet instance must not be reused for registration with another Http Service,
nor can it be registered under multiple names. Unique instances are required for each registration.

The following example code demonstrates the use of the registerServlet method:

Hashtable initparams = new Hashtable();
initparams.put("name", "value");

Servlet myServlet = new HttpServlet() {
 String name = "<not set>";

 public void init(ServletConfig config) {
 this.name = (String)
 config.getInitParameter("name");
 }

 public void doGet(
 HttpServletRequest req,
 HttpServletResponse rsp
) throws IOException {
 rsp.setContentType("text/plain");
 req.getWriter().println(this.name);
 }
};

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 null // use default context
);
// myServlet has been registered
// and its init method has been called. Remote
// requests are now handled and forwarded to
// the servlet.
...
getHttpService().unregister("/servletAlias");
// myServlet has been unregistered and its
// destroy method has been called

This example registers the servlet, myServlet , at alias: /servletAl ias . Future requests for http://
www.acme.com/servletAl ias maps to the servlet, myServlet , whose service method is called to
process the request. (The service method is called in the HttpServlet base class and dispatched to a
doGet , doPut , doPost , doOptions , doTrace , or doDelete call depending on the HTTP request method
used.)

Registering Resources Http Service Specification Version 1.2

Page 72 OSGi Enterprise Release 7

102.3 Registering Resources
A resource is a file containing images, static HTML pages, sounds, movies, applets, etc. Resources do
not require any handling from the bundle. They are transferred directly from their source - usually
the JAR file that contains the code for the bundle - to the requester using HTTP.

Resources could be handled by Servlet objects as explained in Registering Servlets on page
70. Transferring a resource over HTTP, however, would require very similar Servlet
objects for each bundle. To prevent this redundancy, resources can be registered directly
with the Http Service via the HttpService interface. This HttpService interface defines the
registerResources(Str ing,Str ing,HttpContext) method for registering a resource into the Http Ser-
vice URI name-space.

The first parameter is the external alias under which the resource is registered with the Http Ser-
vice. The second parameter is an internal prefix to map this resource to the bundle's name-space.
When a request is received, the HttpService object must remove the external alias from the URI, re-
place it with the internal prefix, and call the getResource(Str ing) method with this new name on
the associated HttpContext object. The HttpContext object is further used to get the MIME type of
the resource and to authenticate the request.

Resources are returned as a java.net.URL object. The Http Service must read from this URL object and
transfer the content to the initiator of the HTTP request.

This return type was chosen because it matches the return type of the
java. lang.Class.getResource(Str ing resource) method. This method can retrieve resources direct-
ly from the same place as the one from which the class was loaded - often a package directory in the
JAR file of the bundle. This method makes it very convenient to retrieve resources from the bundle
that are contained in the package.

The following example code demonstrates the use of the register Resources method:

package com.acme;
...
HttpContext context = new HttpContext() {
 public boolean handleSecurity(
 HttpServletRequest request,
 HttpServletResponse response
) throws IOException {
 return true;
 }

 public URL getResource(String name) {
 return getClass().getResource(name);
 }

 public String getMimeType(String name) {
 return null;
 }
};

getHttpService().registerResources (
 "/files",
 "www",
 context
);
...

Http Service Specification Version 1.2 Mapping HTTP Requests to Servlet and Resource Registrations

OSGi Enterprise Release 7 Page 73

getHttpService().unregister("/files");

This example registers the alias /files on the Http Service. Requests for resources below this name-
space are transferred to the HttpContext object with an internal name of www/<name> . This exam-
ple uses the Class.get Resource(Str ing) method. Because the internal name does not start with a "/",
it must map to a resource in the "com/acme/www" directory of the JAR file. If the internal name did
start with a "/", the package name would not have to be prefixed and the JAR file would be searched
from the root. Consult the java. lang.Class.getResource(Str ing) method for more information.

In the example, a request for http://www.acme.com/fi les/myfi le .html must map to the name "com/
acme/www/myfi le .html" which is in the bundle's JAR file.

More sophisticated implementations of the getResource(Str ing) method could filter the input
name, restricting the resources that may be returned or map the input name onto the file system (if
the security implications of this action are acceptable).

Alternatively, the resource registration could have used a default HttpContext object, as demonstrat-
ed in the following call to registerResources :

getHttpService().registerResources(
 "/files",
 "/com/acme/www",
 null
);

In this case, the Http Service implementation would call the createDefaultHttpContext()
method and use its return value as the HttpContext argument for the registerResources method.
The default implementation must map the resource request to the bundle's resource, using
Bundle.getResource(Str ing) . In the case of the previous example, however, the internal name must
now specify the full path to the directory containing the resource files in the JAR file. No automatic
prefixing of the package name is done.

The getMimeType(Str ing) implementation of the default HttpContext object should
rely on the default mapping provided by the Http Service by returning nul l . Its
handleSecurity(HttpServletRequest,HttpServletResponse) may implement an authentication
mechanism that is implementation-dependent.

102.4 Mapping HTTP Requests to Servlet and Resource
Registrations
When an HTTP request comes in from a client, the Http Service checks to see if the requested URI
matches any registered aliases. A URI matches only if the path part of the URI is exactly the same
string. Matching is case sensitive.

If it does match, a matching registration takes place, which is processed as follows:

1. If the registration corresponds to a servlet, the authorization is verified by calling the handleSe-
curity method of the associated HttpContext object. See Authentication on page 76. If the re-
quest is authorized, the servlet must be called by its service method to complete the HTTP re-
quest.

2. If the registration corresponds to a resource, the authorization is verified by calling the han-
dleSecurity method of the associated HttpContext object. See Authentication on page 76. If
the request is authorized, a target resource name is constructed from the requested URI by sub-
stituting the alias from the registration with the internal name from the registration if the alias
is not "/". If the alias is "/", then the target resource name is constructed by prefixing the request-

The Default Http Context Object Http Service Specification Version 1.2

Page 74 OSGi Enterprise Release 7

ed URI with the internal name. An internal name of "/" is considered to have the value of the
empty string ("") during this process.

3. The target resource name must be passed to the getResource method of the associated HttpCon-
text object.

4. If the returned URL object is not nul l , the Http Service must return the contents of the URL to the
client completing the HTTP request. The translated target name, as opposed to the original re-
quested URI, must also be used as the argument to HttpContext.getMimeType .

5. If the returned URL object is nul l , the Http Service continues as if there was no match.
6. If there is no match, the Http Service must attempt to match sub-strings of the requested URI to

registered aliases. The sub-strings of the requested URI are selected by removing the last "/" and
everything to the right of the last "/".

The Http Service must repeat this process until either a match is found or the sub-string is an empty
string. If the sub-string is empty and the alias "/" is registered, the request is considered to match the
alias "/" . Otherwise, the Http Service must return HttpServletResponse.SC_NOT_FOUND(404) to
the client.

For example, an HTTP request comes in with a request URI of "/fudd/bugs/foo.txt" , and the only
registered alias is "/fudd" . A search for "/fudd/bugs/foo.txt" will not match an alias. Therefore, the
Http Service will search for the alias "/fudd/bugs" and the alias "/fudd" . The latter search will result
in a match and the matched alias registration must be used.

Registrations for identical aliases are not allowed. If a bundle registers the alias "/fudd" , and anoth-
er bundle tries to register the exactly the same alias, the second caller must receive a NamespaceEx-
ception and its resource or servlet must not be registered. It could, however, register a similar alias -
for example, "/fudd/bugs" , as long as no other registration for this alias already exists.

The following table shows some examples of the usage of the name-space.

Table 102.1 Examples of Name-space Mapping

Alias Internal Name URI getResource Parameter
/ (empty str ing) /fudd/bugs /fudd/bugs
/ / /fudd/bugs /fudd/bugs
/ /tmp /fudd/bugs /tmp/fudd/bugs
/fudd (empty str ing) /fudd/bugs /bugs
/fudd / /fudd/bugs /bugs
/fudd /tmp /fudd/bugs /tmp/bugs
/fudd tmp /fudd/bugs/x.gi f tmp/bugs/x.gi f
/fudd/bugs/x.gi f tmp/y.gi f /fudd/bugs/x.gi f tmp/y.gi f

102.5 The Default Http Context Object
The HttpContext object in the first example demonstrates simple implementations of the HttpCon-
text interface methods. Alternatively, the example could have used a default HttpContext object, as
demonstrated in the following call to registerServlet :

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 null
);

Http Service Specification Version 1.2 Multipurpose Internet Mail Extension (MIME) Types

OSGi Enterprise Release 7 Page 75

In this case, the Http Service implementation must call createDefault HttpContext and use the re-
turn value as the HttpContext argument.

If the default HttpContext object, and thus the ServletContext object, is to be shared by multiple
servlet registrations, the previous servlet registration example code needs to be changed to use the
same default HttpContext object. This change is demonstrated in the next example:

HttpContext defaultContext =
 getHttpService().createDefaultHttpContext();

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 defaultContext
);

// defaultContext can be reused
// for further servlet registrations

102.6 Multipurpose Internet Mail Extension (MIME) Types
MIME defines an extensive set of headers and procedures to encode binary messages in US-ASCII
mails. For an overview of all the related RFCs, consult [4] MIME Multipurpose Internet Mail Extension.

An important aspect of this extension is the type (file format) mechanism of the binary messages.
The type is defined by a string containing a general category (text, application, image, audio and
video, multipart, and message) followed by a "/" and a specific media type, as in the example, "text/
html" for HTML formatted text files. A MIME type string can be followed by additional specifiers by
separating key=value pairs with a semicolon (' ; ' \u003B). These specifiers can be used, for example,
to define character sets as follows:

text/plain ; charset=iso-8859-1

The Internet Assigned Number Authority (IANA) maintains a set of defined MIME media types.
This list can be found at [5] Assigned MIME Media Types. MIME media types are extendable, and
when any part of the type starts with the prefix "x-" , it is assumed to be vendor-specific and can be
used for testing. New types can be registered as described in [6] Registration Procedures for new MIME
media types.

HTTP bases its media typing on the MIME RFCs. The "Content-Type" header should contain a MIME
media type so that the browser can recognize the type and format the content correctly.

The source of the data must define the MIME media type for each transfer. Most operating systems
do not support types for files, but use conventions based on file names, such as the last part of the
file name after the last ".". This extension is then mapped to a media type.

Implementations of the Http Service should have a reasonable default of mapping common exten-
sions to media types based on file extensions.

Table 102.2 Sample Extension to MIME Media Mapping

Extension MIME media type Description
. jpg . jpeg image/jpeg JPEG Files
.g i f image/gif GIF Files
.css text/css Cascading Style Sheet Files
.txt text/plain Text Files

Authentication Http Service Specification Version 1.2

Page 76 OSGi Enterprise Release 7

Extension MIME media type Description
.wml text/vnd.wap.wml Wireless Access Protocol (WAP) Mark Language
.htm .html text/html Hyper Text Markup Language
.wbmp image/vnd.wap.wbmp Bitmaps for WAP

Only the bundle developer, however, knows exactly which files have what media type. The Http-
Context interface can therefore be used to map this knowledge to the media type. The HttpContext
class has the following method for this: getMimeType(Str ing) .

The implementation of this method should inspect the file name and use its internal knowledge to
map this name to a MIME media type.

Simple implementations can extract the extension and look up this extension in a table.

Returning nul l from this method allows the Http Service implementation to use its default mapping
mechanism.

102.7 Authentication
The Http Service has separated the authentication and authorization of a request from the execu-
tion of the request. This separation allows bundles to use available Servlet sub-classes while still
providing bundle specific authentication and authorization of the requests.

Prior to servicing each incoming request, the Http Service calls the
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse)
method on the HttpContext object that is associated with the request URI. This method controls
whether the request is processed in the normal manner or an authentication error is returned.

If an implementation wants to authenticate the request, it can use the authentication mechanisms
of HTTP. See [7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. These mecha-
nisms normally interpret the headers and decide if the user identity is available, and if it is, whether
that user has authenticated itself correctly.

There are many different ways of authenticating users, and the handleSecurity method on the Http-
Context object can use whatever method it requires. If the method returns true , the request must
continue to be processed using the potentially modified HttpServletRequest and HttpServletRe-
sponse objects. If the method returns fa lse , the request must not be processed.

A common standard for HTTP is the basic authentication scheme that is not secure when used with
HTTP. Basic authentication passes the password in base 64 encoded strings that are trivial to decode
into clear text. Secure transport protocols like HTTPS use SSL to hide this information. With these
protocols basic authentication is secure.

Using basic authentication requires the following steps:

1. If no Authorizat ion header is set in the request, the method should set the WWW-Authenticate
header in the response. This header indicates the desired authentication mechanism and the
realm. For example, WWW-Authenticate: Basic realm="ACME" .

The header should be set with the response object that is given as a parameter to
the handleSecurity method. The handleSecurity method should set the status to
HttpServletResponse.SC_UNAUTHORIZED (401) and return fa lse .

2. Secure connections can be verified with the ServletRequest.getScheme() method. This method
returns, for example, "https" for an SSL connection; the handleSecurity method can use this and
other information to decide if the connection's security level is acceptable. If not, the handleSe-
curity method should set the status to HttpServletResponse.SC_FORBIDDEN (403) and return
fa lse .

Http Service Specification Version 1.2 Security

OSGi Enterprise Release 7 Page 77

3. Next, the request must be authenticated. When basic authentication is used, the Authorizat ion
header is available in the request and should be parsed to find the user and password. See [7] RFC
2617: HTTP Authentication: Basic and Digest Access Authentication for more information.

If the user cannot be authenticated, the status of the response object should be set to
HttpServletResponse.SC_UNAUTHORIZED (401) and return fa lse .

4. The authentication mechanism that is actually used and the identity of the authenticated user
can be of interest to the Servlet object. Therefore, the implementation of the handleSecurity
method should set this information in the request object using the ServletRequest.setAttr ibute
method. This specification has defined a number of OSGi-specific attribute names for this pur-
pose:
• AUTHENTICATION_TYPE - Specifies the scheme used in authentication. A Servlet may re-

trieve the value of this attribute by calling the HttpServletRequest.getAuthType method.
This attribute name is org.osgi .service.http.authenticat ion.type .

• REMOTE_USER - Specifies the name of the authenticated user. A Servlet may retrieve the
value of this attribute by calling the HttpServletRequest.getRemoteUser method. This at-
tribute name is org.osgi .service.http.authenticat ion.remote.user .

• AUTHORIZATION - If a User Admin service is available in the environment, then the
handleSecurity method should set this attribute with the Authorizat ion object ob-
tained from the User Admin service. Such an object encapsulates the authentica-
tion of its remote user. A Servlet may retrieve the value of this attribute by calling
ServletRequest.getAttr ibute(HttpContext.AUTHORIZATION) . This header name is
org.osgi .service.useradmin.authorizat ion .

5. Once the request is authenticated and any attributes are set, the handleSecurity method should
return true . This return indicates to the Http Service that the request is authorized and pro-
cessing may continue. If the request is for a Servlet, the Http Service must then call the service
method on the Servlet object.

102.8 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

102.8.1 Accessing Resources with the Default Http Context
The Http Service must be granted AdminPermission[*,RESOURCE] so that bundles may use a de-
fault HttpContext object. This is necessary because the implementation of the default HttpContext
object must call Bundle.getResource to access the resources of a bundle and this method requires
the caller to have AdminPermission[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling Class.getResource . This operation
is privileged. The resulting URL object may then be passed to the Http Service as the result of a
HttpContext.getResource call. No further permission checks are performed when accessing bundle
resource URL objects, so the Http Service does not need to be granted any additional permissions.

102.8.2 Accessing Other Types of Resources
In order to access resources that were not registered using the default HttpContext object, the Http
Service must be granted sufficient privileges to access these resources. For example, if the getRe-
source method of the registered HttpContext object returns a file URL, the Http Service requires the
corresponding Fi lePermission to read the file. Similarly, if the getResource method of the registered
HttpContext object returns an HTTP URL, the Http Service requires the corresponding SocketPer-
mission to connect to the resource.

Configuration Properties Http Service Specification Version 1.2

Page 78 OSGi Enterprise Release 7

Therefore, in most cases, the Http Service should be a privileged service that is granted sufficient
permission to serve any bundle's resources, no matter where these resources are located. Therefore,
the Http Service must capture the AccessControlContext object of the bundle registering resources
or a servlet, and then use the captured AccessControlContext object when accessing resources re-
turned by the registered HttpContext object. This situation prevents a bundle from registering re-
sources that it does not have permission to access.

Therefore, the Http Service should follow a scheme like the following example. When a resource or
servlet is registered, it should capture the context.

AccessControlContext acc =
 AccessController.getContext();

When a URL returned by the getResource method of the associated HttpContext object is called, the
Http Service must call the getResource method in a doPriv i leged construct using the AccessCon-
trolContext object of the registering bundle:

AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 ...
 }
 }, acc);

The Http Service must only use the captured AccessControlContext when accessing resource URL
objects.

102.8.3 Servlet and HttpContext objects
This specification does not require that the Http Service is granted All Permission or wraps calls to
the Servlet and Http Context objects in a doPriv i leged block. Therefore, it is the responsibility of the
Servlet and Http Context implementations to use a doPriv i leged block when performing privileged
operations.

102.9 Configuration Properties
If the Http Service does not have its port values configured through some other means, the Http Ser-
vice implementation should use the following properties to determine the port values upon which
to listen.

The following OSGi environment properties are used to specify default HTTP ports:

• org.osgi .service.http.port - This property specifies the port used for servlets and resources acces-
sible via HTTP. The default value for this property is 80.

• org.osgi .service.http.port .secure - This property specifies the port used for servlets and re-
sources accessible via HTTPS. The default value for this property is 443.

102.10 org.osgi.service.http

Http Service Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Http Service Specification Version 1.2 org.osgi.service.http

OSGi Enterprise Release 7 Page 79

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http; vers ion="[1.2,1 .3)"

102.10.1 Summary

• HttpContext - Context for HTTP Requests.
• HttpService - The Http Service allows other bundles in the OSGi environment to dynamically

register resources and servlets into the URI namespace of Http Service.
• NamespaceException - A NamespaceException is thrown to indicate an error with the caller's

request to register a servlet or resources into the URI namespace of the Http Service.

102.10.2 public interface HttpContext
Context for HTTP Requests.

This service defines methods that the Http Service may call to get information for a request.

Servlets may be associated with an HttpContext service. Servlets that are associated using the same
HttpContext object will share the same ServletContext object.

If no HttpContext service is associated, a default HttpContext is used. The behavior of the methods
on the default HttpContext is defined as follows:

• getMimeType - Does not define any customized MIME types for the Content-Type header in the
response, and always returns nul l .

• handleSecurity - Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the bundle of the servlet service. This method

calls the servlet bundle's Bundle.getResource method, and returns the appropriate URL to access
the resource. On a Java runtime environment that supports permissions, the Http Service needs
to be granted org.osgi .f ramework.AdminPermission[*,RESOURCE] .

102.10.2.1 public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"

HttpServletRequest attribute specifying the scheme used in authentication. The value of
the attribute can be retrieved by HttpServletRequest.getAuthType . This attribute name is
org.osgi .service.http.authenticat ion.type .

Since 1.1

102.10.2.2 public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"

HttpServletRequest attribute specifying the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service. The value of the attribute can be retrieved by
HttpServletRequest.getAttr ibute(HttpContext.AUTHORIZATION) . This attribute name is
org.osgi .service.useradmin.authorizat ion .

Since 1.1

102.10.2.3 public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"

HttpServletRequest attribute specifying the name of the authenticated user. The value of
the attribute can be retrieved by HttpServletRequest.getRemoteUser . This attribute name is
org.osgi .service.http.authenticat ion.remote.user .

Since 1.1

102.10.2.4 public String getMimeType(String name)

name The name for which to determine the MIME type.

org.osgi.service.http Http Service Specification Version 1.2

Page 80 OSGi Enterprise Release 7

□ Maps a name to a MIME type.

Called by the Http Service to determine the MIME type for the specified name. For servlets, the Http
Service will call this method to support the ServletContext method getMimeType . For resources,
the Http Service will call this method to determine the MIME type for the Content-Type header in
the response.

Returns The MIME type (e.g. text/html) of the specified name or nul l to indicate that the Http Service should
determine the MIME type itself.

102.10.2.5 public URL getResource(String name)

name the name of the requested resource

□ Maps a resource name to a URL.

Called by the Http Service to map a resource name to a URL. For servlet registrations, Http
Service will call this method to support the ServletContext methods getResource and ge-
tResourceAsStream . For resource registrations, Http Service will call this method to lo-
cate the named resource. The context can control from where resources come. For ex-
ample, the resource can be mapped to a file in the bundle's persistent storage area via
bundleContext.getDataFi le(name).toURL() or to a resource in the context's bundle via
getClass() .getResource(name)

Returns URL that Http Service can use to read the resource or nul l if the resource does not exist.

102.10.2.6 public boolean handleSecurity(HttpServletRequest request, HttpServletResponse response) throws
IOException

request The HTTP request.

response The HTTP response.

□ Handles security for the specified request.

The Http Service calls this method prior to servicing the specified request. This method controls
whether the request is processed in the normal manner or an error is returned.

If the request requires authentication and the Authorization header in the request is missing or not
acceptable, then this method should set the WWW-Authenticate header in the response object, set
the status in the response object to Unauthorized(401) and return fa lse . See also RFC 2617: HTTP
Authentication: Basic and Digest Access Authentication (available at http://www.ietf.org/rfc/rfc2617.txt).

If the request requires a secure connection and the getScheme method in the request does not re-
turn 'https' or some other acceptable secure protocol, then this method should set the status in the
response object to Forbidden(403) and return fa lse .

When this method returns fa lse , the Http Service will send the response back to the client, thereby
completing the request. When this method returns true , the Http Service will proceed with servic-
ing the request.

If the specified request has been authenticated, this method must set the AUTHENTICATION_TYPE
request attribute to the type of authentication used, and the REMOTE_USER request attribute to the
remote user (request attributes are set using the setAttr ibute method on the request). If this method
does not perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this method must
set the AUTHORIZATION request attribute to the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the authentication type and
remote user by calling the getAuthType and getRemoteUser methods, respectively, on the request.

Returns true if the request should be serviced, fa lse if the request should not be serviced and Http Service
will send the response back to the client.

Http Service Specification Version 1.2 org.osgi.service.http

OSGi Enterprise Release 7 Page 81

Throws IOException– may be thrown by this method. If this occurs, the Http Service will terminate the re-
quest and close the socket.

102.10.3 public interface HttpService
The Http Service allows other bundles in the OSGi environment to dynamically register resources
and servlets into the URI namespace of Http Service. A bundle may later unregister its resources or
servlets.

See Also HttpContext

No Implement Consumers of this API must not implement this interface

102.10.3.1 public HttpContext createDefaultHttpContext()

□ Creates a default HttpContext for registering servlets or resources with the HttpService, a new Http-
Context object is created each time this method is called.

The behavior of the methods on the default HttpContext is defined as follows:

• getMimeType - Does not define any customized MIME types for the Content-Type header in the
response, and always returns nul l .

• handleSecurity - Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the context bundle; this method calls the con-

text bundle's Bundle.getResource method, and returns the appropriate URL to access the re-
source. On a Java runtime environment that supports permissions, the Http Service needs to be
granted org.osgi .f ramework.AdminPermission[*,RESOURCE] .

Returns a default HttpContext object.

Since 1.1

102.10.3.2 public void registerResources(String alias, String name, HttpContext context) throws NamespaceException

alias name in the URI namespace at which the resources are registered

name the base name of the resources that will be registered

context the HttpContext object for the registered resources, or nul l if a default HttpContext is to be created
and used.

□ Registers resources into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped. An alias must begin with slash ('/') and must not end with slash ('/'), with the exception
that an alias of the form "/" is used to denote the root alias. The name parameter must also not end
with slash ('/') with the exception that a name of the form "/" is used to denote the root of the bundle.
See the specification text for details on how HTTP requests are mapped to servlet and resource regis-
trations.

For example, suppose the resource name /tmp is registered to the alias /files. A request for /files/
foo.txt will map to the resource name /tmp/foo.txt.

 httpservice.registerResources("/files", "/tmp", context);

The Http Service will call the HttpContext argument to map resource names to URLs and MIME
types and to handle security for requests. If the HttpContext argument is nul l , a default HttpContext
is used (see createDefaultHttpContext()).

Throws NamespaceException– if the registration fails because the alias is already in use.

I l legalArgumentException– if any of the parameters are invalid

org.osgi.service.http Http Service Specification Version 1.2

Page 82 OSGi Enterprise Release 7

102.10.3.3 public void registerServlet(String alias, Servlet servlet, Dictionary<?, ?> initparams, HttpContext context)
throws ServletException, NamespaceException

alias name in the URI namespace at which the servlet is registered

servlet the servlet object to register

initparams initialization arguments for the servlet or nul l if there are none. This argument is used by the
servlet's ServletConfig object.

context the HttpContext object for the registered servlet, or nul l if a default HttpContext is to be created and
used.

□ Registers a servlet into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped.

An alias must begin with slash ('/') and must not end with slash ('/'), with the exception that an alias
of the form "/" is used to denote the root alias. See the specification text for details on how HTTP re-
quests are mapped to servlet and resource registrations.

The Http Service will call the servlet's in it method before returning.

 httpService.registerServlet("/myservlet", servlet, initparams, context);

Servlets registered with the same HttpContext object will share the same ServletContext .
The Http Service will call the context argument to support the ServletContext methods
getResource ,getResourceAsStream and getMimeType , and to handle security for requests. If the
context argument is nul l , a default HttpContext object is used (see createDefaultHttpContext()).

Throws NamespaceException– if the registration fails because the alias is already in use.

javax.servlet .ServletException– if the servlet's in it method throws an exception, or the given servlet
object has already been registered at a different alias.

I l legalArgumentException– if any of the arguments are invalid

102.10.3.4 public void unregister(String alias)

alias name in the URI name-space of the registration to unregister

□ Unregisters a previous registration done by registerServlet or registerResources methods.

After this call, the registered alias in the URI name-space will no longer be available. If the registra-
tion was for a servlet, the Http Service must call the destroy method of the servlet before returning.

If the bundle which performed the registration is stopped or otherwise "unget"s the Http Service
without calling unregister(String) then Http Service must automatically unregister the registration.
However, if the registration was for a servlet, the destroy method of the servlet will not be called in
this case since the bundle may be stopped. unregister(String) must be explicitly called to cause the
destroy method of the servlet to be called. This can be done in the BundleActivator.stop method of
the bundle registering the servlet.

Throws I l legalArgumentException– if there is no registration for the alias or the calling bundle was not the
bundle which registered the alias.

102.10.4 public class NamespaceException
extends Exception
A NamespaceException is thrown to indicate an error with the caller's request to register a servlet
or resources into the URI namespace of the Http Service. This exception indicates that the requested
alias already is in use.

Http Service Specification Version 1.2 References

OSGi Enterprise Release 7 Page 83

102.10.4.1 public NamespaceException(String message)

message the detail message

□ Construct a NamespaceException object with a detail message.

102.10.4.2 public NamespaceException(String message, Throwable cause)

message The detail message.

cause The nested exception.

□ Construct a NamespaceException object with a detail message and a nested exception.

102.10.4.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2

102.10.4.4 public Throwable getException()

□ Returns the nested exception.

This method predates the general purpose exception chaining mechanism. The getCause() method
is now the preferred means of obtaining this information.

Returns The result of calling getCause() .

102.10.4.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

102.11 References

[1] HTTP 1.0 Specification RFC-1945
http://www.ietf.org/rfc/rfc1945.txt, May 1996

[2] HTTP 1.1 Specification RFC-2616
http://www.ietf.org/rfc/rfc2616.txt, June 1999

[3] Java Servlet Technology
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

[4] MIME Multipurpose Internet Mail Extension
http://www.mhonarc.org/~ehood/MIME/MIME.html

[5] Assigned MIME Media Types
http://www.iana.org/assignments/media-types

[6] Registration Procedures for new MIME media types
http://www.ietf.org/rfc/rfc2048.txt

[7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication

http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.mhonarc.org/~ehood/MIME/MIME.html
http://www.iana.org/assignments/media-types
http://www.ietf.org/rfc/rfc2048.txt

References Http Service Specification Version 1.2

Page 84 OSGi Enterprise Release 7

http://www.ietf.org/rfc/rfc2617.txt

http://www.ietf.org/rfc/rfc2617.txt

Configuration Admin Service Specification Version 1.6 Introduction

OSGi Enterprise Release 7 Page 85

104 Configuration Admin Service
Specification

Version 1.6

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment of an OSGi framework.
It allows an Operator to configure deployed bundles. Configuring is the process of defining the con-
figuration data for bundles and assuring that those bundles receive that data when they are active in
the OSGi framework.

Figure 104.1 Configuration Admin Service Overview

port=
secure=

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration
data

Configuration
Admin

104.1.1 Essentials
The following requirements and patterns are associated with the Configuration Admin service spec-
ification:

• Local Configuration - The Configuration Admin service must support bundles that have their own
user interface to change their configurations.

• Reflection - The Configuration Admin service must be able to deduce the names and types of the
needed configuration data.

• Legacy - The Configuration Admin service must support configuration data of existing entities
(such as devices).

• Object Oriented - The Configuration Admin service must support the creation and deletion of in-
stances of configuration information so that a bundle can create the appropriate number of ser-
vices under the control of the Configuration Admin service.

• Embedded Devices - The Configuration Admin service must be deployable on a wide range of plat-
forms. This requirement means that the interface should not assume file storage on the platform.
The choice to use file storage should be left to the implementation of the Configuration Admin
service.

Introduction Configuration Admin Service Specification Version 1.6

Page 86 OSGi Enterprise Release 7

• Remote versus Local Management - The Configuration Admin service must allow for a remotely
managed OSGi framework, and must not assume that con-figuration information is stored local-
ly. Nor should it assume that the Configuration Admin service is always done remotely. Both im-
plementation approaches should be viable.

• Availability - The OSGi environment is a dynamic environment that must run continuously
(24/7/365). Configuration updates must happen dynamically and should not require restarting of
the system or bundles.

• Immediate Response - Changes in configuration should be reflected immediately.
• Execution Environment - The Configuration Admin service will not require more than an environ-

ment that fulfills the minimal execution requirements.
• Communications - The Configuration Admin service should not assume "always-on" connectivity,

so the API is also applicable for mobile applications in cars, phones, or boats.
• Extendability - The Configuration Admin service should expose the process of configuration to

other bundles. This exposure should at a minimum encompass initiating an update, removing
certain configuration properties, adding properties, and modifying the value of properties poten-
tially based on existing property or service values.

• Complexity Trade-offs - Bundles in need of configuration data should have a simple way of obtain-
ing it. Most bundles have this need and the code to accept this data. Additionally, updates should
be simple from the perspective of the receiver.

Trade-offs in simplicity should be made at the expense of the bundle implementing the Config-
uration Admin service and in favor of bundles that need configuration information. The reason
for this choice is that normal bundles will outnumber Configuration Admin bundles.

• Regions - It should be possible to create groups of bundles and a manager in a single system that
share configuration data that is not accessible outside the region.

• Shared Information - It should be possible to share configuration data between bundles.

104.1.2 Entities

• Configuration information - The information needed by a bundle before it can provide its intended
functionality.

• Configuration dictionary - The configuration information when it is passed to the target service. It
consists of a Dictionary object with a number of properties and identifiers.

• Configuring Bundle - A bundle that modifies the configuration information through the Config-
uration Admin service. This bundle is either a management bundle or the bundle for which the
configuration information is intended.

• Configuration Target - The target service that will receive the configuration information. For ser-
vices, there are two types of targets: ManagedServiceFactory or ManagedService objects.

• Configuration Admin Service - This service is responsible for supplying configuration target bun-
dles with their configuration information. It maintains a database with configuration informa-
tion, keyed on the service.pid of configuration target services. These services receive their con-
figuration dictionary/dictionaries when they are registered with the Framework. Configurations
can be modified or extended using Configuration Plugin services before they reach the target
bundle.

• Managed Service - A Managed Service represents a client of the Configuration Admin service, and
is thus a configuration target. Bundles should register a Managed Service to receive the configu-
ration data from the Configuration Admin service. A Managed Service adds one or more unique
service.pid service properties as a primary key for the configuration information.

• Managed Service Factory - A Managed Service Factory can receive a number of configuration dic-
tionaries from the Configuration Admin service, and is thus also a configuration target service. It
should register with one or more service.pid strings and receives zero or more configuration dic-
tionaries. Each dictionary has its own PID that is distinct from the factory PID.

Configuration Admin Service Specification Version 1.6 Configuration Targets

OSGi Enterprise Release 7 Page 87

• Configuration Object - Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service Fac-
tory. These objects are manipulated by configuring bundles.

• Configuration Plugin Services - Configuration Plugin services are called before the configuration
dictionary is given to the configuration targets. The plug-in can modify the configuration dictio-
nary, which is passed to the Configuration Target.

Figure 104.2 Overall Service Diagram

Configuration
Admin Impl.

Configuration
Admin

Configuration
Listener

Managed
Service

Managed
Service Factory

Configuration
Plugin

104.1.3 Synopsis
This specification is based on the concept of a Configuration Admin service that manages the con-
figuration of an OSGi framework. It maintains a database of Configurat ion objects, locally or re-
motely. This service monitors the service registry and provides configuration information to ser-
vices that are registered with a service.pid property, the Persistent IDentity (PID), and implement
one of the following interfaces:

• Managed Service - A service registered with this interface receives its configuration dictionary from
the database or receives nul l when no such configuration exists.

• Managed Service Factory - Services registered with this interface can receive several configuration
dictionaries when registered. The database contains zero or more configuration dictionaries for
this service. Each configuration dictionary is given sequentially to the service.

The database can be manipulated either by the Management Agent or bundles that configure them-
selves. Other parties can provide Configuration Plugin services. Such services participate in the con-
figuration process. They can inspect the configuration dictionary and modify it before it reaches the
target service.

104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle distinction between the Man-
agedService and ManagedServiceFactory classes. Both receive configuration information from the
Configuration Admin service and are treated similarly in most respects. Therefore, this specification
refers to configuration targets or simply targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the configuration dictionary. A
Managed Service is used when an existing entity needs a configuration dictionary. Thus, a one-to-
one relationship always exists between the configuration dictionary and the configurable entity in
the Managed Service. There can be multiple Managed Service targets registered with the same PID
but a Managed Service can only configure a single entity in each given Managed Service.

The Persistent Identity Configuration Admin Service Specification Version 1.6

Page 88 OSGi Enterprise Release 7

A Managed Service Factory is used when part of the configuration is to define how many instances are
required for a given Managed Service Factory. A management bundle can create, modify, and delete
any number of instances for a Managed Service Factory through the Configuration Admin service.
Each instance is configured by a single Configurat ion object. Therefore, a Managed Service Factory
can have multiple associated Configurat ion objects.

Figure 104.3 Differentiation of ManagedService and ManagedServiceFactory Classes

Framework Service
Registry ManagedService ManagedServiceFactory

Management layer

Service layer

A Configuration target updates the target when the underlying Configuration object is created, up-
dated, or deleted. However, it is not called back when the Configuration Admin service is shutdown
or the service is ungotten.

To summarize:

• A Managed Service must receive a single configuration dictionary when it is registered or when
its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dictionaries when it regis-
ters, depending on the current configuration. The Managed Service Factory is informed of config-
uration dictionary changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the Persistent IDentity (PID)
as defined in the Framework's service layer. Its purpose is to act as a primary key for objects that
need a configuration dictionary. The name of the service property for PID is defined in the Frame-
work in org.osgi .f ramework.Constants.SERVICE_PID .

The Configuration Admin service requires the use of one or more PIDs with Managed Service and
Managed Service Factory registrations because it associates its configuration data with PIDs.

A service can register with multiple PIDs and PIDs can be shared between multiple targets (both
Managed Service and Managed Service Factory targets) to receive the same information. If PIDs are
to be shared between Bundles then the location of the Configuration must be a multi-location, see
Location Binding on page 91.

The Configuration Admin must track the configuration targets on their actual PID. That is, if the
service.pid service property is modified then the Configuration Admin must treat it as if the service
was unregistered and then re-registered with the new PID.

104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes the user is confronted
with a PID. For example, when installing an alarm system, the user needs to identify the different
components to a wiring application. This type of application exposes the PID to end users.

PIDs should follow the symbolic-name syntax, which uses a very restricted character set. The fol-
lowing sections define some schemes for common cases. These schemes are not required, but bun-
dle developers are urged to use them to achieve consistency.

Configuration Admin Service Specification Version 1.6 The Persistent Identity

OSGi Enterprise Release 7 Page 89

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a full stop ('.' \u002E) are re-
served for a bundle. As an example, a PID of "65.536" would belong to the bundle with a bundle
identity of 65.

104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package name they own as the PID
(the reverse domain name scheme) as long as they do not use characters outside the basic ASCII set.
As an example, the PID named com.acme.watchdog would represent a Watchdog service from the
ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device, such as a unique serial
number or an address, is a good component of a PID. The format of the serial number should be the
same as that printed on the housing or box, to aid in recognition.

Table 104.1 Schemes for Device-Oriented PID Names

Bus Example Format Description
USB USB.0123-0002-9909873 idVendor (hex 4)

idProduct (hex 4)

iSerialNumber (decimal)

Universal Serial Bus. Use the standard
device descriptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with : separators IEEE 802 MAC address (Token Ring,

Ethernet,...)
ONE ONE.06-00000021E461 Family (hex 2) and serial number in-

cluding CRC (hex 6)
1-wire bus of Dallas Semiconductor

COM COM.krups-brewer-12323 serial number or type name of device Serial ports

104.3.2 Targeted PIDs
PIDs are defined as primary keys for the configuration object; any target that uses the PID in its ser-
vice registration (and has the proper permissions if security is on) will receive the configuration as-
sociated with it, regardless of the bundle that registered the target service. Though in general the
PID is designed to ignore the bundle, there are a number of cases where the bundle becomes rele-
vant. The most typical case is where a bundle is available in different versions. Each version will re-
quest the same PID and will get therefore configured identically.

Targeted PIDs are specially formatted PIDs that are interpreted by the Configuration Admin service.
Targeted PIDs work both as a normal Managed Service PID and as a Managed Service Factory PID. In
the case of factories, the targeted PID is the Factory PID since the other PID is chosen by CM for each
instance.

The target PID scopes the applicability of the PID to a limited set of target bundles. The syntax of a
target pid is:

target-pid ::= PID
 ('|' symbolic-name ('|' version ('|' location)?)?)?

Targets never register with a target PID, target PIDs should only be used when creating, getting, or
deleting a Configuration through the Configuration Admin service. The target PID is still the prima-
ry key of the Configuration and is thus in itself a PID. The distinction is only made when the Config-
uration Admin must update a target service. Instead of using the non-target PID as the primary key
it must first search if there exists a target PID in the Configuration store that matches the requested
target PID.

The Persistent Identity Configuration Admin Service Specification Version 1.6

Page 90 OSGi Enterprise Release 7

When a target registers and needs to be updated the Configuration Admin must first find the Con-
figuration with the best matching PID. It must logically take the requested PID, append it with the
bundle symbolic name, the bundle version, and the bundle location. The version must be formatted
canonically, that is, according to the toStr ing() method of the Version class. The rules for best match-
ing are then as follows:

Look for a Configuration, in the given order, with a key of:

 <pid>|<bsn>|<version>|<location>
 <pid>|<bsn>|<version>
 <pid>|<bsn>
 <pid>

For example:

 com.example.web.WebConf|com.acme.example|3.2.0|http://www.xyz.com/acme.jar
 com.example.web.WebConf|com.acme.example|3.2.0
 com.example.web.WebConf|com.acme.example
 com.example.web.WebConf

If a registered target service has a PID that contains a vertical line (' | ' \u007c) | then the value must
be taken as is and must not be interpreted as a targeted PID.

The service.pid configuration property for a targeted PID configuration must always be set
to the targeted PID. That is, if the PID is com.example.web.WebConf and the targeted PID
com.example.web.WebConf|com.acme.example|3.2.0 then the property in the Configuration dic-
tionary must be the targeted PID.

If a Configuration with a targeted PID is deleted or a Configuration with a new targeted PID is added
then all targets that would be stale must be reevaluated against the new situation and updated ac-
cordingly if they are no longer bound against the best matching target PID.

104.3.3 Extenders and Targeted PIDs
Extenders like Declarative Services use Configurations but bypass the general Managed Service or
Managed Service Factory method. It is the responsibility of these extenders to access the Configura-
tions using the targeted PIDs.

Since getting a Configuration tends to create that Configuration it is necessary for these extenders
to use the l istConfigurat ions(Str ing) method to find out if a more targeted Configuration exists.
There are many ways the extender can find the most targeted PID. For example, the following code
gets the most targeted PID for a given bundle.

String mostTargeted(String key, String pid, Bundle bundle) throws Exception {
 String bsn = bundle.getSymbolicName();
 Version version = bundle.getVersion();
 String location = bundle.getLocation();
 String f = String.format("(|(%1$s=%2$s)(%1$s=%2$s|%3$s)" +
 "(%1$s=%2$s|%3$s|%4$s)(%1$s=%2$s|%3$s|%4$s|%5$s))",
 key, pid, bsn, version, location);

 Configuration[] configurations = cm.listConfigurations(f);
 if (configurations == null)
 return null;

 String largest = null;
 for (Configuration c : configurations) {
 String s = (String) c.getProperties().get(key);

Configuration Admin Service Specification Version 1.6 The Configuration Object

OSGi Enterprise Release 7 Page 91

 if ((largest == null) || (largest.length() < s.length()))
 largest = s;
 }
 return largest;
}

104.4 The Configuration Object
A Configurat ion object contains the configuration dictionary, which is a set of properties that con-
figure an aspect of a bundle. A bundle can receive Configurat ion objects by registering a configura-
tion target service with a PID service property. See The Persistent Identity on page 88 for more in-
formation about PIDs.

During registration, the Configuration Admin service must detect these configuration target ser-
vices and hand over their configuration dictionary via a callback. If this configuration dictionary is
subsequently modified, the modified dictionary is handed over to the configuration target with the
same callback.

The Configurat ion object is primarily a set of properties that can be updated by a Management
Agent, user interfaces on the OSGi framework, or other applications. Configuration changes are first
made persistent, and then passed to the target service via a call to the updated method in the Man-
agedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or Managed Service Factory.
This implies that a bundle must not register a Managed Service Factory with a PID that is the same
as the PID given to a Managed Service.

104.4.1 Location Binding
When a Configurat ion object is created with either getConfigurat ion(Str ing) ,
getFactoryConfigurat ion(Str ing,Str ing) , or createFactoryConfigurat ion(Str ing) , it becomes
bound to the location of the calling bundle. This location is obtained with the getBundleLocation()
method.

Location binding is a security feature that assures that only management bundles can modify con-
figuration data, and other bundles can only modify their own configuration data. A Security Excep-
tion is thrown if a bundle does not have Configurat ionPermission[location, CONFIGURE] .

The two argument versions of getConfigurat ion(Str ing,Str ing) and
createFactoryConfigurat ion(Str ing,Str ing) as well as the three argument version of
getFactoryConfigurat ion(Str ing,Str ing,Str ing) take a location Str ing as their last argument. These
methods require the correct permission, and they create Configurat ion objects bound to the speci-
fied location.

Locations can be specified for a specific Bundle or use multi-locations. For a specific location the Con-
figuration location must exactly match the location of the target's Bundle. A multi-location is any
location that has the following syntax:

multi-location ::= '?' symbolic-name?

For example

?com.acme

The path after the question mark is the multi-location name, the multi-location name can be empty if
only a question mark is specified. Configurations with a multi-location are dispatched to any target
that has visibility to the Configuration. The visibility for a given Configuration c depends on the fol-
lowing rules:

The Configuration Object Configuration Admin Service Specification Version 1.6

Page 92 OSGi Enterprise Release 7

• Single-Location - If c. locat ion is not a multi-location then a Bundle only has visibility if the
Bundle's location exactly matches c. locat ion . In this case there is never a security check.

• Multi-Location - If c. locat ion is a multi-location (that is, starts with a question mark):
• Security Off - The Bundle always has visibility
• Security On - The target's Bundle must have Configurat ionPermission[c . locat ion, TARGET]

as defined by the Bundle's hasPermission method. The resource name of the permission must
include the question mark.

The permission matches on the whole name, including any leading ? . The TARGET action is only ap-
plicable in the multi-location scenario since the security is not checked for a single-location. There
is therefore no point in granting a Bundle a permission with TARGET action for anything but a mul-
ti-location (starting with a ?).

It is therefore possible to register services with the same PID from different bundles. If a multi-loca-
tion is used then each bundle will be evaluated for a corresponding configuration update. If the bun-
dle has visibility then it is updated, otherwise it is not.

If multiple targets must be updated then the order of updating is the ranking order of their services.

If a target loses visibility because the Configuration's location changes then it must immediately
be deleted from the perspective of that target. That is, the target must see a deletion (Managed Ser-
vice Factory) or an update with nul l (Managed Service). If a configuration target gains visibility then
the target must see a new update with the proper configuration dictionary. However, the associated
events must not be sent as the underlying Configuration is not actually deleted nor modified.

Changes in the permissions must not initiate a recalculation of the visibility. If the permissions are
changed this will not become visible until one of the other events happen that cause a recalculation
of the visibility.

If the location is changed then the Configuration Admin must send a CM_LOCATION_CHANGED
event to signal that the location has changed. It is up to the Configuration Listeners to update their
state appropriately.

104.4.2 Dynamic Binding
Dynamic binding is available for backward compatibility with earlier versions. It is recommended
that management agents explicitly set the location to a ? (a multi-location) to allow multiple bun-
dles to share PIDs and not use the dynamic binding facility. If a management agent uses ?, it must
at least have Configurat ionPermission[?, CONFIGURE] when security is on, it is also possible to
use Configurat ionPermission[?*, CONFIGURE] to not limit the management agent. See Regions on
page 104 for some examples of using the locations in isolation scenarios.

A nul l location parameter can be used to create Configurat ion objects that are not yet bound. In
this case, the Configuration becomes bound to a specific location the first time that it is com-
pared to a Bundle's location. If a bundle becomes dynamically bound to a Configuration then a
CM_LOCATION_CHANGED event must be dispatched.

When this dynamically bound Bundle is subsequently uninstalled, configurations that are bound to
this bundle must be released. That means that for such Configurat ion object's the bundle location
must be set to nul l again so it can be bound again to another bundle.

104.4.3 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary object. The value of the prop-
erty must be the same type as the set of Primary Property Types specified in OSGi Core Release 7 Fil-
ter Syntax.

The name or key of a property must always be a Str ing object, and is not case-sensitive during look
up, but must preserve the original case. The format of a property name should be:

Configuration Admin Service Specification Version 1.6 The Configuration Object

OSGi Enterprise Release 7 Page 93

property-name ::= public | private
public ::= symbolic-name // See General Syntax in Core Framework
private ::= '.' symbolic-name

Properties can be used in other subsystems that have restrictions on the character set that can be
used. The symbol ic-name production uses a very minimal character set.

Bundles must not use nested lists or arrays, nor must they use mixed types. Using mixed types or
nesting makes it impossible to use the meta typing specification. See Metatype Service Specification on
page 135.

Property values that are collections may have an ordering that must be preserved when persisting
the configuration so that later access to the property value will see the preserved ordering of the col-
lection.

104.4.4 Property Propagation
A configuration target should copy the public configuration properties (properties whose name
does not start with a '.' or \u002E) of the Dictionary object argument in updated(Dict ionary) into the
service properties on any resulting service registration.

This propagation allows the development of applications that leverage the Framework service reg-
istry more extensively, so compliance with this mechanism is advised.

A configuration target may ignore any configuration properties it does not recognize, or it may
change the values of the configuration properties before these properties are registered as service
properties. Configuration properties in the Framework service registry are not strictly related to the
configuration information.

Bundles that follow this recommendation to propagate public configuration properties can partici-
pate in horizontal applications. For example, an application that maintains physical location infor-
mation in the Framework service registry could find out where a particular device is located in the
house or car. This service could use a property dedicated to the physical location and provide func-
tions that leverage this property, such as a graphic user interface that displays these locations.

Bundles performing service registrations on behalf of other bundles (e.g. OSGi Declarative Services)
should propagate all public configuration properties and not propagate private configuration prop-
erties.

104.4.5 Automatic Properties
The Configuration Admin service must automatically add a number of properties to the config-
uration dictionary. If these properties are also set by a configuring bundle or a plug-in, they must
always be overridden before they are given to the target service, see Configuration Plugin on page
107. Therefore, the receiving bundle or plug-in can assume that the following properties are de-
fined by the Configuration Admin service and not by the configuring bundle:

• service.pid - Set to the PID of the associated Configurat ion object. This is the full the targeted PID
if a targeted PID is used, see Targeted PIDs on page 89.

• service.factoryPid - Only set for a Managed Service Factory. It is then set to the PID of the associ-
ated Managed Service Factory. This is the full the targeted PID if a targeted PID is used.

• service.bundleLocation - Set to the location of the Configurat ion object. This property can only
be used for searching, it may not appear in the configuration dictionary returned from the get-
Propert ies method due to security reasons, nor may it be used when the target is updated.

Constants for some of these properties can be found in org.osgi .f ramework.Constants and the Con-
figurat ionAdmin interface. These service properties are all of type Str ing .

Managed Service Configuration Admin Service Specification Version 1.6

Page 94 OSGi Enterprise Release 7

104.4.6 Equality
Two different Configurat ion objects can actually represent the same underlying configuration. This
means that a Configurat ion object must implement the equals and hashCode methods in such a way
that two Configurat ion objects are equal when their PID is equal.

104.5 Managed Service
A Managed Service is used by a bundle that needs one or more configuration dictionaries. It there-
fore registers the Managed Service with one or more PIDs and is thus associated with one Configu-
rat ion object in the Configuration Admin service for each registered PID. A bundle can register any
number of ManagedService objects, but each must be identified with its own PID or PIDs.

A bundle should use a Managed Service when it needs configuration information for the following:

• A Singleton - A single entity in the bundle that needs to be configured.
• Externally Detected Devices - Each device that is detected causes a registration of an associated

ManagedService object. The PID of this object is related to the identity of the device, such as the
address or serial number.

A Managed Service may be registered with more than one PID and therefore be associated with mul-
tiple Configuration objects, one for each PID. Using multiple PIDs for a Managed Service is not rec-
ommended. For example, when a configuration is deleted for a Managed Service there is no way to
identify which PID is associated with the deleted configuration.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A singleton requires a single
configuration dictionary. Bundles may implement several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and presence of services in
the Framework service registry. Only one instance of a Watchdog service is needed, so only a single
configuration dictionary is required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi Environment, it must be
detected in some manner. The Configuration Admin service cannot know the identity and the num-
ber of instances of the device without assistance. When a device is detected, it still needs configura-
tion information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are attached and removed.
When it detects a temperature sensor, it could register a Sensor service with the Framework service
registry. This Sensor service needs configuration information specifically for that sensor, such as
which lamps should be turned on, at what temperature the sensor is triggered, what timer should be
started, in what zone it resides, and so on. One bundle could potentially have hundreds of these sen-
sors and actuators, and each needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with a PID related to the
physical sensor (such as the address) to receive configuration information.

Other examples are services discovered on networks with protocols like Jini, UPnP, and Salutation.
They can usually be represented in the Framework service registry. A network printer, for example,
could be detected via UPnP. Once in the service registry, these services usually require local config-
uration information. A Printer service needs to be configured for its local role: location, access list,
and so on.

Configuration Admin Service Specification Version 1.6 Managed Service

OSGi Enterprise Release 7 Page 95

This information needs to be available in the Framework service registry whenever that particular
Printer service is registered. Therefore, the Configuration Admin service must remember the config-
uration information for this Printer service.

This type of service should register with the Framework as a Managed Service in order to receive ap-
propriate configuration information.

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more ManagedService objects
with a PID service property. If it has a default set of properties for its configuration, it may include
them as service properties of the Managed Service. These properties may be used as a configuration
template when a Configurat ion object is created for the first time. A Managed Service optionally im-
plements the MetaTypeProvider interface to provide information about the property types. See Meta
Typing on page 109.

When this registration is detected by the Configuration Admin service, the following steps must oc-
cur:

• The configuration stored for the registered PID must be retrieved. If there is a Configurat ion ob-
ject for this PID and the configuration is visible for the associated bundle then it is sent to the
Managed Service with updated(Dict ionary) .

• If a Managed Service is registered and no configuration information is available or the configu-
ration is not visible then the Configuration Admin service must call updated(Dict ionary) with a
nul l parameter.

• If the Configuration Admin service starts after a Managed Service is registered, it must call
updated(Dict ionary) on this service as soon as possible according to the prior rules. For this rea-
son, a Managed Service must always get a callback when it registers and the Configuration Ad-
min service is started.

Multiple Managed Services can register with the same PID, they are all updated as long as they have
visibility to the configuration as defined by the location, see Location Binding on page 91.

If the Managed Service is registered with more than one PID and more than one PID has no configu-
ration information available, then updated(Dict ionary) will be called multiple times with a nul l pa-
rameter.

The updated(Dict ionary) callback from the Configuration Admin service to the Managed Service
must take place asynchronously. This requirement allows the Managed Service to finish its initial-
ization in a synchronized method without interference from the Configuration Admin service call-
back. Care should be taken not to cause deadlocks by calling the Framework within a synchronized
method.

Figure 104.4 Managed Service Configuration Action Diagram

Client Bundle Framework

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread

Configuration
Admin

Managed Service Configuration Admin Service Specification Version 1.6

Page 96 OSGi Enterprise Release 7

The updated method may throw a Configurat ionException . This object must describe the problem
and what property caused the exception.

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in the service registry
for a short period before they are replaced by the properties of the actual configuration dictionary.
Care should be taken that this visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must be split into two pieces:
an object performing the actual service and a Managed Service. First, the Managed Service is regis-
tered, the configuration is received, and the actual service object is registered. In such cases, the use
of a Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services are registered under the
ManagedService interface, each with a different PID.

Figure 104.5 PIDs and External Associations

Configuration
Admin Impl

16.1

com.
acme

name=Erica
size=8
name=Elmer
size=42

database pid=com.acme

4.102 name=Christer
size=2

Managed Service

PID configuration

pid=4.102

no associated PID registered

The Configuration Admin service has a database containing a configuration record for each PID.
When the Managed Service with service.pid = com.acme is registered, the Configuration Admin
service will retrieve the properties name=Elmer and size=42 from its database. The properties are
stored in a Dictionary object and then given to the Managed Service with the updated(Dict ionary)
method.

104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet connection. It is a single-
ton, so it uses a ManagedService object to get its configuration information: the port and the net-
work name on which it should register.

class SampleManagedService implements ManagedService{
 Dictionary properties;
 ServiceRegistration registration;
 Console console;

 public void start(
 BundleContext context) throws Exception {
 properties = new Hashtable();

Configuration Admin Service Specification Version 1.6 Managed Service Factory

OSGi Enterprise Release 7 Page 97

 properties.put(Constants.SERVICE_PID,
 "com.acme.console");

 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 properties
);
 }

 public synchronized void updated(Dictionary np) {
 if (np != null) {
 properties = np;
 properties.put(
 Constants.SERVICE_PID, "com.acme.console");
 }

 if (console == null)
 console = new Console();

 int port = ((Integer)properties.get("port"))
 .intValue();

 String network = (String) properties.get("network");
 console.setPort(port, network);
 registration.setProperties(properties);
 }
 ... further methods
}

104.5.6 Deletion
When a Configurat ion object for a Managed Service is deleted, the Configuration Admin service
must call updated(Dict ionary) with a nul l argument on a thread that is different from that on
which the Configurat ion.delete was executed. This deletion must send out a Configuration Event
CM_DELETED asynchronously to any registered Configuration Listener services after the updated
method is called with a nul l .

104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is needed for a service that can
be instantiated multiple times. When a Managed Service Factory is registered with the Framework,
the Configuration Admin service consults its database and calls updated(Str ing,Dict ionary) for each
associated and visible Configurat ion object that matches the PIDs on the registration. It passes the
identifier of the Configuration instance, which can be used as a PID, as well as a Dictionary object
with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functionality a number of times,
each time with different configuration dictionaries. In this situation, the Managed Service Factory
acts like a class and the Configuration Admin service can use this Managed Service Factory to instan-
tiate instances for that class.

In the next section, the word factory refers to this concept of creating instances of a function defined
by a bundle that registers a Managed Service Factory.

Managed Service Factory Configuration Admin Service Specification Version 1.6

Page 98 OSGi Enterprise Release 7

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an internal or external enti-
ty associated with the configuration information but can potentially be instantiated multiple times.

104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has - a function likely to be re-
quired for different users. This function could be viewed as a class that needs to be instantiated for
each user. Each instance requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a ManagedServiceFactory object. In
this way, the Configuration Admin service can define the configuration information for each user
separately. The Email Fetcher service will only receive a configuration dictionary for each required
instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that receives a temperature and,
depending on settings, can turn an actuator on and off. This service would need to be instantiated
many times depending on where it is needed. Each instance would require its own configuration in-
formation for the following:

• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a ManagedServiceFactory interface.
A configuration program can then use this Managed Service Factory to create instances as needed.
For example, this program could use a Graphic User Interface (GUI) to create such a component and
configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification implementations. Some
environments have no means to identify available serial ports, and a device on a serial port cannot
always provide information about its type.

Therefore, each serial port requires a description of the device that is connected. The bundle manag-
ing the serial ports would need to instantiate a number of serial ports under the control of the Con-
figuration Admin service, with the appropriate DEVICE_CATEGORY property to allow it to partici-
pate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should register a Managed Ser-
vice Factory. The Configuration Admin service can then, with the help of a configuration program,
define configuration information for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration dictionary for a Man-
aged Service Factory is identified by a PID. The Managed Service Factory, however, also has a factory
PID, which is the PID of the associated Managed Service Factory. It is used to group all Managed Ser-
vice Factory configuration dictionaries together.

When the Configuration Admin service detects the registration of a Managed Service Factory, it
must find all visible configuration dictionaries for this factory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configuration dictionary. The first ar-
gument is the PID of the Configurat ion object (the one created by the Configuration Admin service)
and the second argument contains the configuration properties.

Configuration Admin Service Specification Version 1.6 Managed Service Factory

OSGi Enterprise Release 7 Page 99

The Managed Service Factory should then create any artifacts associated with that factory. Using the
PID given in the Configurat ion object, the bundle may register new services (other than a Managed
Service) with the Framework, but this is not required. This may be necessary when the PID is useful
in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this would force two Config-
uration objects to have the same PID. If a bundle attempts to do this, the Configuration Admin ser-
vice should log an error and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions exist between initializa-
tion, updates, and deletions.

Figure 104.6 Managed Service Factory Action Diagram

Client bundle Framework

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementer of
ManagedServiceFactory

set the
configuration
for a new
instance

get pid

for each found pid

MUST be on another thread

Configuration
Admin

A Managed Service Factory has only one update method: updated(Str ing,Dict ionary) . This method
can be called any number of times as Configuration objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for the first time, in which
case it should create a new instance, or a subsequent time, in which case it should update an existing
instance.

The Configuration Admin service must call updated(Str ing,Dict ionary) on a thread that is different
from the one that executed the registration. This requirement allows an implementation of a Man-
aged Service Factory to use a synchronized method to assure that the callbacks do not interfere with
the Managed Service Factory registration.

The updated(Str ing,Dict ionary) method may throw a Configurat ionException object. This object
describes the problem and what property caused the problem. These exceptions should be logged by
a Configuration Admin service.

Multiple Managed Service Factory services can be registered with the same PID. Each of those ser-
vices that have visibility to the corresponding configuration will be updated in service ranking or-
der.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the deleted(Str ing)
method is called. The argument is the PID for this instance. The implementation of the Managed
Service Factory must remove all information and stop any behavior associated with that PID. If a
service was registered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED to all registered Config-
uration Listener services.

Managed Service Factory Configuration Admin Service Specification Version 1.6

Page 100 OSGi Enterprise Release 7

104.6.4 Managed Service Factory Example
Figure 104.7 highlights the differences between a Managed Service and a Managed Service Factory. It
shows how a Managed Service Factory implementation receives configuration information that was
created before it was registered.

• A bundle implements an EMail Fetcher service. It registers a ManagedServiceFactory object with
PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults its database. It finds
three Configurat ion objects for which the factory PID is equal to com.acme.emai l . It must call
updated(Str ing,Dict ionary) for each of these Configurat ion objects on the newly registered Man-
agedServiceFactory object.

• For each configuration dictionary received, the factory should create a new instance of a EMail-
Fetcher object, one for erica (PID=16.1), one for anna (PID=16.3), and one for elmer (PID=16.2).

• The EMailFetcher objects are registered under the Topic interface so their results can be viewed
by an online display.

If the EMailFetcher object is registered, it may safely use the PID of the Configurat ion object be-
cause the Configuration Admin service must guarantee its suitability for this purpose.

Figure 104.7 Managed Service Factory Example

Configuration
Admin

MailFetchFactory
pid=com.acme.email

pid=16.1
name=erica

OSGi Service
Registry

registration
events

pid=16.1
name=erica
pid=16.2
name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service
Factory

factory pid
= com.acme
.email

factory pid
= eric.mf

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own port and interface can
run simultaneously. This approach is very similar to the example for the Managed Service, but high-
lights the difference by allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory{
 Hashtable consoles = new Hashtable();
 BundleContext context;
 public void start(BundleContext context)
 throws Exception {
 this.context = context;
 Hashtable local = new Hashtable();
 local.put(Constants.SERVICE_PID,"com.acme.console");
 context.registerService(
 ManagedServiceFactory.class.getName(),

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Enterprise Release 7 Page 101

 this,
 local);
 }

 public void updated(String pid, Dictionary config){
 Console console = (Console) consoles.get(pid);
 if (console == null) {
 console = new Console(context);
 consoles.put(pid, console);
 }

 int port = getInt(config, "port", 2011);
 String network = getString(
 config,
 "network",
 null /*all*/
);
 console.setPort(port, network);
 }

 public void deleted(String pid) {
 Console console = (Console) consoles.get(pid);
 if (console != null) {
 consoles.remove(pid);
 console.close();
 }
 }
}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configuration data in an OSGi
environment. This configuration information is defined by a number of Configurat ion objects as-
sociated with specific configuration targets. Configurat ion objects can be created, listed, modified,
and deleted through this interface. Either a remote management system or the bundles configuring
their own configuration information may perform these operations.

The Configurat ionAdmin interface has methods for creating and accessing Configurat ion objects for
a Managed Service, as well as methods for managing new Configurat ion objects for a Managed Ser-
vice Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Configurat ion object with
Configurat ionAdmin.getConfigurat ion . No create method is offered because doing so could intro-
duce race conditions between different bundles trying to create a Configurat ion object for the same
Managed Service. The getConfigurat ion method must atomically create and persistently store an ob-
ject if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) - This method is used by a bundle with a given location to configure its
own ManagedService objects. The argument specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to configure an-
other bundle. Therefore, this management bundle needs the right permission. The first argument

Configuration Admin Service Configuration Admin Service Specification Version 1.6

Page 102 OSGi Enterprise Release 7

is the PID and the second argument is the location identifier of the targeted ManagedService ob-
ject.

All Configurat ion objects have a method, getFactoryPid() , which in this case must return nul l be-
cause the Configurat ion object is associated with a Managed Service.

Creating a new Configuration object must not initiate a callback to the Managed Service updated
method until the properties are set in the Configuration with the update method.

104.7.2 Creating a Managed Service Factory Configuration Object
The Configurat ionAdmin class provides two sets of methods to create a new Configuration for a
Managed Service Factory. The first set delegates the creation of the unique PID to the Configuration
Admin service. The second set allows the caller to influence the generation of the PID.

The Configurat ionAdmin class provides the following two methods which generate a unique PID
when creating a new Configuration for a Managed Service Factory. A new, unique PID is created for
the Configuration object by the Configuration Admin service. The scheme used for this PID is de-
fined by the Configuration Admin service and is unrelated to the factory PID, which is chosen by
the registering bundle.

• createFactoryConfigurat ion(Str ing) - This method is used by a bundle with a given location to
configure its own ManagedServiceFactory objects. The argument specifies the PID of the target-
ed ManagedServiceFactory object. This factory PID can be obtained from the returned Configura-
t ion object with the getFactoryPid() method.

• createFactoryConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to
configure another bundle's ManagedServiceFactory object. The first argument is the PID and the
second is the location identifier of the targeted ManagedServiceFactory object. The factory PID
can be obtained from the returned Configurat ion object with getFactoryPid method.

The Configurat ionAdmin class provides the following two methods allowing the caller to influence
the generation of the PID when creating a new Configuration for a Managed Service Factory. The
PID for the Configuration object is generated from the provided factory PID and the provided name
by starting with the factory PID, appending a tilde (' ~ ' \u007e), and then appending the name. The
getFactoryConfigurat ion methods must atomically create and persistently store a Configuration ob-
ject if it does not yet exist.

• getFactoryConfigurat ion(Str ing,Str ing) - This method is used by a bundle with a given location
to configure its own ManagedServiceFactory objects. The first argument specifies the PID of the
targeted ManagedServiceFactory object. This factory PID can be obtained from the returned Con-
figurat ion object with the getFactoryPid() method. The second argument specifies the name of
the factory configuration. The generated PID can be obtained from the returned Configurat ion
object with the getPid() method.

• getFactoryConfigurat ion(Str ing,Str ing,Str ing) - This method is used by a management bun-
dle to configure another bundle's ManagedServiceFactory object. The first argument is the PID,
the second argument is the name, and the third is the location identifier of the targeted Man-
agedServiceFactory object. The factory PID can be obtained from the returned Configurat ion ob-
ject with getFactoryPid method. The generated PID can be obtained from the returned Configu-
rat ion object with the getPid() method.

Creating a new Configuration must not initiate a callback to the Managed Service Factory updated
method until the properties are set in the Configurat ion object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l istConfigurat ions(Str ing) . The argu-
ment is a Str ing object with a filter expression. This filter expression has the same syntax as the
Framework Fi l ter class. For example:

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Enterprise Release 7 Page 103

(&(size=42)(service.factoryPid=*osgi*))

The Configuration Admin service must only return Configurations that are visible to the calling
bundle, see Location Binding on page 91.

A single Configurat ion object is identified with a PID, and can be obtained with
l istConfigurat ions(Str ing) if it is visible. nul l is returned in both cases when there are no visible
Configurat ion objects.

The PIDs that are filtered on can be targeted PIDs, see Targeted PIDs on page 89.

104.7.4 Updating a Configuration
The process of updating a Configurat ion object is the same for Managed Services and
Managed Service Factories. First, l istConfigurat ions(Str ing) , getConfigurat ion(Str ing) or
getFactoryConfigurat ion(Str ing,Str ing) should be used to get a Configurat ion object. The properties
can be obtained with Configurat ion.getPropert ies . When no update has occurred since this object
was created, getPropert ies returns nul l .

New properties can be set by calling Configurat ion.update . The Configuration Admin ser-
vice must first store the configuration information and then call all configuration targets that
have visibility with the updated method: either the ManagedService.updated(Dict ionary) or
ManagedServiceFactory.updated(Str ing,Dict ionary) method. If a target service is not registered, the
fresh configuration information must be given to the target when the configuration target service
registers and it has visibility. Each update of the Configuration properties must update a counter in
the Configuration object after the data has been persisted but before the target(s) have been updated
and any events are sent out. This counter is available from the getChangeCount() method.

The update methods in Configurat ion objects are not executed synchronously with the related tar-
get services updated method. The updated method must be called asynchronously. The Configura-
tion Admin service, however, must have updated the persistent storage before the update method
returns.

The update methods must also asynchronously send out a Configuration Event CM_UPDATED to all
registered Configuration Listeners.

Invoking the update(Dict ionary) method results in Configuration Admin service blindly updating
the Configurat ion object and performing the above outlined actions. This even happens if the updat-
ed set of properties is the same as the already existing properties in the Configurat ion object.

To optimize configuration updates if the caller does not know whether properties of a Configura-
t ion object have changed, the updateIfDifferent(Dict ionary) method can be used. The provided dic-
tionary is compared with the existing properties. If there is no change, no action is taken. If there is
any change detected, updateIfDifferent(Dict ionary) acts exactly as update(Dict ionary) . Properties
are compared as follows:

• Scalars are compared using equals

• Arrays are compared using Arrays.equals

• Collections are compared using equals

The boolean result of updateIfDifferent(Dict ionary) is true if the Configuration object has been up-
dated.

If the Configurat ion object has the READ_ONLY attribute set, calling one of the update methods re-
sults in a ReadOnlyConfigurat ionException and the configuration is not changed.

104.7.5 Using Multi-Locations
Sharing configuration between different bundles can be done using multi-locations, see Location
Binding on page 91. A multi-location for a Configuration enables this Configuration to be deliv-

Configuration Admin Service Configuration Admin Service Specification Version 1.6

Page 104 OSGi Enterprise Release 7

ered to any bundle that has visibility to that configuration. It is also possible that Bundles are inter-
ested in multiple PIDs for one target service, for this reason they can register multiple PIDs for one
service.

For example, a number of bundles require access to the URL of a remote host, associated with the
PID com.acme.host . A manager, aware that this PID is used by different bundles, would need to
specify a location for the Configuration that allows delivery to any bundle. A multi-location, any lo-
cation starting with a question mark achieves this. The part after the question mark has only use if
the system runs with security, it allows the implementation of regions, see Regions on page 104. In
this example a single question mark is used because any Bundle can receive this Configuration. The
manager's code could look like:

Configuration c = admin.getConfiguration("com.acme.host", "?");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

A Bundle interested in the host configuration would register a Managed Service with the following
properties:

service.pid = ["com.acme.host", "com.acme.system"]

The Bundle would be called back for both the com.acme.host and com.acme.system PID and must
therefore discriminate between these two cases. This Managed Service therefore would have a call-
back like:

volatile URL url;
public void updated(Dictionary d) {
 if (d.get("service.pid").equals("com.acme.host"))
 this.url = new URL(d.get("host"));
 if (d.get("service.pid").equals("com.acme.system"))

}

104.7.6 Regions
In certain cases it is necessary to isolate bundles from each other. This will require that the configu-
ration can be separated in regions. Each region can then be configured by a separate manager that is
only allowed to manage bundles in its own region. Bundles can then only see configurations from
their own region. Such a region based system can only be achieved with Java security as this is the
only way to place bundles in a sandbox. This section describes how the Configuration's location
binding can be used to implement regions if Java security is active.

Regions are groups of bundles that share location information among each other but are not willing
to share this information with others. Using the multi-locations, see Location Binding on page 91,
and security it is possible to limit access to a Configuration by using a location name. A Bundle can
only receive a Configuration when it has Configurat ionPermission [location name, TARGET] . It is
therefore possible to create region by choosing a region name for the location. A management agent
then requires Configurat ionPermission [?region-name, CONFIGURE] and a Bundle in the region re-
quires Configurat ionPermission [?region-name, TARGET] .

To implement regions, the management agent is required to use multi-locations; without the ques-
tion mark a Configuration is only visible to a Bundle that has the exact location of the Configura-
tion. With a multi-location, the Configuration is delivered to any bundle that has the appropriate
permission. Therefore, if regions are used, no manager should have Configurat ionPermission[*,
CONFIGURE] because it would be able to configure anybody. This permission would enable the
manager to set the location to any region or set the location to nul l . All managers must be restrict-
ed to a permission like Configurat ionPermission[?com.acme.region.*,CONFIGURE] . The resource

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Enterprise Release 7 Page 105

name for a Configuration Permission uses substring matching as in the OSGi Filter, this facility can
be used to simplify the administrative setup and implement more complex sharing schemes.

For example, a management agent works for the region com.acme . It has the following permission:

Configurat ionPermission[?com.acme.*,CONFIGURE]

The manager requires multi-location updates for com.acme.* (the last full stop is required in this
wildcarding). For the CONFIGURE action the question mark must be specified in the resource name.
The bundles in the region have the permission:

Configurat ionPermission["?com.acme.alpha",TARGET]

The question mark must be specified for the TARGET permission. A management agent that needs to
configure Bundles in a region must then do this as follows:

Configuration c = admin.getConfiguration("com.acme.host", "?com.acme.alpha");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

Another, similar, example with two regions:

• system
• appl icat ion

There is only one manager that manages all bundles. Its permissions look like:

ConfigurationPermission[?system,CONFIGURE]
ConfigurationPermission[?application,CONFIGURE]

A Bundle in the appl icat ion region can have the following permissions:

ConfigurationPermission[?application,TARGET]

This managed bundle therefore has only visibility to configurations in the appl icat ion region.

104.7.7 Deletion
A Configurat ion object that is no longer needed can be deleted with Configurat ion.delete , which
removes the Configurat ion object from the database. The database must be updated before the tar-
get service's updated or deleted method is called. Only services that have received the configuration
dictionary before must be called.

If the target service is a Managed Service Factory, the factory is informed of the deleted Configura-
t ion object by a call to ManagedServiceFactory.deleted(Str ing) method. It should then remove the
associated instance. The ManagedServiceFactory.deleted(Str ing) call must be done asynchronously
with respect to Configurat ion.delete() .

When a Configurat ion object of a Managed Service is deleted, ManagedService.updated is called
with nul l for the propert ies argument. This method may be used for clean-up, to revert to default
values, or to unregister a service. This method is called asynchronously from the delete method.

The delete method must also asynchronously send out a Configuration Event CM_DELETED to all
registered Configuration Listeners.

If the Configurat ion object has the READ_ONLY attribute set, calling the delete method results in a
ReadOnlyConfigurat ionException and the configuration is not deleted.

104.7.8 Updating a Bundle's Own Configuration
The Configuration Admin service specification does not distinguish between updates via a Manage-
ment Agent and a bundle updating its own configuration information (as defined by its location).

Configuration Events Configuration Admin Service Specification Version 1.6

Page 106 OSGi Enterprise Release 7

Even if a bundle updates its own configuration information, the Configuration Admin service must
callback the associated target service's updated method.

As a rule, to update its own configuration, a bundle's user interface should only update the config-
uration information and never its internal structures directly. This rule has the advantage that the
events, from the bundle implementation's perspective, appear similar for internal updates, remote
management updates, and initialization.

104.7.9 Configuration Attributes
The Configurat ion object supports attributes, similar to setting attributes on files in a file system.
Currently only the READ_ONLY attribute is supported.

Attributes can be set by calling the addAttr ibutes(Configurat ionAttr ibute. . .) method and
listing the attributes to be added. In the same way attributes can be removed by calling
removeAttr ibutes(Configurat ionAttr ibute. . .) . Each successful change in attributes is persisted.

A Bundle can only change the attributes if it has Configuration Permission with the ATTRIBUTE ac-
tion. Otherwise a Security Exception is thrown.

The currently set attributes can be queried using the getAttr ibutes() method.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its repository. The model is based
on the white board pattern where Configuration Listener services are registered with the service
registry.

There are two types of Configuration Listener services:

• Configurat ionListener - The default Configuration Listener receives events asynchronously from
the method that initiated the event and on another thread.

• SynchronousConfigurat ionListener - A Synchronous Configuration Listener is guaranteed to be
called on the same thread as the method call that initiated the event.

The Configuration Listener service will receive Configurat ionEvent objects if important changes
take place. The Configuration Admin service must call the configurat ionEvent(Configurat ionEvent)
method with such an event. Configuration Events must be delivered in order for each listener as
they are generated. The way events must be delivered is the same as described in Delivering Events of
OSGi Core Release 7.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a PID (getPid()). If the
factory PID is nul l , the event is related to a Managed Service Configurat ion object, else the event is
related to a Managed Service Factory Configurat ion object.

The Configurat ionEvent object can deliver the following events from the getType() method:

• CM_DELETED - The Configurat ion object is deleted.
• CM_UPDATED - The Configurat ion object is updated.
• CM_LOCATION_CHANGED - The location of the Configurat ion object changed.

The Configuration Event also carries the ServiceReference object of the Configuration Admin ser-
vice that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events must be delivered asynchronously via the Event Admin service, if present. The
topic of a configuration event must be:

Configuration Admin Service Specification Version 1.6 Configuration Plugin

OSGi Enterprise Release 7 Page 107

org/osgi/service/cm/ConfigurationEvent/<eventtype>

The <event type> can be any of the following:

CM_DELETED
CM_UPDATED
CM_LOCATION_CHANGED

The properties of a configuration event are:

• cm.factoryPid - (Str ing) The factory PID of the associated Configurat ion object, if the target is a
Managed Service Factory. Otherwise not set.

• cm.pid - (Str ing) The PID of the associated Configurat ion object.
• service - (ServiceReference) The Service Reference of the Configuration Admin service.
• service. id - (Long) The Configuration Admin service's ID.
• service.objectClass - (Str ing[]) The Configuration Admin service's object class (which must in-

clude org.osgi .service.cm.Configurat ionAdmin)
• service.pid - (Str ing) The Configuration Admin service's persistent identity, if set.

104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to participate in the configuration
process. Bundles that register a service object under a Configurat ionPlugin interface can process the
configuration dictionary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dictionaries just before they
must be passed to the intended Managed Service or Managed Service Factory but after the properties
are stored. The changes the plug-in makes are dynamic and must not be stored. The plug-in must on-
ly be called when an update takes place while it is registered and there is a valid dictionary. The plu-
gin is not called when a configuration is deleted.

The Configurat ionPlugin interface has only one method:
modifyConfigurat ion(ServiceReference,Dict ionary) . This method inspects or modifies configura-
tion data.

All plug-ins in the service registry must be traversed and called before the properties are passed to
the configuration target service. Each Configuration Plugin object gets a chance to inspect the exist-
ing data, look at the target object, which can be a ManagedService object or a ManagedServiceFac-
tory object, and modify the properties of the configuration dictionary. The changes made by a plug-
in must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to the configuration proper-
ties of the target service unless the implications are understood. This functionality is mainly intend-
ed to provide functions that leverage the Framework service registry. The changes made by the plug-
in should normally not be validated. However, the Configuration Admin must ignore changes to the
automatic properties as described in Automatic Properties on page 93.

For example, a Configuration Plugin service may add a physical location property to a service. This
property can be leveraged by applications that want to know where a service is physically located.
This scenario could be carried out without any further support of the service itself, except for the
general requirement that the service should propagate the public properties it receives from the
Configuration Admin service to the service registry.

Configuration Plugin Configuration Admin Service Specification Version 1.6

Page 108 OSGi Enterprise Release 7

Figure 104.8 Order of Configuration Plugin Services

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

modifyConfiguration()update()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object

104.9.1 Limiting The Targets
A Configurat ionPlugin object may optionally specify a cm.target registration property. This value
is the PID of the configuration target whose configuration updates the Configurat ionPlugin object
wants to intercept.

The Configurat ionPlugin object must then only be called with updates for the configuration target
service with the specified PID. For a factory target service, the factory PID is used and the plugin will
see all instances of the factory. Omitting the cm.target registration property means that it is called
for all configuration updates.

104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to with the value
(objectclass=com.acme.Alarm). When the Configuration Admin service sets this property on the
target service, a Configurat ionPlugin object may replace the (objectclass=com.acme.Alarm) filter
with an array of existing alarm systems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with service.pid=343 is registered, requiring that the list of the target ser-
vice be updated. The bundle which registered the Configuration Plugin service, therefore, wants
to set the service.to registration property on the target service. It does not do this by calling
ManagedService.updated directly for several reasons:

• In a securely configured system, it should not have the permission to make this call or even ob-
tain the target service.

• It could get into race conditions with the Configuration Admin service if it had the permissions
in the previous bullet. Both services would compete for access simultaneously.

Instead, it must get the Configurat ion object from the Configuration Admin service and call the up-
date method on it.

The Configuration Admin service must schedule a new update cycle on another thread, and some-
time in the future must call Configurat ionPlugin.modifyPropert ies . The Configurat ionPlugin object
could then set the service.to property to [32434,232,12421,1212, 343] . After that, the Configura-
tion Admin service must call updated on the target service with the new service.to list.

104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of the Configuration Admin
service, which must determine whether to accept the changes, hide critical variables, or deny the
changes for other reasons.

Configuration Admin Service Specification Version 1.6 Meta Typing

OSGi Enterprise Release 7 Page 109

The Configurat ionPlugin interface must also allow plugins to detect configuration updates to the
service via the callback. This ability allows them to synchronize the configuration updates with
transient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it must fetch the appro-
priate Configurat ion object from the Configuration Admin service and call the update() method
(the no parameter version) on this object. This call forces an update with the current configuration
dictionary so that all applicable plug-ins get called again.

104.9.5 Calling Order
The order in which the Configurat ionPlugin objects are called must depend on the
service.cmRanking configuration property of the Configurat ionPlugin object. Table 104.2 shows the
usage of the service.cmRanking property for the order of calling the Configuration Plugin services.
In the event of more than one plugin having the same value of service.cmRanking , then the order in
which these are called is undefined.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description
< 0 The Configuration Plugin service should not modify properties and must

be called before any modifications are made. Any modification from the
Configuration Plugin service is ignored.

>= 0 && <= 1000 The Configuration Plugin service modifies the configuration data. The
calling order should be based on the value of the service.cmRanking prop-
erty.

> 1000 The Configuration Plugin service should not modify data and is called af-
ter all modifications are made. Any modification from the Configuration
Plugin service is ignored.

104.9.6 Manual Invocation
The Configuration Admin service ensures that Configuration Plugin services are automati-
cally called for a Managed Service or a Managed Service Factory as outlined above. If a bundle
needs to get the configuration properties processed by the Configuration Plugin services, the
getProcessedPropert ies(ServiceReference) method provides this view.

The service reference passed into the method must either point to a Managed Service or Managed
Service Factory registered on behalf of the bundle getting the processed properties. If that service
should not be called by the Configuration Admin service, that service must be registered without a
PID service property.

104.10 Meta Typing
This section discusses how the Metatype specification is used in the context of a Configuration Ad-
min service.

When a Managed Service or Managed Service Factory is registered, the service object may also im-
plement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the MetaTypeProvider inter-
face, a management bundle may assume that the associated ObjectClassDefinit ion object can be
used to configure the service.

Coordinator Support Configuration Admin Service Specification Version 1.6

Page 110 OSGi Enterprise Release 7

The ObjectClassDefinit ion and Attr ibuteDefinit ion objects contain sufficient information to auto-
matically build simple user interfaces. They can also be used to augment dedicated interfaces with
accurate validations.

When the Metatype specification is used, care should be taken to match the capabilities of the
metatype package to the capabilities of the Configuration Admin service specification. Specifically:

• The metatype specification cannot describe nested arrays and lists or arrays/lists of mixed type.

This specification does not address how the metatype is made available to a management system
due to the many open issues regarding remote management.

104.11 Coordinator Support
The Coordinator Service Specification on page 499 defines a mechanism for multiple parties to col-
laborate on a common task without a priori knowledge of who will collaborate in that task. The
Configuration Admin service must participate in such scenarios to coordinate with provisioning or
configuration tasks.

If configurations are created, updated or deleted and an implicit coordination exists, the Configura-
tion Admin service must delay notifications until the coordination terminates. However the config-
uration changes must be persisted immediately. Updating a Managed Service or Managed Service
Factory and informing asynchronous listeners is delayed until the coordination terminates, regard-
less of whether the coordination fails or terminates regularly. Registered synchronous listeners will
be informed immediately when the change happens regardless of a coordination.

104.12 Capabilities

104.12.1 osgi.implementation Capability
The Configuration Admin implementation bundle must provide the osgi . implementation capabil-
ity with the name osgi .cm . This capability can be used by provisioning tools and during resolution
to ensure that a Configuration Admin implementation is present to manage configurations. The ca-
pability must also declare a uses constraint for the org.osgi .service.cm package and provide the ver-
sion of this specification:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.cm";
 uses:="org.osgi.service.cm";
 version:Version="1.6"

This capability must follow the rules defined for the osgi.implementation Namespace on page 635.

Bundles relying on the Configuration Admin service should require the osgi . implementation capa-
bility from the Configuration Admin Service.

Require-Capability: osgi.implementation;
 filter:="(&(osgi.implementation=osgi.cm)(version>=1.6)(!(version>=2.0)))"

This requirement can be easily generated using the RequireConfigurat ionAdmin annotation.

104.12.2 osgi.service Capability
The bundle providing the Configuration Admin service must provide a capability in the
osgi .service namespace representing this service. This capability must also declare a uses constraint
for the org.osgi .service.cm package:

Configuration Admin Service Specification Version 1.6 Security

OSGi Enterprise Release 7 Page 111

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.cm.ConfigurationAdmin";
 uses:="org.osgi.service.cm"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

104.13 Security

104.13.1 Configuration Permission
Every bundle has the implicit right to receive and configure configurations with a location that ex-
actly matches the Bundle's location or that is nul l . For all other situations the Configuration Admin
must verify that the configuring and to be updated bundles have a Configuration Permission that
matches the Configuration's location.

The resource name of this permission maps to the location of the Configuration, the location can
control the visibility of a Configuration for a bundle. The resource name is compared with the actu-
al configuration location using the OSGi Filter sub-string matching. The question mark for multi-lo-
cations is part of the given resource name. The Configure Permission has the following actions:

• CONFIGURE - Can manage matching configurations
• TARGET - Can be updated with a matching configuration
• ATTRIBUTE - Can manage attributes for matching configuration

To be able to set the location to nul l requires a Configurat ionPermission[*, CONFIGURE] .

It is possible to deny bundles the use of multi-locations by using Conditional Permission Admin's
deny model.

104.13.2 Permissions Summary
Configuration Admin service security is implemented using Service Permission and Configuration
Permission. The following table summarizes the permissions needed by the Configuration Admin
bundle itself, as well as the typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]
ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[*, CONFIGURE]
AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]
ConfigurationPermission[... , TARGET]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedServiceFactory, REGISTER]
ConfigurationPermission[... , TARGET]

Security Configuration Admin Service Specification Version 1.6

Page 112 OSGi Enterprise Release 7

Configuration Plugin:

ServicePermission[..ConfigurationPlugin,REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener,REGISTER]

The Configuration Admin service must have ServicePermission[Configurat ionAdmin, REGISTER] .
It will also be the only bundle that needs the ServicePermission[ManagedService | Man-
agedServiceFactory | Configurat ionPlugin, GET] . No other bundle should be allowed to
have GET permission for these interfaces. The Configuration Admin bundle must also hold
Configurat ionPermission[*,CONFIGURE] .

Bundles that can be configured must have the ServicePermission[ManagedService | Man-
agedServiceFactory, REGISTER] . Bundles registering Configurat ionPlugin objects must have
ServicePermission[Configurat ionPlugin, REGISTER] . The Configuration Admin service must trust
all services registered with the Configurat ionPlugin interface. Only the Configuration Admin service
should have ServicePermission[Configurat ionPlugin, GET] .

If a Managed Service or Managed Service Factory is implemented by an object that is also reg-
istered under another interface, it is possible, although inappropriate, for a bundle other than
the Configuration Admin service implementation to call the updated method. Security-aware
bundles can avoid this problem by having their updated methods check that the caller has
Configurat ionPermission[*,CONFIGURE] .

Bundles that want to change their own configuration need ServicePermission[Configurat ionAdmin,
GET] . A bundle with Configurat ionPermission[*,CONFIGURE] is allowed to access and modify any
Configurat ion object.

Pre-configuration of bundles requires Configurat ionPermission[location,CONFIGURE] (location can
use the sub-string matching rules of the Filter) because the methods that specify a location require
this permission.

104.13.3 Configuration and Permission Administration
Configuration information has a direct influence on the permissions needed by a bundle. For exam-
ple, when the Configuration Admin Bundle orders a bundle to use port 2011 for a console, that bun-
dle also needs permission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of permissions that do not de-
fine specific values but allow a range of values. For example, a bundle could listen to ports above
1024 freely. All these ports could then be used for configuration.

The other solution is more complicated. In an environment where there is very strong security, the
bundle would only be allowed access to a specific port. This situation requires an atomic update of
both the configuration data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did not match the configura-
tion.

The following scenario can be used to update a configuration and the security permissions:

1. Stop the bundle.
2. Update the appropriate Configurat ion object via the Configuration Admin service.
3. Update the permissions in the Framework.
4. Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 113

104.14 org.osgi.service.cm

Configuration Admin Package Version 1.6.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cm; version="[1.6,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cm; version="[1.6,1.7)"

104.14.1 Summary

• Configurat ion - The configuration information for a ManagedService or ManagedServiceFacto-
ry object.

• Configurat ion.Configurat ionAttr ibute - Configuration Attributes.
• Configurat ionAdmin - Service for administering configuration data.
• Configurat ionConstants - Defines standard constants for the Configuration Admin service.
• Configurat ionEvent - A Configuration Event.
• Configurat ionException - An Exception class to inform the Configuration Admin service of

problems with configuration data.
• Configurat ionListener - Listener for Configuration Events.
• Configurat ionPermission - Indicates a bundle's authority to configure bundles or be updated by

Configuration Admin.
• Configurat ionPlugin - A service interface for processing configuration dictionary before the up-

date.
• ManagedService - A service that can receive configuration data from a Configuration Admin

service.
• ManagedServiceFactory - Manage multiple service instances.
• ReadOnlyConfigurat ionException - An Exception class to inform the client of a Configurat ion

about the read only state of a configuration object.
• SynchronousConfigurat ionListener - Synchronous Listener for Configuration Events.

104.14.2 Permissions

104.14.2.1 Configuration

• setBundleLocation(Str ing)
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l or if location is nul l

• getBundleLocation()
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l

• addAttr ibutes(Configurat ionAttr ibute. . .)
• Configurat ionPermission[this . locat ion,ATTRIBUTE] - if this.location is not nul l
• Configurat ionPermission["*",ATTRIBUTE] - if this.location is nul l

• removeAttr ibutes(Configurat ionAttr ibute. . .)

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 114 OSGi Enterprise Release 7

• Configurat ionPermission[this . locat ion,ATTRIBUTE] - if this.location is not nul l
• Configurat ionPermission["*",ATTRIBUTE] - if this.location is nul l

104.14.2.2 ConfigurationAdmin

• createFactoryConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if location is nul l

• getConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getConfigurat ion(Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• getFactoryConfigurat ion(Str ing,Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getFactoryConfigurat ion(Str ing,Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• l istConfigurat ions(Str ing)
• Configurat ionPermission[c. locat ion,CONFIGURE] - Only configurations c are returned for

which the caller has this permission

104.14.2.3 ManagedService

• updated(Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.14.2.4 ManagedServiceFactory

• updated(Str ing,Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.14.3 public interface Configuration
The configuration information for a ManagedService or ManagedServiceFactory object. The Con-
figuration Admin service uses this interface to represent the configuration information for a Man-
agedService or for a service instance of a ManagedServiceFactory .

A Configurat ion object contains a configuration dictionary and allows the properties to be updated
via this object. Bundles wishing to receive configuration dictionaries do not need to use this class -
they register a ManagedService or ManagedServiceFactory . Only administrative bundles, and bun-
dles wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive Str ing objects as keys. However,
case must be preserved from the last set key/value.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 115

A configuration can be bound to a specific bundle or to a region of bundles using the location. In
its simplest form the location is the location of the target bundle that registered a Managed Ser-
vice or a Managed Service Factory. However, if the location starts with ? then the location indi-
cates multiple delivery. In such a case the configuration must be delivered to all targets. If securi-
ty is on, the Configuration Permission can be used to restrict the targets that receive updates. The
Configuration Admin must only update a target when the configuration location matches the lo-
cation of the target's bundle or the target bundle has a Configuration Permission with the action
ConfigurationPermission.TARGET and a name that matches the configuration location. The name
in the permission may contain wildcards ('* ') to match the location using the same substring
matching rules as Filter. Bundles can always create, manipulate, and be updated from configura-
tions that have a location that matches their bundle location.

If a configuration's location is nul l , it is not yet bound to a location. It will become bound to the loca-
tion of the first bundle that registers a ManagedService or ManagedServiceFactory object with the
corresponding PID.

The same Configurat ion object is used for configuring both a Managed Service Factory and a Man-
aged Service. When it is important to differentiate between these two the term "factory configura-
tion" is used.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.14.3.1 public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException

attrs The attributes to add.

□ Add attributes to the configuration.

Throws IOException– If the new state cannot be persisted.

I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,ATTRIBUTE]] – if this.location is not nul l

Configurat ionPermission["*",ATTRIBUTE]] – if this.location is nul l

Since 1.6

104.14.3.2 public void delete() throws IOException

□ Delete this Configurat ion object.

Removes this configuration object from the persistent store. Notify asynchronously the correspond-
ing Managed Service or Managed Service Factory. A ManagedService object is notified by a call to its
updated method with a nul l properties argument. A ManagedServiceFactory object is notified by a
call to its deleted method.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_DELETED event.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– If delete fails.

I l legalStateException– If this configuration has been deleted.

104.14.3.3 public boolean equals(Object other)

other Configurat ion object to compare against

□ Equality is defined to have equal PIDs Two Configuration objects are equal when their PIDs are
equal.

Returns true if equal, fa lse if not a Configurat ion object or one with a different PID.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 116 OSGi Enterprise Release 7

104.14.3.4 public Set<Configuration.ConfigurationAttribute> getAttributes()

□ Get the attributes of this configuration.

Returns The set of attributes.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.3.5 public String getBundleLocation()

□ Get the bundle location. Returns the bundle location or region to which this configuration is bound,
or nul l if it is not yet bound to a bundle location or region. If the location starts with ? then the con-
figuration is delivered to all targets and not restricted to a single bundle.

Returns location to which this configuration is bound, or nul l .

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l

104.14.3.6 public long getChangeCount()

□ Get the change count. Each Configuration must maintain a change counter that is incremented
with a positive value every time the configuration is updated and its properties are stored. The
counter must be incremented before the targets are updated and events are sent out.

Returns A monotonically increasing value reflecting changes in this Configuration.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.5

104.14.3.7 public String getFactoryPid()

□ For a factory configuration return the PID of the corresponding Managed Service Factory, else return
nul l .

Returns factory PID or nul l

Throws I l legalStateException– If this configuration has been deleted.

104.14.3.8 public String getPid()

□ Get the PID for this Configurat ion object.

Returns the PID for this Configurat ion object.

Throws I l legalStateException– if this configuration has been deleted

104.14.3.9 public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)

reference The reference to the Managed Service or Managed Service Factory to pass to the registered Configu-
rationPlugins handling this configuration. Must not be nul l .

□ Return the processed properties of this Configurat ion object.

The Dictionary object returned is a private copy for the caller and may be changed without influenc-
ing the stored configuration. The keys in the returned dictionary are case insensitive and are always
of type Str ing .

Before the properties are returned they are processed by all the registered ConfigurationPlugins han-
dling this configuration.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 117

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the processed properties for the caller or nul l . These properties must not contain
the "service.bundleLocation" property. The value of this property may be obtained from the get-
BundleLocation() method.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.3.10 public Dictionary<String, Object> getProperties()

□ Return the properties of this Configurat ion object. The Dictionary object returned is a private copy
for the caller and may be changed without influencing the stored configuration. The keys in the re-
turned dictionary are case insensitive and are always of type Str ing .

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the properties for the caller or nul l . These properties must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the getBundle-
Location() method.

Throws I l legalStateException– If this configuration has been deleted.

104.14.3.11 public int hashCode()

□ Hash code is based on PID. The hash code for two Configuration objects must be the same when the
Configuration PID's are the same.

Returns hash code for this Configuration object

104.14.3.12 public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException

attrs The attributes to remove.

□ Remove attributes from this configuration.

Throws IOException– If the new state cannot be persisted.

I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,ATTRIBUTE]] – if this.location is not nul l

Configurat ionPermission["*",ATTRIBUTE]] – if this.location is nul l

Since 1.6

104.14.3.13 public void setBundleLocation(String location)

location a location, region, or nul l

□ Bind this Configurat ion object to the specified location. If the location parameter is nul l then the
Configurat ion object will not be bound to a location/region. It will be set to the bundle's location be-
fore the first time a Managed Service/Managed Service Factory receives this Configurat ion object via
the updated method and before any plugins are called. The bundle location or region will be set per-
sistently.

If the location starts with ? then all targets registered with the given PID must be updated.

If the location is changed then existing targets must be informed. If they can no longer see this con-
figuration, the configuration must be deleted or updated with nul l . If this configuration becomes
visible then they must be updated with this configuration.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 118 OSGi Enterprise Release 7

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_LOCATION_CHANGED
event.

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l or if location is nul l

104.14.3.14 public void update(Dictionary<String, ?> properties) throws IOException

properties the new set of properties for this configuration

□ Update the properties of this Configurat ion object.

Stores the properties in persistent storage after adding or overwriting the following properties:

• "service.pid" : is set to be the PID of this configuration.
• "service.factoryPid" : if this is a factory configuration it is set to the factory PID else it is not set.

These system properties are all of type Str ing .

If the corresponding Managed Service/Managed Service Factory is registered, its updated method
must be called asynchronously. Else, this callback is delayed until aforementioned registration oc-
curs.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_UPDATED event.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– if update cannot be made persistent

I l legalArgumentException– if the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

104.14.3.15 public void update() throws IOException

□ Update the Configurat ion object with the current properties. Initiate the updated callback to the
Managed Service or Managed Service Factory with the current properties asynchronously.

This is the only way for a bundle that uses a Configuration Plugin service to initiate a callback. For
example, when that bundle detects a change that requires an update of the Managed Service or Man-
aged Service Factory via its Configurat ionPlugin object.

Throws IOException– if update cannot access the properties in persistent storage

I l legalStateException– If this configuration has been deleted.

See Also ConfigurationPlugin

104.14.3.16 public boolean updateIfDifferent(Dictionary<String, ?> properties) throws IOException

properties The new set of properties for this configuration.

□ Update the properties of this Configurat ion object if the provided properties are different than the
currently stored set. Properties are compared as follows.

• Scalars are compared using equals
• Arrays are compared using Arrays.equals
• Collections are compared using equals

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 119

If the new properties are not different than the current properties, no operation is performed. Other-
wise, the behavior of this method is identical to the update(Dictionary) method.

Returns If the properties are different and the configuration is updated true is returned. If the properties are
the same, fa lse is returned.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– If update cannot be made persistent.

I l legalArgumentException– If the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.4 enum Configuration.ConfigurationAttribute
Configuration Attributes.

Since 1.6

104.14.4.1 READ_ONLY

The configuration is read only.

104.14.4.2 public static Configuration.ConfigurationAttribute valueOf(String name)

104.14.4.3 public static Configuration.ConfigurationAttribute[] values()

104.14.5 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data persistently. This informa-
tion is represented in Configurat ion objects. The actual configuration data is a Dictionary of proper-
ties inside a Configurat ion object.

There are two principally different ways to manage configurations. First there is the concept of a
Managed Service, where configuration data is uniquely associated with an object registered with the
service registry.

Next, there is the concept of a factory where the Configuration Admin service will maintain 0 or
more Configurat ion objects for a Managed Service Factory that is registered with the Framework.

The first concept is intended for configuration data about "things/services" whose existence is de-
fined externally, e.g. a specific printer. Factories are intended for "things/services" that can be created
any number of times, e.g. a configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a Managed Service Factory
in the service registry. A registration property named service.pid (persistent identifier or PID) must
be used to identify this Managed Service or Managed Service Factory to the Configuration Admin
service.

When the ConfigurationAdmin detects the registration of a Managed Service, it checks its persis-
tent storage for a configuration object whose service.pid property matches the PID service property
(service.pid) of the Managed Service. If found, it calls ManagedService.updated(Dictionary) method
with the new properties. The implementation of a Configuration Admin service must run these call-
backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory registration, it checks
its storage for configuration objects whose service.factoryPid property matches the PID ser-
vice property of the Managed Service Factory. For each such Configurat ion objects, it calls the

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 120 OSGi Enterprise Release 7

ManagedServiceFactory.updated method asynchronously with the new properties. The calls to
the updated method of a ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin service can only access and
modify their own configuration information. Accessing or modifying the configuration of other
bundles requires Configurat ionPermission[location,CONFIGURE] , where location is the configura-
tion location.

Configurat ion objects can be bound to a specified bundle location or to a region (configuration loca-
tion starts with ?). If a location is not set, it will be learned the first time a target is registered. If the
location is learned this way, the Configuration Admin service must detect if the bundle correspond-
ing to the location is uninstalled. If this occurs, the Configurat ion object must be unbound, that is
its location field is set back to nul l .

If target's bundle location matches the configuration location it is always updated.

If the configuration location starts with ? , that is, the location is a region, then the configuration
must be delivered to all targets registered with the given PID. If security is on, the target bundle
must have Configuration Permission[location,TARGET], where location matches given the configu-
ration location with wildcards as in the Filter substring match. The security must be verified using
the org.osgi.framework.Bundle.hasPermission(Object) method on the target bundle.

If a target cannot be updated because the location does not match or it has no permission and securi-
ty is active then the Configuration Admin service must not do the normal callback.

The method descriptions of this class refer to a concept of "the calling bundle". This is a loose way of
referring to the bundle which obtained the Configuration Admin service from the service registry.
Implementations of Configurat ionAdmin must use a org.osgi.framework.ServiceFactory to support
this concept.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.14.5.1 public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"

Configuration property naming the location of the bundle that is associated with a Configurat ion
object. This property can be searched for but must not appear in the configuration dictionary for se-
curity reason. The property's value is of type Str ing .

Since 1.1

104.14.5.2 public static final String SERVICE_FACTORYPID = "service.factoryPid"

Configuration property naming the Factory PID in the configuration dictionary. The property's val-
ue is of type Str ing .

Since 1.1

104.14.5.3 public Configuration createFactoryConfiguration(String factoryPid) throws IOException

factoryPid PID of factory (not nul l).

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion object is bound to the location of the calling bundle. It is possible that the same
factoryPid has associated configurations that are bound to different bundles. Bundles should only
see the factory configurations that they are bound to or have the proper permission.

Returns A new Configurat ion object.

Throws IOException– if access to persistent storage fails.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 121

104.14.5.4 public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException

factoryPid PID of factory (not nul l).

location A bundle location string, or nul l .

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion is bound to the location specified. If this location is nul l it will be bound to the
location of the first bundle that registers a Managed Service Factory with a corresponding PID. It is
possible that the same factoryPid has associated configurations that are bound to different bundles.
Bundles should only see the factory configurations that they are bound to or have the proper per-
mission.

If the location starts with ? then the configuration must be delivered to all targets with the corre-
sponding PID.

Returns a new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if location is nul l

104.14.5.5 public Configuration getConfiguration(String pid, String location) throws IOException

pid Persistent identifier.

location The bundle location string, or nul l .

□ Get an existing Configurat ion object from the persistent store, or create a new Configurat ion object.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

104.14.5.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

□ Get an existing or new Configurat ion object from the persistent store. If the Configurat ion object
for this PID does not exist, create a new Configurat ion object for that PID, where properties are nul l .
Bind its location to the calling bundle's location.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 122 OSGi Enterprise Release 7

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

104.14.5.7 public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws
IOException

factoryPid PID of factory (not nul l).

name A name for Configurat ion (not nul l).

location The bundle location string, or nul l .

□ Get an existing or new Configurat ion object from the persistent store. The PID for this Configurat ion
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde (' ~ ' \u007E), and then appending the name.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

Since 1.6

104.14.5.8 public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException

factoryPid PID of factory (not nul l).

name A name for Configurat ion (not nul l).

□ Get an existing or new Configurat ion object from the persistent store. The PID for this Configurat ion
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde (' ~ ' \u007E), and then appending the name.

If a Configurat ion object for this PID does not exist, create a new Configurat ion object for that PID,
where properties are nul l . Bind its location to the calling bundle's location.

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 123

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

Since 1.6

104.14.5.9 public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

filter A filter string, or nul l to retrieve all Configurat ion objects.

□ List the current Configurat ion objects which match the filter.

Only Configurat ion objects with non- nul l properties are considered current. That is,
Configurat ion.getPropert ies() is guaranteed not to return nul l for each of the returned Configura-
t ion objects.

When there is no security on then all configurations can be returned. If security is on, the caller
must have ConfigurationPermission[location,CONFIGURE].

The syntax of the filter string is as defined in the Filter class. The filter can test any configuration
properties including the following:

• service.pid - the persistent identity
• service.factoryPid - the factory PID, if applicable
• service.bundleLocation - the bundle location

The filter can also be nul l , meaning that all Configurat ion objects should be returned.

Returns All matching Configurat ion objects, or nul l if there aren't any.

Throws IOException– if access to persistent storage fails

Inval idSyntaxException– if the filter string is invalid

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – Only configurations c are returned for which
the caller has this permission

104.14.6 public final class ConfigurationConstants
Defines standard constants for the Configuration Admin service.

104.14.6.1 public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"

The name of the implementation capability for the Configuration Admin specification

Since 1.6

104.14.6.2 public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6.0"

The version of the implementation capability for the Configuration Admin specification

Since 1.6

104.14.7 public class ConfigurationEvent
A Configuration Event.

Configurat ionEvent objects are delivered to all registered Configurat ionListener service objects.
ConfigurationEvents must be delivered in chronological order with respect to each listener.

A type code is used to identify the type of event. The following event types are defined:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 124 OSGi Enterprise Release 7

Additional event types may be defined in the future.

Security Considerations. Configurat ionEvent objects do not provide Configurat ion objects, so no
sensitive configuration information is available from the event. If the listener wants to locate the
Configurat ion object for the specified pid, it must use Configurat ionAdmin .

See Also ConfigurationListener

Since 1.2

Concurrency Immutable

104.14.7.1 public static final int CM_DELETED = 2

A Configurat ion has been deleted.

This Configurat ionEvent type that indicates that a Configurat ion object has been deleted. An event
is fired when a call to Configuration.delete() successfully deletes a configuration.

104.14.7.2 public static final int CM_LOCATION_CHANGED = 3

The location of a Configurat ion has been changed.

This Configurat ionEvent type that indicates that the location of a Configurat ion object has been
changed. An event is fired when a call to Configuration.setBundleLocation(String) successfully
changes the location.

Since 1.4

104.14.7.3 public static final int CM_UPDATED = 1

A Configurat ion has been updated.

This Configurat ionEvent type that indicates that a Configurat ion object has been updated with new
properties. An event is fired when a call to Configuration.update(Dictionary) successfully changes a
configuration.

104.14.7.4 public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid,
String pid)

reference The ServiceReference object of the Configuration Admin service that created this event.

type The event type. See getType().

factoryPid The factory pid of the associated configuration if the target of the configuration is a ManagedSer-
viceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

pid The pid of the associated configuration.

□ Constructs a Configurat ionEvent object from the given ServiceReference object, event type, and
pids.

104.14.7.5 public String getFactoryPid()

□ Returns the factory pid of the associated configuration.

Returns Returns the factory pid of the associated configuration if the target of the configuration is a Man-
agedServiceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

104.14.7.6 public String getPid()

□ Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.

104.14.7.7 public ServiceReference<ConfigurationAdmin> getReference()

□ Return the ServiceReference object of the Configuration Admin service that created this event.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 125

Returns The ServiceReference object for the Configuration Admin service that created this event.

104.14.7.8 public int getType()

□ Return the type of this event.

The type values are:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Returns The type of this event.

104.14.8 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems with configuration data.

104.14.8.1 public ConfigurationException(String property, String reason)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

□ Create a Configurat ionException object.

104.14.8.2 public ConfigurationException(String property, String reason, Throwable cause)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

cause The cause of this exception.

□ Create a Configurat ionException object.

Since 1.2

104.14.8.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2

104.14.8.4 public String getProperty()

□ Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem

104.14.8.5 public String getReason()

□ Return the reason for this exception.

Returns reason of the failure

104.14.8.6 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 126 OSGi Enterprise Release 7

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

104.14.9 public interface ConfigurationListener
Listener for Configuration Events. When a Configurat ionEvent is fired, it is asynchronously deliv-
ered to all Configurat ionListeners.

Configurat ionListener objects are registered with the Framework service registry and are notified
with a Configurat ionEvent object when an event is fired.

Configurat ionListener objects can inspect the received Configurat ionEvent object to determine its
type, the pid of the Configurat ion object with which it is associated, and the Configuration Admin
service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events will require
ServicePermission[Configurat ionListener,REGISTER] to register a Configurat ionListener service.

Since 1.2

Concurrency Thread-safe

104.14.9.1 public void configurationEvent(ConfigurationEvent event)

event The Configurat ionEvent .

□ Receives notification of a Configuration that has changed.

104.14.10 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle's authority to configure bundles or be updated by Configuration Admin.

Since 1.2

Concurrency Thread-safe

104.14.10.1 public static final String ATTRIBUTE = "attribute"

Provides permission to set or remove an attribute on the configuration. The action string "attribute".

Since 1.6

104.14.10.2 public static final String CONFIGURE = "configure"

Provides permission to create new configurations for other bundles as well as manipulate them. The
action string "configure".

104.14.10.3 public static final String TARGET = "target"

The permission to be updated, that is, act as a Managed Service or Managed Service Factory. The ac-
tion string "target".

Since 1.4

104.14.10.4 public ConfigurationPermission(String name, String actions)

name Name of the permission. Wildcards ('* ') are allowed in the name. During implies(Permission), the
name is matched to the requested permission using the substring matching rules used by Filters.

actions Comma separated list of CONFIGURE, TARGET, ATTRIBUTE (case insensitive).

□ Create a new ConfigurationPermission.

104.14.10.5 public boolean equals(Object obj)

obj The object being compared for equality with this object.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 127

□ Determines the equality of two Configurat ionPermission objects.

Two Configurat ionPermission objects are equal.

Returns true if obj is equivalent to this Configurat ionPermission ; fa lse otherwise.

104.14.10.6 public String getActions()

□ Returns the canonical string representation of the Configurat ionPermission actions.

Always returns present Configurat ionPermission actions in the following order: "configure", "tar-
get", "attribute".

Returns Canonical string representation of the Configurat ionPermission actions.

104.14.10.7 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

104.14.10.8 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a Configurat ionPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

104.14.10.9 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing Configurat ionPermissions.

Returns A new PermissionCol lect ion object.

104.14.11 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the update.

A bundle registers a Configurat ionPlugin object in order to process configuration updates before
they reach the Managed Service or Managed Service Factory. The Configuration Admin service will
detect registrations of Configuration Plugin services and must call these services every time before
it calls the ManagedService or ManagedServiceFactory updated method. The Configuration Plug-
in service thus has the opportunity to view and modify the properties before they are passed to the
Managed Service or Managed Service Factory.

Configuration Plugin (plugin) services have full read/write access to all configuration information
that passes through them.

The Integer service.cmRanking registration property may be specified. Not specifying this registra-
tion property, or setting it to something other than an Integer , is the same as setting it to the Inte-
ger zero. The service.cmRanking property determines the order in which plugins are invoked. Low-
er ranked plugins are called before higher ranked ones. In the event of more than one plugin having
the same value of service.cmRanking , then the Configuration Admin service arbitrarily chooses the
order in which they are called.

By convention, plugins with service.cmRanking < 0 or service.cmRanking > 1000 should not make
modifications to the properties.

The Configuration Admin service has the right to hide properties from plugins, or to ignore some or
all the changes that they make. This might be done for security reasons. Any such behavior is entire-
ly implementation defined.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 128 OSGi Enterprise Release 7

A plugin may optionally specify a cm.target registration property whose value is the PID of the
Managed Service or Managed Service Factory whose configuration updates the plugin is intended
to intercept. The plugin will then only be called with configuration updates that are targeted at the
Managed Service or Managed Service Factory with the specified PID. Omitting the cm.target regis-
tration property means that the plugin is called for all configuration updates.

Concurrency Thread-safe

104.14.11.1 public static final String CM_RANKING = "service.cmRanking"

A service property to specify the order in which plugins are invoked. This property contains an In-
teger ranking of the plugin. Not specifying this registration property, or setting it to something oth-
er than an Integer , is the same as setting it to the Integer zero. This property determines the order in
which plugins are invoked. Lower ranked plugins are called before higher ranked ones.

Since 1.2

104.14.11.2 public static final String CM_TARGET = "cm.target"

A service property to limit the Managed Service or Managed Service Factory configuration dictio-
naries a Configuration Plugin service receives. This property contains a Str ing[] of PIDs. A Configu-
ration Admin service must call a Configuration Plugin service only when this property is not set, or
the target service's PID is listed in this property.

104.14.11.3 public void modifyConfiguration(ServiceReference<?> reference, Dictionary<String, Object> properties)

reference reference to the Managed Service or Managed Service Factory

properties The configuration properties. This argument must not contain the "service.bundleLocation" proper-
ty. The value of this property may be obtained from the Configurat ion.getBundleLocation method.

□ View and possibly modify the a set of configuration properties before they are sent to the Managed
Service or the Managed Service Factory. The Configuration Plugin services are called in increasing
order of their service.cmRanking property. If this property is undefined or is a non- Integer type, 0 is
used.

This method should not modify the properties unless the service.cmRanking of this plugin is in the
range 0 <= service.cmRanking <= 1000 . Any modification from this plugin is ignored.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it. Any modifications made by the plugin before the exception is thrown are applied.

A Configuration Plugin will only be called for properties from configurations that have a location
for which the Configuration Plugin has permission when security is active. When security is not ac-
tive, no filtering is done.

104.14.12 public interface ManagedService
A service that can receive configuration data from a Configuration Admin service.

A Managed Service is a service that needs configuration data. Such an object should be registered
with the Framework registry with the service.pid property set to some unique identifier called a
PID.

If the Configuration Admin service has a Configurat ion object corresponding to this PID, it will call-
back the updated() method of the ManagedService object, passing the properties of that Configura-
t ion object.

If it has no such Configurat ion object, then it calls back with a nul l properties argument. Registering
a Managed Service will always result in a callback to the updated() method provided the Configura-
tion Admin service is, or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Configurat ion object, the
ManagedService.updated() method with the new properties is called. If the delete() method is

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 129

called on that Configurat ion object, ManagedService.updated() is called with a nul l for the proper-
ties parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port depending on configu-
ration information.

 class SerialPort implements ManagedService {

 ServiceRegistration registration;
 Hashtable configuration;
 CommPortIdentifier id;

 synchronized void open(CommPortIdentifier id,
 BundleContext context) {
 this.id = id;
 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 getDefaults()
);
 }

 Hashtable getDefaults() {
 Hashtable defaults = new Hashtable();
 defaults.put("port", id.getName());
 defaults.put("product", "unknown");
 defaults.put("baud", "9600");
 defaults.put(Constants.SERVICE_PID,
 "com.acme.serialport." + id.getName());
 return defaults;
 }

 public synchronized void updated(
 Dictionary configuration) {
 if (configuration == null)
 registration.setProperties(getDefaults());
 else {
 setSpeed(configuration.get("baud"));
 registration.setProperties(configuration);
 }
 }
 ...
 }

As a convention, it is recommended that when a Managed Service is updated, it should copy all the
properties it does not recognize into the service registration properties. This will allow the Configu-
ration Admin service to set properties on services which can then be used by other applications.

Normally, a single Managed Service for a given PID is given the configuration dictionary, this is the
configuration that is bound to the location of the registering bundle. However, when security is on,
a Managed Service can have Configuration Permission to also be updated for other locations.

If a Managed Service is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 130 OSGi Enterprise Release 7

104.14.12.1 public void updated(Dictionary<String, ?> properties) throws ConfigurationException

properties A copy of the Configuration properties, or nul l . This argument must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the
Configurat ion.getBundleLocation method.

□ Update the configuration for a Managed Service.

When the implementation of updated(Dict ionary) detects any kind of error in the configuration
properties, it should create a new Configurat ionException which describes the problem. This can al-
low a management system to provide useful information to a human administrator.

If this method throws any other Exception , the Configuration Admin service must catch it and
should log it.

The Configuration Admin service must call this method asynchronously with the method that ini-
tiated the callback. This implies that implementors of Managed Service can be assured that the call-
back will not take place during registration when they execute the registration in a synchronized
method.

If the location allows multiple managed services to be called back for a single configuration then
the callbacks must occur in service ranking order. Changes in the location must be reflected by
deleting the configuration if the configuration is no longer visible and updating when it becomes
visible.

If no configuration exists for the corresponding PID, or the bundle has no access to the configura-
tion, then the bundle must be called back with a nul l to signal that CM is active but there is no data.

Throws Configurat ionException– when the update fails

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.14.13 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are giving the Configuration
Admin service the ability to create and configure a number of instances of a service that the imple-
menting bundle can provide. For example, a bundle implementing a DHCP server could be instanti-
ated multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the Configuration Admin
service, by a factory Configurat ion object that has a PID. When such a Configurat ion is updated, the
Configuration Admin service calls the ManagedServiceFactory updated method with the new prop-
erties. When updated is called with a new PID, the Managed Service Factory should create a new fac-
tory instance based on these configuration properties. When called with a PID that it has seen be-
fore, it should update that existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will maintain a data structure that
maps PIDs to the factory instances that it has created. The semantics of a factory instance are de-
fined by the Managed Service Factory. However, if the factory instance is registered as a service ob-
ject with the service registry, its PID should match the PID of the corresponding Configurat ion ob-
ject (but it should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports under command of the
Configuration Admin service.

 class SerialPortFactory
 implements ManagedServiceFactory {
 ServiceRegistration registration;
 Hashtable ports;
 void start(BundleContext context) {
 Hashtable properties = new Hashtable();
 properties.put(Constants.SERVICE_PID,

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Enterprise Release 7 Page 131

 "com.acme.serialportfactory");
 registration = context.registerService(
 ManagedServiceFactory.class.getName(),
 this,
 properties
);
 }
 public void updated(String pid,
 Dictionary properties) {
 String portName = (String) properties.get("port");
 SerialPortService port =
 (SerialPort) ports.get(pid);
 if (port == null) {
 port = new SerialPortService();
 ports.put(pid, port);
 port.open();
 }
 if (port.getPortName().equals(portName))
 return;
 port.setPortName(portName);
 }
 public void deleted(String pid) {
 SerialPortService port =
 (SerialPort) ports.get(pid);
 port.close();
 ports.remove(pid);
 }
 ...
 }

If a ManagedServiceFactory is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

104.14.13.1 public void deleted(String pid)

pid the PID of the service to be removed

□ Remove a factory instance. Remove the factory instance associated with the PID. If the instance was
registered with the service registry, it should be unregistered. The Configuration Admin must call
deleted for each instance it received in updated(String, Dictionary).

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

The Configuration Admin service must call this method asynchronously.

104.14.13.2 public String getName()

□ Return a descriptive name of this factory.

Returns the name for the factory, which might be localized

104.14.13.3 public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the service.bundleLocation"
property. The value of this property may be obtained from the Configurat ion.getBundleLocation
method.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 132 OSGi Enterprise Release 7

□ Create a new instance, or update the configuration of an existing instance. If the PID of the Config-
urat ion object is new for the Managed Service Factory, then create a new factory instance, using the
configuration propert ies provided. Else, update the service instance with the provided propert ies .

If the factory instance is registered with the Framework, then the configuration propert ies should
be copied to its registry properties. This is not mandatory and security sensitive properties should
obviously not be copied.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

When the implementation of updated detects any kind of error in the configuration properties, it
should create a new ConfigurationException which describes the problem.

The Configuration Admin service must call this method asynchronously. This implies that imple-
mentors of the ManagedServiceFactory class can be assured that the callback will not take place
during registration when they execute the registration in a synchronized method.

If the security allows multiple managed service factories to be called back for a single configuration
then the callbacks must occur in service ranking order.

It is valid to create multiple factory instances that are bound to different locations. Managed Service
Factory services must only be updated with configurations that are bound to their location or that
start with the ? prefix and for which they have permission. Changes in the location must be reflect-
ed by deleting the corresponding configuration if the configuration is no longer visible or updating
when it becomes visible.

Throws Configurat ionException– when the configuration properties are invalid.

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.14.14 public class ReadOnlyConfigurationException
extends RuntimeException
An Exception class to inform the client of a Configurat ion about the read only state of a configura-
tion object.

Since 1.6

104.14.14.1 public ReadOnlyConfigurationException(String reason)

reason reason for failure

□ Create a ReadOnlyConfigurat ionException object.

104.14.15 public interface SynchronousConfigurationListener
extends ConfigurationListener
Synchronous Listener for Configuration Events. When a Configurat ionEvent is fired, it is synchro-
nously delivered to all SynchronousConfigurat ionListeners.

SynchronousConfigurat ionListener objects are registered with the Framework service registry and
are synchronously notified with a Configurat ionEvent object when an event is fired.

SynchronousConfigurat ionListener objects can inspect the received Configurat ionEvent object to
determine its type, the PID of the Configurat ion object with which it is associated, and the Configu-
ration Admin service that fired the event.

Security Considerations. Bundles wishing to synchronously monitor configuration events will re-
quire ServicePermission[SynchronousConfigurat ionListener,REGISTER] to register a Synchronous-
Configurat ionListener service.

Since 1.5

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm.annotations

OSGi Enterprise Release 7 Page 133

Concurrency Thread-safe

104.15 org.osgi.service.cm.annotations

Configuration Admin Annotations Package Version 1.6.

This package contains annotations that can be used to require the Configuration Admin implemen-
tations

Bundles should not normally need to import this package as the annotations are only used at build-
time.

104.15.1 Summary

• RequireConfigurat ionAdmin - This annotation can be used to require the Configuration Admin
implementation.

104.15.2 @RequireConfigurationAdmin
This annotation can be used to require the Configuration Admin implementation. It can be used di-
rectly, or as a meta-annotation.

Since 1.6

Retention CLASS

Target TYPE , PACKAGE

104.16 Changes
• Support for named factory configurations is added. See Creating a Managed Service Factory Config-

uration Object on page 102.
• New method Configurat ion.updateIfDifferent is added.. See Updating a Configuration on page

103.
• Attributes are added to configuration objects and a READ_ONLY attribute is defined. See Configu-

ration Attributes on page 106 and Configuration Permission on page 111.
• Call order and handling of Configurat ionPlugin services is clarified. See Calling Order on page

109.
• A way to manually call Configuration Plugin services is added. See Manual Invocation on page

109.
• Configuration Admin must support implicit coordinations. See Coordinator Support on page

110.
• Service and implementation capabilities are added. See Capabilities on page 110.
• The RequireConfigurat ionAdmin annotation is added.

Changes Configuration Admin Service Specification Version 1.6

Page 134 OSGi Enterprise Release 7

Metatype Service Specification Version 1.4 Introduction

OSGi Enterprise Release 7 Page 135

105 Metatype Service Specification

Version 1.4

105.1 Introduction
The Metatype specification defines interfaces that allow bundle developers to describe attribute
types in a computer readable form using so-called metadata.

The purpose of this specification is to allow services to specify the type information of data that
they can use as arguments. The data is based on attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the choice of using the lan-
guage constructs to exchange data or using a technique based on attributes/properties that are based
on key/value pairs. Attributes provide an escape from the rigid type-safety requirements of modern
programming languages.

Type-safety works very well for software development environments in which multiple program-
mers work together on large applications or systems, but often lacks the flexibility needed to receive
structured data from the outside world.

The attribute paradigm has several characteristics that make this approach suitable when data
needs to be communicated between different entities which "speak" different languages. Attribut-
es are uncomplicated, resilient to change, and allow the receiver to dynamically adapt to different
types of data.

As an example, the OSGi framework Specifications define several attribute types which are used in
a Framework implementation, but which are also used and referenced by other OSGi specifications
such as the Configuration Admin Service Specification on page 85. A Configuration Admin service im-
plementation deploys attributes (key/value pairs) as configuration properties.

The Meta Type Service provides a unified access point to the Meta Type information that is associat-
ed with bundles. This Meta Type information can be defined by an XML resource in a bundle (OSGI-
INF/metatype directories must be scanned for any XML resources), it can come from the Meta Type
Provider service, or it can be obtained from Managed Service or Managed Service Factory services.

105.1.1 Essentials

• Conceptual model - The specification must have a conceptual model for how classes and attributes
are organized.

• Standards - The specification should be aligned with appropriate standards, and explained in situ-
ations where the specification is not aligned with, or cannot be mapped to, standards.

• Remote Management - Remote management should be taken into account.
• Size - Minimal overhead in size for a bundle using this specification is required.
• Localization - It must be possible to use this specification with different languages at the same

time. This ability allows servlets to serve information in the language selected in the browser.
• Type information - The definition of an attribute should contain the name (if it is required), the

cardinality, a label, a description, labels for enumerated values, and the Java class that should be
used for the values.

• Validation - It should be possible to validate the values of the attributes.

Attributes Model Metatype Service Specification Version 1.4

Page 136 OSGi Enterprise Release 7

105.1.2 Entities

• Meta Type Service - A service that provides a unified access point for meta type information.
• Attribute - A key/value pair.
• PID - A unique persistent ID, defined in configuration management.
• Attribute Definition - Defines a description, name, help text, and type information of an attribute.
• Object Class Definition - Defines the type of a datum. It contains a description and name of the type

plus a set of Attr ibuteDefinit ion objects.
• Meta Type Provider - Provides access to the object classes that are available for this object. Access

uses the PID and a locale to find the best ObjectClassDefinit ion object.
• Meta Type Information - Provides meta type information for a bundle.

Figure 105.1 Class Diagram Meta Type Service, org.osgi.service.metatype

Any bundleMeta Type Client

Meta Type
Service Impl

Metatype
xml resources

Any bundle

Meta Type
Service

Meta Type
Provider

Any bundle

Managed
Service
(Factory)

metatype.pid=...
metatype.factory.pid=...

105.1.3 Operation
The Meta Type service defines a rich dynamic typing system for properties. The purpose of the type
system is to allow reasonable User Interfaces to be constructed dynamically.

The type information is normally carried by the bundles themselves. Either by implementing the
MetaTypeProvider interface on the Managed Service or Managed Service Factory, by carrying one
or more XML resources that define a number of Meta Types in the OSGI-INF/metatype directories,
or registering a Meta Type Provider as a service. Additionally, a Meta Type service could have other
sources that are not defined in this specification.

The Meta Type Service provides unified access to Meta Types that are carried by the resident bun-
dles. The Meta Type Service collects this information from the bundles and provides uniform ac-
cess to it. A client can requests the Meta Type Information associated with a particular bundle. The
MetaTypeInformation object provides a list of ObjectClassDefinit ion objects for a bundle. These ob-
jects define all the information for a specific object class. An object class is a some descriptive infor-
mation and a set of named attributes (which are key/value pairs).

Access to Object Class Definitions is qualified by a locale and a Persistent IDentity (PID). This speci-
fication does not specify what the PID means. One application is OSGi Configuration Management
where a PID is used by the Managed Service and Managed Service Factory services. In general, a PID
should be regarded as the name of a variable where an Object Class Definition defines its type.

105.2 Attributes Model
The Framework uses the LDAP filter syntax for searching the Framework registry. The usage of the
attributes in this specification and the Framework specification closely resemble the LDAP attribute

Metatype Service Specification Version 1.4 Object Class Definition

OSGi Enterprise Release 7 Page 137

model. Therefore, the names used in this specification have been aligned with LDAP. Consequently,
the interfaces which are defined by this Specification are:

• Attr ibuteDefinit ion
• ObjectClassDefinit ion
• MetaTypeProvider

These names correspond to the LDAP attribute model. For further information on ASN.1-defined at-
tributes and X.500 object classes and attributes, see [2] Understanding and Deploying LDAP Directory
services.

The LDAP attribute model assumes a global name-space for attributes, and object classes consist of
a number of attributes. So, if an object class inherits the same attribute from different parents, only
one copy of the attribute must become part of the object class definition. This name-space implies
that a given attribute, for example cn , should always be the common name and the type must al-
ways be a Str ing . An attribute cn cannot be an Integer in another object class definition. In this re-
spect, the OSGi approach towards attribute definitions is comparable with the LDAP attribute mod-
el.

105.3 Object Class Definition
The ObjectClassDefinit ion interface is used to group the attributes which are defined in Attr ibut-
eDefinit ion objects.

An ObjectClassDefinit ion object contains the information about the overall set of attributes and
has the following elements:

• A name which can be returned in different locales.
• A global name-space in the registry, which is the same condition as LDAP/X.500 object classes.

In these standards the OSI Object Identifier (OID) is used to uniquely identify object classes. If
such an OID exists, (which can be requested at several standard organizations, and many compa-
nies already have a node in the tree) it can be returned here. Otherwise, a unique id should be re-
turned. This id can be a Java class name (reverse domain name) or can be generated with a GUID
algorithm. All LDAP-defined object classes already have an associated OID. It is strongly advised
to define the object classes from existing LDAP schemes which provide many preexisting OIDs.
Many such schemes exist ranging from postal addresses to DHCP parameters.

• A human-readable description of the class.
• A list of attribute definitions which can be filtered as required, or optional. Note that in X.500 the

mandatory or required status of an attribute is part of the object class definition and not of the at-
tribute definition.

• An icon, in different sizes.

105.4 Attribute Definition
The Attr ibuteDefinit ion interface provides the means to describe the data type of attributes.

The Attr ibuteDefinit ion interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the Framework for the attributes,
called the syntax in OSI terms, which can be obtained with the getType() method.

• Attr ibuteDefinit ion objects should use an ID that is similar to the OID as described in the ID field
for ObjectClassDefinit ion .

• A localized name intended to be used in user interfaces.

Meta Type Service Metatype Service Specification Version 1.4

Page 138 OSGi Enterprise Release 7

• A localized description that defines the semantics of the attribute and possible constraints,
which should be usable for tooltips.

• An indication if this attribute should be stored as a unique value, a List , or an array of values, as
well as the maximum cardinality of the type.

• The data type, as limited by the Framework service registry attribute types.
• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in GUIs, allowing the user

to choose from a set.
• A default value (String[]). The return depends on the following cases:

• not specified - Return nul l if this attribute is not specified.
• cardinality = 0 - Return an array with one element.
• otherwise - Return an array with less or equal than the absolute value of cardinality, possibly

empty if the value is an empty string.

105.5 Meta Type Service
The Meta Type Service provides unified access to Meta Type information that is associated with a
Bundle. It can get this information through the following means:

• Meta Type Resource - A bundle can provide one or more XML resources that are contained in its
JAR file. These resources contain an XML definition of meta types as well as to what PIDs these
Meta Types apply. These XML resources must reside in the OSGI-INF/metatype directories of the
bundle (including any fragments).

• Managed Service [Factory] objects - As defined in the configuration management specification,
ManagedService and ManagedServiceFactory service objects can optionally implement the
MetaTypeProvider interface. The Meta Type Service will only search for ManagedService and
ManagedServiceFactory service objects that implement MetaTypeProvider if no meta type re-
sources are found in the bundle.

• Meta Type Provider service - Bundles can register Meta Type Provider services to dynamically pro-
vide meta types for PIDs and factory PIDs.

Figure 105.2 Sources for Meta Types

<<service>>
Meta Type
Service

<<service>>
Meta Type
Provider

<<service>>
Managed Service
(Factory)

OSGI-INF/metatype
xml resource

... alternative
meta type
sources

This model is depicted in Figure 105.2.

The Meta Type Service can therefore be used to retrieve meta type information for bundles which
contain Meta Type resources or which provide MetaTypeProvider objects and/or services. If multi-
ple sources define the same Object Class Definition, the Meta Type service must select which source
to use. Meta Type Provider services must take precedence over Managed Service [Factory] objects im-
plementing MetaTypeProvider or Meta Type Resources.

The MetaTypeService interface has a single method:

Metatype Service Specification Version 1.4 Meta Type Service

OSGi Enterprise Release 7 Page 139

• getMetaTypeInformation(Bundle) - Given a bundle, it must return the Meta Type Information
for that bundle, even if there is no meta type information available at the moment of the call.

The returned MetaTypeInformation object maintains a map of PID to ObjectClassDefinit ion
objects. The map is keyed by locale and PID. The list of maintained PIDs is available from the
MetaTypeInformation object with the following methods:

• getPids() - PIDs for which Meta Types are available.
• getFactoryPids() - PIDs associated with Managed Service Factory services.

These methods and their interaction with the Meta Type resource are described in Designate Element
on page 144.

The MetaTypeInformation interface extends the MetaTypeProvider interface. The MetaType-
Provider interface is used to access meta type information. It supports locale dependent information
so that the text used in Attr ibuteDefinit ion and ObjectClassDefinit ion objects can be adapted to dif-
ferent locales.

Which locales are supported by the MetaTypeProvider object are defined by the implementer or the
meta type resources. The list of available locales can be obtained from the MetaTypeProvider object.

The MetaTypeProvider interface provides the following methods:

• getObjectClassDefinit ion(Str ing,Str ing) - Get access to an ObjectClassDefinition object for the
given PID. The second parameter defines the locale.

• getLocales() - List the locales that are available.

Locale objects are represented in Str ing objects because not all profiles support Locale. The Str ing
holds the standard Locale presentation of:

locale = language ('_' country ('_' variation))
language ::= < defined by ISO 3166 >
country ::= < defined by ISO 639 >

For example, en , nl_BE , en_CA_posix are valid locales. The use of nul l for locale indicates that
java.ut i l .Locale.getDefault() must be used.

The Meta Type Service implementation class is the main class. It registers the
org.osgi .service.metatype.MetaTypeService service and has a method to get a MetaTypeInforma-
tion object for a bundle.

Following is some sample code demonstrating how to print out all the Object Class Definitions and
Attribute Definitions contained in a bundle:

void printMetaTypes(MetaTypeService mts,Bundle b) {
 MetaTypeInformation mti =
 mts.getMetaTypeInformation(b);
 String [] pids = mti.getPids();
 String [] locales = mti.getLocales();

 for (int locale = 0; locale<locales.length; locale++) {
 System.out.println("Locale " + locales[locale]);
 for (int i=0; i< pids.length; i++) {
 ObjectClassDefinition ocd =
 mti.getObjectClassDefinition(pids[i], null);
 AttributeDefinition[] ads =
 ocd.getAttributeDefinitions(
 ObjectClassDefinition.ALL);
 for (int j=0; j< ads.length; j++) {

Meta Type Provider Service Metatype Service Specification Version 1.4

Page 140 OSGi Enterprise Release 7

 System.out.println("OCD="+ocd.getName()
 + "AD="+ads[j].getName());
 }
 }
 }
}

105.6 Meta Type Provider Service
A Meta Type Provider service allows third party contributions to the internal Object Class Defini-
tion repository. A Meta Type Provider can contribute multiple PIDs, both factory and singleton PIDs.
A Meta Type Provider service must register with both or one of the following service properties:

• METATYPE_PID - (Str ing+) Provides a list of PIDs that this Meta Type Provider can provide Object
Class Definitions for. The listed PIDs are intended to be used as normal singleton PIDs used by
Managed Services.

• METATYPE_FACTORY_PID - (Str ing+) Provides a list of factory PIDs that this Meta Type Provider
can provide Object Class Definitions for. The listed PIDs are intended to be used as factory PIDs
used by Managed Service Factories.

The Object Class Definitions must originate from the bundle that registered the Meta Type Provider
service. Third party extenders should therefore use the bundle of their extendee. A Meta Type Ser-
vice must report these Object Class Definitions on the Meta Type Information of the registering
bundle, merged with any other information from that bundle.

The Meta Type Service must track these Meta Type Provider services and make their Meta Types
available as if they were provided on the Managed Service (Factory) services. The Meta Types must
become unavailable when the Meta Type Provider service is unregistered.

105.7 Using the Meta Type Resources
A bundle that wants to provide meta type resources must place these resources in the OSGI-INF/
metatype directory. The name of the resource must be a valid bundle entry path. All resources in
that directory must be meta type documents. Resources in that directory that are not valid meta
type documents must be ignored and an error should be logged with the Log Service, if present.
Fragments can contain additional meta type resources in the same directory and they must be taken
into account when the meta type resources are searched. A meta type resource must be encoded in
UTF-8.

The MetaType Service must support localization of the

• name
• icon
• description
• label attributes

The localization mechanism must be identical using the same mechanism as described in the Core
module layer, see Localization, using the same property resource. However, it is possible to override
the property resource in the meta type definition resources with the local izat ion attribute of the
MetaData element.

The Meta Type Service must examine the bundle and its fragments to locate all localization
resources for the localization base name. From that list, the Meta Type Service derives the list
of locales which are available for the meta type information. This list can then be returned by

Metatype Service Specification Version 1.4 Using the Meta Type Resources

OSGi Enterprise Release 7 Page 141

MetaTypeInformation.getLocales method. This list can change at any time because the bundle
could be refreshed. Clients should be prepared that this list changes after they received it.

105.7.1 XML Schema of a Meta Type Resource
This section describes the schema of the meta type resource. This schema is not intended to be used
during runtime for validating meta type resources. The schema is intended to be used by tools and
external management systems.

The XML namespace for meta type documents must be:

http://www.osgi.org/xmlns/metatype/v1.4.0

The namespace abbreviation should be metatype . That is, the following header should be:

<metatype:MetaData
 xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.4.0">

The file can be found in the osgi.jar file that can be downloaded from the www.osgi.org web site.

Figure 105.3 XML Schema Instance Structure (Type name = Element name)

MetaData

OCD

AD

Designate

Option

Icon

1

Object

Attribute

1

1 *

1 *

1

1

1

0..n

1

0..n

1

0..n

1

Value

1

0..n

0..n

0..n

0..n

The element structure of the XML file is:

MetaData ::= OCD* Designate*

OCD ::= AD* Icon*
AD ::= Option*

Designate ::= Object
Object ::= Attribute*

Attribute ::= Value*

The different elements are described in Table 105.1.

Using the Meta Type Resources Metatype Service Specification Version 1.4

Page 142 OSGi Enterprise Release 7

Table 105.1 XML Schema for Meta Type resources

Attribute Deflt Type Method Description
MetaData Top Element
 local izat ion str ing Points to the Properties file that can lo-

calize this XML. See Localization in OSGi
Core Release 7.

OCD Object Class Definition
 name <> str ing getName() A human readable name that can be lo-

calized.
 descr ipt ion getDescr ipt ion() A human readable description of the

Object Class Definition that can be lo-
calized.

 id <> getID() A unique id, cannot be localized.
Designate An association between one PID and an

Object Class Definition. This element
designates a PID to be of a certain type.

 pid <> str ing The PID that is associated with an OCD .
This can be a reference to a factory or
singleton configuration object. The PID
can be a Targeted PID, if factoryPid is
not set or empty. Either pid or facto-
ryPid must be specified. See Designate El-
ement on page 144.

 factoryPid str ing If the factoryPid attribute is set, this
Designate element defines a factory
configuration for the given factory. If it
is not set or empty, it designates a sin-
gleton configuration. The PID can be a
Targeted PID. Either pid or factoryPid
must be specified. See Designate Element
on page 144.

 bundle str ing The value is used to set the location of
any configuration created using this
Meta Type resource. This may contain a
bundle location or a multi-location. In a
Meta Type resource, using the wildcard
value ('* ' \u002A) indicates the bundle
location of the bundle containing the
resource must be used as the location.
See Location Binding on page 91

This is an optional attribute but can be
mandatory in certain usage schemes,
for example the Autoconf Resource
Processor.

 optional false boolean If true , then this Designate element is
optional, errors during processing must
be ignored.

 merge false boolean If the PID refers to an existing configu-
ration, then merge the properties with
the existing properties if this attribute
is true . Otherwise, replace the proper-
ties.

Metatype Service Specification Version 1.4 Using the Meta Type Resources

OSGi Enterprise Release 7 Page 143

Attribute Deflt Type Method Description
AD Attribute Definition
 name str ing getName() A localizable name for the Attribute De-

finition. descr ipt ion
 descr ipt ion str ing getDescr ipt ion() A localizable description for the At-

tribute Definition.
 id getID() The unique ID of the Attribute Defini-

tion.
 type str ing getType() The type of an attribute is an enumer-

ation of the different scalar types. The
string is mapped to one of the constants
on the AttributeDefinition interface.
Valid values, which are defined in the
Scalar type, are:

String ↔ STRING
Long ↔ LONG
Double ↔ DOUBLE
Float ↔ FLOAT
Integer ↔ INTEGER
Byte ↔ BYTE
Char ↔ CHARACTER
Boolean ↔ BOOLEAN
Short ↔ SHORT
Password ↔ PASSWORD

 cardinal ity 0 getCardinal ity() The number of elements an instance
can take. Positive numbers describe
an array ([]) and negative numbers de-
scribe a List object.

 min str ing val idate(Str ing) A validation value. This value is not
directly available from the Attr ibut-
eDefinit ion interface. However, the
val idate(Str ing) method must verify
this. The semantics of this field depend
on the type of this Attribute Definition.

 max str ing val idate(Str ing) A validation value. Similar to the min
field. When min or max are numbers,
attribute values with a numeric da-
ta type are valid if min <= value <=
max . Attribute values with a string (or
equivalent) data type are valid if min <=
value. length() <= max .

Using the Meta Type Resources Metatype Service Specification Version 1.4

Page 144 OSGi Enterprise Release 7

Attribute Deflt Type Method Description
 default str ing getDefaultValue() The default value. A default is an ar-

ray of Str ing objects. The XML attribute
must contain a comma delimited list.
The default value is trimmed and es-
caped in the same way as described in
the val idate(Str ing) method. The empty
string is significant and must be seen as
an empty List or array if specified as the
default for an attribute with a cardinal-
ity that is not equal to zero. Default val-
ues must be valid or otherwise ignored.

 required true boolean Required attribute. The required at-
tribute indicates whether or not the at-
tribute key must appear within the con-
figuration dictionary to be valid.

Option One option label/value for the options
in an AD . Options are exclusive. The
val idate(Str ing) method must verify
that an attribute value matches one of
the option values when present.

 label <> str ing getOptionLabels() The label
 value <> str ing getOptionValues() The value
Icon An icon definition.
 resource <> str ing getIcon(int) The resource is a URL. The base URL is

assumed to be the root of the bundle
containing the XML file. That is, this
URL can reference another resource in
the bundle using a relative URL.

 size <> str ing getIcon(int) The number of pixels of the icon, maps
to the size parameter of the getIcon(int)
method.

Object A definition of an instance.
 ocdref <> str ing A reference to the id attribute of an

OCD element. That is, this attribute de-
fines the OCD type of this object.

Attr ibute A value for an attribute of an object.
 adref <> str ing A reference to the id of the AD in the

OCD as referenced by the parent Object .
 content str ing The content of the attributes. If this is

an array, the content must be separated
by commas (',' \u002C). Commas must
be escaped as described at the default at-
tribute of the AD element.

Value Holds a single value. This element can
be repeated multiple times under an At-
tribute

105.7.2 Designate Element
For the MetaType Service, the Designate definition is used to declare the available PIDs and factory
PIDs; the Attribute elements are never used by the MetaType service.

Metatype Service Specification Version 1.4 Using the Meta Type Resources

OSGi Enterprise Release 7 Page 145

The getPids() method returns an array of PIDs that were specified in the pid attribute of the Object
elements. The getFactoryPids() method returns an array of the factoryPid attributes. For factories,
the related pid attribute is ignored because all instances of a factory must share the same meta type.

The following example shows a metatype reference to a singleton configuration and a factory con-
figuration.

 <Designate pid="com.acme.designate.1">
 <Object ocdref="com.acme.designate"/>
 </Designate>
 <Designate factoryPid="com.acme.designate.factory"
 bundle="*">
 <Object ocdref="com.acme.designate"/>
 </Designate>

Other schemes can embed the Object element in the Designate element to define actual instances
for the Configuration Admin service. In that case the pid attribute must be used together with the
factoryPid attribute. However, in that case an aliasing model is required because the Configuration
Admin service does not allow the creator to choose the Configurat ion object's PID.

105.7.3 Example Metadata File
This example defines a meta type file for a Person record, based on ISO attribute types. The ids that
are used are derived from ISO attributes.

<?xml version="1.0" encoding="UTF-8"?>
<MetaData
 xmlns="http://www.osgi.org/xmlns/metatype/v1.4.0"
 localization="person">
 <OCD name="%person" id="2.5.6.6"
 description="%person record">
 <AD name="%sex" id="2.5.4.12" type="Integer">
 <Option label="%male" value="1"/>
 <Option label="%female" value="0"/>
 </AD>
 <AD name="%sn" id="2.5.4.4" type="String"/>
 <AD name="%cn" id="2.5.4.3" type="String"/>
 <AD name="%seeAlso" id="2.5.4.34" type="String"
 cardinality="8"
 default="http://www.google.com,http://www.yahoo.com"/>
 <AD name="%telNumber" id="2.5.4.20" type="String"/>
 </OCD>

 <Designate pid="com.acme.addressbook">
 <Object ocdref="2.5.6.6"/>
 </Designate>
</MetaData>

Translations for this file, as indicated by the localization attribute must be stored in the root direc-
tory (e.g. person_du_NL.propert ies). The default localization base name for the properties is OSGI-
INF/l10n/bundle , but can be overridden by the manifest Bundle-Localization header and the local-
izat ion attribute of the Meta Data element. The property files have the base name of person . The
Dutch, French and English translations could look like:

person_du_NL.propert ies :

person=Persoon
person\ record=Persoons beschrijving

Meta Type Resource XML Schema Metatype Service Specification Version 1.4

Page 146 OSGi Enterprise Release 7

cn=Naam
sn=Voornaam
seeAlso=Zie ook
telNumber=Tel. Nummer
sex=Geslacht
male=Mannelijk
female=Vrouwelijk

person_fr.propert ies :

person=Personne
person\ record=Description de la personne
cn=Nom
sn=Surnom
seeAlso=Reference
telNumber=Tel.
sex=Sexe
male=Homme
female=Femme

person_en_US.propert ies :

person=Person
person\ record=Person Record
cn=Name
sn=Sur Name
seeAlso=See Also
telNumber=Tel.
sex=Sex
male=Male
female=Female

105.7.4 Object Element
The OCD element can be used to describe the possible contents of a Dictionary object. In this case,
the attribute name is the key. The Object element can be used to assign a value to a Dictionary ob-
ject.

For example:

<Designate pid="com.acme.b">
 <Object ocdref="b">
 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 <Attribute adref="bar">
 <Value>1</Value>
 <Value>2</Value>
 <Value>3</Value>
 <Value>4</Value>
 <Value>5</Value>
 </Attribute>
 </Object>
</Designate>

105.8 Meta Type Resource XML Schema
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.4.0"

Metatype Service Specification Version 1.4 Meta Type Resource XML Schema

OSGi Enterprise Release 7 Page 147

 targetNamespace="http://www.osgi.org/xmlns/metatype/v1.4.0"
 version="1.4.0">

 <element name="MetaData" type="metatype:Tmetadata" />

 <complexType name="Tmetadata">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="OCD" type="metatype:Tocd" />
 <element name="Designate" type="metatype:Tdesignate" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="localization" type="string" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tocd">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="AD" type="metatype:Tad" />
 <element name="Icon" type="metatype:Ticon" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="name" type="string" use="required" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="id" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tad">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Option" type="metatype:Toption" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="name" type="string" use="optional" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="id" type="string" use="required" />
 <attribute name="type" type="metatype:Tscalar" use="required" />
 <attribute name="cardinality" type="int" use="optional"
 default="0" />
 <attribute name="min" type="string" use="optional" />
 <attribute name="max" type="string" use="optional" />
 <attribute name="default" type="string" use="optional" />
 <attribute name="required" type="boolean" use="optional"
 default="true" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tobject">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Attribute" type="metatype:Tattribute" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="ocdref" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tattribute">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Value" type="string" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="adref" type="string" use="required" />
 <attribute name="content" type="string" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

Meta Type Resource XML Schema Metatype Service Specification Version 1.4

Page 148 OSGi Enterprise Release 7

 <complexType name="Tdesignate">
 <sequence>
 <element name="Object" type="metatype:Tobject" minOccurs="1"
 maxOccurs="1" />
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="pid" type="string" use="optional" />
 <attribute name="factoryPid" type="string" use="optional" />
 <attribute name="bundle" type="string" use="optional" />
 <attribute name="optional" type="boolean" default="false"
 use="optional" />
 <attribute name="merge" type="boolean" default="false"
 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <simpleType name="Tscalar">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Long" />
 <enumeration value="Double" />
 <enumeration value="Float" />
 <enumeration value="Integer" />
 <enumeration value="Byte" />
 <enumeration value="Character" />
 <enumeration value="Boolean" />
 <enumeration value="Short" />
 <enumeration value="Password" />
 </restriction>
 </simpleType>

 <complexType name="Toption">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="label" type="string" use="required" />
 <attribute name="value" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Ticon">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="resource" type="string" use="required" />
 <attribute name="size" type="positiveInteger" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <attribute name="must-understand" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension.
 </documentation>
 </annotation>
 </attribute>
</schema>

Metatype Service Specification Version 1.4 Meta Type Annotations

OSGi Enterprise Release 7 Page 149

105.9 Meta Type Annotations
A developer can use Meta Type Annotations on a Component Property Type, see Component Proper-
ty Types on page 251, or an interface to define an Object Class Definition in a type safe manner.
The Meta Type Annotations are CLASS retention annotations intended to be used during build time
to generate Meta Type Resources from the Java class files providing a convenient way to create the
Meta Type Resource XML documents.

Tools processing these annotations must always generate valid Meta Type Resource XML docu-
ments. If the Meta Type Annotations are used in a way that is not supported or in error, then the tool
must report the error to enable the developer to take corrective action.

105.9.1 ObjectClassDefinition Annotation
The ObjectClassDefinit ion annotation can be applied to a Component Property Type or an inter-
face. From that type, tooling can generate an OCD element. When applied to an interface, all the
methods inherited from supertypes are include as Attribute Definitions. The tool processing the an-
notations must be able to examine all the types in the hierarchy of the annotated type to generate
the Meta Type Resource. It is an error if the tool cannot examine a type in the hierarchy.

It is an error to apply the ObjectClassDefinit ion annotation to concrete and abstract class types. It is
also an error to apply it to an interface if any of the methods of the interface take arguments.

The ObjectClassDefinit ion annotation can be applied without defining any element values as de-
fault values for the ObjectClassDefinit ion annotation elements can be generated from the annotat-
ed type. For example:

@ObjectClassDefinition
@interface Config {
 boolean enabled();
 String[] names();
 String topic();
}

In the following larger example, the ObjectClassDefinit ion annotation defines the description and
name of the OCD which are to be localized using the specified resource as well as an icon resource.
Also, Attr ibuteDefinit ion annotations are applied to the methods to supply some non-default values
for the generated AD elements.

@ObjectClassDefinition(localization = "OSGI-INF/l10n/member",
 description = "%member.description",
 name = "%member.name"
 icon = @Icon(resource = "icon/member-32.png", size = 32))
@interface Member {
 @AttributeDefinition(type = AttributeType.PASSWORD,
 description = "%member.password.description",
 name = "%member.password.name")
 public String _password();

 @AttributeDefinition(options = {
 @Option(label = "%strategic", value = "strategic"),
 @Option(label = "%principal", value = "principal"),
 @Option(label = "%contributing", value = "contributing")
 },
 defaultValue = "contributing",
 description = "%member.membertype.description",
 name = "%member.membertype.name")

Meta Type Annotations Metatype Service Specification Version 1.4

Page 150 OSGi Enterprise Release 7

 public String type();
}

105.9.2 AttributeDefinition Annotation
The Attr ibuteDefinit ion annotation is an optional annotation which can applied to the methods in
a type annotated by ObjectClassDefinit ion . Each method of the type annotated by ObjectClassDe-
finit ion is mapped to an AD child element of the OCD element in the generated Meta Type Resource
XML document. The Attr ibuteDefinit ion annotation only needs to be applied to a method if values
other than the defaults are desired.

The id of the Attribute Definition is generated from the method name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are converted to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are converted to a

single dollar sign.
• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-

other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.
• If the type declaring the method also declares a PREFIX_ field whose value is a compile-time con-

stant String, then the id is prefixed with the value of the PREFIX_ field.

However, if the type annotated by ObjectClassDefinit ion is a single-element annotation, see 9.7.3 in [3]
The Java Language Specification, Java SE 8 Edition, then the id for the value method is derived from the
name of the annotation type rather than the name of the method. In this case, the simple name of
the annotation type, that is, the name of the class without any package name or outer class name, if
the annotation type is an inner class, must be converted to the value method's id as follows:

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each upper case character is converted to lower case.
• All other characters are unchanged.
• If the annotation type declares a PREFIX_ field whose value is a compile-time constant String,

then the id is prefixed with the value of the PREFIX_ field.

The generated id becomes the value of the id attribute of the AD element in the generated Meta Type
Resource XML document.

105.9.3 Designate Annotation
The Designate annotation can be applied to a Declarative Services component class to make the
connection between the pid of the component and an Object Class Definition. This annotation must
be used on a type that is also annotated with the Declarative Services Component annotation. The
component must only have a single PID which is used for the generated Designate element.

In the following example, the Designate annotation is applied to a Declarative Services component
and references the Object Class Definition type.

@ObjectClassDefinition(id="my.config.ocd")
@interface Config {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

Metatype Service Specification Version 1.4 Limitations

OSGi Enterprise Release 7 Page 151

@Component(configurationPid="my.component.pid")
@Designate(ocd = Config.class)
public class MyComponent {
 static final String DEFAULT_TOPIC_PREFIX = "topic.prefix";
 protected void activate(Config configuration) {
 String t = configuration.topic();
 }
}

Tools processing these annotations will generate a Designate element in the generated Meta Type
Resource XML document using the PID of the component and the id of the Object Class Definition.
For example:

<Designate pid="my.component.pid">
 <Object ocdref="my.config.ocd"/>
</Designate>

105.10 Limitations
The OSGi MetaType specification is intended to be used for simple applications. It does not, there-
fore, support recursive data types, mixed types in arrays/lists, or nested arrays/lists.

105.11 Related Standards
One of the primary goals of this specification is to make metatype information available at run-
time with minimal overhead. Many related standards are applicable to metatypes; except for Java
beans, however, all other metatype standards are based on document formats (e.g. XML). In the OSGi
framework, document format standards are deemed unsuitable due to the overhead required in the
execution environment (they require a parser during run-time).

Another consideration is the applicability of these standards. Most of these standards were devel-
oped for management systems on platforms where resources are not necessarily a concern. In this
case, a metatype standard is normally used to describe the data structures needed to control some
other computer via a network. This other computer, however, does not require the metatype infor-
mation as it is implementing this information.

In some traditional cases, a management system uses the metatype information to control objects
in an OSGi framework. Therefore, the concepts and the syntax of the metatype information must be
mappable to these popular standards. Clearly, then, these standards must be able to describe objects
in an OSGi framework. This ability is usually not a problem, because the metatype languages used
by current management systems are very powerful.

105.12 Capabilities
Implementations of the Metatype Service specification must provide the following capabilities.

• A capability in the osgi . implementation namespace declaring a specification implementation
with the name METATYPE_CAPABILITY_NAME . This capability must also declare a uses constraint
for the org.osgi .service.metatype package. For example:

Provide-Capability: osgi.implementation;

Security Considerations Metatype Service Specification Version 1.4

Page 152 OSGi Enterprise Release 7

 osgi.implementation="osgi.metatype";
 version:Version="1.4";
 uses:="org.osgi.service.metatype"

The RequireMetaTypeImplementation annotation can be used to require this capability.

This capability must follow the rules defined for the osgi.implementation Namespace on page
635.

• A capability in the osgi .extender namespace declaring an extender with the name
METATYPE_CAPABILITY_NAME . This capability must also declare a uses constraint for the
org.osgi .service.metatype package. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.metatype";
 version:Version="1.4";
 uses:="org.osgi.service.metatype"

The RequireMetaTypeExtender annotation can be used to require this capability.

This capability must follow the rules defined for the osgi.extender Namespace on page 631.
• A capability in the osgi .service namespace representing the MetaTypeService service. This capa-

bility must also declare a uses constraint for the org.osgi .service.metatype package. For exam-
ple:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.metatype.MetaTypeService";
 uses:="org.osgi.service.metatype"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

105.13 Security Considerations
Special security issues are not applicable for this specification.

105.14 org.osgi.service.metatype

Metatype Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.metatype; vers ion="[1.4,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.metatype; vers ion="[1.4,1.5)"

105.14.1 Summary

• Attr ibuteDefinit ion - An interface to describe an attribute.
• MetaTypeInformation - A MetaType Information object is created by the MetaTypeService to re-

turn meta type information for a specific bundle.
• MetaTypeProvider - Provides access to metatypes.

Metatype Service Specification Version 1.4 org.osgi.service.metatype

OSGi Enterprise Release 7 Page 153

• MetaTypeService - The MetaType Service can be used to obtain meta type information for a
bundle.

• ObjectClassDefinit ion - Description for the data type information of an objectclass.

105.14.2 public interface AttributeDefinition
An interface to describe an attribute.

An Attr ibuteDefinit ion object defines a description of the data type of a property/attribute.

Concurrency Thread-safe

105.14.2.1 public static final int BIGDECIMAL = 10

The BIGDECIMAL type. Attributes of this type should be stored as BigDecimal , List<BigDecimal> or
BigDecimal[] objects depending on getCardinality().

Deprecated As of 1.1.

105.14.2.2 public static final int BIGINTEGER = 9

The BIGINTEGER type. Attributes of this type should be stored as BigInteger , List<BigInteger> or
BigInteger[] objects, depending on the getCardinality() value.

Deprecated As of 1.1.

105.14.2.3 public static final int BOOLEAN = 11

The BOOLEAN type. Attributes of this type should be stored as Boolean , List<Boolean> or boolean[]
objects depending on getCardinality().

105.14.2.4 public static final int BYTE = 6

The BYTE type. Attributes of this type should be stored as Byte , List<Byte> or byte[] objects, depend-
ing on the getCardinality() value.

105.14.2.5 public static final int CHARACTER = 5

The CHARACTER type. Attributes of this type should be stored as Character , List<Character> or
char[] objects, depending on the getCardinality() value.

105.14.2.6 public static final int DOUBLE = 7

The DOUBLE type. Attributes of this type should be stored as Double , List<Double> or double[] ob-
jects, depending on the getCardinality() value.

105.14.2.7 public static final int FLOAT = 8

The FLOAT type. Attributes of this type should be stored as Float , List<Float> or f loat[] objects, de-
pending on the getCardinality() value.

105.14.2.8 public static final int INTEGER = 3

The INTEGER type. Attributes of this type should be stored as Integer , List< Integer> or int[] objects,
depending on the getCardinality() value.

105.14.2.9 public static final int LONG = 2

The LONG type. Attributes of this type should be stored as Long , List<Long> or long[] objects, de-
pending on the getCardinality() value.

105.14.2.10 public static final int PASSWORD = 12

The PASSWORD type. Attributes of this type must be stored as Str ing , List<Str ing> or Str ing[] objects
depending on getCardinality(). A PASSWORD must be treated as a string but the type can be used to
disguise the information when displayed to a user to prevent others from seeing it.

org.osgi.service.metatype Metatype Service Specification Version 1.4

Page 154 OSGi Enterprise Release 7

Since 1.2

105.14.2.11 public static final int SHORT = 4

The SHORT type. Attributes of this type should be stored as Short , List<Short> or short[] objects, de-
pending on the getCardinality() value.

105.14.2.12 public static final int STRING = 1

The STRING type.

Attributes of this type should be stored as Str ing , List<Str ing> or Str ing[] objects, depending on the
getCardinality() value.

105.14.2.13 public int getCardinality()

□ Return the cardinality of this attribute. The OSGi environment handles multi valued attributes in
arrays ([]) or in List objects. The return value is defined as follows:

 x = Integer.MIN_VALUE no limit, but use List
 x < 0 -x = max occurrences, store in List
 x > 0 x = max occurrences, store in array []
 x = Integer.MAX_VALUE no limit, but use array []
 x = 0 1 occurrence required

Returns The cardinality of this attribute.

105.14.2.14 public String[] getDefaultValue()

□ Return a default for this attribute. The object must be of the appropriate type as defined by the cardi-
nality and getType() . The return type is a list of Str ing objects that can be converted to the appropri-
ate type. The cardinality of the return array must follow the absolute cardinality of this type. For ex-
ample, if the cardinality = 0, the array must contain 1 element. If the cardinality is 1, it must contain
0 or 1 elements. If it is -5, it must contain from 0 to max 5 elements. Note that the special case of a 0
cardinality, meaning a single value, does not allow arrays or lists of 0 elements.

Returns Return a default value or nul l if no default exists.

105.14.2.15 public String getDescription()

□ Return a description of this attribute. The description may be localized and must describe the se-
mantics of this type and any constraints.

Returns The localized description of the definition.

105.14.2.16 public String getID()

□ Unique identity for this attribute. Attributes share a global namespace in the registry. For example,
an attribute cn or commonName must always be a Str ing and the semantics are always a name of
some object. They share this aspect with LDAP/X.500 attributes. In these standards the OSI Object
Identifier (OID) is used to uniquely identify an attribute. If such an OID exists, (which can be re-
quested at several standard organizations and many companies already have a node in the tree) it
can be returned here. Otherwise, a unique id should be returned which can be a Java class name (re-
verse domain name) or generated with a GUID algorithm. Note that all LDAP defined attributes al-
ready have an OID. It is strongly advised to define the attributes from existing LDAP schemes which
will give the OID. Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id or oid

105.14.2.17 public String getName()

□ Get the name of the attribute. This name may be localized.

Metatype Service Specification Version 1.4 org.osgi.service.metatype

OSGi Enterprise Release 7 Page 155

Returns The localized name of the definition.

105.14.2.18 public String[] getOptionLabels()

□ Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is associated with getOption-
Values . The labels returned here are ordered in the same way as the values in that method.

If the function returns nul l , there are no option labels available.

This list must be in the same sequence as the getOptionValues() method. That is, for each index i in
getOptionLabels , i in getOptionValues() should be the associated value.

For example, if an attribute can have the value male, female, unknown, this list can return (for
dutch) new Str ing[] { "Man", "Vrouw", "Onbekend" } .

Returns A list values

105.14.2.19 public String[] getOptionValues()

□ Return a list of option values that this attribute can take.

If the function returns nul l , there are no option values available.

Each value must be acceptable to validate() (return "") and must be a Str ing object that can be con-
verted to the data type defined by getType() for this attribute.

This list must be in the same sequence as getOptionLabels() . That is, for each index i in getOption-
Values , i in getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this list can return new
Str ing[] { "male", " female", "unknown" } .

Returns A list values

105.14.2.20 public int getType()

□ Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type.
STRING,LONG,INTEGER, SHORT, CHARACTER, BYTE,DOUBLE,FLOAT, BOOLEAN, PASSWORD.

Returns The type for this attribute.

105.14.2.21 public String validate(String value)

value The value before turning it into the basic data type. If the cardinality indicates a multi-valued at-
tribute then the given string must be escaped.

□ Validate an attribute in Str ing form. An attribute might be further constrained in value. This
method will attempt to validate the attribute according to these constraints. It can return three dif-
ferent values:

 null No validation present
 "" No problems detected
 "..." A localized description of why the value is wrong

If the cardinality of this attribute is multi-valued then this string must be interpreted as a comma
delimited string. The complete value must be trimmed from white space as well as spaces around
commas. Commas (',' \u002C) and spaces (' ' \u0020) and backslashes (' \ ' \u005C) can be escaped
with another backslash. Escaped spaces must not be trimmed. For example:

 value=" a\,b,b\,c,\ c\\,d " => ["a,b", "b,c", " c\", "d"]

Returns nul l , "", or another string

org.osgi.service.metatype Metatype Service Specification Version 1.4

Page 156 OSGi Enterprise Release 7

105.14.3 public interface MetaTypeInformation
extends MetaTypeProvider
A MetaType Information object is created by the MetaTypeService to return meta type information
for a specific bundle.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

105.14.3.1 public Bundle getBundle()

□ Return the bundle for which this object provides meta type information.

Returns Bundle for which this object provides meta type information.

105.14.3.2 public String[] getFactoryPids()

□ Return the Factory PIDs (for ManagedServiceFactories) for which ObjectClassDefinition informa-
tion is available.

Returns Array of Factory PIDs.

105.14.3.3 public String[] getPids()

□ Return the PIDs (for ManagedServices) for which ObjectClassDefinition information is available.

Returns Array of PIDs.

105.14.4 public interface MetaTypeProvider
Provides access to metatypes. This interface can be implemented on a Managed Service or Managed
Service Factory as well as registered as a service. When registered as a service, it must be registered
with a METATYPE_FACTORY_PID or METATYPE_PID service property (or both). Any PID men-
tioned in either of these factories must be a valid argument to the getObjectClassDefinition(String,
String) method.

Concurrency Thread-safe

105.14.4.1 public static final String METATYPE_FACTORY_PID = "metatype.factory.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given factory
PIDs. The type of this service property is Str ing+ .

Since 1.2

105.14.4.2 public static final String METATYPE_PID = "metatype.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given PIDs. The
type of this service property is Str ing+ .

Since 1.2

105.14.4.3 public String[] getLocales()

□ Return a list of available locales. The results must be names that consists of language [_ country [_
variation]] as is customary in the Locale class.

Returns An array of locale strings or nul l if there is no locale specific localization can be found.

105.14.4.4 public ObjectClassDefinition getObjectClassDefinition(String id, String locale)

id The ID of the requested object class. This can be a pid or factory pid returned by getPids or getFacto-
ryPids.

Metatype Service Specification Version 1.4 org.osgi.service.metatype

OSGi Enterprise Release 7 Page 157

locale The locale of the definition or nul l for default locale.

□ Returns an object class definition for the specified id localized to the specified locale.

The locale parameter must be a name that consists of language ["_" country ["_" var iat ion]] as is cus-
tomary in the Locale class. This Locale class is not used because certain profiles do not contain it.

Returns A ObjectClassDefinit ion object.

Throws I l legalArgumentException– If the id or locale arguments are not valid

105.14.5 public interface MetaTypeService
The MetaType Service can be used to obtain meta type information for a bundle. The MetaType Ser-
vice will examine the specified bundle for meta type documents to create the returned MetaTypeIn-
formation object.

If the specified bundle does not contain any meta type documents, then a MetaTypeInformation ob-
ject will be returned that wrappers any ManagedService or ManagedServiceFactory services regis-
tered by the specified bundle that implement MetaTypeProvider . Thus the MetaType Service can be
used to retrieve meta type information for bundles which contain a meta type documents or which
provide their own MetaTypeProvider objects.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

105.14.5.1 public static final String METATYPE_CAPABILITY_NAME = "osgi.metatype"

Capability name for meta type document processors.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

 Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.metatype)(version>=1.4)(!(version>=2.0)))"

Since 1.3

105.14.5.2 public static final String METATYPE_DOCUMENTS_LOCATION = "OSGI-INF/metatype"

Location of meta type documents. The MetaType Service will process each entry in the meta type
documents directory.

105.14.5.3 public static final String METATYPE_SPECIFICATION_VERSION = "1.4.0"

Compile time constant for the Specification Version of MetaType Service.

Used in Version and Requirement annotations. The value of this compile time constant will change
when the specification version of MetaType Service is updated.

Since 1.4

105.14.5.4 public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

bundle The bundle for which meta type information is requested.

□ Return the MetaType information for the specified bundle.

Returns A MetaTypeInformation object for the specified bundle.

105.14.6 public interface ObjectClassDefinition
Description for the data type information of an objectclass.

Concurrency Thread-safe

org.osgi.service.metatype Metatype Service Specification Version 1.4

Page 158 OSGi Enterprise Release 7

105.14.6.1 public static final int ALL = -1

Argument for getAttr ibuteDefinit ions(int) .

ALL indicates that all the definitions are returned. The value is -1.

105.14.6.2 public static final int OPTIONAL = 2

Argument for getAttr ibuteDefinit ions(int) .

OPTIONAL indicates that only the optional definitions are returned. The value is 2.

105.14.6.3 public static final int REQUIRED = 1

Argument for getAttr ibuteDefinit ions(int) .

REQUIRED indicates that only the required definitions are returned. The value is 1.

105.14.6.4 public AttributeDefinition[] getAttributeDefinitions(int filter)

filter ALL ,REQUIRED ,OPTIONAL

□ Return the attribute definitions for this object class.

Return a set of attributes. The filter parameter can distinguish between ALL ,REQUIRED or the OP-
TIONAL attributes.

Returns An array of attribute definitions or nul l if no attributes are selected

105.14.6.5 public String getDescription()

□ Return a description of this object class. The description may be localized.

Returns The description of this object class.

105.14.6.6 public InputStream getIcon(int size) throws IOException

size Requested size of an icon. For example, a 16x16 pixel icon has a size of 16

□ Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The returned icon maybe
larger or smaller than the indicated size.

The icon may depend on the localization.

Returns An InputStream representing an icon or nul l

Throws IOException– If the InputStream cannot be returned.

105.14.6.7 public String getID()

□ Return the id of this object class.

ObjectDefint ion objects share a global namespace in the registry. They share this aspect with LDAP/
X.500 attributes. In these standards the OSI Object Identifier (OID) is used to uniquely identify ob-
ject classes. If such an OID exists, (which can be requested at several standard organizations and
many companies already have a node in the tree) it can be returned here. Otherwise, a unique id
should be returned which can be a Java class name (reverse domain name) or generated with a GUID
algorithm. Note that all LDAP defined object classes already have an OID associated. It is strongly
advised to define the object classes from existing LDAP schemes which will give the OID for free.
Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id of this object class.

105.14.6.8 public String getName()

□ Return the name of this object class. The name may be localized.

Metatype Service Specification Version 1.4 org.osgi.service.metatype.annotations

OSGi Enterprise Release 7 Page 159

Returns The name of this object class.

105.15 org.osgi.service.metatype.annotations

Metatype Annotations Package Version 1.4.

This package is not used at runtime. Annotated classes are processed by tools to generate Meta Type
Resources which are used at runtime.

105.15.1 Summary

• Attr ibuteDefinit ion - Attr ibuteDefinit ion information for the annotated method.
• Attr ibuteType - Attribute types for the AttributeDefinition annotation.
• Designate - Generate a Designate element in the Meta Type Resource for an ObjectClassDefini-

tion using the annotated Declarative Services component.
• Icon - Icon information for an ObjectClassDefinition.
• ObjectClassDefinit ion - Generate a Meta Type Resource using the annotated type.
• Option - Option information for an AttributeDefinition.
• RequireMetaTypeExtender - This annotation can be used to require the Meta Type extender to

process metatype resources.
• RequireMetaTypeImplementation - This annotation can be used to require the Meta Type im-

plementation.

105.15.2 @AttributeDefinition
Attr ibuteDefinit ion information for the annotated method.

Each method of a type annotated by ObjectClassDefinition has an implied AttributeDefinition an-
notation. This annotation is only used to specify non-default AttributeDefinition information.

The id of this AttributeDefinition is generated from the name of the annotated method as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are changed to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are changed to a

single dollar sign.
• A low line ('_ ' \u005F) is changed to a full stop ('.' \u002E) unless is it followed by another low

line in which case the two consecutive low lines ("__") are changed to a single low line.
• All other characters are unchanged.
• If the type declaring the method also declares a PREFIX_ field whose value is a compile-time con-

stant String, then the id is prefixed with the value of the PREFIX_ field.

However, if the type annotated by ObjectClassDefinition is a single-element annotation, then the id
for the value method is derived from the name of the annotation type rather than the name of the
method. In this case, the simple name of the annotation type, that is, the name of the class without
any package name or outer class name, if the annotation type is an inner class, must be converted to
the value method's id as follows:

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each upper case character is converted to lower case.
• All other characters are unchanged.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.4

Page 160 OSGi Enterprise Release 7

• If the annotation type declares a PREFIX_ field whose value is a compile-time constant String,
then the id is prefixed with the value of the PREFIX_ field.

This id is the value of the id attribute of the generate AD element and is used as the name of the cor-
responding configuration property.

This annotation is not processed at runtime. It must be processed by tools and used to contribute to
a Meta Type Resource document for the bundle.

See Also The AD element of a Meta Type Resource.

Retention CLASS

Target METHOD

105.15.2.1 String name default ""

□ The human readable name of this AttributeDefinition.

If not specified, the name of this AttributeDefinition is derived from the name of the annotated
method. For example, low line ('_ ' \u005F), dollar sign ('$ ' \u0024), and hyphen-minus (' - ' \u002D)
are replaced with space (' ' \u0020) and space is inserted between camel case words.

If the name begins with the percent sign ('%' \u0025), the name can be localized.

See Also The name attr ibute of the AD element of a Meta Type Resource.

105.15.2.2 String description default ""

□ The human readable description of this AttributeDefinition.

If not specified, the description of this AttributeDefinition is the empty string.

If the description begins with the percent sign ('%' \u0025), the description can be localized.

See Also The descr ipt ion attr ibute of the AD element of a Meta Type Resource.

105.15.2.3 AttributeType type default STRING

□ The type of this AttributeDefinition.

This must be one of the defined attributes types.

If not specified, the type is derived from the return type of the annotated method. Return types of
Class and Enum are mapped to STRING. If the return type is List , Set , Collect ion , I terable or some
type which can be determined at annotation processing time to

1. be a subtype of Collect ion and
2. have a public no argument constructor,

then the type is derived from the generic type. For example, a return type of List<Str ing> will be
mapped to STRING. A return type of a single dimensional array is supported and the type is the
component type of the array. Multi dimensional arrays are not supported. Annotation return types
are not supported. Any unrecognized type is mapped to STRING. A tool processing the annotation
should declare an error for unsupported return types.

See Also The type attr ibute of the AD element of a Meta Type Resource.

105.15.2.4 int cardinality default 0

□ The cardinality of this AttributeDefinition.

If not specified, the cardinality is derived from the return type of the annotated method. For an array
return type, the cardinality is a large positive value. If the return type is List , Set , Collect ion , I terable
or some type which can be determined at annotation processing time to

1. be a subtype of Collect ion and

Metatype Service Specification Version 1.4 org.osgi.service.metatype.annotations

OSGi Enterprise Release 7 Page 161

2. have a public no argument constructor,

the cardinality is a large negative value. Otherwise, the cardinality is 0.

See Also The cardinal ity attr ibute of the AD element of a Meta Type Resource.

105.15.2.5 String min default ""

□ The minimum value for this AttributeDefinition.

If not specified, there is no minimum value.

See Also The min attr ibute of the AD element of a Meta Type Resource.

105.15.2.6 String max default ""

□ The maximum value for this AttributeDefinition.

If not specified, there is no maximum value.

See Also The max attr ibute of the AD element of a Meta Type Resource.

105.15.2.7 String[] defaultValue default {}

□ The default value for this AttributeDefinition.

The specified values are concatenated into a comma delimited list to become the value of the de-
fault attribute of the generated AD element.

If not specified and the annotated method is an annotation element that has a default value, then
the value of this element is the default value of the annotated element. Otherwise, there is no de-
fault value.

See Also The default attr ibute of the AD element of a Meta Type Resource.

105.15.2.8 boolean required default true

□ The required value for this AttributeDefinition.

If not specified, the value is true .

See Also The required attr ibute of the AD element of a Meta Type Resource.

105.15.2.9 Option[] options default {}

□ The option information for this AttributeDefinition.

For each specified Option, an Option element is generated for this AttributeDefinition.

If not specified, the option information is derived from the return type of the annotated method. If
the return type is an enum , a single dimensional array of an enum , or a List , Set , Collect ion , I terable
or some type which can be determined at annotation processing time to

1. be a subtype of Collect ion and
2. have a public no argument constructor,

with a generic type of an enum , then the value of this element has an Option for each value of the
enum . The label and value of each Option are set to the name of the corresponding enum value. Oth-
erwise, no Option elements will be generated.

See Also The Option element of a Meta Type Resource.

105.15.3 enum AttributeType
Attribute types for the AttributeDefinition annotation.

See Also AttributeDefinition.type()

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.4

Page 162 OSGi Enterprise Release 7

105.15.3.1 STRING

The Str ing type.

Attributes of this type should be stored as Str ing , List<Str ing> or Str ing[] objects, depending on the
cardinality value.

105.15.3.2 LONG

The Long type.

Attributes of this type should be stored as Long , List<Long> or long[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.3 INTEGER

The Integer type.

Attributes of this type should be stored as Integer , List< Integer> or int[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.4 SHORT

The Short type.

Attributes of this type should be stored as Short , List<Short> or short[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.5 CHARACTER

The Character type.

Attributes of this type should be stored as Character , List<Character> or char[] objects, depending
on the Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.6 BYTE

The Byte type.

Attributes of this type should be stored as Byte , List<Byte> or byte[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.7 DOUBLE

The Double type.

Attributes of this type should be stored as Double , List<Double> or double[] objects, depending on
the Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.8 FLOAT

The Float type.

Attributes of this type should be stored as Float , List<Float> or f loat[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.9 BOOLEAN

The Boolean type.

Attributes of this type should be stored as Boolean , List<Boolean> or boolean[] objects depending on
Attr ibuteDefinit ion#cardinal ity() cardinal ity .

105.15.3.10 PASSWORD

The Password type.

Metatype Service Specification Version 1.4 org.osgi.service.metatype.annotations

OSGi Enterprise Release 7 Page 163

Attributes of this type must be stored as Str ing , List<Str ing> or Str ing[] objects depending on cardi-
nality.

A Password must be treated as a Str ing but the type can be used to disguise the information when
displayed to a user to prevent it from being seen.

105.15.3.11 public String toString()

105.15.3.12 public static AttributeType valueOf(String name)

105.15.3.13 public static AttributeType[] values()

105.15.4 @Designate
Generate a Designate element in the Meta Type Resource for an ObjectClassDefinition using the an-
notated Declarative Services component.

This annotation must be used on a type that is also annotated with the Declarative Services Compo-
nent annotation. The component must only have a single PID which is used for the generated Des-
ignate element.

This annotation is not processed at runtime. It must be processed by tools and used to contribute to
a Meta Type Resource document for the bundle.

See Also The Designate element of a Meta Type Resource.

Retention CLASS

Target TYPE

105.15.4.1 Class<?> ocd

□ The type of the ObjectClassDefinition for this Designate.

The specified type must be annotated with ObjectClassDefinition.

See Also The ocdref attr ibute of the Designate element of a Meta Type Resource.

105.15.4.2 boolean factory default false

□ Specifies whether this Designate is for a factory PID.

If fa lse , then the PID value from the annotated component will be used in the pid attribute of the
generated Designate element. If true , then the PID value from the annotated component will be
used in the factoryPid attribute of the generated Designate element.

See Also The pid and factoryPid attr ibutes of the Designate element of a Meta Type Resource.

105.15.5 @Icon
Icon information for an ObjectClassDefinition.

See Also ObjectClassDefinition.icon()

Retention CLASS

Target

105.15.5.1 String resource

□ The resource name for this Icon.

The resource is a URL. The resource URL can be relative to the root of the bundle containing the
Meta Type Resource.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.4

Page 164 OSGi Enterprise Release 7

If the resource begins with the percent sign ('%' \u0025), the resource can be localized.

See Also The resource attr ibute of the Icon element of a Meta Type Resource.

105.15.5.2 int size

□ The pixel size of this Icon.

For example, 32 represents a 32x32 icon.

See Also The s ize attr ibute of the Icon element of a Meta Type Resource.

105.15.6 @ObjectClassDefinition
Generate a Meta Type Resource using the annotated type.

This annotation can be used without defining any element values since defaults can be generated
from the annotated type. Each method of the annotated type has an implied AttributeDefinition an-
notation if not explicitly annotated.

This annotation may only be used on annotation types and interface types. Use on concrete or ab-
stract class types is unsupported. If applied to an interface then all methods inherited from super
types are included as attributes.

This annotation is not processed at runtime. It must be processed by tools and used to generate a
Meta Type Resource document for the bundle.

See Also The OCD element of a Meta Type Resource.

Retention CLASS

Target TYPE

105.15.6.1 String id default ""

□ The id of this ObjectClassDefinition.

If not specified, the id of this ObjectClassDefinition is the fully qualified name of the annotated type
using the dollar sign ('$ ' \u0024) to separate nested class names from the name of their enclosing
class. The id is not to be confused with a PID which can be specified by the pid() or factoryPid() ele-
ment.

See Also The id attr ibute of the OCD element of a Meta Type Resource.

105.15.6.2 String name default ""

□ The human readable name of this ObjectClassDefinition.

If not specified, the name of this ObjectClassDefinition is derived from the id(). For example, low
line ('_ ' \u005F) and dollar sign ('$ ' \u0024) are replaced with space (' ' \u0020) and space is inserted
between camel case words.

If the name begins with the percent sign ('%' \u0025), the name can be localized.

See Also The name attr ibute of the OCD element of a Meta Type Resource.

105.15.6.3 String description default ""

□ The human readable description of this ObjectClassDefinition.

If not specified, the description of this ObjectClassDefinition is the empty string.

If the description begins with the percent sign ('%' \u0025), the description can be localized.

See Also The descr ipt ion attr ibute of the OCD element of a Meta Type Resource.

105.15.6.4 String localization default ""

□ The localization resource of this ObjectClassDefinition.

Metatype Service Specification Version 1.4 org.osgi.service.metatype.annotations

OSGi Enterprise Release 7 Page 165

This refers to a resource property entry in the bundle that can be augmented with locale informa-
tion. If not specified, the localization resource for this ObjectClassDefinition is the string "OSGI-INF/
l10n/" followed by the id().

See Also The local izat ion attr ibute of the MetaData element of a Meta Type Resource.

105.15.6.5 String[] pid default {}

□ The PIDs associated with this ObjectClassDefinition.

For each specified PID, a Designate element with a pid attribute is generated that references this Ob-
jectClassDefinition.

The Designate annotation can also be used to associate a Declarative Services component with an
ObjectClassDefinition and generate a Designate element.

A special string ("$") can be used to specify the fully qualified name of the annotated type as a PID.
For example:

 @ObjectClassDefinition(pid="$")

Tools creating a Meta Type Resource from this annotation must replace the special string with the
fully qualified name of the annotated type.

See Also The pid attr ibute of the Designate element of a Meta Type Resource. , Designate

105.15.6.6 String[] factoryPid default {}

□ The factory PIDs associated with this ObjectClassDefinition.

For each specified factory PID, a Designate element with a factoryPid attribute is generated that ref-
erences this ObjectClassDefinition.

The Designate annotation can also be used to associate a Declarative Services component with an
ObjectClassDefinition and generate a Designate element.

A special string ("$") can be used to specify the fully qualified name of the annotated type as a facto-
ry PID. For example:

 @ObjectClassDefinition(factoryPid="$")

Tools creating a Meta Type Resource from this annotation must replace the special string with the
fully qualified name of the annotated type.

See Also The factoryPid attr ibute of the Designate element of a Meta Type Resource. , Designate

105.15.6.7 Icon[] icon default {}

□ The icon resources associated with this ObjectClassDefinition.

For each specified Icon, an Icon element is generated for this ObjectClassDefinition. If not specified,
no Icon elements will be generated.

See Also The Icon element of a Meta Type Resource.

105.15.7 @Option
Option information for an AttributeDefinition.

See Also AttributeDefinition.options()

Retention CLASS

Target

105.15.7.1 String label default ""

□ The human readable label of this Option.

References Metatype Service Specification Version 1.4

Page 166 OSGi Enterprise Release 7

If not specified, the label of this Option is the empty string.

If the label begins with the percent sign ('%' \u0025), the label can be localized.

See Also The label attr ibute of the Option element of a Meta Type Resource.

105.15.7.2 String value

□ The value of this Option.

See Also The value attr ibute of the Option element of a Meta Type Resource.

105.15.8 @RequireMetaTypeExtender
This annotation can be used to require the Meta Type extender to process metatype resources. It can
be used directly, or as a meta-annotation.

Since 1.4

Retention CLASS

Target TYPE , PACKAGE

105.15.9 @RequireMetaTypeImplementation
This annotation can be used to require the Meta Type implementation. It can be used directly, or as a
meta-annotation.

Since 1.4

Retention CLASS

Target TYPE , PACKAGE

105.16 References

[1] LDAP.
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

[2] Understanding and Deploying LDAP Directory services
Timothy Howes, et al. ISBN 1-57870-070-1, MacMillan Technical publishing.

[3] The Java Language Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

105.17 Changes
• AttributeDefinition Annotation on page 150 is updated to add support for mapping to hy-

phen-minus in component property names, to add special handling for the mapping of the value
method in component property types which are single-element annotations, and to add support
for PREFIX_.

• The special value "$" can be used in the pid and factoryPid elements of the ObjectClassDefinition
annotation. Tools must replace "$" with the fully qualified name of the type annotated by the Ob-
jectClassDefinition annotation.

• The RequireMetaTypeExtender and RequireMetaTypeImplementation annotations were added.

http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

User Admin Service Specification Version 1.1 Introduction

OSGi Enterprise Release 7 Page 167

107 User Admin Service Specification

Version 1.1

107.1 Introduction
OSGi frameworks are often used in places where end users or devices initiate actions. These kinds
of actions inevitably create a need for authenticating the initiator. Authenticating can be done in
many different ways, including with passwords, one-time token cards, biometrics, and certificates.

Once the initiator is authenticated, it is necessary to verify that this principal is authorized to per-
form the requested action. This authorization can only be decided by the operator of the OSGi envi-
ronment, and thus requires administration.

The User Admin service provides this type of functionality. Bundles can use the User Admin service
to authenticate an initiator and represent this authentication as an Authorizat ion object. Bundles
that execute actions on behalf of this user can use the Authorizat ion object to verify if that user is
authorized.

The User Admin service provides authorization based on who runs the code, instead of using the Ja-
va code-based permission model. See [1] The Java Security Architecture for JDK 1.2. It performs a role
similar to [2] Java Authentication and Authorization Service.

107.1.1 Essentials

• Authentication - A large number of authentication schemes already exist, and more will be devel-
oped. The User Admin service must be flexible enough to adapt to the many different authentica-
tion schemes that can be run on a computer system.

• Authorization - All bundles should use the User Admin service to authenticate users and to find
out if those users are authorized. It is therefore paramount that a bundle can find out authoriza-
tion information with little effort.

• Security - Detailed security, based on the Framework security model, is needed to provide safe ac-
cess to the User Admin service. It should allow limited access to the credentials and other proper-
ties.

• Extensibility - Other bundles should be able to build on the User Admin service. It should be possi-
ble to examine the information from this service and get real-time notifications of changes.

• Properties - The User Admin service must maintain a persistent database of users. It must be possi-
ble to use this database to hold more information about this user.

• Administration - Administering authorizations for each possible action and initiator is time-con-
suming and error-prone. It is therefore necessary to have mechanisms to group end users and
make it simple to assign authorizations to all members of a group at one time.

107.1.2 Entities
This Specification defines the following User Admin service entities:

• User Admin - This interface manages a database of named roles which can be used for authoriza-
tion and authentication purposes.

• Role - This interface exposes the characteristics shared by all roles: a name, a type, and a set of
properties.

Introduction User Admin Service Specification Version 1.1

Page 168 OSGi Enterprise Release 7

• User - This interface (which extends Role) is used to represent any entity which may have creden-
tials associated with it. These credentials can be used to authenticate an initiator.

• Group - This interface (which extends User) is used to contain an aggregation of named Role ob-
jects (Group or User objects).

• Authorization - This interface encapsulates an authorization context on which bundles can base
authorization decisions.

• User Admin Event - This class is used to represent a role change event.
• User Admin Listener - This interface provides a listener for events of type UserAdminEvent that

can be registered as a service.
• User Admin Permission - This permission is needed to configure and access the roles managed by a

User Admin service.
• Role.USER_ANYONE - This is a special User object that represents any user, it implies all

other User objects. It is also used when a Group is used with only basic members. The
Role.USER_ANYONE is then the only required member.

Figure 107.1 User Admin Service, org.osgi.service.useradmin

<<interface>>
User Admin

<<interface>>
Role

<<interface>>
Group

User Admin
Event

<<interface>>
Authorization

<<interface>>
User Admin
Listener

<<interface>>
User

User Admin
Permission

User Admin
Implementation

Group
ImplementationsUser

ImplementationsRole
Implementation

User Admin
Listener Impl.

Request
Authenticator

Action
implementation perform action

consult for
authorization

has roles

authenticate

receive
events

send event

has
permission

role name

user database1..n 1

0..n

0..n

0..n

0..n

1..n

0..n

ba
sic

 m
em

be
r

re
qu

ire
d

m
em

be
r

107.1.3 Operation
An Operator uses the User Admin service to define OSGi framework users and configure them with
properties, credentials, and roles.

A Role object represents the initiator of a request (human or otherwise). This specification defines
two types of roles:

User Admin Service Specification Version 1.1 Authentication

OSGi Enterprise Release 7 Page 169

• User - A User object can be configured with credentials, such as a password, and properties, such
as address, telephone number, and so on.

• Group - A Group object is an aggregation of basic and required roles. Basic and required roles are
used in the authorization phase.

An OSGi framework can have several entry points, each of which will be responsible for authen-
ticating incoming requests. An example of an entry point is the Http Service, which delegates au-
thentication of incoming requests to the handleSecurity method of the HttpContext object that was
specified when the target servlet or resource of the request was registered.

The OSGi framework entry points should use the information in the User Admin service to authen-
ticate incoming requests, such as a password stored in the private credentials or the use of a certifi-
cate.

A bundle can determine if a request for an action is authorized by looking for a Role object that has
the name of the requested action.

The bundle may execute the action if the Role object representing the initiator implies the Role ob-
ject representing the requested action.

For example, an initiator Role object X implies an action Group object A if:

• X implies at least one of A's basic members, and
• X implies all of A's required members.

An initiator Role object X implies an action User object A if:

• A and X are equal.

The Authorizat ion class handles this non-trivial logic. The User Admin service can capture the priv-
ileges of an authenticated User object into an Authorizat ion object. The Authorizat ion.hasRole
method checks if the authenticate User object has (or implies) a specified action Role object.

For example, in the case of the Http Service, the HttpContext object can authenticate the initiator
and place an Authorizat ion object in the request header. The servlet calls the hasRole method on this
Authorizat ion object to verify that the initiator has the authority to perform a certain action. See Au-
thentication on page 76.

107.2 Authentication
The authentication phase determines if the initiator is actually the one it says it is. Mechanisms to
authenticate always need some information related to the user or the OSGi framework to authenti-
cate an external user. This information can consist of the following:

• A secret known only to the initiator.
• Knowledge about cards that can generate a unique token.
• Public information like certificates of trusted signers.
• Information about the user that can be measured in a trusted way.
• Other specific information.

107.2.1 Repository
The User Admin service offers a repository of Role objects. Each Role object has a unique name and a
set of properties that are readable by anyone, and are changeable when the changer has the UserAd-
minPermission . Additionally, User objects, a sub-interface of Role , also have a set of private protected
properties called credentials. Credentials are an extra set of properties that are used to authenticate
users and that are protected by UserAdminPermission .

Authentication User Admin Service Specification Version 1.1

Page 170 OSGi Enterprise Release 7

Properties are accessed with the Role.getPropert ies() method and credentials with the
User.getCredentials() method. Both methods return a Dictionary object containing key/value pairs.
The keys are Str ing objects and the values of the Dictionary object are limited to Str ing or byte[] ob-
jects.

This specification does not define any standard keys for the properties or credentials. The keys de-
pend on the implementation of the authentication mechanism and are not formally defined by OS-
Gi specifications.

The repository can be searched for objects that have a unique property (key/value pair) with the
method UserAdmin.getUser(Str ing,Str ing) . This makes it easy to find a specific user related to a
specific authentication mechanism. For example, a secure card mechanism that generates unique
tokens could have a serial number identifying the user. The owner of the card could be found with
the method

User owner = useradmin.getUser(
 "secure-card-serial", "132456712-1212");

If multiple User objects have the same property (key and value), a nul l is returned.

There is a convenience method to verify that a user has a credential without actually getting the cre-
dential. This is the User.hasCredential(Str ing,Object) method.

Access to credentials is protected on a name basis by UserAdminPermission . Because properties can
be read by anyone with access to a User object, UserAdminPermission only protects change access to
properties.

107.2.2 Basic Authentication
The following example shows a very simple authentication algorithm based on passwords.

The vendor of the authentication bundle uses the property "com.acme.basic- id" to contain the
name of a user as it logs in. This property is used to locate the User object in the repository. Next, the
credential "com.acme.password" contains the password and is compared to the entered password. If
the password is correct, the User object is returned. In all other cases a SecurityException is thrown.

public User authenticate(
 UserAdmin ua, String name, String pwd)
 throws SecurityException {
 User user = ua.getUser("com.acme.basicid",
 username);
 if (user == null)
 throw new SecurityException("No such user");

 if (!user.hasCredential("com.acme.password", pwd))
 throw new SecurityException(
 "Invalid password");
 return user;
}

107.2.3 Certificates
Authentication based on certificates does not require a shared secret. Instead, a certificate contains a
name, a public key, and the signature of one or more signers.

The name in the certificate can be used to locate a User object in the repository. Locating a User ob-
ject, however, only identifies the initiator and does not authenticate it.

1. The first step to authenticate the initiator is to verify that it has the private key of the certificate.

User Admin Service Specification Version 1.1 Authorization

OSGi Enterprise Release 7 Page 171

2. Next, the User Admin service must verify that it has a User object with the right property, for ex-
ample "com.acme.cert i f icate"="Fudd" .

3. The next step is to see if the certificate is signed by a trusted source. The bundle could use a cen-
tral list of trusted signers and only accept certificates signed by those sources. Alternatively, it
could require that the certificate itself is already stored in the repository under a unique key as a
byte[] in the credentials.

4. In any case, once the certificate is verified, the associated User object is authenticated.

107.3 Authorization
The User Admin service authorization architecture is a role-based model. In this model, every ac-
tion that can be performed by a bundle is associated with a role. Such a role is a Group object (called
group from now on) from the User Admin service repository. For example, if a servlet could be used
to activate the alarm system, there should be a group named AlarmSystemActivat ion .

The operator can administrate authorizations by populating the group with User objects (users) and
other groups. Groups are used to minimize the amount of administration required. For example, it is
easier to create one Administrators group and add administrative roles to it rather than individually
administer all users for each role. Such a group requires only one action to remove or add a user as
an administrator.

The authorization decision can now be made in two fundamentally different ways:

An initiator could be allowed to carry out an action (represented by a Group object) if it implied any
of the Group object's members. For example, the AlarmSystemActivat ion Group object contains an
Administrators and a Family Group object:

 Administrators = { Elmer, Pepe,Bugs }
 Family = { Elmer, Pepe, Daffy }

 AlarmSystemActivation = { Administrators, Family}

Any of the four members Elmer , Pepe , Daffy , or Bugs can activate the alarm system.

Alternatively, an initiator could be allowed to perform an action (represented by a Group object) if it
implied all the Group object's members. In this case, using the same AlarmSystemActivat ion group,
only Elmer and Pepe would be authorized to activate the alarm system, since Daffy and Bugs are not
members of both the Administrators and Family Group objects.

The User Admin service supports a combination of both strategies by defining both a set of basic
members (any) and a set of required members (all).

Administrators = { Elmer, Pepe, Bugs}
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation
 required = { Administrators }
 basic = { Family }

The difference is made when Role objects are added to the Group object. To add a basic
member, use the Group.addMember(Role) method. To add a required member, use the
Group.addRequiredMember(Role) method.

Basic members define the set of members that can get access and required members reduce this set
by requiring the initiator to imply each required member.

A User object implies a Group object if it implies the following:

Authorization User Admin Service Specification Version 1.1

Page 172 OSGi Enterprise Release 7

• All of the Group's required members, and
• At least one of the Group's basic members

A User object always implies itself.

If only required members are used to qualify the implication, then the standard user
Role.USER_ANYONE can be obtained from the User Admin service and added to the Group object.
This Role object is implied by anybody and therefore does not affect the required members.

107.3.1 The Authorization Object
The complexity of authorization is hidden in an Authorizat ion class. Normally, the authenticator
should retrieve an Authorizat ion object from the User Admin service by passing the authenticated
User object as an argument. This Authorizat ion object is then passed to the bundle that performs
the action. This bundle checks the authorization with the Authorizat ion.hasRole(Str ing) method.
The performing bundle must pass the name of the action as an argument. The Authorizat ion object
checks whether the authenticated user implies the Role object, specifically a Group object, with the
given name. This is shown in the following example.

public void activateAlarm(Authorization auth) {
 if (auth.hasRole("AlarmSystemActivation")) {
 // activate the alarm
 ...
 }
 else throw new SecurityException(
 "Not authorized to activate alarm");
}

107.3.2 Authorization Example
This section demonstrates a possible use of the User Admin service. The service has a flexible model
and many other schemes are possible.

Assume an Operator installs an OSGi framework. Bundles in this environment have defined the fol-
lowing action groups:

AlarmSystemControl
InternetAccess
TemperatureControl
PhotoAlbumEdit
PhotoAlbumView
PortForwarding

Installing and uninstalling bundles could potentially extend this set. Therefore, the Operator also
defines a number of groups that can be used to contain the different types of system users.

Administrators
Buddies
Children
Adults
Residents

In a particular instance, the Operator installs it in a household with the following residents and
buddies:

Residents: Elmer, Fudd, Marvin, Pepe
Buddies: Daffy, Foghorn

First, the residents and buddies are assigned to the system user groups. Second, the user groups need
to be assigned to the action groups.

User Admin Service Specification Version 1.1 Repository Maintenance

OSGi Enterprise Release 7 Page 173

The following tables show how the groups could be assigned.

Table 107.1 Example Groups with Basic and Required Members

Groups Elmer Fudd Marvin Pepe Daffy Foghorn
Residents Basic Basic Basic Basic - -
Buddies - - - - Basic Basic
Chi ldren - - Basic Basic - -
Adults Basic Basic - - - -
Administrators Basic - - - - -

Table 107.2 Example Action Groups with their Basic and Required Members

Groups Residents Buddies Children Adults Admin
AlarmSystemControl Basic - - - Required
InternetAccess Basic - - Required -
TemperatureControl Basic - - Required -
PhotoAlbumEdit Basic - Basic Basic -
PhotoAlbumView Basic Basic - - -
PortForwarding Basic - - - Required

107.4 Repository Maintenance
The UserAdmin interface is a straightforward API to maintain a repository of User and Group objects.
It contains methods to create new Group and User objects with the createRole(Str ing, int) method.
The method is prepared so that the same signature can be used to create new types of roles in the fu-
ture. The interface also contains a method to remove a Role object.

The existing configuration can be obtained with methods that list all Role objects using a filter argu-
ment. This filter, which has the same syntax as the Framework filter, must only return the Role ob-
jects for which the filter matches the properties.

Several utility methods simplify getting User objects depending on their properties.

107.5 User Admin Events
Changes in the User Admin service can be determined in real time. Each User Admin service imple-
mentation must send a UserAdminEvent object to any service in the Framework service registry that
is registered under the UserAdminListener interface. This event must be send asynchronously from
the cause of the event. The way events must be delivered is the same as described in Delivering Events
of OSGi Core Release 7.

This procedure is demonstrated in the following code sample.

class Listener implements UserAdminListener{
 public void roleChanged(UserAdminEvent event) {
 ...
 }
}
public class MyActivator
 implements BundleActivator {
 public void start(BundleContext context) {
 context.registerService(
 UserAdminListener.class.getName(),

Security User Admin Service Specification Version 1.1

Page 174 OSGi Enterprise Release 7

 new Listener(), null);
 }
 public void stop(BundleContext context) {}
}

It is not necessary to unregister the listener object when the bundle is stopped because the Frame-
work automatically unregisters it. Once registered, the UserAdminListener object must be notified
of all changes to the role repository.

107.5.1 Event Admin and User Admin Change Events
User Admin events must be delivered asynchronously to the Event Admin service by the implemen-
tation, if present. The topic of a User Admin Event is:

org/osgi/service/useradmin/UserAdmin/<eventtype>

The following event types are supported:

ROLE_CREATED
ROLE_CHANGED
ROLE_REMOVED

All User Admin Events must have the following properties:

• event - (UserAdminEvent) The event that was broadcast by the User Admin service.
• role - (Role) The Role object that was created, modified or removed.
• role.name - (Str ing) The name of the role.
• role.type - (Integer) One of ROLE, USER or GROUP .
• service - (ServiceReference) The Service Reference of the User Admin service.
• service. id - (Long) The User Admin service's ID.
• service.objectClass - (Str ing[]) The User Admin service's object class (which must include

org.osgi .service.useradmin.UserAdmin)
• service.pid - (Str ing) The User Admin service's persistent identity

107.6 Security
The User Admin service is related to the security model of the OSGi framework, but is complemen-
tary to the [1] The Java Security Architecture for JDK 1.2. The final permission of most code should be
the intersection of the Java 2 Permissions, which are based on the code that is executing, and the
User Admin service authorization, which is based on the user for whom the code runs.

107.6.1 User Admin Permission
The User Admin service defines the UserAdminPermission class that can be used to restrict bundles
in accessing credentials. This permission class has the following actions:

• changeProperty - This permission is required to modify properties. The name of the permission
is the prefix of the property name.

• changeCredential - This action permits changing credentials. The name of the permission is the
prefix of the name of the credential.

• getCredential - This action permits getting credentials. The name of the permission is the prefix
of the credential.

If the name of the permission is "admin" , it allows the owner to administer the repository. No action
is associated with the permission in that case.

User Admin Service Specification Version 1.1 Relation to JAAS

OSGi Enterprise Release 7 Page 175

Otherwise, the permission name is used to match the property name. This name may end with a
".*" string to indicate a wildcard. For example, com.acme.* matches com.acme.fudd.elmer and
com.acme.bugs .

107.7 Relation to JAAS
At a glance, the Java Authorization and Authentication Service (JAAS) seems to be a very suitable
model for user administration. The OSGi organization, however, decided to develop an independent
User Admin service because JAAS was not deemed applicable. The reasons for this include depen-
dency on Java SE version 1.3 ("JDK 1.3") and existing mechanisms in the previous OSGi Service Gate-
way 1.0 specification.

107.7.1 JDK 1.3 Dependencies
The authorization component of JAAS relies on the java.security.DomainCombiner interface, which
provides a means to dynamically update the Protect ionDomain objects affiliated with an Access-
ControlContext object.

This interface was added in JDK 1.3. In the context of JAAS, the SubjectDomainCombiner object,
which implements the DomainCombiner interface, is used to update Protect ionDomain objects. The
permissions of Protect ionDomain objects depend on where code came from and who signed it, with
permissions based on who is running the code.

Leveraging JAAS would have resulted in user-based access control on the OSGi framework being
available only with JDK 1.3, which was not deemed acceptable.

107.7.2 Existing OSGi Mechanism
JAAS provides a plugable authentication architecture, which enables applications and their under-
lying authentication services to remain independent from each other.

The Http Service already provides a similar feature by allowing servlet and resource registrations to
be supported by an HttpContext object, which uses a callback mechanism to perform any required
authentication checks before granting access to the servlet or resource. This way, the registering
bundle has complete control on a per-servlet and per-resource basis over which authentication pro-
tocol to use, how the credentials presented by the remote requester are to be validated, and who
should be granted access to the servlet or resource.

107.7.3 Future Road Map
In the future, the main barrier of 1.3 compatibility will be removed. JAAS could then be implement-
ed in an OSGi environment. At that time, the User Admin service will still be needed and will pro-
vide complementary services in the following ways:

• The authorization component relies on group membership information to be stored and man-
aged outside JAAS. JAAS does not manage persistent information, so the User Admin service can
be a provider of group information when principals are assigned to a Subject object.

• The authorization component allows for credentials to be collected and verified, but a repository
is needed to actually validate the credentials.

In the future, the User Admin service can act as the back-end database to JAAS. The only aspect JAAS
will remove from the User Admin service is the need for the Authorizat ion interface.

107.8 org.osgi.service.useradmin

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 176 OSGi Enterprise Release 7

User Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.useradmin; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.useradmin; vers ion="[1.1 ,1 .2)"

107.8.1 Summary

• Authorizat ion - The Authorizat ion interface encapsulates an authorization context on which
bundles can base authorization decisions, where appropriate.

• Group - A named grouping of roles (Role objects).
• Role - The base interface for Role objects managed by the User Admin service.
• User - A User role managed by a User Admin service.
• UserAdmin - This interface is used to manage a database of named Role objects, which can be

used for authentication and authorization purposes.
• UserAdminEvent - Role change event.
• UserAdminListener - Listener for UserAdminEvents.
• UserAdminPermission - Permission to configure and access the Role objects managed by a User

Admin service.

107.8.2 public interface Authorization
The Authorizat ion interface encapsulates an authorization context on which bundles can base au-
thorization decisions, where appropriate.

Bundles associate the privilege to access restricted resources or operations with roles. Before granti-
ng access to a restricted resource or operation, a bundle will check if the Authorizat ion object passed
to it possess the required role, by calling its hasRole method.

Authorization contexts are instantiated by calling the UserAdmin.getAuthorization(User) method.

Trusting Authorization objects

There are no restrictions regarding the creation of Authorizat ion objects. Hence, a service must on-
ly accept Authorizat ion objects from bundles that has been authorized to use the service using code
based (or Java 2) permissions.

In some cases it is useful to use ServicePermission to do the code based access control. A service bas-
ing user access control on Authorizat ion objects passed to it, will then require that a calling bundle
has the ServicePermission to get the service in question. This is the most convenient way. The OSGi
environment will do the code based permission check when the calling bundle attempts to get the
service from the service registry.

Example: A servlet using a service on a user's behalf. The bundle with the servlet must be given the
ServicePermission to get the Http Service.

However, in some cases the code based permission checks need to be more fine-grained. A service
might allow all bundles to get it, but require certain code based permissions for some of its methods.

Example: A servlet using a service on a user's behalf, where some service functionality is open to
anyone, and some is restricted by code based permissions. When a restricted method is called (e.g.,
one handing over an Authorizat ion object), the service explicitly checks that the calling bundle has
permission to make the call.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Enterprise Release 7 Page 177

No Implement Consumers of this API must not implement this interface

107.8.2.1 public String getName()

□ Gets the name of the User that this Authorizat ion context was created for.

Returns The name of the User object that this Authorizat ion context was created for, or nul l if no user was
specified when this Authorizat ion context was created.

107.8.2.2 public String[] getRoles()

□ Gets the names of all roles implied by this Authorizat ion context.

Returns The names of all roles implied by this Authorizat ion context, or nul l if no roles are in the context.
The predefined role user.anyone will not be included in this list.

107.8.2.3 public boolean hasRole(String name)

name The name of the role to check for.

□ Checks if the role with the specified name is implied by this Authorizat ion context.

Bundles must define globally unique role names that are associated with the privilege of accessing
restricted resources or operations. Operators will grant users access to these resources, by creating a
Group object for each role and adding User objects to it.

Returns true if this Authorizat ion context implies the specified role, otherwise fa lse .

107.8.3 public interface Group
extends User
A named grouping of roles (Role objects).

Whether or not a given Authorizat ion context implies a Group object depends on the members of
that Group object.

A Group object can have two kinds of members: basic and required . A Group object is implied by an
Authorizat ion context if all of its required members are implied and at least one of its basic members
is implied.

A Group object must contain at least one basic member in order to be implied. In other words, a
Group object without any basic member roles is never implied by any Authorizat ion context.

A User object always implies itself.

No loop detection is performed when adding members to Group objects, which means that it is pos-
sible to create circular implications. Loop detection is instead done when roles are checked. The se-
mantics is that if a role depends on itself (i.e., there is an implication loop), the role is not implied.

The rule that a Group object must have at least one basic member to be implied is motivated by the
following example:

 group foo
 required members: marketing
 basic members: alice, bob

Privileged operations that require membership in "foo" can be performed only by "alice" and "bob",
who are in marketing.

If "alice" and "bob" ever transfer to a different department, anybody in marketing will be able to as-
sume the "foo" role, which certainly must be prevented. Requiring that "foo" (or any Group object for
that matter) must have at least one basic member accomplishes that.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 178 OSGi Enterprise Release 7

However, this would make it impossible for a Group object to be implied by just its required mem-
bers. An example where this implication might be useful is the following declaration: "Any citizen
who is an adult is allowed to vote." An intuitive configuration of "voter" would be:

 group voter
 required members: citizen, adult
 basic members:

However, according to the above rule, the "voter" role could never be assumed by anybody, since
it lacks any basic members. In order to address this issue a predefined role named "user.anyone"
can be specified, which is always implied. The desired implication of the "voter" group can then be
achieved by specifying "user.anyone" as its basic member, as follows:

 group voter
 required members: citizen, adult
 basic members: user.anyone

No Implement Consumers of this API must not implement this interface

107.8.3.1 public boolean addMember(Role role)

role The role to add as a basic member.

□ Adds the specified Role object as a basic member to this Group object.

Returns true if the given role could be added as a basic member, and fa lse if this Group object already con-
tains a Role object whose name matches that of the specified role.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.3.2 public boolean addRequiredMember(Role role)

role The Role object to add as a required member.

□ Adds the specified Role object as a required member to this Group object.

Returns true if the given Role object could be added as a required member, and fa lse if this Group object al-
ready contains a Role object whose name matches that of the specified role.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.3.3 public Role[] getMembers()

□ Gets the basic members of this Group object.

Returns The basic members of this Group object, or nul l if this Group object does not contain any basic mem-
bers.

107.8.3.4 public Role[] getRequiredMembers()

□ Gets the required members of this Group object.

Returns The required members of this Group object, or nul l if this Group object does not contain any required
members.

107.8.3.5 public boolean removeMember(Role role)

role The Role object to remove from this Group object.

□ Removes the specified Role object from this Group object.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Enterprise Release 7 Page 179

Returns true if the Role object could be removed, otherwise fa lse .

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.4 public interface Role
The base interface for Role objects managed by the User Admin service.

This interface exposes the characteristics shared by all Role classes: a name, a type, and a set of prop-
erties.

Properties represent public information about the Role object that can be read by anyone. Specific
UserAdminPermission objects are required to change a Role object's properties.

Role object properties are Dictionary objects. Changes to these objects are propagated to the User Ad-
min service and made persistent.

Every User Admin service contains a set of predefined Role objects that are always present
and cannot be removed. All predefined Role objects are of type ROLE . This version of the
org.osgi .service.useradmin package defines a single predefined role named "user.anyone", which is
inherited by any other role. Other predefined roles may be added in the future. Since "user.anyone"
is a Role object that has properties associated with it that can be read and modified. Access to these
properties and their use is application specific and is controlled using UserAdminPermission in the
same way that properties for other Role objects are.

No Implement Consumers of this API must not implement this interface

107.8.4.1 public static final int GROUP = 2

The type of a Group role.

The value of GROUP is 2.

107.8.4.2 public static final int ROLE = 0

The type of a predefined role.

The value of ROLE is 0.

107.8.4.3 public static final int USER = 1

The type of a User role.

The value of USER is 1.

107.8.4.4 public static final String USER_ANYONE = "user.anyone"

The name of the predefined role, user.anyone, that all users and groups belong to.

Since 1.1

107.8.4.5 public String getName()

□ Returns the name of this role.

Returns The role's name.

107.8.4.6 public Dictionary<String, Object> getProperties()

□ Returns a Dictionary of the (public) properties of this Role object. Any changes to the returned Dic-
t ionary will change the properties of this Role object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListener objects.

Only objects of type Str ing may be used as property keys, and only objects of type Str ing or byte[]
may be used as property values. Any other types will cause an exception of type I l legalArgumentEx-
ception to be raised.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 180 OSGi Enterprise Release 7

In order to add, change, or remove a property in the returned Dictionary , a UserAdminPermission
named after the property name (or a prefix of it) with action changeProperty is required.

Returns Dictionary containing the properties of this Role object.

107.8.4.7 public int getType()

□ Returns the type of this role.

Returns The role's type.

107.8.5 public interface User
extends Role
A User role managed by a User Admin service.

In this context, the term "user" is not limited to just human beings. Instead, it refers to any entity
that may have any number of credentials associated with it that it may use to authenticate itself.

In general, User objects are associated with a specific User Admin service (namely the one that creat-
ed them), and cannot be used with other User Admin services.

A User object may have credentials (and properties, inherited from the Role class) associated with it.
Specific UserAdminPermission objects are required to read or change a User object's credentials.

Credentials are Dictionary objects and have semantics that are similar to the properties in the Role
class.

No Implement Consumers of this API must not implement this interface

107.8.5.1 public Dictionary<String, Object> getCredentials()

□ Returns a Dictionary of the credentials of this User object. Any changes to the returned Dictionary
object will change the credentials of this User object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListeners objects.

Only objects of type Str ing may be used as credential keys, and only objects of type Str ing or of type
byte[] may be used as credential values. Any other types will cause an exception of type I l legalArgu-
mentException to be raised.

In order to retrieve a credential from the returned Dictionary object, a UserAdminPermission named
after the credential name (or a prefix of it) with action getCredential is required.

In order to add or remove a credential from the returned Dictionary object, a UserAdminPermission
named after the credential name (or a prefix of it) with action changeCredential is required.

Returns Dictionary object containing the credentials of this User object.

107.8.5.2 public boolean hasCredential(String key, Object value)

key The credential key .

value The credential value .

□ Checks to see if this User object has a credential with the specified key set to the specified value .

If the specified credential value is not of type Str ing or byte[] , it is ignored, that is, fa lse is returned
(as opposed to an I l legalArgumentException being raised).

Returns true if this user has the specified credential; fa lse otherwise.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion named after the credential key (or a prefix of it) with action getCredential .

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Enterprise Release 7 Page 181

107.8.6 public interface UserAdmin
This interface is used to manage a database of named Role objects, which can be used for authentica-
tion and authorization purposes.

This version of the User Admin service defines two types of Role objects: "User" and "Group". Each
type of role is represented by an int constant and an interface. The range of positive integers is re-
served for new types of roles that may be added in the future. When defining proprietary role types,
negative constant values must be used.

Every role has a name and a type.

A User object can be configured with credentials (e.g., a password) and properties (e.g., a street ad-
dress, phone number, etc.).

A Group object represents an aggregation of User and Group objects. In other words, the members of
a Group object are roles themselves.

Every User Admin service manages and maintains its own namespace of Role objects, in which each
Role object has a unique name.

No Implement Consumers of this API must not implement this interface

107.8.6.1 public Role createRole(String name, int type)

name The name of the Role object to create.

type The type of the Role object to create. Must be either a Role.USER type or Role.GROUP type.

□ Creates a Role object with the given name and of the given type.

If a Role object was created, a UserAdminEvent object of type UserAdminEvent.ROLE_CREATED is
broadcast to any UserAdminListener object.

Returns The newly created Role object, or nul l if a role with the given name already exists.

Throws I l legalArgumentException– if type is invalid.

SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.6.2 public Authorization getAuthorization(User user)

user The User object to create an Authorizat ion object for, or nul l for the anonymous user.

□ Creates an Authorizat ion object that encapsulates the specified User object and the Role objects it
possesses. The nul l user is interpreted as the anonymous user. The anonymous user represents a user
that has not been authenticated. An Authorizat ion object for an anonymous user will be unnamed,
and will only imply groups that user.anyone implies.

Returns the Authorizat ion object for the specified User object.

107.8.6.3 public Role getRole(String name)

name The name of the Role object to get.

□ Gets the Role object with the given name from this User Admin service.

Returns The requested Role object, or nul l if this User Admin service does not have a Role object with the giv-
en name .

107.8.6.4 public Role[] getRoles(String filter) throws InvalidSyntaxException

filter The filter criteria to match.

□ Gets the Role objects managed by this User Admin service that have properties matching the speci-
fied LDAP filter criteria. See org.osgi .f ramework.Fi l ter for a description of the filter syntax. If a nul l
filter is specified, all Role objects managed by this User Admin service are returned.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 182 OSGi Enterprise Release 7

Returns The Role objects managed by this User Admin service whose properties match the specified filter
criteria, or all Role objects if a nul l filter is specified. If no roles match the filter, nul l will be returned.

Throws Inval idSyntaxException– If the filter is not well formed.

107.8.6.5 public User getUser(String key, String value)

key The property key to look for.

value The property value to compare with.

□ Gets the user with the given property key -value pair from the User Admin service database. This is a
convenience method for retrieving a User object based on a property for which every User object is
supposed to have a unique value (within the scope of this User Admin service), such as for example
a X.500 distinguished name.

Returns A matching user, if exactly one is found. If zero or more than one matching users are found, nul l is re-
turned.

107.8.6.6 public boolean removeRole(String name)

name The name of the Role object to remove.

□ Removes the Role object with the given name from this User Admin service and all groups it is a
member of.

If the Role object was removed, a UserAdminEvent object of type UserAdminEvent.ROLE_REMOVED
is broadcast to any UserAdminListener object.

Returns true If a Role object with the given name is present in this User Admin service and could be re-
moved, otherwise fa lse .

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.7 public class UserAdminEvent
Role change event.

UserAdminEvent objects are delivered asynchronously to any UserAdminListener objects when a
change occurs in any of the Role objects managed by a User Admin service.

A type code is used to identify the event. The following event types are defined: ROLE_CREATED
type, ROLE_CHANGED type, and ROLE_REMOVED type. Additional event types may be defined in
the future.

See Also UserAdmin, UserAdminListener

107.8.7.1 public static final int ROLE_CHANGED = 2

A Role object has been modified.

The value of ROLE_CHANGED is 0x00000002.

107.8.7.2 public static final int ROLE_CREATED = 1

A Role object has been created.

The value of ROLE_CREATED is 0x00000001.

107.8.7.3 public static final int ROLE_REMOVED = 4

A Role object has been removed.

The value of ROLE_REMOVED is 0x00000004.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Enterprise Release 7 Page 183

107.8.7.4 public UserAdminEvent(ServiceReference<UserAdmin> ref, int type, Role role)

ref The ServiceReference object of the User Admin service that generated this event.

type The event type.

role The Role object on which this event occurred.

□ Constructs a UserAdminEvent object from the given ServiceReference object, event type, and Role
object.

107.8.7.5 public Role getRole()

□ Gets the Role object this event was generated for.

Returns The Role object this event was generated for.

107.8.7.6 public ServiceReference<UserAdmin> getServiceReference()

□ Gets the ServiceReference object of the User Admin service that generated this event.

Returns The User Admin service's ServiceReference object.

107.8.7.7 public int getType()

□ Returns the type of this event.

The type values are ROLE_CREATED type, ROLE_CHANGED type, and ROLE_REMOVED type.

Returns The event type.

107.8.8 public interface UserAdminListener
Listener for UserAdminEvents.

UserAdminListener objects are registered with the Framework service registry and notified with a
UserAdminEvent object when a Role object has been created, removed, or modified.

UserAdminListener objects can further inspect the received UserAdminEvent object to determine its
type, the Role object it occurred on, and the User Admin service that generated it.

See Also UserAdmin, UserAdminEvent

107.8.8.1 public void roleChanged(UserAdminEvent event)

event The UserAdminEvent object.

□ Receives notification that a Role object has been created, removed, or modified.

107.8.9 public final class UserAdminPermission
extends BasicPermission
Permission to configure and access the Role objects managed by a User Admin service.

This class represents access to the Role objects managed by a User Admin service and their proper-
ties and credentials (in the case of User objects).

The permission name is the name (or name prefix) of a property or credential. The naming con-
vention follows the hierarchical property naming convention. Also, an asterisk may appear
at the end of the name, following a ".", or by itself, to signify a wildcard match. For example:
"org.osgi.security.protocol.*" or "*" is valid, but "*protocol" or "a*b" are not valid.

The UserAdminPermission with the reserved name "admin" represents the permission required for
creating and removing Role objects in the User Admin service, as well as adding and removing mem-
bers in a Group object. This UserAdminPermission does not have any actions associated with it.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 184 OSGi Enterprise Release 7

The actions to be granted are passed to the constructor in a string containing a list of one or more
comma-separated keywords. The possible keywords are: changeProperty ,changeCredential , and
getCredential . Their meaning is defined as follows:

 action
 changeProperty Permission to change (i.e., add and remove)
 Role object properties whose names start with
 the name argument specified in the constructor.
 changeCredential Permission to change (i.e., add and remove)
 User object credentials whose names start
 with the name argument specified in the constructor.
 getCredential Permission to retrieve and check for the
 existence of User object credentials whose names
 start with the name argument specified in the
 constructor.

The action string is converted to lowercase before processing.

Following is a PermissionInfo style policy entry which grants a user administration bundle a num-
ber of UserAdminPermission object:

 (org.osgi.service.useradmin.UserAdminPermission "admin")
 (org.osgi.service.useradmin.UserAdminPermission "com.foo.*"
 "changeProperty,getCredential,changeCredential")
 (org.osgi.service.useradmin.UserAdminPermission "user.*"
 "changeProperty,changeCredential")

The first permission statement grants the bundle the permission to perform any User Admin service
operations of type "admin", that is, create and remove roles and configure Group objects.

The second permission statement grants the bundle the permission to change any properties as well
as get and change any credentials whose names start with com.foo. .

The third permission statement grants the bundle the permission to change any properties and cre-
dentials whose names start with user. . This means that the bundle is allowed to change, but not re-
trieve any credentials with the given prefix.

The following policy entry empowers the Http Service bundle to perform user authentication:

 grant codeBase "${jars}http.jar" {
 permission org.osgi.service.useradmin.UserAdminPermission
 "user.password", "getCredential";
 };

The permission statement grants the Http Service bundle the permission to validate any password
credentials (for authentication purposes), but the bundle is not allowed to change any properties or
credentials.

Concurrency Thread-safe

107.8.9.1 public static final String ADMIN = "admin"

The permission name "admin".

107.8.9.2 public static final String CHANGE_CREDENTIAL = "changeCredential"

The action string "changeCredential".

107.8.9.3 public static final String CHANGE_PROPERTY = "changeProperty"

The action string "changeProperty".

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Enterprise Release 7 Page 185

107.8.9.4 public static final String GET_CREDENTIAL = "getCredential"

The action string "getCredential".

107.8.9.5 public UserAdminPermission(String name, String actions)

name the name of this UserAdminPermission

actions the action string.

□ Creates a new UserAdminPermission with the specified name and actions. name is either
the reserved string "admin" or the name of a credential or property, and actions contains
a comma-separated list of the actions granted on the specified name. Valid actions are
changeProperty ,changeCredential , and getCredential.

Throws I l legalArgumentException– If name equals "admin" and actions are specified.

107.8.9.6 public boolean equals(Object obj)

obj the object to be compared for equality with this object.

□ Checks two UserAdminPermission objects for equality. Checks that obj is a UserAdminPermission ,
and has the same name and actions as this object.

Returns true if obj is a UserAdminPermission object, and has the same name and actions as this UserAdmin-
Permission object.

107.8.9.7 public String getActions()

□ Returns the canonical string representation of the actions, separated by comma.

Returns the canonical string representation of the actions.

107.8.9.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

107.8.9.9 public boolean implies(Permission p)

p the permission to check against.

□ Checks if this UserAdminPermission object "implies" the specified permission.

More specifically, this method returns true if:

• p is an instanceof UserAdminPermission ,
• p's actions are a proper subset of this object's actions, and
• p's name is implied by this object's name. For example, "java.*" implies "java.home".

Returns true if the specified permission is implied by this object; fa lse otherwise.

107.8.9.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing UserAdminPermission objects.

Returns a new PermissionCol lect ion object suitable for storing UserAdminPermission objects.

107.8.9.11 public String toString()

□ Returns a string describing this UserAdminPermission object. This string must be in PermissionInfo
encoded format.

References User Admin Service Specification Version 1.1

Page 186 OSGi Enterprise Release 7

Returns The PermissionInfo encoded string for this UserAdminPermission object.

See Also org.osgi .service.permissionadmin.PermissionInfo.getEncoded()

107.9 References

[1] The Java Security Architecture for JDK 1.2
Version 1.0, Sun Microsystems, October 1998

[2] Java Authentication and Authorization Service
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Initial Provisioning Specification Version 1.2 Introduction

OSGi Enterprise Release 7 Page 187

110 Initial Provisioning Specification

Version 1.2

110.1 Introduction
To allow freedom regarding the choice of management protocol, the OSGi Specifications assumes
an architecture to remotely manage a OSGi framework with a Management Agent. The Manage-
ment Agent is implemented with a Management Bundle that can communicate with an unspecified
management protocol.

This specification defines how the Management Agent can make its way to the OSGi framework,
and gives a structured view of the problems and their corresponding resolution methods.

The purpose of this specification is to enable the management of a OSGi framework by an Operator,
and (optionally) to hand over the management of the OSGi framework later to another Operator.
This approach is in accordance with the OSGi remote management reference architecture.

This bootstrapping process requires the installation of a Management Agent, with appropriate con-
figuration data, in the OSGi framework.

This specification consists of a prologue, in which the principles of the Initial Provisioning are out-
lined, and a number of mappings to different mechanisms.

110.1.1 Essentials

• Policy Free - The proposed solution must be business model agnostic; none of the affected parties
(Operators, SPS Manufacturers, etc.) should be forced into any particular business model.

• Interoperability - The Initial Provisioning must permit arbitrary interoperability between manage-
ment systems and OSGi frameworks. Any compliant Remote Manager should be able to manage
any compliant OSGi framework, even in the absence of a prior business relationship. Adhering
to this requirement allows a particular Operator to manage a variety of makes and models of OS-
Gi framework Servers using a single management system of the Operator's choice. This rule also
gives the consumer the greatest choice when selecting an Operator.

• Flexible - The management process should be as open as possible, to allow innovation and special-
ization while still achieving interoperability.

110.1.2 Entities

• Provisioning Service - A service registered with the Framework that provides information about
the initial provisioning to the Management Agent.

• Provisioning Dictionary - A Dictionary object that is filled with information from the ZIP files that
are loaded during initial setup.

• RSH Protocol - An OSGi specific secure protocol based on HTTP.
• Management Agent - A bundle that is responsible for managing a OSGi framework under control

of a Remote Manager.

Procedure Initial Provisioning Specification Version 1.2

Page 188 OSGi Enterprise Release 7

Figure 110.1 Initial Provisioning

<<interface>>
Provisioning
Service

Management
Agent impl.

Provisioning
Service impl.

java.net.URL

RSH URL handler HTTP/HTTPS
URL handler

URL FILE handler

is installed by

gets

uses protocol defined by setup information

110.2 Procedure
The following procedure should be executed by an OSGi Framework implementation that supports
this Initial Provisioning specification.

When the OSGi framework is first brought under management control, it must be provided with an
initial request URL in order to be provisioned. Either the end user or the manufacturer may provide
the initial request URL. How the initial request URL is transferred to the Framework is not specified,
but a mechanism might, for example, be a command line parameter when the framework is started.

When asked to start the Initial Provisioning, the OSGi framework will send a request to the manage-
ment system. This request is encoded in a URL, for example:

http://osgi.acme.com/remote-manager

This URL may use any protocol that is available on the OSGi framework Server. Many standard
protocols exist, but it is also possible to use a proprietary protocol. For example, software could be
present which can communicate with a smart card and could handle, for example, this URL:

smart-card://com1:0/7F20/6F38

Before the request URL is executed, the OSGi framework information is appended to the URL. This
information includes at least the OSGi framework Identifier, but may also contain proprietary infor-
mation, as long as the keys for this information do not conflict. Different URL schemes may use dif-
ferent methods of appending parameters; these details are specified in the mappings of this specifi-
cation to concrete protocols.

The result of the request must be a ZIP file. (The content type should be appl icat ion/zip). It is the re-
sponsibility of the underlying protocol to guarantee the integrity and authenticity of this ZIP file.

This ZIP file is unpacked and its entries (except bundle and bundle-url entries, described in Table
110.2) are placed in a Dictionary object. This Dictionary object is called the Provisioning Dictionary.
It must be made available from the Provisioning Service in the service registry. The names of the en-
tries in the ZIP file must not start with a solidus (' / ' \u002F).

Initial Provisioning Specification Version 1.2 Procedure

OSGi Enterprise Release 7 Page 189

The ZIP file may contain only four types of dictionary entries: text , binary , bundle , or bundle-url .
The type of an entry can be specified in different ways. An Initial Provisioning service must look in
the following places to find the information about an entry's (MIME) type (in the given order):

1. The manifest header In it ia lProvis ioning-Entr ies of the given ZIP file. This header is defined in
InitialProvisioning-Entries Manifest Header on page 191. If this header is present, but a given
entry's path is not named then try the next step.

2. The extension of the entry path name if one of .txt , . jar , .ur l extensions. See Table 110.1 on page
189 for the mapping of types, MIME types, and extensions.

3. The entry is assumed to be a binary type

The types can optionally be specified as a MIME type as defined in [7] MIME Types. The text and
bundle-url entries are translated into a Str ing object from an UTF-8 encoded byte array. All other en-
tries must be stored as a byte[] .

Table 110.1 Content types of provisioning ZIP file

Type MIME Type Ext Description
text MIME_STRING

text/plain;charset=utf-8

.txt Must be represented as a String object

binary MIME_BYTE_ARRAY

appl icat ion/octet-stream

not txt ,
.ur l , or
. jar

Must be represented as a byte array (byte[]).

bundle MIME_BUNDLE

appl icat ion/vnd.osgi .bundle

MIME_BUNDLE_ALT

appl icat ion/x-osgi-bundle

. jar Entries must be installed using
BundleContext. instal lBundle(Str ing, In-
putStream) , with the InputStream object
constructed from the contents of the ZIP
entry. The location must be the name of
the ZIP entry without leading solidus (' / '
\u002F). This entry must not be stored in
the Provisioning Dictionary.

If a bundle with this location name is al-
ready installed in this system, then this
bundle must be updated instead of in-
stalled.

The MIME_BUNDLE_ALT version is intend-
ed for backward compatibility, it specifies
the original MIME type for bundles before
there was an official IANA MIME type.

bundle-url MIME_BUNDLE_URL

text/x-osgi-bundle-url ;
charset=utf-8

.ur l The content of this entry is a string coded
in utf-8 . Entries must be installed using
BundleContext. instal lBundle(Str ing, In-
putStream) , with the InputStream object
created from the given URL. The location
must be the name of the ZIP entry with-
out leading solidus (' / ' \u002F). This entry
must not be stored in the Provisioning Dic-
tionary.

If a bundle with this location URL is already
installed in this system, then this bundle
must be updated instead of installed.

The Provisioning Service must install (but not start) all entries in the ZIP file that are typed with
bundle or bundle-url .

Procedure Initial Provisioning Specification Version 1.2

Page 190 OSGi Enterprise Release 7

If an entry named PROVISIONING_START_BUNDLE is present in the Provisioning Dictionary, then
its content type must be text as defined in Table 110.1. The content of this entry must match the
bundle location of a previously loaded bundle. This designated bundle must be given AllPermission
and started.

If no PROVISIONING_START_BUNDLE entry is present in the Provisioning Dictionary, the Provision-
ing Dictionary should contain a reference to another ZIP file under the PROVISIONING_REFERENCE
key. If both keys are absent, no further action must take place.

If this PROVISIONING_REFERENCE key is present and holds a Str ing object that can be mapped to
a valid URL, then a new ZIP file must be retrieved from this URL. The PROVISIONING_REFERENCE
link may be repeated multiple times in successively loaded ZIP files.

Referring to a new ZIP file with such a URL allows a manufacturer to place a fixed reference inside
the OSGi framework Server (in a file or smart card) that will provide some platform identifying
information and then also immediately load the information from the management system. The
PROVISIONING_REFERENCE link may be repeated multiple times in successively loaded ZIP files.
The entry PROVISIONING_UPDATE_COUNT must be an Integer object that must be incremented on
every iteration.

Information retrieved while loading subsequent PROVISIONING_REFERENCE URLs may replace pre-
vious key/values in the Provisioning Dictionary, but must not erase unrecognized key/values. For ex-
ample, if an assignment has assigned the key proprietary-x , with a value '3', then later assignments
must not override this value, unless the later loaded ZIP file contains an entry with that name. All
these updates to the Provisioning Dictionary must be stored persistently. At the same time, each en-
try of type bundle or bundle-url (see Table 110.1) must be installed and not started.

Once the Management Agent has been started, the Initial Provisioning service has become opera-
tional. In this state, the Initial Provisioning service must react when the Provisioning Dictionary is
updated with a new PROVISIONING_REFERENCE property. If this key is set, it should start the cycle
again. For example, if the control of a OSGi framework needs to be transferred to another Remote
Manager, the Management Agent should set the PROVISIONING_REFERENCE to the location of this
new Remote Manager's Initial Provisioning ZIP file. This process is called re-provisioning.

If errors occur during this process, the Initial Provisioning service should try to notify the Service
User of the problem.

The previous description is depicted in Figure 110.2 as a flow chart.

Initial Provisioning Specification Version 1.2 Special Configurations

OSGi Enterprise Release 7 Page 191

Figure 110.2 Flow chart installation Management Agent bundle

U = platform URL

provisioning

load ZIP file from U
into Provisioning

Dictionary

U = P. REFERENCE

Start
Management

Agent

install all bundles
with content type

bundle (-url)

PROVISIONING
START_BUNDLE set yes

no PROVISIONING
REFERENCE set

yes

no

operational

re-provisioning

The Management Agent may require configuration data that is specific to the OSGi framework in-
stance. If this data is available outside the Management Agent bundle, the merging of this data with
the Management Agent may take place in the OSGi framework. Transferring the data separately will
make it possible to simplify the implementation on the server side, as it is not necessary to create
personalized OSGi framework bundles. The PROVISIONING_AGENT_CONFIG key is reserved for this
purpose, but the Management Agent may use another key or mechanisms if so desired.

The PROVISIONING_SPID key must contain the OSGi framework Identifier.

110.2.1 InitialProvisioning-Entries Manifest Header
The In it ia lProvis ioning-Entr ies manifest header optionally specifies the type of the entries in the
ZIP file. The syntax for this header is:

InitialProvisioning-Entries ::= ip-entry (',' ip-entry) *
ip-entry ::= path (';' parameter) *

The entry is the path name of a resource in the ZIP file. This In it ia lProvis ioning-Entr ies header rec-
ognizes the following attribute:

• type - Gives the type of the dictionary entry. The type can have one of the following values: text ,
binary , bundle , or bundle-url

If the type parameter entry is not specified for an entry, then the type will be inferred from the ex-
tension of the entry, as defined in table Table 110.1 on page 189.

110.3 Special Configurations
The next section shows some examples of specially configured types of OSGi framework Servers
and how they are treated with the respect to the specifications in this document.

The Provisioning Service Initial Provisioning Specification Version 1.2

Page 192 OSGi Enterprise Release 7

110.3.1 Branded OSGi framework Server
If a OSGi framework Operator is selling OSGi framework Servers branded exclusively for use with
their service, the provisioning will most likely be performed prior to shipping the OSGi frame-
work Server to the User. Typically the OSGi framework is configured with the Dictionary entry
PROVISIONING_REFERENCE pointing at a location controlled by the Operator.

Up-to-date bundles and additional configuration data must be loaded from that location at activa-
tion time. The OSGi framework is probably equipped with necessary security entities, like certifi-
cates, to enable secure downloads from the Operator's URL over open networks, if necessary.

110.3.2 Non-connected OSGi framework
Circumstances might exist in which the OSGi framework Server has no WAN connectivity, or
prefers not to depend on it for the purposes not covered by this specification.

The non-connected case can be implemented by specifying a f i le :// URL for the initial ZIP file (
PROVISIONING_REFERENCE). That f i le :// URL would name a local file containing the response that
would otherwise be received from a remote server.

The value for the Management Agent PROVISIONING_REFERENCE found in that file will be used as
input to the load process. The PROVISIONING_REFERENCE may point to a bundle file stored either
locally or remotely. No code changes are necessary for the non-connected scenario. The f i le :// URLs
must be specified, and the appropriate files must be created on the OSGi framework.

110.4 The Provisioning Service
Provisioning information is conveyed between bundles using the Provisioning Service, as defined
in the Provis ioningService interface. The Provisioning Dictionary is retrieved from the Provis ion-
ingService object using the getInformation() method. This is a read-only Dictionary object, any
changes to this Dictionary object must throw an UnsupportedOperationException .

The Provisioning Service provides a number of methods to update the Provisioning Dictionary.

• addInformation(Dict ionary) - Add all key/value pairs in the given Dictionary object to the Provi-
sioning Dictionary.

• addInformation(ZipInputStream) - It is also possible to add a ZIP file to the Provisioning Service
immediately. This will unpack the ZIP file and add the entries to the Provisioning Dictionary.
This method must install the bundles contained in the ZIP file as described in Procedure on page
188.

• setInformation(Dict ionary) - Set a new Provisioning Dictionary. This will remove all existing en-
tries.

Each of these method will increment the PROVISIONING_UPDATE_COUNT entry.

110.5 Management Agent Environment
The Management Agent should be written with great care to minimize dependencies on other pack-
ages and services, as all services in OSGi are optional. Some OSGi frameworks may have other bun-
dles pre-installed, so it is possible that there may be exported packages and services available. Mech-
anisms outside the current specification, however, must be used to discover these packages and ser-
vices before the Management Agent is installed.

The Provisioning Service must ensure that the Management Agent is running with AllPermission .
The Management Agent should check to see if the Permission Admin service is available, and es-
tablish the initial permissions as soon as possible to insure the security of the device when later

Initial Provisioning Specification Version 1.2 Mapping To File Scheme

OSGi Enterprise Release 7 Page 193

bundles are installed. As the PermissionAdmin interfaces may not be present (it is an optional ser-
vice), the Management Agent should export the PermissionAdmin interfaces to ensure they can be
resolved.

Once started, the Management Agent may retrieve its configuration data from the Provisioning Ser-
vice by getting the byte[] object that corresponds to the PROVISIONING_AGENT_CONFIG key in the
Provisioning Dictionary. The structure of the configuration data is implementation specific.

The scope of this specification is to provide a mechanism to transmit the raw configuration data
to the Management Agent. The Management Agent bundle may alternatively be packaged with its
configuration data in the bundle, so it may not be necessary for the Management Agent bundle to
use the Provisioning Service at all.

Most likely, the Management Agent bundle will install other bundles to provision the OSGi frame-
work. Installing other bundles might even involve downloading a more full featured Management
Agent to replace the initial Management Agent.

110.6 Mapping To File Scheme
The f i le : scheme is the simplest and most completely supported scheme which can be used by the
Initial Provisioning specification. It can be used to store the configuration data and Management
Agent bundle on the OSGi framework Server, and avoids any outside communication.

If the initial request URL has a f i le scheme, no parameters should be appended, because the f i le :
scheme does not accept parameters.

110.6.1 Example With File Scheme
The manufacturer should prepare a ZIP file containing only one entry named
PROVISIONING_START_BUNDLE that contains a location string of an entry of type bundle or bun-
dle-url . For example, the following ZIP file demonstrates this:

provisioning.start.bundle text agent
agent bundle C0AF0E9B2AB..

The bundle may also be specified with a URL:

provisioning.start.bundle text http://acme.com/a.jar
agent bundle-url http://acme.com/a.jar

Upon startup, the framework is provided with the URL with the f i le : scheme that points to this ZIP
file:

file:/opt/osgi/ma.zip

110.7 Mapping To HTTP(S) Scheme
This section defines how HTTP and HTTPS URLs must be used with the Initial Provisioning specifi-
cation.

• HTTP - May be used when the data exchange takes place over networks that are secured by oth-
er means, such as a Virtual Private Network (VPN) or a physically isolated network. Otherwise,
HTTP is not a valid scheme because no authentication takes place.

• HTTPS - May be used if the OSGi framework is equipped with appropriate certificates.

HTTP and HTTPS share the following qualities:

Mapping To HTTP(S) Scheme Initial Provisioning Specification Version 1.2

Page 194 OSGi Enterprise Release 7

• Both are well known and widely used
• Numerous implementations of the protocols exist
• Caching of the Management Agent will be desired in many implementations where limited

bandwidth is an issue. Both HTTP and HTTPS already contain an accepted protocol for caching.

Both HTTP and HTTPS must be used with the GET method. The response is a ZIP file, implying that
the response header Content-Type header must contain appl icat ion/zip.

110.7.1 HTTPS Certificates
In order to use HTTPS, certificates must be in place. These certificates, that are used to establish
trust towards the Operator, may be made available to the OSGi framework using the Provisioning
Service. The root certificate should be assigned to the Provisioning Dictionary before the HTTPS
provider is used. Additionally, the OSGi framework should be equipped with a OSGi framework cer-
tificate that allows the OSGi framework to properly authenticate itself towards the Operator. This
specification does not state how this certificate gets installed into the OSGi framework.

The root certificate is stored in the Provisioning Dictionary under the key:

PROVISIONING_ROOTX509

The Root X.509 Certificate holds certificates used to represent a handle to a common base for estab-
lishing trust. The certificates are typically used when authenticating a Remote Manager to the OSGi
framework. In this case, a Root X.509 certificate must be part of a certificate chain for the Operator's
certificate. The format of the certificate is defined in Certificate Encoding on page 194.

110.7.2 Certificate Encoding
Root certificates are X.509 certificates. Each individual certificate is stored as a byte[] object. This
byte[] object is encoded in the default Java manner, as follows:

• The original, binary certificate data is DER encoded
• The DER encoded data is encoded into base64 to make it text.
• The base64 encoded data is prefixed with

-----BEGIN CERTIFICATE-----

and suffixed with:

-----END CERTIFICATE-----

• If a record contains more than one certificate, they are simply appended one after the other, each
with a delimiting prefix and suffix.

The decoding of such a certificate may be done with the java.security.cert .Cert i f icateFactory class:

InputStream bis = new ByteArrayInputStream(x509);// byte[]
CertificateFactory cf =
 CertificateFactory.getInstance("X.509");
Collection c = cf.generateCertificates(bis);
Iterator i = c.iterator();
while (i.hasNext()) {
 Certificate cert = (Certificate)i.next();
 System.out.println(cert);
}

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme

OSGi Enterprise Release 7 Page 195

110.7.3 URL Encoding
The URL must contain the OSGi framework Identity, and may contain more parameters. These para-
meters are encoded in the URL according to the HTTP(S) URL scheme. A base URL may be set by an
end user but the Provisioning Service must add the OSGi framework Identifier.

If the request URL already contains HTTP parameters (if there is a '?' in the request), the
service_platform_id is appended to this URL as an additional parameter. If, on the other hand, the
request URL does not contain any HTTP parameters, the service_platform_id will be appended to
the URL after a '?', becoming the first HTTP parameter. The following two examples show these two
variants:

http://server.operator.com/service-x? «
 foo=bar&service_platform_id=VIN:123456789

http://server.operator.com/service-x? «
 service_platform_id=VIN:123456789

Proper URL encoding must be applied when the URL contains characters that are not allowed. See
[6] RFC 2396 - Uniform Resource Identifier (URI).

110.8 Mapping To RSH Scheme
The RSH protocol is an OSGi-specific protocol, and is included in this specification because it is op-
timized for Initial Provisioning. It requires a shared secret between the management system and the
OSGi framework that is small enough to be entered by the Service User.

RSH bases authentication and encryption on Message Authentication Codes (MACs) that have been
derived from a secret that is shared between the OSGi framework and the Operator prior to the start
of the protocol execution.

The protocol is based on an ordinary HTTP GET request/response, in which the request must be
signed and the response must be encrypted and authenticated. Both the signature and encryption key are
derived from the shared secret using Hashed Message Access Codes (HMAC) functions.

As additional input to the HMAC calculations, one client-generated nonce and one server-generat-
ed nonce are used to prevent replay attacks. The nonces are fairly large random numbers that must
be generated in relation to each invocation of the protocol, in order to guarantee freshness. These
nonces are called cl ientfg (client-generated freshness guarantee) and serverfg (server-generated
freshness guarantee).

In order to separate the HMAC calculations for authentication and encryption, each is based on a
different constant value. These constants are called the authentication constant and the encryption con-
stant.

From an abstract perspective, the protocol may be described as follows.

• δ - Shared secret, 160 bits or more
• s - Server nonce, called servercfg , 128 bits
• c - Client nonce, called cl ientfg , 128 bits
• Ka - Authentication key, 160 bits
• Ke - Encryption key, 192 bits
• r - Response data
• e - Encrypted data
• E - Encryption constant, a byte[] of 05, 36, 54, 70, 00 (hex)
• A - Authentication constant, a byte[] of 00, 4f, 53, 47, 49 (hex)

Mapping To RSH Scheme Initial Provisioning Specification Version 1.2

Page 196 OSGi Enterprise Release 7

• M - Message material, used for Ke calculation.
• m - The calculated message authentication code.
• 3DES - Triple DES, encryption function, see [8] 3DES. The bytes of the key must be set to odd par-

ity. CBC mode must be used where the padding method is defined in [9] RFC 1423 Part III: Algo-
rithms, Modes, and Identifiers. In [11] Java Cryptography API (part of Java 1.4) this is addressed as
PKCS5Padding .

• IV - Initialization vector for 3DES.
• SHA1 - Secure Hash Algorithm to generate the Hashed Message Authentication Code, see [12]

SHA-1. The function takes a single parameter, the block to be worked upon.
• HMAC - The function that calculates a message authentication code, which must HMAC-SHA1.

HMAC-SHA1 is defined in [1] HMAC: Keyed-Hashing for Message Authentication. The HMAC func-
tion takes a key and a block to be worked upon as arguments. Note that the lower 16 bytes of the
result must be used.

• {} - Concatenates its arguments
• [] - Indicates access to a sub-part of a variable, in bytes. Index starts at one, not zero.

In each step, the emphasized server or client indicates the context of the calculation. If both are used
at the same time, each variable will have server or client as a subscript.

1. The client generates a random nonce, stores it and denotes it cl ientfg

c = nonce
2. The client sends the request with the cl ientfg to the server.

cserver ⇐ cclient

3. The server generates a nonce and denotes it serverfg .

s = nonce
4. The server calculates an authentication key based on the SHA1 function, the shared secret, the

received cl ientfg , the serverfg and the authentication constant.

Ka ← SHA1({δ, c, s, A})
5. The server calculates an encryption key using an SHA-1 function, the shared secret, the received

cl ientfg , the serverfg and the encryption constant. It must first calculate the key material M.

M[1, 20] ← SHA1({ δ, c, s, E})

M[21, 40] ← SHA1({ δ, M[1, 20], c, s, E})
6. The key for DES consists Ke and IV.

Ke ← M[1, 24]

IV ← M[25, 32]

The server encrypts the response data using the encryption key derived in step 5. The encryption
algorithm that must be used to encrypt/decrypt the response data is 3DES. 24 bytes (192 bits)
from M are used to generate Ke, but the low order bit of each byte must be used as an odd parity
bit. This means that before using Ke, each byte must be processed to set the low order bit so that
the byte has odd parity.

The encryption/decryption key used is specified by the following:

e ← 3DES(Ke, IV, r)
7. The server calculates a MAC m using the HMAC function, the encrypted response data and the

authentication key derived in 4.

m ← HMAC(Ka, e)
8. The server sends a response to the client containing the serverfg , the MAC m and the encrypted

response data

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme

OSGi Enterprise Release 7 Page 197

sclient ⇐ sserver

mclient ⇐ mserver

eclient ⇐ eserver

The client calculates the encryption key Ke the same way the server did in steps 5 and 6, and uses
this to decrypt the encrypted response data. The serverfg value received in the response is used
in the calculation.

r ← 3DES(Ke, IV, e)
9. The client performs the calculation of the MAC m' in the same way the server did, and checks

that the results match the received MAC m. If they do not match, further processing is discarded.
The serverfg value received in the response is used in the calculation.

Ka ← SHA1({δ, c, s, A})

m' ← HMAC(Ka, e)

m' = m

Figure 110.3 Action Diagram for RSH

Remote ManagerOSGi framework

request(spid,clientfg)

response(spid,mac,serverfg,encrypted-data) Shared Secret

Shared Secret

110.8.1 Shared Secret
The shared secret should be a key of length 160 bits (20 bytes) or more. The length is selected to
match the output of the selected hash algorithm [2] NIST, FIPS PUB 180-1: Secure Hash Standard,
April 1995.

In some scenarios, the shared secret is generated by the Operator and communicated to the User,
who inserts the secret into the OSGi framework through some unspecified means.

The opposite is also possible: the shared secret can be stored within the OSGi framework, extract-
ed from it, and then communicated to the Operator. In this scenario, the source of the shared secret
could be either the OSGi framework or the Operator.

In order for the server to calculate the authentication and encryption keys, it requires the prop-
er shared secret. The server must have access to many different shared secrets, one for each OSGi
framework it is to support. To be able to resolve this issue, the server must typically also have access
to the OSGi framework Identifier of the OSGi framework. The normal way for the server to know
the OSGi framework Identifier is through the application protocol, as this value is part of the URL
encoded parameters of the HTTP, HTTPS, or RSH mapping of the Initial Provisioning.

In order to be able to switch Operators, a new shared secret must be used. The new secret may be
generated by the new Operator and then inserted into the OSGi framework device using a mecha-
nism not covered by this specification. Or the device itself may generate the new secret and convey
it to the owner of the device using a display device or read-out, which is then communicated to the
new operator out-of-band. Additionally, the generation of the new secret may be triggered by some
external event, like holding down a button for a specified amount of time.

Mapping To RSH Scheme Initial Provisioning Specification Version 1.2

Page 198 OSGi Enterprise Release 7

110.8.2 Request Coding
RSH is mapped to HTTP or HTTPS. Thus, the request parameters are URL encoded as discussed in
URL Encoding on page 195. RSH requires an additional parameter in the URL: the cl ientfg parame-
ter. This parameter is a nonce that is used to counter replay attacks. See also RSH Transport on page
198.

110.8.3 Response Coding
The server's response to the client is composed of three parts:

• A header containing the protocol version and the serverfg
• The MAC
• The encrypted response

These three items are packaged into a binary container according to Table 110.2.

Table 110.2 RSH Header description

Bytes Description Value hex
4 Number of bytes in header 2E
1 Major version number 01
1 Minor version number 00
16 serverfg ...
4 Number of bytes in MAC 10
16 Message Authentication Code MAC
4 Number of bytes of encrypted ZIP file N
N Encrypted ZIP file ...

The response content type is an RSH-specific encrypted ZIP file, implying that the response header
Content-Type must be appl icat ion/x-rsh for the HTTP request. When the content file is decrypted,
the content must be a ZIP file.

110.8.4 RSH URL
The RSH URL must be used internally within the OSGi framework to indicate the usage of RSH
for initial provisioning. The RSH URL format is identical to the HTTP URL format, except that the
scheme is rsh: instead of http: . For example (« means line continues on next line):

rsh://server.operator.com/service-x

110.8.5 Extensions to the Provisioning Service Dictionary
RSH specifies one additional entry for the Provisioning Dictionary:

PROVISIONING_RSH_SECRET

The value of this entry is a byte[] containing the shared secret used by the RSH protocol.

110.8.6 RSH Transport
RSH is mapped to HTTP or HTTPS and follows the same URL encoding rules, except that the cl ientfg
is additionally appended to the URL. The key in the URL must be cl ientfg and the value must be en-
coded in base 64 format:

The cl ientfg parameter is transported as an HTTP parameter that is appended after the
service_platform_id parameter. The second example above would then be:

Initial Provisioning Specification Version 1.2 Exception Handling

OSGi Enterprise Release 7 Page 199

rsh://server.operator.com/service-x

Which, when mapped to HTTP, must become:

http://server.operator.com/service-x «
 service_platform_id=VIN:123456789& «
 clientfg=AHPmWcw%2FsiWYC37xZNdKvQ%3D%3D

110.9 Exception Handling
The Initial Provisioning process is a sensitive process that must run without user supervision. There
is therefore a need to handle exceptional cases in a well defined way to simplify trouble shooting.

There are only 2 types of problems that halt the provisioning process. They are:

• IO Exception when reading or writing provisioning information.
• IO Exception when retrieving or processing a provisioning zip file.

Other exceptions can occur and the Provisioning Service must do any attempt to log these events.

In the cases that the provisioning process stops, it is important that the clients of the provisioning
service have a way to find out that the process is stopped. The mechanism that is used for this is a
special entry in the provisioning dictionary. The name of the entry must be provis ioning.error . The
value is a String object with the following format:

• Numeric error code
• Space
• A human readable string describing the error.

Permitted error codes are:

• 0 - Unknown error
• 1 - Couldn't load or save provisioning information
• 2 - Malformed URL Exception
• 3 - IO Exception when retrieving document of a URL
• 4 - Corrupted Zip Input Stream

The provisioning.update.count will be incremented as normal when a provis ioning.error entry is
added to the provisioning information. After, the provisioning service will take no further action.

Some examples:

0 SIM card removed
2 "http://www.acme.com/secure/blib/ifa.zip"

110.10 Security
The security model for the OSGi framework is based on the integrity of the Management Agent de-
ployment. If any of the mechanisms used during the deployment of management agents are weak,
or can be compromised, the whole security model becomes weak.

From a security perspective, one attractive means of information exchange would be a smart card.
This approach enables all relevant information to be stored in a single place. The Operator could
then provide the information to the OSGi framework by inserting the smart card into the OSGi
framework.

org.osgi.service.provisioning Initial Provisioning Specification Version 1.2

Page 200 OSGi Enterprise Release 7

110.10.1 Concerns
The major security concerns related to the deployment of the Management Agent are:

• The OSGi framework is controlled by the intended Operator
• The Operator controls the intended OSGi framework(s)
• The integrity and confidentiality of the information exchange that takes place during these

processes must be considered

In order to address these concerns, an implementation of the OSGi Remote Management Architec-
ture must assure that:

• The Operator authenticates itself to the OSGi framework
• The OSGi framework authenticates itself to the Operator
• The integrity and confidentiality of the Management Agent, certificates, and configuration data

are fully protected if they are transported over public transports.

Each mapping of the Initial Provisioning specification to a concrete implementation must describe
how these goals are met.

110.10.2 OSGi framework Long-Term Security
Secrets for long-term use may be exchanged during the Initial Provisioning procedures. This way,
one or more secrets may be shared securely, assuming that the Provisioning Dictionary assignments
used are implemented with the proper security characteristics.

110.10.3 Permissions
The provisioning information may contain sensitive information. Also, the ability to modify
provisioning information can have drastic consequences. Thus, only trusted bundles should
be allowed to register, or get the Provisioning Service. This restriction can be enforced using
ServicePermission[Provis ioningService, GET] .

No Permission classes guard reading or modification of the Provisioning Dictionary, so care must be
taken not to leak the Dictionary object received from the Provisioning Service to bundles that are
not trusted.

Whether message-based or connection-based, the communications used for Initial Provisioning
must support mutual authentication and message integrity checking, at a minimum.

By using both server and client authentication in HTTPS, the problem of establishing identity is
solved. In addition, HTTPS will encrypt the transmitted data. HTTPS requires a Public Key Infras-
tructure implementation in order to retrieve the required certificates.

When RSH is used, it is vital that the shared secret is shared only between the Operator and the OS-
Gi framework, and no one else.

110.11 org.osgi.service.provisioning

Provisioning Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.provis ioning; vers ion="[1.2,2.0)"

Initial Provisioning Specification Version 1.2 org.osgi.service.provisioning

OSGi Enterprise Release 7 Page 201

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.provis ioning; vers ion="[1.2,1 .3)"

110.11.1 Summary

• Provis ioningService - Service for managing the initial provisioning information.

110.11.2 public interface ProvisioningService
Service for managing the initial provisioning information.

Initial provisioning of an OSGi device is a multi step process that culminates with the installation
and execution of the initial management agent. At each step of the process, information is collected
for the next step. Multiple bundles may be involved and this service provides a means for these bun-
dles to exchange information. It also provides a means for the initial Management Bundle to get its
initial configuration information.

The provisioning information is collected in a Dictionary object, called the Provisioning Dictionary.
Any bundle that can access the service can get a reference to this object and read and update provi-
sioning information. The key of the dictionary is a Str ing object and the value is a Str ing or byte[]
object. The single exception is the PROVISIONING_UPDATE_COUNT value which is an Integer.
The provis ioning prefix is reserved for keys defined by OSGi, other key names may be used for im-
plementation dependent provisioning systems.

Any changes to the provisioning information will be reflected immediately in all the dictionary ob-
jects obtained from the Provisioning Service.

Because of the specific application of the Provisioning Service, there should be only one Provision-
ing Service registered. This restriction will not be enforced by the Framework. Gateway operators or
manufactures should ensure that a Provisioning Service bundle is not installed on a device that al-
ready has a bundle providing the Provisioning Service.

The provisioning information has the potential to contain sensitive information. Also, the ability to
modify provisioning information can have drastic consequences. Thus, only trusted bundles should
be allowed to register and get the Provisioning Service. The ServicePermission is used to limit the
bundles that can gain access to the Provisioning Service. There is no check of Permission objects to
read or modify the provisioning information, so care must be taken not to leak the Provisioning Dic-
tionary received from getInformation method.

No Implement Consumers of this API must not implement this interface

110.11.2.1 public static final String INITIALPROVISIONING_ENTRIES = "InitialProvisioning-Entries"

Name of the header that specifies the type information for the ZIP file entries.

Since 1.2

110.11.2.2 public static final String MIME_BUNDLE = "application/vnd.osgi.bundle"

MIME type to be stored in the extra field of a ZipEntry object for an installable bundle file. Zip en-
tries of this type will be installed in the framework, but not started. The entry will also not be put in-
to the information dictionary.

110.11.2.3 public static final String MIME_BUNDLE_ALT = "application/x-osgi-bundle"

Alternative MIME type to be stored in the extra field of a ZipEntry object for an installable bundle
file. Zip entries of this type will be installed in the framework, but not started. The entry will also
not be put into the information dictionary. This alternative entry is only for backward compatibili-
ty, new applications are recommended to use MIME_BUNDLE , which is an official IANA MIME type.

Since 1.2

org.osgi.service.provisioning Initial Provisioning Specification Version 1.2

Page 202 OSGi Enterprise Release 7

110.11.2.4 public static final String MIME_BUNDLE_URL = "text/x-osgi-bundle-url"

MIME type to be stored in the extra field of a ZipEntry for a String that represents a URL for a bun-
dle. Zip entries of this type will be used to install (but not start) a bundle from the URL. The entry
will not be put into the information dictionary.

110.11.2.5 public static final String MIME_BYTE_ARRAY = "application/octet-stream"

MIME type to be stored in the extra field of a ZipEntry object for byte[] data.

110.11.2.6 public static final String MIME_STRING = "text/plain;charset=utf-8"

MIME type to be stored in the extra field of a ZipEntry object for String data.

110.11.2.7 public static final String PROVISIONING_AGENT_CONFIG = "provisioning.agent.config"

The key to the provisioning information that contains the initial configuration information of the
initial Management Agent. The value will be of type byte[] .

110.11.2.8 public static final String PROVISIONING_REFERENCE = "provisioning.reference"

The key to the provisioning information that contains the location of the provision data provider.
The value must be of type Str ing .

110.11.2.9 public static final String PROVISIONING_ROOTX509 = "provisioning.rootx509"

The key to the provisioning information that contains the root X509 certificate used to establish
trust with operator when using HTTPS.

110.11.2.10 public static final String PROVISIONING_RSH_SECRET = "provisioning.rsh.secret"

The key to the provisioning information that contains the shared secret used in conjunction with
the RSH protocol.

110.11.2.11 public static final String PROVISIONING_SPID = "provisioning.spid"

The key to the provisioning information that uniquely identifies the Service Platform. The value
must be of type Str ing .

110.11.2.12 public static final String PROVISIONING_START_BUNDLE = "provisioning.start.bundle"

The key to the provisioning information that contains the location of the bundle to start with
AllPermission . The bundle must have be previously installed for this entry to have any effect.

110.11.2.13 public static final String PROVISIONING_UPDATE_COUNT = "provisioning.update.count"

The key to the provisioning information that contains the update count of the info data. Each set
of changes to the provisioning information must end with this value being incremented. The value
must be of type Integer . This key/value pair is also reflected in the properties of the ProvisioningSer-
vice in the service registry.

110.11.2.14 public void addInformation(Dictionary<String, ?> info)

info the set of Provisioning Information key/value pairs to add to the Provisioning Information dictio-
nary. Any keys are values that are of an invalid type will be silently ignored.

□ Adds the key/value pairs contained in info to the Provisioning Information dictionary. This method
causes the PROVISIONING_UPDATE_COUNT to be incremented.

110.11.2.15 public void addInformation(ZipInputStream zis) throws IOException

zis the ZipInputStream that will be used to add key/value pairs to the Provisioning Information dic-
tionary and install and start bundles. If a ZipEntry does not have an Extra field that corresponds
to one of the four defined MIME types (MIME_STRING , MIME_BYTE_ARRAY , MIME_BUNDLE , and
MIME_BUNDLE_URL) in will be silently ignored.

Initial Provisioning Specification Version 1.2 References

OSGi Enterprise Release 7 Page 203

□ Processes the ZipInputStream and extracts information to add to the Provisioning Infor-
mation dictionary, as well as, install/update and start bundles. This method causes the
PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException– if an error occurs while processing the ZipInputStream. No additions will be made to
the Provisioning Information dictionary and no bundles must be started or installed.

110.11.2.16 public Dictionary<String, Object> getInformation()

□ Returns a reference to the Provisioning Dictionary. Any change operations (put and remove) to the
dictionary will cause an UnsupportedOperationException to be thrown. Changes must be done us-
ing the setInformation and addInformation methods of this service.

Returns A reference to the Provisioning Dictionary.

110.11.2.17 public void setInformation(Dictionary<String, ?> info)

info the new set of Provisioning Information key/value pairs. Any keys are values that are of an invalid
type will be silently ignored.

□ Replaces the Provisioning Information dictionary with the key/value pairs contained in info . Any
key/value pairs not in info will be removed from the Provisioning Information dictionary. This
method causes the PROVISIONING_UPDATE_COUNT to be incremented.

110.12 References
[1] HMAC: Keyed-Hashing for Message Authentication

http://www.ietf.org/rfc/rfc2104.txt Krawczyk ,et. al. 1997

[2] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995

[3] Hypertext Transfer Protocol - HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt Fielding, R., et. al.

[4] Rescorla, E., HTTP over TLS, IETF RFC 2818, May 2000
http://www.ietf.org/rfc/rfc2818.txt

[5] ZIP Archive format
http://www.pkware.com/support/zip-app-note/archives

[6] RFC 2396 - Uniform Resource Identifier (URI)
http://www.ietf.org/rfc/rfc2396.txt

[7] MIME Types
http://www.ietf.org/rfc/rfc2046.txt
http://www.iana.org/assignments/media-types

[8] 3DES
W/ Tuchman, "Hellman Presents No Shortcut Solution to DES," IEEE Spectrum, v. 16, n. 7 July 1979,
pp40-41

[9] RFC 1423 Part III: Algorithms, Modes, and Identifiers
http://www.ietf.org/rfc/rfc1423.txt

[10] PKCS 5
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2

[11] Java Cryptography API (part of Java 1.4)
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html/

[12] SHA-1
U.S. Government, Proposed Federal Information Processing Standard for Secure Hash Standard, Jan-
uary 1992

http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.pkware.com/support/zip-app-note/archives
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.iana.org/assignments/media-types
http://www.ietf.org/rfc/rfc1423.txt
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html/

References Initial Provisioning Specification Version 1.2

Page 204 OSGi Enterprise Release 7

[13] Transport Layer Security
http://www.ietf.org/rfc/rfc2246.txt, January 1999, The TLS Protocol Version 1.0, T. Dierks & C. Allen

http://www.ietf.org/rfc/rfc2246.txt

Declarative Services Specification Version 1.4 Introduction

OSGi Enterprise Release 7 Page 205

112 Declarative Services Specification

Version 1.4

112.1 Introduction
The OSGi Framework contains a procedural service model which provides a publish/find/bind mod-
el for using services. This model is elegant and powerful, it enables the building of applications out
of bundles that communicate and collaborate using these services.

This specification addresses some of the complications that arise when the OSGi service model is
used for larger systems and wider deployments, such as:

• Startup Time - The procedural service model requires a bundle to actively register and acquire
its services. This is normally done at startup time, requiring all present bundles to be initial-
ized with a Bundle Activator. In larger systems, this quickly results in unacceptably long startup
times.

• Memory Footprint - A service registered with the Framework implies that the implementation,
and related classes and objects, are loaded in memory. If the service is never used, this memory is
unnecessarily occupied. The creation of a class loader may therefore cause significant overhead.

• Complexity - Service can come and go at any time. This dynamic behavior makes the service pro-
gramming model more complex than more traditional models. This complexity negatively influ-
ences the adoption of the OSGi service model as well as the robustness and reliability of applica-
tions because these applications do not always handle the dynamicity correctly.

The service component model uses a declarative model for publishing, finding and binding to OSGi
services. This model simplifies the task of authoring OSGi services by performing the work of reg-
istering the service and handling service dependencies. This minimizes the amount of code a pro-
grammer has to write; it also allows service components to be loaded only when they are needed.
As a result, bundles need not provide a BundleActivator class to collaborate with others through the
service registry.

From a system perspective, the service component model means reduced startup time and potential-
ly a reduction of the memory footprint. From a programmer's point of view the service component
model provides a simplified programming model.

The Service Component model makes use of concepts described in [1] Automating Service Dependency
Management in a Service-Oriented Component Model.

112.1.1 Essentials

• Backward Compatibility - The service component model must operate seamlessly with the exist-
ing service model.

• Size Constraints - The service component model must not require memory and performance in-
tensive subsystems. The model must also be applicable on resource constrained devices.

• Delayed Activation - The service component model must allow delayed activation of a service
component. Delayed activation allows for delayed class loading and object creation until needed,
thereby reducing the overall memory footprint.

• Simplicity - The programming model for using declarative services must be very simple and not
require the programmer to learn a complicated API or XML sub-language.

Introduction Declarative Services Specification Version 1.4

Page 206 OSGi Enterprise Release 7

• Dependency Injection - The programming model for using declarative services supports three types
of dependency injection: method injection, field injection, and constructor injection.

• Reactive - It must be possible to react to changes in the external dependencies with different poli-
cies.

• Annotations - Annotations must be provided that can leverage the type information to create the
XML descriptor.

• Introspection - It must be possible to introspect the service components.

112.1.2 Entities

• Service Component - A service component contains a description that is interpreted at run time to
create and dispose objects depending on the availability of other services, the need for such an
object, and available configuration data. Such objects can optionally provide a service. This speci-
fication also uses the generic term component to refer to a service component.

• Service Component Runtime (SCR) - The actor that manages the components and their life cycle
and allows introspection of the components.

• Component Description - The declaration of a service component. It is contained within an XML
document in a bundle.

• Component Properties - A set of properties which can be specified by the component description,
Configuration Admin service and from the component factory.

• Component Property Type - A user defined annotation type which defines component properties
and is implemented by SCR to provide type safe access to the defined component properties.

• Component Configuration - A component configuration represents a component description para-
meterized by component properties. It is the entity that tracks the component dependencies and
manages a component instance. An activated component configuration has a component con-
text.

• Component Instance - An instance of the component implementation class. A component instance
is created when a component configuration is activated and discarded when the component con-
figuration is deactivated. A component instance is associated with exactly one component con-
figuration.

• Delayed Component - A component whose component configurations are activated when their
service is requested.

• Immediate Component - A component whose component configurations are activated immediate-
ly upon becoming satisfied.

• Factory Component - A component whose component configurations are created and activated
through the component's component factory.

• Reference - A specified dependency of a component on a set of target services.
• Target Services - The set of services that is defined by the reference interface and target property

filter.
• Bound Services - The set of target services that are bound to a component configuration.
• Event methods - The bind, updated, and unbind methods associated with a Reference.

Declarative Services Specification Version 1.4 Introduction

OSGi Enterprise Release 7 Page 207

Figure 112.1 Service Component Runtime, org.osgi.service.component package

a Component
Impl

a Service Impl

Service
Component
Runtime Impl

a Servicea Component
Instance

Component
Description

a Component
Confguration

registered service

tracks
dependencies

declares com
ponent

created by

controls 0..n

0..n

0..n

references

1..n
1

Configuration
Admin

0..n

1

0..n

1

1

<<service>>
Service Component
Runtime

112.1.3 Synopsis
The Service Component Runtime reads component descriptions from started bundles. These de-
scriptions are in the form of XML documents which define a set of components for a bundle. A com-
ponent can refer to a number of services that must be available before a component configuration
becomes satisfied. These dependencies are defined in the descriptions and the specific target ser-
vices can be influenced by configuration information in the Configuration Admin service. After a
component configuration becomes satisfied, a number of different scenarios can take place depend-
ing on the component type:

• Immediate Component - The component configuration of an immediate component must be acti-
vated immediately after becoming satisfied. Immediate components may provide a service.

• Delayed Component - When a component configuration of a delayed component becomes satis-
fied, SCR will register the service specified by the service element without activating the com-
ponent configuration. If this service is requested, SCR must activate the component configura-
tion creating an instance of the component implementation class that will be returned as the ser-
vice object. If the scope attribute of the service element is bundle , then, for each distinct bundle
that requests the service object, a different component configuration is created and activated and
a new instance of the component implementation class is returned as the service object. If the
scope attribute of the service element is prototype , then, for each distinct request for the service
object, such as via ServiceObjects , a different component configuration is created and activated
and a new instance of the component implementation class is returned as the service object.

• Factory Component - If a component's description specifies the factory attribute of the component
element, SCR will register a Component Factory service. This service allows client bundles to
create and activate multiple component configurations and dispose of them. If the component's
description also specifies a service element, then as each component configuration is activated,
SCR will register it as a service.

112.1.4 Readers

• Architects - The chapter, Components on page 208, gives a comprehensive introduction to the
capabilities of the component model. It explains the model with a number of examples. The sec-
tion about Component Life Cycle on page 234 provides some deeper insight in the life cycle of
components.

Components Declarative Services Specification Version 1.4

Page 208 OSGi Enterprise Release 7

• Service Programmers - Service programmers should read Components on page 208. This chapter
should suffice for the most common cases. For the more advanced possibilities, they should con-
sult Component Description on page 223 for the details of the XML grammar for component de-
scriptions.

• Deployers - Deployers should consult Deployment on page 246.

112.2 Components
A component is a normal Java class contained within a bundle. The distinguishing aspect of a com-
ponent is that it is declared in an XML document. Component configurations are activated and deac-
tivated under the full control of SCR. SCR bases its decisions on the information in the component's
description. This information consists of basic component information like the name and type, op-
tional services that are implemented by the component, and references. References are dependencies
that the component has on other services.

SCR must activate a component configuration when the component is enabled and the component
configuration is satisfied and a component configuration is needed. During the life time of a compo-
nent configuration, SCR can notify the component of changes in its bound references.

SCR will deactivate a previously activated component configuration when the component becomes
disabled, the component configuration becomes unsatisfied, or the component configuration is no
longer needed.

If an activated component configuration's configuration properties change, SCR must either notify
the component configuration of the change, if the component description specifies a method to be
notified of such changes, or deactivate the component configuration and then attempt to reactivate
the component configuration using the new configuration information.

112.2.1 Declaring a Component
A component requires the following artifacts in the bundle:

• An XML document that contains the component description.
• The Service-Component manifest header which names the XML documents that contain the

component descriptions.
• An implementation class that is specified in the component description.

The elements in the component's description are defined in Component Description on page 223.
The XML grammar for the component declaration is defined by the XML Schema, see Component De-
scription Schema on page 261.

112.2.2 Immediate Component
An immediate component is activated as soon as its dependencies are satisfied. If an immediate compo-
nent has no dependencies, it is activated immediately. A component is an immediate component if
it is not a factory component and either does not specify a service or specifies a service and the im-
mediate attribute of the component element set to true . If an immediate component configuration
is satisfied and specifies a service, SCR must register the component configuration as a service in the
service registry and then activate the component configuration.

For example, the bundle entry /OSGI-INF/act ivator.xml contains:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.activator"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.Activator"/>

Declarative Services Specification Version 1.4 Components

OSGi Enterprise Release 7 Page 209

</scr:component>

The manifest header Service-Component must also be specified in the bundle manifest. For exam-
ple:

Service-Component: OSGI-INF/activator.xml

An example class for this component could look like:

public class Activator {
 public Activator() {...}
 private void activate(BundleContext context) {...}
 private void deactivate() {...}
}

This example component is virtually identical to a Bundle Activator. It has no references to other
services so it will be satisfied immediately. It publishes no service so SCR will activate a component
configuration immediately.

The activate method is called when SCR activates the component configuration and the deactivate
method is called when SCR deactivates the component configuration. If the activate method throws
an Exception, then the component configuration is not activated and will be discarded.

112.2.3 Delayed Component
A delayed component specifies a service, is not specified to be a factory component and does not have
the immediate attribute of the component element set to true . If a delayed component configura-
tion is satisfied, SCR must register the component configuration as a service in the service registry
but the activation of the component configuration is delayed until the registered service is request-
ed. The registered service of a delayed component looks like a normal registered service but does not
incur the overhead of an ordinarily registered service that require a service's bundle to be initialized
to register the service.

For example, a bundle needs to see events of a specific topic. The Event Admin uses the white board
pattern, receiving the events is therefore as simple as registering a Event Handler service. The exam-
ple XML for the delayed component looks like:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.handler"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.HandlerImpl"/>
 <property name="event.topics">some/topic</property>
 <service>
 <provide interface="org.osgi.service.event.EventHandler"/>
 </service>
</scr:component>

The associated component class looks like:

public class HandlerImpl implements EventHandler{
 public void handleEvent(Event evt) {
 ...
 }
}

The component configuration will only be activated once the Event Admin service requires the ser-
vice because it has an event to deliver on the topic to which the component subscribed.

Components Declarative Services Specification Version 1.4

Page 210 OSGi Enterprise Release 7

112.2.4 Factory Component
Certain software patterns require the creation of component configurations on demand. For exam-
ple, a component could represent an application that can be launched multiple times and each ap-
plication instance can then quit independently. Such a pattern requires a factory that creates the in-
stances. This pattern is supported with a factory component. A factory component is used if the fac-
tory attribute of the component element is set to a factory identifier. This identifier can be used by a
bundle to associate the factory with externally defined information.

SCR must register a Component Factory service on behalf of the component as soon as the compo-
nent factory is satisfied. The service properties for the Component Factory service are the factory
properties as specified by the factory-property and factory-propert ies elements of the component
description. See Factory Property and Factory Properties Elements on page 233. The service properties
of the Component Factory service must not include the component properties. SCR always adds the
following factory properties, which cannot be overridden:

• component.name - The name of the component.
• component.factory - The factory identifier.

New configurations of the component can be created and activated by calling the newInstance
method on this Component Factory service. The newInstance(Dict ionary) method has a Dictionary
object as a parameter. This Dictionary object is merged with the component properties as described
in Component Properties on page 244. If the component specifies a service, then the service is reg-
istered after the created component configuration is satisfied with the component properties. Then
the component configuration is activated.

For example, a component can provide a connection to a USB device. Such a connection should nor-
mally not be shared and should be created each time such a service is needed. The component de-
scription to implement this pattern looks like:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.factory"
 factory="usb.connection"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.USBConnectionImpl"/>
</scr:component>

The component class looks like:

public class USBConnectionImpl implements USBConnection {
 private void activate(Map<String, ?> properties) {
 ...
 }
}

A factory component can be associated with a service. In that case, such a service is registered for
each component configuration. For example, the previous example could provide a USB Connection
service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.factory"
 factory="usb.connection"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.USBConnectionImpl"/>
 <service>
 <provide interface="com.acme.usb.USBConnection"/>
 </service>

Declarative Services Specification Version 1.4 References to Services

OSGi Enterprise Release 7 Page 211

</scr:component>

The associated component class looks like:

public class USBConnectionImpl implements USBConnection {
 private void activate(Map<String, ?> properties) {...}
 public void connect() { ... }
 ...
 public void close() { ... }
}

A new service will be registered each time a new component configuration is created and activat-
ed with the newInstance method. This allows a bundle other than the one creating the component
configuration to utilize the service. If the component configuration is deactivated, the service must
be unregistered.

112.3 References to Services
Most bundles will require access to other services from the service registry. The dynamics of the
service registry require care and attention of the programmer because referenced services, once ac-
quired, could be unregistered at any moment. The component model simplifies the handling of
these service dependencies significantly.

The services that are selected by a reference are called the target services. These are the services select-
ed by the BundleContext.getServiceReferences method where the first argument is the reference's
interface and the second argument is the reference's target property, which must be a valid filter.

A component configuration becomes satisfied when each specified reference is satisfied. A refer-
ence is satisfied if it specifies optional cardinality or when the number of target services is equal to or
more than the minimum cardinality of the reference. An activated component configuration that
becomes unsatisfied must be deactivated.

During the activation of a component configuration, SCR must bind some or all of the target ser-
vices of a reference to the component configuration. Any target service that is bound to the compo-
nent configuration is called a bound service. See Bound Services on page 238.

112.3.1 Accessing Services
A component instance must be able to use the services that are referenced by the component con-
figuration, that is, the bound services of the references. The following techniques are available for a
component instance to acquire these bound services:

• Method injection - SCR calls a method on the component instance when a service becomes bound,
when a service becomes unbound, or when its properties are updated. These methods are the
bind, updated, and unbind methods specified by the reference. Method injection is useful if the
component needs to be notified of changes to the bound services for a dynamic reference.

• Field injection - SCR modifies a field in the component instance when a service becomes bound,
when a service becomes unbound, or when its properties are updated.

• Constructor injection - When SCR activates a component instance, the component instance must
be constructed and constructor injection occurs. Bound services and activation objects can be pa-
rameters to the constructor.

• Lookup strategy - A component instance can use one of the locateService methods of its Compo-
nentContext to locate a bound service. These methods take the name of the reference as a para-
meter. If the reference has a dynamic policy, it is important to not store returned service objects
but look them up every time they are needed.

A component may use multiple strategies to access the bound services of a reference.

References to Services Declarative Services Specification Version 1.4

Page 212 OSGi Enterprise Release 7

112.3.2 Method Injection
When using method injection, SCR must call the component instance at the appropriate time. SCR
must call on the following events:

• bind - The bind method, if specified, is called to bind a new service to the component that match-
es the selection criteria. If the pol icy is dynamic then the bind method of a replacement service
can be called before its corresponding unbind method.

• updated - The updated method, if specified, is called when the service properties of a bound ser-
vices are modified and the resulting properties do not cause the service to become unbound be-
cause it is no longer selected by the target property.

• unbind - The unbind method, if specified, is called when SCR needs to unbind the service.

Each event is associated with an event method.

An event method can take one or more parameters. Each parameter must be of one of the following
types:

• <service-type> - The bound service object.
• ServiceReference - A Service Reference for the bound service. This Service Reference may later

be passed to the locateService(Str ing,ServiceReference) method to obtain the actual service ob-
ject. This approach is useful when the service properties need to be examined before accessing
the service object. It also allows for the delayed activation of bound services when using method
injection.

• ComponentServiceObjects - A Component Service Objects for the bound service. This Compo-
nent Service Objects can be used to obtain the actual service object or objects. This approach
is useful when the referenced service has prototype service scope and the component instance
needs multiple service objects for the service.

• Map - An unmodifiable Map containing the service properties of the bound service. This Map
must additionally implement Comparable with the compareTo method comparing service prop-
erty maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

A suitable method is selected using the following priority:

1. The method takes a single parameter and the type of the parameter is
org.osgi .f ramework.ServiceReference . This method will receive a Service Reference for the
bound service.

2. The method takes a single parameter and the type of the parameter is ComponentServiceOb-
jects . This method will receive a Component Service Objects for the bound service.

3. The method takes a single parameter and the type of the parameter is the type specified by the
reference's interface attribute. This method will receive the bound service object.

4. The method takes a single parameter and the type of the parameter is assignable from the type
specified by the reference's interface attribute. If multiple methods match this rule, this implies
the method name is overloaded and SCR may choose any of the methods to call. This method
will receive the bound service object.

5. The method takes a single parameter and the type of the parameter is java.ut i l .Map . This
method will receive an unmodifiable Map containing the service properties of the bound ser-
vice.

6. The method takes two or more parameters and the types of the parameters must be one of: the
type specified by the reference's interface attribute, a type assignable from the type specified
by the reference's interface attribute, org.osgi .f ramework.ServiceReference , ComponentSer-
viceObjects , or java.ut i l .Map . If multiple methods match this rule, this implies the method
name is overloaded and SCR may choose any of the methods to call. In the case where the type
specified by the reference's interface attribute is org.osgi .f ramework.ServiceReference , Compo-

Declarative Services Specification Version 1.4 References to Services

OSGi Enterprise Release 7 Page 213

nentServiceObjects , or java.ut i l .Map , the first parameter of that type will receive the bound ser-
vice object. If selected event method has more than one parameter of that type, the remaining
parameters of that type will receive a Service Reference for the bound service, a Service Objects
for the bound service, or an unmodifiable Map containing the service properties of the bound
service.

When searching for an event method to call, SCR must locate a suitable method as specified in Lo-
cating Component Methods and Fields on page 257. If no suitable method is located, SCR must log an
error message with the Log Service, if present, and there will be no bind, updated, or unbind notifi-
cation.

The bind and unbind methods must be called once for each bound service. This implies that if the
reference has multiple cardinality, then the methods may be called multiple times. The updated
method can be called multiple times per service.

In the following examples, a component requires the Logger Factory service. The first example uses
the lookup strategy. The reference is declared without any bind, updated, and unbind methods:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.LogLookupImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LoggerFactory"/>
</scr:component>

The component implementation class must now lookup the service. This looks like:

public class LogLookupImpl {
 private void activate(ComponentContext ctxt) {
 LoggerFactory lf = ctxt.locateService("LOG");
 lf.getLogger(LogLookupImpl.class).info("Hello Components!");
 }
}

Alternatively, the component could use method injection and ask to be notified with the Logger Fac-
tory service by declaring bind, updated, and unbind methods.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LoggerFactory"
 bind="setLog"
 updated="updatedLog"
 unbind="unsetLog"
 />
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
 LoggerFactory lf;
 Integer level;
 void setLog(LoggerFactory l, Map<String,?> ref) {
 lf = l;

References to Services Declarative Services Specification Version 1.4

Page 214 OSGi Enterprise Release 7

 updatedLog(l, ref);
 }
 void updatedLog(LoggerFactory l, Map<String,?> ref) {
 level = (Integer) ref.get("level");
 }
 void unsetLog(LoggerFactory l) { lf = null; }
 private void activate() {
 lf.getLogger(LogEventImpl.class).info("Hello Components!");
 }
}

Event methods can be declared private in the component class but are only looked up in the inheri-
tance chain when they are protected, public, or have default access. See Locating Component Methods
and Fields on page 257.

112.3.3 Field Injection
When using field injection, SCR must modify fields in the component instance at the appropriate
time. SCR must modify the fields on the following events:

• bind - The field is modified to bind a new service to the component that matches the selection
criteria.

• updated - For certain field types, the field is modified when the service properties of a bound ser-
vices are modified and the resulting properties do not cause the service to become unbound be-
cause it is no longer selected by the target property.

• unbind - The field is modified when SCR needs to unbind the service.

For a reference with unary cardinality, a field must be of one of the following types:

• <service-type> - The bound service object. The type of the field can be the actual service type or it
can be a type that is assignable from the actual service type.

• ServiceReference - A Service Reference for the bound service. This Service Reference may later
be passed to the locateService(Str ing,ServiceReference) method to obtain the actual service ob-
ject. This approach is useful when the service properties need to be examined before accessing
the service object. It also allows for the delayed activation of bound services when using field in-
jection.

• ComponentServiceObjects - A Component Service Objects for the bound service. This Compo-
nent Service Objects can be used to obtain the actual service object or objects. This approach
is useful when the referenced service has prototype service scope and the component instance
needs multiple service objects for the service.

• Map - An unmodifiable Map containing the service properties of the bound service. This Map
must additionally implement Comparable with the compareTo method comparing service prop-
erty maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

• Map.Entry - An unmodifiable Map.Entry whose key is an unmodifiable Map containing the ser-
vice properties of the bound service, as above, and whose value is the bound service object. This
Map.Entry must additionally implement Comparable with the compareTo method comparing
the service property map key using the same ordering as ServiceReference.compareTo based up-
on service ranking and service id.

If the actual service type is one of ServiceReference , ComponentServiceObjects , Map , or
Map.Entry , the field will be set to the service object rather than the object about the service.

For a reference with multiple cardinality, a field must be a collection of one of the following types:

• Collect ion

Declarative Services Specification Version 1.4 References to Services

OSGi Enterprise Release 7 Page 215

• List
• A subtype of Collect ion - This type can only be used for dynamic references using the update ref-

erence field option. The component instance must initialize the field to a collection object in its
constructor.

The type of objects set in the collection are specified by the f ie ld-col lect ion-type attribute in the
component description:

• service - The bound service object. This is the default field collection type.
• reference - A Service Reference for the bound service.
• serviceobjects - A Component Service Objects for the bound service.
• propert ies - An unmodifiable Map containing the service properties of the bound service. This

Map must implement Comparable , as above.
• tuple - An unmodifiable Map.Entry whose key is an unmodifiable Map containing the service

properties of the bound service, as above, and whose value is the bound service object. This
Map.Entry must implement Comparable , as above.

Only instance fields of the field types above are supported. If a referenced field is declared with the
stat ic modifier or has a type other than one of the above, SCR must log an error message with the
Log Service, if present, and the field must not be modified. SCR must locate a suitable field as speci-
fied in Locating Component Methods and Fields on page 257. If no suitable field is located, SCR must
log an error message with the Log Service, if present, and no field will not be modified for the refer-
ence.

Care must be taken by the component implementation regarding the field. SCR has no way to know
if the component implementation itself may alter the field value. The component implementation
should not alter the field value and allow SCR to manage it. SCR must treat the field as if the compo-
nent implementation does not alter the field value so SCR may retain its own copy of the value set
in the field.

In the following examples, a component requires the Logger Factory service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LoggerFactory"
 field="lf"
 />
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
 LoggerFactory lf;
 private void activate() {
 lf.getLogger(LogEventImpl.class).info("Hello Components!");
 }
}

Fields can be declared private in the component class but are only looked up in the inheritance
chain when they are protected, public, or have default access. See Locating Component Methods and
Fields on page 257.

References to Services Declarative Services Specification Version 1.4

Page 216 OSGi Enterprise Release 7

112.3.4 Constructor Injection
When using constructor injection, SCR must construct the component instance using the appropri-
ate constructor passing activation objects and bound services as parameters. Since a component in-
stance is only constructed once, constructor parameters for references must be for static references.

A suitable constructor is selected using the following steps:

1. If the constructor is not public, then the constructor must not be considered.
2. If the constructor has a parameter count that does not match the value of the in it attribute in

the component element, then the constructor must not be considered. If the value of the in it at-
tribute is 0, the default value, then the public no-parameter constructor must be used.

3. For the constructor parameters associated with a reference, that is, there is a reference with a pa-
rameter attribute whose value matches the zero-based parameter number of the constructor pa-
rameter, if the parameter type is not one of the types supported for field injection for a static ref-
erence, then the constructor must not be considered. See Field Injection on page 214 for infor-
mation on types supported for field injection.

4. For the constructor parameters not associated with a reference, if the parameter type is not as-
signable from one of the activation object types, then the constructor must not be considered.
See Activation Objects on page 238 for information on activation object types.

5. If only a single constructor remains, this constructor must be used to construct the component
instance.

6. If more than one constructor remains, this implies the constructor is overloaded and SCR may
choose any of the remaining constructors to construct the component instance.

When searching for the constructor to call, SCR must use reflection on the implementation class.
If no suitable constructor is located, SCR must log an error message with the Log Service, if present,
and the component configuration is not activated.

If the constructor throws an exception, SCR must log an error message containing the exception
with the Log Service, if present, and the component configuration is not activated.

If the constructor parameter is associated with a reference having cardinality of 0..1 and there is no
bound service for the reference, then the value nul l will be supplied as the constructor parameter.

In the following examples, a component requires the Logger Factory service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen" init="1"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LoggerFactory"
 parameter="0"
 />
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
 public LogEventImpl(LoggerFactory lf) {
 lf.getLogger(LogEventImpl.class).info("Hello Components!");
 }
}

112.3.5 Reference Cardinality
A component implementation is always written with a certain cardinality for each reference in
mind. The cardinality represents two important concepts:

Declarative Services Specification Version 1.4 References to Services

OSGi Enterprise Release 7 Page 217

• Multiplicity - Does the component implementation assume a single service or does it explicitly
handle multiple services? For example, when a component uses the Logger Factory service, it on-
ly needs to bind to one Logger Factory service to function correctly. Alternatively, when the Con-
figuration Admin uses the Configuration Listener services it needs to bind to all target services
present in the service registry to dispatch its events correctly.

• Optionality - Can the component function without any bound service present? Some components
can still perform useful tasks even when no service is available; other components must bind to
at least one service before they can be useful. For example, the Configuration Admin in the pre-
vious example must still provide its functionality even if there are no Configuration Listener ser-
vices present. Alternatively, an application that registers a Servlet with the Http Service has little
to do when the Http Service is not present, it should therefore use a reference with a mandatory
cardinality.

The cardinality is expressed with the following syntax:

cardinality ::= optionality '..' multiplicity
optionality ::= '0' | '1'
multiplicity ::= '1' | 'n'

The cardinality for a reference can be specified as one of four choices:

• 0..1 - Optional and unary.
• 1. .1 - Mandatory and unary (Default) .
• 0..n - Optional and multiple.
• 1. .n - Mandatory and multiple.

The minimum cardinality is specified by the optionality part of the cardinality. This is either 0 or 1 .
A minimum cardinality property can be used to raise the minimum cardinality of a reference from
this initial value. For example, a 0..n cardinality in the component description can be raised into a
3. .n cardinality at runtime by setting the minimum cardinality property for the reference to 3 . This
would typically be done by a deployer setting the minimum cardinality property in a configuration
for the component. The minimum cardinality for a unary cardinality cannot exceed 1 . See Minimum
Cardinality Property on page 245 for more information.

A reference is satisfied if the number of target services is equal to or more than the minimum cardi-
nality. The mult ipl ic ity is irrelevant for the satisfaction of the reference. The mult ipl ic ity only spec-
ifies if the component implementation is written to handle being bound to multiple services (n) or
requires SCR to select and bind to a single service (1).

When a satisfied component configuration is activated, there must be at most one bound service for
each reference with a unary cardinality and at least as many bound services as the minimum cardi-
nality for each reference. If the cardinality constraints cannot be maintained after a component con-
figuration is activated, that is the reference becomes unsatisfied, the component configuration must
be deactivated. If the reference has a unary cardinality and there is more than one target service for
the reference, then the bound service must be the target service with the highest service ranking as
specified by the service.ranking property. If there are multiple target services with the same service
ranking, then the bound service must be the target service with the highest service ranking and the
lowest service id as specified by the service. id property.

In the following example, a component wants to register a resource with all Http Services that are
available. Such a scenario has the cardinality of 0..n . The code must be prepared to handle multiple
calls to the bind method for each Http Service in such a case. In this example, the code uses the reg-
isterResources method to register a directory for external access.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">

References to Services Declarative Services Specification Version 1.4

Page 218 OSGi Enterprise Release 7

 <implementation class="com.acme.impl.HttpResourceImpl"/>
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"
 cardinality="0..n"
 bind="setPage"
 unbind="unsetPage"
 />
</scr:component>

public class HttpResourceImpl {
 private void setPage(HttpService http) {
 http.registerResources("/scr", "scr", null);
 }
 private void unsetPage(HttpService http) {
 http.unregister("/scr");
 }
}

112.3.6 Reference Scope
A component implementation must be written to understand the service scope of referenced ser-
vices. The reference scope defines whether the component expects the bundle to be exposed to a sin-
gle service object for a bound service or to potentially multiple services objects. The following refer-
ence scopes are available:

• bundle - For all references to a given bound service, all activated component instances within a
bundle must use the same service object. That is, for a given bound service, all component in-
stances within a bundle will be using the same service object. This is the default reference scope.

• prototype - For all references to a given bound service, each activated component instance may
use a single, distinct service object. That is, for a given bound service, each component instance
may use a distinct service object but within a component instance all references to the bound
service will use the same service object.

• prototype_required - For all references to a given bound service, each activated component in-
stance must use a single, distinct service object. That is, for a given bound service, each compo-
nent instance will use a distinct service object but within a component instance all references to
the bound service will use the same service object.

For a bound service of a reference with bundle reference scope, SCR must get the service object from
the OSGi Framework's service registry using the getService method on the component's Bundle
Context. If the service object for a bound service has been obtained and the service becomes un-
bound, SCR must unget the service object using the ungetService method on the component's Bun-
dle Context and discard all references to the service object. This ensures that the bundle will only be
exposed to a single instance of the service object at any given time.

For a bound service of a reference with prototype or prototype_required reference scope, SCR
must use a Service Objects object obtained from the OSGi Framework's service registry using the
component's Bundle Context to get any service objects. If service objects for a bound service have
been obtained and the service becomes unbound, SCR must unget any unreleased service objects
using the Service Objects object obtained from the OSGi Framework's service registry using the
component's Bundle Context. This means that if a component instance used a Component Service
Objects object to obtain service objects, SCR must track those service objects so that when the ser-
vice becomes unbound, SCR can unget any unreleased service objects.

Additionally, for a reference with prototype_required reference scope, only services registered with
prototype service scope can be considered as target services. This ensures that each component in-
stance can be exposed to a single, distinct instance of the service object. Using prototype_required
reference scope effectively adds service.scope=prototype to the target property for the reference. A

Declarative Services Specification Version 1.4 References to Services

OSGi Enterprise Release 7 Page 219

service that does not use prototype service scope cannot be used as a bound service for a reference
with prototype_required reference scope since the service cannot provide a distinct service object
for each component instance.

112.3.7 Reference Policy
Once all the references of a component are satisfied, a component configuration can be activat-
ed and therefore bound to target services. However, the dynamic nature of the OSGi service reg-
istry makes it likely that services are registered, modified and unregistered after target services are
bound. These changes in the service registry could make one or more bound services no longer a tar-
get service thereby making obsolete any object references that the component has to these service
objects. Components therefore must specify a policy how to handle these changes in the set of bound
services. A policy-option can further refine how changes affect bound services.

112.3.7.1 Static Reference Policy

The static policy is the most simple policy and is the default policy. A reference with a static policy is
called a static reference. A component instance never sees any of the dynamics of the static reference.
The bind method is called and/or the field is set before the component instance is activated. Static
references can also be used for parameters for constructor injection. Component configurations are
deactivated before any bound service for the static reference becomes unavailable. If a target service
is available to replace the bound service which became unavailable, the component configuration
must be reactivated and the replacement service is bound to the new component instance.

If the pol icy-option is reluctant then the registration of an additional target service for a reference
must not result in deactivating and reactivating a component configuration. If the pol icy-option
is greedy then the component configuration must be reactivated when new applicable services be-
come available. See Table 112.1 on page 220.

If a static reference specifies an updated method and the bound service's properties change, SCR
must call the updated method.

The static policy can be very expensive if it depends on services that frequently unregister and re-
register or if the cost of activating and deactivating a component configuration is high. Static policy
is usually also not applicable if the cardinality specifies multiple bound services.

112.3.7.2 Dynamic Reference Policy

The dynamic policy is slightly more complex since the component implementation must properly
handle changes in the set of bound services that can occur on any thread at any time after the com-
ponent instance is created. A reference with a dynamic policy is called a dynamic reference. With a
dynamic reference, SCR can change the set of bound services without deactivating a component
configuration. If the component uses method injection to access services, then the component in-
stance will be notified of changes in the set of bound services by calls to the bind, updated, and un-
bind methods.

If the pol icy-option is reluctant then a bound reference is not rebound even if a more suitable ser-
vice becomes available for a 1..1 or 0..1 reference. If the pol icy-option is greedy then the component
must be unbound and rebound for that reference. See Table 112.1 on page 220.

The previous example with the registering of a resource directory used a static policy. This implied
that the component configurations are deactivated when there is a change in the bound set of Http
Services. The code in the example can be seen to easily handle the dynamics of Http Services that
come and go. The component description can therefore be updated to:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.HttpResourceImpl"/>
 <reference name="HTTP"

References to Services Declarative Services Specification Version 1.4

Page 220 OSGi Enterprise Release 7

 interface="org.osgi.service.http.HttpService"
 cardinality="0..n"
 policy="dynamic"
 bind="setPage"
 unbind="unsetPage"
 />
</scr:component>

The code is identical to the previous example.

112.3.8 Reference Policy Option
The reference policy option defines how eager the reference is to rebind when a new, potentially a
higher ranking, target service becomes available. The reference policy option can have the follow-
ing values:

• reluctant - Minimize rebinding and reactivating. This is the default reference policy option.
• greedy - Maximize the use of the best service by deactivating static references or rebinding dy-

namic references.

Table 112.1 defines the actions that are taken when a better target service becomes available. In this
context, better is when the reference is not bound or when the new target service has a higher rank-
ing than the bound service.

Table 112.1 Action taken for policy-option when a new or higher ranking service becomes available

Cardinality static reluctant static greedy dynamic reluctant dynamic greedy
0..1 Ignore Reactivate to bind the

better target service.
If no service is bound,
bind to new target ser-
vice. Otherwise, ignore
new target service.

If no service is bound,
bind to better target ser-
vice. Otherwise, unbind
the bound service and
bind the better target ser-
vice.

1. .1 Ignore Reactivate to bind the
better target service.

Ignore Unbind the bound ser-
vice, then bind the new
service.

0..n Ignore Reactivate Bind new target service Bind new target service
1. .n Ignore Reactivate Bind new target service Bind new target service

112.3.9 Reference Field Option
For a reference using field injection, the reference field option defines how SCR must manage the
field value. The reference field option can have the following values:

• replace - SCR must set the field value. Any field value set by the constructor of the component in-
stance is overwritten. This is the default reference field option.

• update - SCR must update the collection set in the field. This collection can be set by the con-
structor of the component instance. This reference field option can only be used for a dynamic
reference with multiple cardinality.

For a static reference, the replace option must be used.

For a dynamic reference, the choice of reference field option is influenced by the cardinality of the
reference. For unary cardinality, the replace option must be used. For multiple cardinality, either the
replace or update option can be used.

Declarative Services Specification Version 1.4 References to Services

OSGi Enterprise Release 7 Page 221

If the update option is used when not permitted, SCR must log an error message with the Log Ser-
vice, if present, and the field must not be modified.

112.3.9.1 Replace Field Option

If the field is declared with the f inal modifier, SCR must log an error message with the Log Service, if
present, and the field must not be modified.

For a static reference, SCR must set the field value before the component instance is activated and
must not change the field while the component is active. This means there is a happens-before rela-
tionship between setting the field and activating the component instance, so the active component
can safely read the field.

For a dynamic reference, the field must be declared with the volat i le modifier so that field value
changes made by SCR are visible to other threads. If the field is not declared with the volat i le modi-
fier, SCR must log an error message with the Log Service, if present, and the field must not be modi-
fied.

For a reference with unary cardinality, SCR must set the field value with initial bound service, if any,
before the component instance is activated. If the reference has optional cardinality and there is no
bound service, SCR must set the field value to nul l . If the reference is dynamic, when there is a new
bound service or the service properties of the bound service are modified and the field holds service
properties, SCR must replace the field value. If the reference has optional cardinality and there is no
bound service, SCR must set the field value to nul l .

For a reference with multiple cardinality, the type of the field must be Collect ion or List . If the field
has a different type, SCR must log an error message with the Log Service, if present, and the field
must not be modified. Before the component instance is activated, SCR must set the field value with
a new mutable collection that must contain the initial set of bound services sorted using the same
ordering as ServiceReference.compareTo based upon service ranking and service id. The collection
may be empty if the reference has optional cardinality and there are no bound services. If the ref-
erence is dynamic, when there is a change in the set of bound services or the service properties of a
bound service are modified and the collection holds service properties, SCR must replace the field
value with a new mutable collection that must contain the updated set of bound services sorted us-
ing the same ordering as ServiceReference.compareTo based upon service ranking and service id.
The new collection may be empty if the reference has optional cardinality and there are no bound
services.

112.3.9.2 Update Field Option

The update option can only be used for a dynamic reference with multiple cardinality. The
component's constructor can set the field with its choice of collection implementation. In this case,
the field can be declared with the f inal modifier. The collection implementation used by the compo-
nent should use identity rather than equals or hashCode to manage the elements of the collection.
The collection implementation should also be thread-safe since SCR may update the collection from
threads different than those used by the component instance.

After constructing the component instance, if the field value is nul l :

• If the type of the field is Collect ion or List , SCR will set the field value to a new mutable empty
collection or list object, respectively. If the field is declared with the f inal modifier, SCR must log
an error message with the Log Service, if present, and the field must not be modified.

• Otherwise, SCR must log an error message with the Log Service, if present, and the field must not
be modified.

SCR must not change the field value while the component is active and only update the contents of
the collection. SCR must update the collection before the component instance is activated by calling
Collect ion.add for each bound service. When there is a change to the set of bound services:

• SCR must call Collect ion.add for a newly bound service.

References to Services Declarative Services Specification Version 1.4

Page 222 OSGi Enterprise Release 7

• SCR must call Collect ion.remove for an unbound service.
• If the service properties of a bound service are modified and the collection holds service proper-

ties, SCR must call Collect ion.add for the replacement element followed by Collect ion.remove
for the old element.

The collection may be empty if the reference has optional cardinality and there are no bound ser-
vices.

112.3.10 Selecting Target Services
The target services for a reference are constrained by the reference's interface name and target prop-
erty. By specifying a filter in the target property, the programmer and deployer can constrain the set
of services that should be part of the target services.

For example, a component wants to track all Component Factory services that have a factory identi-
fication of acme.appl icat ion . The following component description shows how this can be done.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.FactoryTracker"/>
 <reference name="FACTORY"
 interface=
 "org.osgi.service.component.ComponentFactory"
 target="(component.factory=acme.application)"
 />
</scr:component>

The filter is manifested as a component property called the target property. The target property can
also be set by property and propert ies elements, see Property and Properties Elements on page 227.
The deployer can also set the target property by establishing a configuration for the component
which sets the value of the target property. This allows the deployer to override the target property
in the component description. See Target Property on page 245 for more information.

112.3.11 Circular References
It is possible for a set of component descriptions to create a circular dependency. For example, if
component A references a service provided by component B and component B references a service
provided by component A then a component configuration of one component cannot be satisfied
without accessing a partially activated component instance of the other component. SCR must en-
sure that a component instance is never accessible to another component instance or as a service
until it has been fully activated, that is it has returned from its activate method if it has one.

Circular references must be detected by SCR when it attempts to satisfy component configurations
and SCR must fail to satisfy the references involved in the cycle and log an error message with the
Log Service, if present. However, if one of the references in the cycle has optional cardinality SCR
must break the cycle. The reference with the optional cardinality can be satisfied and bound to zero
target services. Therefore the cycle is broken and the other references may be satisfied.

112.3.12 Logger Support
SCR provides special support for components having references to the Logger Factory from the Log
Service specification. If the reference uses method, field or constructor injection, the referenced ser-
vice is of type org.osgi .service. log.LoggerFactory , and the type of the parameter or field to receive
the service object is of type org.osgi .service. log.Logger or org.osgi .service. log.FormatterLogger ,
then SCR must obtain the proper type of Logger from the bound Logger Factory service and use the
obtained Logger as the service object rather than the service object for the bound Logger Factory ser-
vice.

Declarative Services Specification Version 1.4 Component Description

OSGi Enterprise Release 7 Page 223

To obtain the Logger object to use as the service object, SCR must call the
LoggerFactory.getLogger(Bundle bundle, Str ing name, Class loggerType) method passing
the bundle declaring the component as the first argument, the fully qualified name of the com-
ponent implementation class as the second argument, and the type of the parameter or field,
org.osgi .service. log.Logger or org.osgi .service. log.FormatterLogger , as the third argument.

For example, the following code will have the logger field set to a Logger object created by SCR from
the bound Logger Factory service.

@Component
public class MyComponent {
 @Reference(service=LoggerFactory.class)
 private Logger logger;
 @Activate
 void activate(ComponentContext context) {
 logger.trace(“activating component id {}”,
 context.getProperties().get(“component.id”));
 }
}

112.4 Component Description
Component descriptions are defined in XML documents contained in a bundle and any attached
fragments.

If SCR detects an error when processing a component description, it must log an error message with
the Log Service, if present, and ignore the component description. Errors can include XML parsing
errors and ill-formed component descriptions.

112.4.1 Annotations
A number of CLASS retention annotations have been provided to allow tools to construct the com-
ponent description XML from the Java class files. These annotations will be discussed with the ap-
propriate elements and attributes. Since the naming rules between XML and Java differ, some name
changes are necessary.

Multi-word element and attribute names that use a minus sign (' - ' \u002D) are changed to camel
case. For example, the configurat ion-pid attribute in the component element is the configurat ionPid
member in the @Component annotation. The annotation class that corresponds to an element
starts with an upper case letter. For example the component element is represented by the @Com-
ponent annotation.

Some elements do not have a corresponding annotation since the annotations can be parameterized
by the type information in the Java class. For example, the @Component annotation synthesizes
the implement element's class attribute from the type it is applied to.

See Component Annotations on page 249 for more information.

112.4.2 Service Component Header
XML documents containing component descriptions must be specified by the Service-Component
header in the manifest. The value of the header is a comma separated list of paths to XML entries
within the bundle.

Service-Component ::= header // See Common Header Syntax in Core

The Service-Component header has no architected directives or properties. The header can be left
empty.

Component Description Declarative Services Specification Version 1.4

Page 224 OSGi Enterprise Release 7

The last component of each path in the Service-Component header may use wildcards so that
Bundle.f indEntr ies can be used to locate the XML document within the bundle and its fragments.
For example:

Service-Component: OSGI-INF/*.xml

A Service-Component manifest header specified in a fragment is ignored by SCR. However, XML
documents referenced by a bundle's Service-Component manifest header may be contained in at-
tached fragments.

SCR must process each XML document specified in this header. If an XML document specified by
the header cannot be located in the bundle and its attached fragments, SCR must log an error mes-
sage with the Log Service, if present, and continue.

112.4.3 XML Document
A component description must be in a well-formed XML document, [4] Extensible Markup Language
(XML) 1.0, stored in a UTF-8 encoded bundle entry. The namespace for component descriptions is:

http://www.osgi.org/xmlns/scr/v1.4.0

The recommended prefix for this namespace is scr . This prefix is used by examples in this specifica-
tion. XML documents containing component descriptions may contain a single, root component el-
ement or one or more component elements embedded in a larger document. Use of the namespace
for component descriptions is mandatory. The attributes and sub-elements of a component element
are always unqualified.

If an XML document contains a single, root component element which does not specify a name-
space, then the http://www.osgi .org/xmlns/scr/v1.0.0 namespace is assumed. Component descrip-
tions using the http://www.osgi .org/xmlns/scr/v1.0.0 namespace must be treated according to ver-
sion 1.0 of this specification.

SCR must parse all component elements in the namespace. Elements not in this namespace must
be ignored. Ignoring elements that are not recognized allows component descriptions to be embed-
ded in any XML document. For example, an entry can provide additional information about compo-
nents. These additional elements are parsed by another sub-system.

See Component Description Schema on page 261 for component description schema.

112.4.4 Component Element
The component element specifies the component description. The following text defines the struc-
ture of the XML grammar using a form that is similar to the normal grammar used in OSGi specifi-
cations. In this case the grammar should be mapped to XML elements:

<component> ::= (<property> | <properties>)*
 <service>?
 <reference>*
 <implementation>

SCR must not require component descriptions to specify the elements in the order listed above and
as required by the XML schema. SCR must allow other orderings since arbitrary orderings of these
elements do not affect the meaning of the component description. Only the relative ordering of
property and propert ies elements and of reference elements have meaning.

The component element has the attributes and @Component annotations defined in the following
table.

Declarative Services Specification Version 1.4 Component Description

OSGi Enterprise Release 7 Page 225

Table 112.2 Component Element and Annotations

Attribute Annotation Description
name name The name of a component must be unique within a bundle. The component

name is used as a PID to retrieve component properties from the OSGi Con-
figuration Admin service if present, unless a configurat ion-pid attribute has
been defined. See Deployment on page 246 for more information. If the com-
ponent name is used as a PID then it should be unique within the framework.
The XML schema allows the use of component names which are not valid
PIDs. Care must be taken to use a valid PID for a component name if the com-
ponent should be configured by the Configuration Admin service. This at-
tribute is optional. The default value of this attribute is the value of the class
attribute of the nested implementation element. If multiple component ele-
ments in a bundle use the same value for the class attribute of their nested im-
plementation element, then using the default value for this attribute will re-
sult in duplicate component names. In this case, this attribute must be speci-
fied with a unique value.

enabled enabled Controls whether the component is enabled when the bundle is started. The
default value is true . If enabled is set to fa lse , the component is disabled un-
til the method enableComponent is called on the ComponentContext object.
This allows some initialization to be performed by some other component in
the bundle before this component can become satisfied. See Enabled on page
234.

factory factory If set to a non-empty string, it indicates that this component is a factory compo-
nent. SCR must register a Component Factory service for each factory compo-
nent. See Factory Component on page 210.

immediate immediate Controls whether component configurations must be immediately activated
after becoming satisfied or whether activation should be delayed. The default
value is fa lse if the factory attribute or if the service element is specified and
true otherwise. If this attribute is specified, its value must be fa lse if the facto-
ry attribute is also specified or must be true unless the service element is also
specified.

configura-
t ion-pol icy

configurat ionPol-
icy

OPTIONAL

REQUIRE

IGNORE

Controls whether component configurations must be satisfied depending on
the presence of a corresponding Configurat ion object in the OSGi Configura-
tion Admin service. A corresponding configuration is a Configurat ion object
where the PID is the name of the component.

• optional - (default) Use the corresponding Configurat ion object if present
but allow the component to be satisfied even if the corresponding Configu-
rat ion object is not present.

• require - There must be a corresponding Configurat ion object for the com-
ponent configuration to become satisfied.

• ignore - Always allow the component configuration to be satisfied and do
not use the corresponding Configurat ion object even if it is present.

Component Description Declarative Services Specification Version 1.4

Page 226 OSGi Enterprise Release 7

Attribute Annotation Description
configurat ion-pid configurat ionPid The configuration PIDs to be used for the component in conjunction with

Configuration Admin. Multiple configuration PIDs can be specified by using a
whitespace separated list in the attribute. The default value for this attribute is
the name of the component.

The annotation uses a Str ing[] to specify multiple configuration PIDs. The or-
der in which configuration PIDs are specified must be preserved in the gen-
erated component description. The annotation can also use the special con-
figuration PID name "$" to specify the name of the component. This special
name must be replaced with the actual name of the component in the generat-
ed component description.

activate Activate Specifies the name of the method to call when a component configuration is
activated. The default value of this attribute is activate . See Activate Method on
page 239 for more information.

The Activate annotation must be applied to at most one method which is to be
used as the activate method.

activat ion-fields Activate Specifies the whitespace separated list of the names of the fields to hold acti-
vation objects. The fields are set once after the constructor has been called and
before calling any other method on the fully constructed component instance
such as the activate method. See Activation Objects on page 238 for more in-
formation.

The Activate annotation will use the name of the field to which it is applied as
the activation field name.

in it Act ivate Specifies the number of arguments of the public constructor to use. The de-
fault is 0 which represents the public no-parameter constructor. See Construc-
tor Injection on page 216 for more information.

The Activate annotation must be applied to at most one constructor which is
to be used as the constructor for component instances.

deactivate Deactivate Specifies the name of the method to call when a component configuration is
deactivated. The default value of this attribute is deactivate . See Deactivate
Method on page 241 for more information.

The Deactivate annotation must be applied to at most one method which is to
be used as the deactivate method.

modified Modified Specifies the name of the method to call when the configuration properties
for a component configuration is using a Configurat ion object from the Con-
figuration Admin service and that Configurat ion object is modified without
causing the component configuration to become unsatisfied. If this attribute
is not specified, then the component configuration will become unsatisfied if
its configuration properties use a Configurat ion object that is modified in any
way. See Modified Method on page 240 for more information.

The Modified annotation must be applied to at most one method which is to
be used as the modified method.

112.4.5 Implementation Element
The implementation element is required and defines the name of the component implementation
class. The single attribute is defined in the following table.

Declarative Services Specification Version 1.4 Component Description

OSGi Enterprise Release 7 Page 227

Table 112.3 Implementation Element and Annotations

Attribute Annotation Description
class Component The Java fully qualified name of the implementation class.

The component Component annotation will define the implementation ele-
ment automatically from the type it is applied to.

The class is retrieved with the loadClass method of the component's bundle. The class must have a
public constructor with the correct parameter count and types which will be used to construct the
component instance.

If the component description specifies a service, the class must implement all interfaces that are
provided by the service.

112.4.6 Property and Properties Elements
A component description can define a number of properties. These can be defined inline or from a
resource in the bundle. The property and propert ies elements can occur multiple times and they
can be interleaved. This interleaving is relevant because the properties are processed from top to
bottom. Later properties override earlier properties that have the same name.

Properties can also be overridden by a Configuration Admin service's Configurat ion object before
they are exposed to the component or used as service properties. This is described in Component
Properties on page 244 and Deployment on page 246.

The property element has the attributes and annotations defined in the following table.

Table 112.4 Property Element and Annotations

Attribute Annotation Description
name Component prop-

erty
The name of the property.

value The value of the property. This value is parsed according to the property type.
If the value attribute is specified, the body of the element is ignored. If the
type of the property is not Str ing , parsing of the value is done by the static
valueOf(Str ing) method in the given type. For Character types, the conversion
must be handled by Integer.valueOf method, a Character is always represented
by its Unicode value.

type The type of the property. Defines how to interpret the value. The type must be
one of the following Java types:

• Str ing (default)
• Long
• Double
• Float
• Integer
• Byte
• Character
• Boolean
• Short

Component Description Declarative Services Specification Version 1.4

Page 228 OSGi Enterprise Release 7

Attribute Annotation Description
<body> If the value attribute is not specified, the body of the property element must

contain one or more values. The value of the property is then an array of the
specified type. Except for Str ing objects, the result will be translated to an ar-
ray of primitive types. For example, if the type attribute specifies Integer , then
the resulting array must be int[] .

Values must be placed one per line and blank lines are ignored. Parsing of the
value is done by the parse methods in the class identified by the type, after
trimming the line of any beginning and ending white space. Str ing values are
also trimmed of beginning and ending white space before being placed in the
array.

For example, a component that needs an array of hosts can use the following property definition:

<property name="hosts">
 www.acme.com
 backup.acme.com
</property>

This property declaration results in the property hosts, with a value of Str ing[] { "www.acme.com",
"backup.acme.com" } .

A property can also be set with the property annotation element of Component . This element is an
array of strings that must follow the following syntax:

property ::= name (':' type)? '=' value

In this case name , type , and value parts map to the attributes of the property element. If multiple
values must be specified then the same name can be repeated multiple times. For example:

@Component(property={"foo:Integer=1","foo:Integer=2","foo:Integer=3"})
public class FooImpl {
 ...
}

The propert ies element references an entry in the bundle whose contents conform to a standard [3]
Java Properties File.

At runtime, SCR reads the entry to obtain the properties and their values. The properties element at-
tributes are defined in the following table.

Table 112.5 Properties Element and Annotations

Attribute Annotation Description
entry Component prop-

ert ies
The entry path relative to the root of the bundle

For example, to include vendor identification properties that are stored in the OSGI-INF directory,
the following definition could be used:

<properties entry="OSGI-INF/vendor.properties"/>

The propert ies annotation element of Component can be used to provide the same information.
This element consists of an array of strings where each string defines an entry. The order within the
array is the order that must be used for the XML. However, the annotations do not support interleav-
ing of the generated property and propert ies elements.

For example:

Declarative Services Specification Version 1.4 Component Description

OSGi Enterprise Release 7 Page 229

@Component(properties="OSGI-INF/vendor.properties")

See Ordering of Generated Component Properties on page 255 for more information on the ordering
of generated properties when using annotations.

112.4.7 Service Element
The service element is optional. It describes the service information to be used when a component
configuration is to be registered as a service.

A service element has the following attribute defined in the following table.

Table 112.6 Service Element and Annotations

Attribute Annotation Description
scope Component scope

SINGLETON

BUNDLE

PROTOTYPE

Controls the scope of the provided service. If set to singleton , when the com-
ponent is registered as a service, it must be registered as a bundle scope ser-
vice but only a single component configuration must be created and activat-
ed and a new instance of the component implementation class of the compo-
nent must be used for all bundles using the service. If set to bundle , when the
component is registered as a service, it must be registered as a bundle scope
service and a different component configuration is created and activated and
a new instance of the component implementation class must be created for
each bundle using the service. If set to prototype , when the component is reg-
istered as a service, it must be registered as a prototype scope service and a dif-
ferent component configuration is created and activated and a new instance of
the component implementation class must be created for each distinct request
for the service, such as via ServiceObjects .

The scope attribute must be singleton if the component is a factory component or an immediate
component. This is because SCR is not free to create component configurations as necessary to sup-
port non-singleton scoped services. A component description is ill-formed if it specifies that the
component is a factory component or an immediate component and scope is not singleton .

The service element must have one or more provide elements that define the service interfaces. The
provide element has the attribute defined in the following table.

Table 112.7 Provide Element and Annotations

Attribute Annotation Description
interface Component ser-

vice
The name of the interface that this service is registered under. This
name must be the fully qualified name of a Java class. For example,
org.osgi .service.eventadmin.EventHandler . The specified Java class should be
an interface rather than a class, however specifying a class is supported. The
component implementation class must implement all the specified service in-
terfaces.

The Component annotation can specify the provided services, if this element
is not specified all directly implemented interfaces on the component's type
are defined as service interfaces. Specifying an empty array indicates that no
service should be registered.

For example, a component implements an Event Handler service.

<service>
 <provide interface=
 "org.osgi.service.eventadmin.EventHandler"/>
</service>

Component Description Declarative Services Specification Version 1.4

Page 230 OSGi Enterprise Release 7

This previous example can be generated with the following annotation:

@Component
public class Foo implements EventHandler { ... }

112.4.8 Reference Element
A reference declares a dependency that a component has on a set of target services. A component con-
figuration is not satisfied, unless all its references are satisfied. A reference specifies target services
by specifying their interface and an optional target property.

A reference element has the attributes defined in the following table.

Table 112.8 Reference Element and Annotations

Attribute Annotation Description
name name The name of the reference. This name is local to the component and can be

used to locate a bound service of this reference with one of the locateService
methods of ComponentContext . Each reference element within the compo-
nent must have a unique name. This name attribute is optional. The default
value of this attribute is the value of the interface attribute of this element. If
multiple reference elements in the component use the same interface name,
then using the default value for this attribute will result in duplicate reference
names. In this case, this attribute must be specified with a unique name for the
reference to avoid an error.

The Reference annotation will use the name of the annotated method, field,
or parameter as the default reference name. If the method name begins with
bind , set or add , that prefix is removed.

interface service Fully qualified name of the class that is used by the component to access the
service. The service provided to the component must be type compatible with
this class. That is, the component must be able to cast the service object to this
class. A service must be registered under this name to be considered for the set
of target services.

The Reference annotation will use the type of the first parameter of the anno-
tated method or the type of the annotated parameter or field to determine the
service value.

cardinal ity cardinal ity

MANDATORY

OPTIONAL

MULTIPLE

AT_LEAST_ONE

Specifies if the reference is optional and if the component implementation
support a single bound service or multiple bound services. See Reference Cardi-
nality on page 216.

pol icy pol icy

STATIC

DYNAMIC

The policy declares the assumption of the component about dynamicity. See
Reference Policy on page 219.

pol icy-option pol icyOption

RELUCTANT

GREEDY

Defines the policy when a better service becomes available. See Reference Policy
on page 219.

target target An optional OSGi Framework filter expression that further constrains the set
of target services. The default is no filter, limiting the set of matched services
to all service registered under the given reference interface. The value of this
attribute is used for the value of the target property of the reference. See Target
Property on page 245.

Declarative Services Specification Version 1.4 Component Description

OSGi Enterprise Release 7 Page 231

Attribute Annotation Description
scope scope

BUNDLE

PROTOTYPE

PROTOTYPE_

 REQUIRED

The reference scope for this reference. See Reference Scope on page 218.

bind Reference

bind

The name of a method in the component implementation class that is used to
notify that a service is bound to the component configuration. For static refer-
ences, this method is only called before the activate method. For dynamic ref-
erences, this method can also be called while the component configuration is
active. See Accessing Services on page 211.

The Reference annotation will use the name of the method it is applied to as
the bind method name.

updated updated The name of a method in the component implementation class that is used to
notify that a bound service has modified its properties.

unbind unbind Same as bind, but is used to notify the component configuration that the ser-
vice is unbound. For static references, the method is only called after the deac-
t ivate method. For dynamic references, this method can also be called while
the component configuration is active. See Accessing Services on page 211.

f ie ld Reference

field

The name of a field in the component implementation class that is used to
hold service(s) that are bound to the component configuration. For static refer-
ences, this field is set once after the constructor has been called and before call-
ing the activate method. For dynamic references, this field can modified while
the component configuration is active. See Accessing Services on page 211.

The Reference annotation will use the name of the field it is applied to as the
field name.

f ie ld-option fieldOption

REPLACE

UPDATE

Defines how the field value must be managed. This is ignored if the f ie ld at-
tribute is not set. See Reference Field Option on page 220.

f ie ld-col lec-
t ion-type

col lect ionType

SERVICE

REFERENCE

SERVICEOBJECTS

PROPERTIES

TUPLE

Defines the types of elements in the collection referenced by the field value
or constructor parameter. This is ignored if the f ie ld attribute or parameter at-
tribute is not set or the cardinality is unary. See Field Injection on page 214
for more information.

The Reference annotation can generally infer the value of the collection ele-
ments from the generic type information of the annotated field or constructor
parameter but it can be explicitly defined if needed.

parameter Reference

parameter

The zero-based parameter number of a parameter in the constructor of the
component that is used to receive service(s) that are bound to the component
configuration. If this attribute is set and the pol icy attribute is set to DYNAMIC ,
this attribute must be ignored and SCR must log an error message with the
Log Service, if present. See Accessing Services on page 211.

The Reference annotation will use the zero-based parameter number of the pa-
rameter it is applied to as the parameter number.

In the generated component description, the reference elements must be ordered in ascending lexi-
cographical order, using Str ing.compareTo , of the names of the references.

The following code demonstrates the use of the Reference annotation for method injection.

Component Description Declarative Services Specification Version 1.4

Page 232 OSGi Enterprise Release 7

@Component
public class FooImpl implements Foo {
 @Reference(
 policy = DYNAMIC,
 policyOption = GREEDY,
 cardinality = MANDATORY)
 void setLog(LoggerFactory lf) { ... }
 void unsetLog(LoggerFactory lf) { ... }
 void updatedLog(Map<String,?> ref) { ... }

 @Activate
 void open() { ... }
 @Deactivate
 void close() { ... }
}

The following code demonstrates the use of the Reference annotation for field injection.

@Component
public class FooImpl implements Foo {
 @Reference
 volatile LoggerFactory lf;

 @Activate
 void open() { lf.getLogger(FooImpl.class).info("activated"); }
 @Deactivate
 void close() { lf.getLogger(FooImpl.class).info("deactivated"); }
}

The following code demonstrates the use of the Reference annotation for constructor injection.

@Component
public class FooImpl implements Foo {
 private final Logger logger;

 @Activate
 public FooImpl(@Reference LoggerFactory lf) {
 logger = lf.getLogger(FooImpl.class);
 }

 @Activate
 void open() { logger.info("activated"); }
 @Deactivate
 void close() { logger.info("deactivated"); }
}

For a reference to be used with the lookup strategy, there are no bind methods or fields to annotate
with the Reference annotation. Instead Reference annotations can be specified in the reference el-
ement of the Component annotation. When used in this way, the name and service elements must
be specified since there is no annotated member from which the name or service can be determined.
The following code demonstrates the use of the Reference annotation for the lookup strategy.

@Component(reference =
 @Reference(name = "log", service = LoggerFactory.class)
)
public class FooImpl implements Foo {
 @Activate

Declarative Services Specification Version 1.4 Component Description

OSGi Enterprise Release 7 Page 233

 void open(ComponentContext context) {
 LoggerFactory lf = context.locateService("log");
 ...
 }
 @Deactivate
 void close() { ... }
}

112.4.9 Factory Property and Factory Properties Elements
If the component is a factory component, see Factory Component on page 210, the component de-
scription can define a number of factory properties. These can be defined inline or from a resource
in the bundle. The factory-property and factory-propert ies elements can occur multiple times and
they can be interleaved. This interleaving is relevant because the factory properties are processed
from top to bottom. Later factory properties override earlier factory properties that have the same
name.

The factory-property element has the attributes and annotations defined in the following table.

Table 112.9 Factory Property Element and Annotations

Attribute Annotation Description
name Component fac-

toryProperty
The name of the factory property.

value The value of the factory property. This value is parsed according to the prop-
erty type. If the value attribute is specified, the body of the element is ignored.
If the type of the factory property is not Str ing , parsing of the value is done by
the static valueOf(Str ing) method in the given type. For Character types, the
conversion must be handled by Integer.valueOf method, a Character is always
represented by its Unicode value.

type The type of the factory property. Defines how to interpret the value. The type
must be one of the following Java types:

• Str ing (default)
• Long
• Double
• Float
• Integer
• Byte
• Character
• Boolean
• Short

<body> If the value attribute is not specified, the body of the factory-property element
must contain one or more values. The value of the factory property is then an
array of the specified type. Except for Str ing objects, the result will be translat-
ed to an array of primitive types. For example, if the type attribute specifies In-
teger , then the resulting array must be int[] .

Values must be placed one per line and blank lines are ignored. Parsing of the
value is done by the parse methods in the class identified by the type, after
trimming the line of any beginning and ending white space. Str ing values are
also trimmed of beginning and ending white space before being placed in the
array.

A factory property can also be set with the factoryProperty annotation element of Component . This
element is an array of strings that must follow the following syntax:

Component Life Cycle Declarative Services Specification Version 1.4

Page 234 OSGi Enterprise Release 7

factory-property ::= name (':' type)? '=' value

In this case name , type , and value parts map to the attributes of the factory-property element. If
multiple values must be specified then the same name can be repeated multiple times.

The factory-propert ies element references an entry in the bundle whose contents conform to a
standard [3] Java Properties File.

At runtime, SCR reads the entry to obtain the factory properties and their values. The factory-prop-
ert ies element attributes are defined in the following table.

Table 112.10 Factory Properties Element and Annotations

Attribute Annotation Description
entry Component facto-

ryPropert ies
The entry path relative to the root of the bundle

For example, to include properties that are stored in the OSGI-INF directory, the following definition
could be used:

<factory-propert ies entry="OSGI-INF/factory.properties"/>

The factoryPropert ies annotation element of Component can be used to provide the same informa-
tion. This element consists of an array of strings where each string defines an entry. The order with-
in the array is the order that must be used for the XML. However, the annotations do not support in-
terleaving of the generated factory-property and factory-propert ies elements.

For example:

@Component(factoryProperties="OSGI-INF/factory.properties")

When using annotation elements to specify factory properties, a tool processing the Component an-
notations must write the defined factory properties into the generated component description in
the following order.

1. factoryProperty element of the Component annotation.
2. factoryPropert ies element of the Component annotation.

112.5 Component Life Cycle

112.5.1 Enabled
A component must first be enabled before it can be used. A component cannot be enabled unless the
component's bundle is started. See Starting Bundles in OSGi Core Release 7. All components in a bun-
dle become disabled when the bundle is stopped. So the life cycle of a component is contained with-
in the life cycle of its bundle.

Every component can be enabled or disabled. The initial enabled state of a component is specified in
the component description via the enabled attribute of the component element. See Component El-
ement on page 224. Component configurations can be created, satisfied and activated only when
the component is enabled.

The enabled state of a component can be controlled with the Component Context
enableComponent(Str ing) and disableComponent(Str ing) methods. The purpose of later enabling
a component is to be able to decide programmatically when a component can become enabled. For
example, an immediate component can perform some initialization work before other components
in the bundle are enabled. The component descriptions of all other components in the bundle can
be disabled by having enabled set to fa lse in their component descriptions. After any necessary ini-

Declarative Services Specification Version 1.4 Component Life Cycle

OSGi Enterprise Release 7 Page 235

tialization work is complete, the immediate component can call enableComponent to enable the re-
maining components.

The enableComponent and disableComponent methods must return after changing the enabled
state of the named component. Any actions that result from this, such as activating or deactivating
a component configuration, must occur asynchronously to the method call. Therefore a component
can disable itself.

All components in a bundle can be enabled by passing a nul l as the argument to enableComponent .

112.5.2 Satisfied
Component configurations can only be activated when the component configuration is satisfied. A
component configuration becomes satisfied when the following conditions are all satisfied:

• The component is enabled.
• If the component description specifies configurat ion-pol icy=required , then a Configurat ion ob-

ject for the component is present in the Configuration Admin service.
• Using the component properties of the component configuration, all the component's references

are satisfied. A reference is satisfied when the reference specifies optional cardinality or the num-
ber of target services is equal to or more than the minimum cardinality of the reference.

Once any of the listed conditions are no longer true, the component configuration becomes unsatis-
fied. An activated component configuration that becomes unsatisfied must be deactivated.

112.5.3 Immediate Component
A component is an immediate component when it must be activated as soon as its dependencies are
satisfied. Once the component configuration becomes unsatisfied, the component configuration
must be deactivated. If an immediate component configuration is satisfied and specifies a service,
SCR must register the component configuration as a service in the service registry and then activate
the component configuration. The service properties for this registration consist of the component
properties as defined in Service Properties on page 245.

The state diagram is shown in Figure 112.2.

Figure 112.2 Immediate Component Configuration

UNSATISFIED

becomes
satisfied

activate

deactivate

ACTIVE

becomes
unsatisfied

if dynamic:
rebinding

112.5.4 Delayed Component
A key attribute of a delayed component is the delaying of class loading and object creation. There-
fore, the activation of a delayed component configuration does not occur until there is an actual re-
quest for a service object. A component is a delayed component when it specifies a service but it is
not a factory component and does not have the immediate attribute of the component element set
to true .

SCR must register a service after the component configuration becomes satisfied. The registration of
this service must look to observers of the service registry as if the component's bundle actually reg-

Component Life Cycle Declarative Services Specification Version 1.4

Page 236 OSGi Enterprise Release 7

istered this service. This makes it possible to register services without creating a class loader for the
bundle and loading classes, thereby allowing reduction in initialization time and a delay in memory
footprint.

When SCR registers the service on behalf of a component configuration, it must avoid causing a
class load to occur from the component's bundle. SCR can ensure this by registering a ServiceFacto-
ry object with the Framework for that service. By registering a ServiceFactory object, the actual ser-
vice object is not needed until the ServiceFactory is called to provide the service object. The service
properties for this registration consist of the component properties as defined in Service Properties on
page 245.

The activation of a component configuration must be delayed until its service is requested. When
the service is requested, if the service has the scope attribute set to bundle , SCR must create and ac-
tivate a unique component configuration for each bundle requesting the service. If the service has
the scope attribute set to prototype , SCR must create and activate a unique component configura-
tion for each distinct request for the service. Otherwise, if the service has the scope attribute set to
singleton , SCR must activate a single component configuration which is used by all requests for the
service. A component instance can determine the bundle it was activated for by calling the getUs-
ingBundle() method on the Component Context.

The activation of delayed components is depicted in a state diagram in Figure 112.3. Notice that
multiple component configurations can be created from the REGISTERED state if a delayed compo-
nent specifies a service scope set to a value other than singleton .

If the service has the scope attribute set to prototype , SCR must deactivate a component configu-
ration when it stops being used as a service object since the component configuration must not be
reused as a service object. If the service has the scope attribute set to singleton or bundle , SCR must
deactivate a component configuration when it stops being used as a service object after a delay since
the component configuration may be reused as a service object in the near future. This allows SCR
implementations to reclaim component configurations not in use while attempting to avoid deacti-
vating a component configuration only to have to quickly activate a new component configuration
for a new service request. The delay amount is implementation specific and may be zero.

Figure 112.3 Delayed Component Configuration

UNSATISFIED

becomes
satisfied

becomes
unsatisfied

activate

deactivate

ACTIVE

REGISTERED becomes
unsatisfied

get
service

unget
service1

if dynamic:
rebinding

servicefactory: 0..n
otherwise: 1

112.5.5 Factory Component
SCR must register a Component Factory service as soon as the component factory becomes satisfied.
The component factory is satisfied when the following conditions are all satisfied:

• The component is enabled.
• Using the component properties specified by the component description, all the component's

references are satisfied. A reference is satisfied when the reference specifies optional cardinality
or there is at least one target service for the reference

Declarative Services Specification Version 1.4 Component Life Cycle

OSGi Enterprise Release 7 Page 237

The component factory, however, does not use any of the target services and does not bind to them.

Once any of the listed conditions are no longer true, the component factory becomes unsatisfied
and the Component Factory service must be unregistered. Any component configurations activated
via the component factory are unaffected by the unregistration of the Component Factory service,
but may themselves become unsatisfied for the same reason.

The Component Factory service must be registered under the name
org.osgi .service.component.ComponentFactory with the following service properties:

• component.name - The name of the component.
• component.factory - The value of the factory attribute.

The service properties of the Component Factory service must not include the component proper-
ties.

New component configurations are created and activated when the newInstance method of the
Component Factory service is called. If the component description specifies a service, the compo-
nent configuration is registered as a service under the provided interfaces. The service properties for
this registration consist of the component properties as defined in Service Properties on page 245.
The service registration must take place before the component configuration is activated. Service
unregistration must take place before the component configuration is deactivated.

Figure 112.4 Factory Component

activate

deactivate

ACTIVE

FACTORY

becomes
unsatisfied

newInstance

dispose

0..n

1

rebinding
if dynamic

register

unregister

UNSATISFIED

becomes
satisfied

becomes
unsatisfied

A Component Factory service has a single method: newInstance(Dict ionary) . This method must cre-
ate, satisfy and activate a new component configuration and register its component instance as a
service if the component description specifies a service. It must then return a ComponentInstance
object. This ComponentInstance object can be used to get the component instance with the getIn-
stance() method.

SCR must attempt to satisfy the component configuration created by newInstance before activating
it. If SCR is unable to satisfy the component configuration given the component properties and the
Dictionary argument to newInstance , the newInstance method must throw a ComponentException .

The client of the Component Factory service can also deactivate a component configuration with
the dispose() method on the ComponentInstance object. If the component configuration is already
deactivated, or is being deactivated, then this method is ignored. Also, if the component configura-
tion becomes unsatisfied for any reason, it must be deactivated by SCR.

Component Life Cycle Declarative Services Specification Version 1.4

Page 238 OSGi Enterprise Release 7

Once a component configuration created by the Component Factory has been deactivated, that com-
ponent configuration will not be reactivated or used again.

112.5.6 Activation
Activating a component configuration consists of the following steps:

1. Load the component implementation class.
2. Compute the bound services. See Bound Services on page 238.
3. Create the component context. See Component Context on page 238.
4. Construct the component instance. See Constructor Injection on page 216.
5. Set the activation fields, if any. See Activation Objects on page 238.
6. Bind the bound services. See Binding Services on page 239.
7. Call the activate method, if any. See Activate Method on page 239. Calling the activate method

signals the completion of activating the component instance.

Component instances must never be reused. Each time a component configuration is activated, SCR
must create a new component instance to use with the activated component configuration. A com-
ponent instance must complete activation before it can be deactivated. Once the component config-
uration is deactivated or fails to activate due to an exception, SCR must unbind all the component's
bound services and discard all references to the component instance associated with the activation.

112.5.7 Bound Services
When a component configuration's reference is satisfied, there is a set of zero or more target services
for that reference. When the component configuration is activated, a subset of the target services for
each reference are bound to the component configuration. The subset is chosen by the cardinality of
the reference. See Reference Cardinality on page 216.

Obtaining the service object for a bound service may result in activating a component configuration
of the bound service which could result in an exception. If the loss of the bound service due to the
exception causes the reference's cardinality constraint to be violated, then activation of this compo-
nent configuration will fail. Otherwise the bound service which failed to activate will be considered
unbound.

112.5.8 Component Context
The Component Context can be made available to a component instance during activation, modifi-
cation, and deactivation. It provides the interface to the execution context of the component, much
like the Bundle Context provides a bundle the interface to the Framework. A Component Context
should therefore be regarded as a capability and not shared with other components or bundles.

Each distinct component instance receives a unique Component Context. Component Contexts are
not reused and must be discarded when the component configuration is deactivated.

112.5.9 Activation Objects
A component can have an activate method, activation fields, and also receive activation objects via
its constructor.

The following activation object types are supported:

• ComponentContext - The Component Context for the component configuration.
• BundleContext - The Bundle Context of the component's bundle.
• Map - An unmodifiable Map containing the component properties.
• A component property type - An instance of the component property type which allows type

safe access to component properties defined by the component property type. See Component
Property Types on page 251.

Declarative Services Specification Version 1.4 Component Life Cycle

OSGi Enterprise Release 7 Page 239

For activation fields, only instance fields of the activation object types above are supported. If an
activation field is declared with the stat ic modifier or has a type other than one of the above, SCR
must log an error message with the Log Service, if present, and the field must not be modified. SCR
must locate a suitable field as specified in Locating Component Methods and Fields on page 257. If
no suitable field is located for an activation field name, SCR must log an error message with the Log
Service, if present.

112.5.10 Binding Services
When binding services, the references are processed in the order in which they are specified in the
component description. That is, target services from the first specified reference are bound before
services from the next specified reference.

If the reference uses field injection, the field must be set. Then, if the reference uses method injec-
tion, the bind method must be called for each bound service of that reference. If a bind method
throws an exception, SCR must log an error message containing the exception with the Log Service,
if present, but the activation of the component configuration does not fail.

112.5.11 Activate Method
A component can have an activate method. The name of the activate method can be specified by
the activate attribute. If the activate attribute is not specified, the default method name of activate
is used. See Component Element on page 224.

The activate method can take zero or more parameters. Each parameter must be assignable from
one of the activation object types. A suitable method is selected using the following priority:

1. The method takes a single parameter and the type of the parameter is
org.osgi .service.component.ComponentContext .

2. The method takes a single parameter and the type of the parameter is
org.osgi .f ramework.BundleContext .

3. The method takes a single parameter and the type of the parameter is a component property
type.

4. The method takes a single parameter and the type of the parameter is java.ut i l .Map .
5. The method takes two or more parameters and the type of each parameter must be one of the ac-

tivation object types. If multiple methods match this rule, this implies the method name is over-
loaded and SCR may choose any of the methods to call.

6. The method takes zero parameters.

When searching for the activate method to call, SCR must locate a suitable method as specified in
Locating Component Methods and Fields on page 257. If the activate attribute is specified and no
suitable method is located, SCR must log an error message with the Log Service, if present, and the
component configuration is not activated.

If an activate method is located, SCR must call this method to complete the activation of the compo-
nent configuration. If the activate method throws an exception, SCR must log an error message con-
taining the exception with the Log Service, if present, and the component configuration is not acti-
vated.

112.5.12 Bound Service Replacement
If an active component configuration has a dynamic reference with unary cardinality and the
bound service is modified or unregistered and ceases to be a target service, or the pol icy-option is
greedy and a better target service becomes available then SCR must attempt to replace the bound
service with a new bound service.

If the reference uses field injection, the field must be set for the replacement bound service. Then,
if the reference uses method injection, SCR must first bind the new bound service and then unbind

Component Life Cycle Declarative Services Specification Version 1.4

Page 240 OSGi Enterprise Release 7

the outgoing service. This reversed order allows the component to not have to handle the inevitable
gap between the unbind and bind methods. However, this means that in the unbind method care
must be taken to not overwrite the newly bound service. For example, the following code handles
the associated concurrency issues and simplify handling the reverse order.

final AtomicReference<LogService> log = new AtomicReference<LogService>();

void setLogService(LogService log) {
 this.log.set(log);
}
void unsetLogService(LogService log) {
 this.log.compareAndSet(log, null);
}

If the dynamic reference falls below the minimum cardinality, the component configuration must
be deactivated because the cardinality constraints will be violated.

If a component configuration has a static reference and a bound service is modified or unregistered
and ceases to be a target service, or the pol icy-option is greedy and a better target service becomes
available then SCR must deactivate the component configuration. Afterwards, SCR must attempt to
activate the component configuration again if another target service can be used as a replacement
for the outgoing service.

112.5.13 Updated
If an active component is bound to a service that modifies its service properties then the compo-
nent can be updated. If the reference uses field injection and the field holds the service properties,
the field must be set for the updated bound service. Then, if the reference uses method injection and
specifies an updated method, the updated method must be called.

112.5.14 Modification
Modifying a component configuration can occur if the component description specifies the mod-
if ied attribute and the component properties of the component configuration use a Configurat ion
object from the Configuration Admin service and that Configurat ion object is modified without
causing the component configuration to become unsatisfied. If this occurs, the component instance
will be notified of the change in the component properties.

If the modified attribute is not specified, then the component configuration will become unsatisfied
if its component properties use a Configurat ion object and that Configuration object is modified in
any way.

Modifying a component configuration consists of the following steps:

1. Update the component context for the component configuration with the modified configura-
tion properties.

2. Call the modified method. See Modified Method on page 240.
3. Modify the bound services for the dynamic references if the set of target services changed due to

changes in the target properties. See Bound Service Replacement on page 239.
4. If the component configuration is registered as a service, modify the service properties.

A component instance must complete activation, or a previous modification, before it can be modi-
fied.

See Configuration Changes on page 247 for more information.

112.5.15 Modified Method
The name of the modified method is specified by the modified attribute. See Component Element on
page 224.

Declarative Services Specification Version 1.4 Component Life Cycle

OSGi Enterprise Release 7 Page 241

The modified method can take zero or more parameters. Each parameter must be assignable from
one of the activation object types. A suitable method is selected using the following priority:

1. The method takes a single parameter and the type of the parameter is
org.osgi .service.component.ComponentContext .

2. The method takes a single parameter and the type of the parameter is
org.osgi .f ramework.BundleContext .

3. The method takes a single parameter and the type of the parameter is a component property
type.

4. The method takes a single parameter and the type of the parameter is java.ut i l .Map .
5. The method takes two or more parameters and the type of each parameter must be one of the ac-

tivation object types. If multiple methods match this rule, this implies the method name is over-
loaded and SCR may choose any of the methods to call.

6. The method takes zero parameters.

SCR must locate a suitable method as specified in Locating Component Methods and Fields on page
257. If the modified attribute is specified and no suitable method is located, SCR must log an error
message with the Log Service, if present, and the component configuration becomes unsatisfied and
is deactivated as if the modified attribute was not specified.

If a modified method is located, SCR must call this method to notify the component configuration
of changes to the component properties. If the modified method throws an exception, SCR must log
an error message containing the exception with the Log Service, if present and continue processing
the modification.

112.5.16 Deactivation
Deactivating a component configuration consists of the following steps:

1. Call the deactivate method, if present. See Deactivate Method on page 241.
2. Unbind any bound services. See Unbinding on page 242.
3. Release all references to the component instance and component context.

A component instance must complete activation or modification before it can be deactivated. A
component configuration can be deactivated for a variety of reasons. The deactivation reason can be
received by the deactivate method. The following reason values are defined:

• DEACTIVATION_REASON_UNSPECIFIED - Unspecified.
• DEACTIVATION_REASON_DISABLED - The component was disabled.
• DEACTIVATION_REASON_REFERENCE - A reference became unsatisfied.
• DEACTIVATION_REASON_CONFIGURATION_MODIFIED - A configuration was changed.
• DEACTIVATION_REASON_CONFIGURATION_DELETED - A configuration was deleted.
• DEACTIVATION_REASON_DISPOSED - The component was disposed.
• DEACTIVATION_REASON_BUNDLE_STOPPED - The bundle was stopped.

Once the component configuration is deactivated, SCR must discard all references to the compo-
nent instance and component context associated with the activation.

112.5.17 Deactivate Method
A component instance can have a deactivate method. The name of the deactivate method can be
specified by the deactivate attribute. See Component Element on page 224. If the deactivate at-
tribute is not specified, the default method name of deactivate is used. Activation fields must not be
modified during deactivation.

The deactivate method can take zero or more parameters. Each parameter must be assignable from
one of the following types:

Component Life Cycle Declarative Services Specification Version 1.4

Page 242 OSGi Enterprise Release 7

• One of the activation object types.
• int or Integer - The reason the component configuration is being deactivated. See Deactivation on

page 241.

A suitable method is selected using the following priority:

1. The method takes a single parameter and the type of the parameter is
org.osgi .service.component.ComponentContext .

2. The method takes a single parameter and the type of the parameter is
org.osgi .f ramework.BundleContext .

3. The method takes a single parameter and the type of the parameter is a component property
type.

4. The method takes a single parameter and the type of the parameter is java.ut i l .Map .
5. The method takes a single parameter and the type of the parameter is int .
6. The method takes a single parameter and the type of the parameter is java. lang. Integer .
7. The method takes two or more parameters and the type of each parameter must be one of the ac-

tivation object types, int or java. lang. Integer . If multiple methods match this rule, this implies
the method name is overloaded and SCR may choose any of the methods to call.

8. The method takes zero parameters.

When searching for the deactivate method to call, SCR must locate a suitable method as specified in
Locating Component Methods and Fields on page 257. If the deactivate attribute is specified and no
suitable method is located, SCR must log an error message with the Log Service, if present, and the
deactivation of the component configuration will continue.

If a deactivate method is located, SCR must call this method to commence the deactivation of the
component configuration. If the deactivate method throws an exception, SCR must log an error
message containing the exception with the Log Service, if present, and the deactivation of the com-
ponent configuration will continue.

112.5.18 Unbinding
When a component configuration is deactivated, the bound services are unbound from the compo-
nent configuration.

When unbinding services, the references are processed in the reverse order in which they are spec-
ified in the component description. That is, target services from the last specified reference are un-
bound before services from the previous specified reference.

If the reference uses method injection, the unbind method must be called for each bound service of
that reference. If an unbind method throws an exception, SCR must log an error message containing
the exception with the Log Service, if present, and the deactivation of the component configuration
will continue. Then, if the reference uses field injection, the field must be set to nul l .

112.5.19 Life Cycle Example
A component could declare a dependency on the Http Service to register some resources.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.binding"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">
 <implementation class="com.acme.impl.Binding"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"
 cardinality="1..1"
 policy="static"

Declarative Services Specification Version 1.4 Component Life Cycle

OSGi Enterprise Release 7 Page 243

 />
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"
 cardinality="0..1"
 policy="dynamic"
 bind="setHttp"
 unbind="unsetHttp"
 />
</scr:component>

The component implementation code looks like:

public class Binding {
 LogService log;
 HttpService http;

 private void setHttp(HttpService h) {
 http = h;
 // register servlet
 }
 private void unsetHttp(HttpService h){
 if (http == h)
 http = null;
 // unregister servlet
 }
 private void activate(ComponentContext context) {
 log = (LogService) context.locateService("LOG");
 }
 private void deactivate(ComponentContext context) {...}
}

This example is depicted in a sequence diagram in Figure 112.5 with the following scenario:

1. A bundle with the example.Binding component is started. At that time there is a Log Service l1
and a Http Service h1 registered.

2. The Http Service h1 is unregistered
3. A new Http Service h2 is registered
4. The Log Service h1 is unregistered.

Component Properties Declarative Services Specification Version 1.4

Page 244 OSGi Enterprise Release 7

Figure 112.5 Sequence Diagram for binding

a Component
Configuration

Log Service Ref.
static, 1..1

Http Service Ref.
dynamic, 0..1

SCR

bundle started
resolve
resolve
satisfied
satisfied
setHttp(h1)

activate(context)

unregistered
unsetHttp(h1)

locateService("LOG")

available
setHttp(h2)

unregistered
deactivate(context)
unsetHttp(h2)

1.

2.

3.

4.

create

112.6 Component Properties
Each component configuration is associated with a set of component properties. The component
properties are specified in the following configuration sources (in order of precedence):

1. Properties specified in the argument of the ComponentFactory.newInstance method. This is on-
ly applicable for factory components.

2. Properties retrieved from the OSGi Configuration Admin service in Configuration objects whose
PID matches a configuration PID. The configuration PIDs are specified by the configurat ion-pid
attribute of the component element. See Component Element on page 224. If no configura-
t ion-pid attribute is specified, the component name is used as the default configuration PID. If
multiple configuration PIDs are specified, the order of precedence follows the order the configu-
ration PIDs are specified in the component description. That is, the precedence for the configu-
ration for an earlier specified configuration PID is lower than the precedence for the configura-
tions for a later specified configuration PID.

3. Properties specified in the component description. Properties specified later in the component
description override properties that have the same name specified earlier. Properties can be spec-
ified in the component description in the following ways:
• target attribute of reference elements - Sets the target property of the reference. See Target

Property on page 245. The value of the target attribute is used for the value of a target prop-
erty.

• property and propert ies elements - See Property and Properties Elements on page 227.

The precedence behavior allows certain default values to be specified in the component description
while allowing properties to be replaced and extended by:

• A configuration in Configuration Admin
• The argument to the ComponentFactory.newInstance method

Normally, a property value from a higher precedence configuration source replace a property value
from a lower precedence configuration source. However, the service.pid property values receive dif-

Declarative Services Specification Version 1.4 Component Properties

OSGi Enterprise Release 7 Page 245

ferent treatment. For the service.pid property, if the property appears multiple times in the config-
uration sources, SCR must aggregate all the values found into a Collect ion<Str ing> having an itera-
tion order such that the first item in the iteration is the property value from the lowest precedence
configuration source and the last item in the iteration is the property value from the highest prece-
dence configuration source. If the component description specifies multiple configuration PIDs,
then the order of the service.pid property values from the corresponding configurations match-
es the order the configuration PIDs are specified in the component description. The values of the
service.pid component property are the values as they come from the configuration sources which,
for Configuration objects, may be more detailed than the configuration PIDs specified in the compo-
nent description.

SCR always adds the following component properties, which cannot be overridden:

• component.name - The component name.
• component. id - A unique value (Long) that is larger than all previously assigned values. These

values are not persistent across restarts of SCR.

112.6.1 Service Properties
When SCR registers a service on behalf of a component configuration, SCR must follow the recom-
mendations in Property Propagation on page 93 and must not propagate private configuration prop-
erties. That is, the service properties of the registered service must be all the component properties
of the component configuration whose property names do not start with full stop ('.' \u002E).

Component properties whose names start with full stop are available to the component instance
but are not available as service properties of the registered service.

112.6.2 Reference Properties
This specification defines some component properties which are associated with specific compo-
nent references. These are called reference properties. The name of a reference property for a reference
is the name of the reference appended with a full stop ('.' \u002E) and a suffix unique to the refer-
ence property. Reference properties can be set wherever component properties can be set.

All component property names starting with a reference name followed by a full stop ('.' \u002E)
are reserved for use by this specification.

Following are the reference properties defined by this specification.

112.6.2.1 Target Property

The target property is a reference property which aids in the selection of target services for the refer-
ence. See Selecting Target Services on page 222. The name of a target property is the name of a ref-
erence appended with .target . For example, the target property for a reference with the name http
would have the name http.target . The value of a target property is a filter string used to select tar-
gets services for the reference.

The target property for a reference can also be set by the target attribute of the reference element.
See Reference Element on page 230.

112.6.2.2 Minimum Cardinality Property

The initial minimum cardinality of a reference is specified by the optionality: the first part of the
cardinality. It is either 0 or 1 . The minimum cardinality of a reference cannot exceed the multiplici-
ty: the second part of the cardinality. See Reference Cardinality on page 216 for more information
on the cardinality of a reference.

The minimum cardinality property is a reference property which can be used to raise the minimum
cardinality of a reference from its initial value. That is, a 0..1 cardinality can be raised to a 1. .1 cardi-
nality by setting the reference's minimum cardinality property to 1 , and a 0..n or 1. .n cardinality can
be raised to a m..n cardinality by setting the reference's minimum cardinality property to m such

Deployment Declarative Services Specification Version 1.4

Page 246 OSGi Enterprise Release 7

that m is a positive integer. The minimum cardinality of a reference cannot be lowered. That is, a 1. .1
or 1. .n cardinality cannot be lowered to a 0..1 or 0..n cardinality because the component was coded
to expect at least one bound service.

The name of a minimum cardinality property is the name of a reference appended with
.cardinal ity.minimum . For example, the minimum cardinality property for a reference with the
name http would have the name http.cardinal ity.minimum . The value of a minimum cardinality
property must be a positive integer or a value that can be coerced into a positive integer. See Coerc-
ing Component Property Values on page 254 for information on coercing property values. If the nu-
merical value of the minimum cardinality property is not valid for the reference's cardinality or the
minimum cardinality property value cannot be coerced into a numerical value, then the minimum
cardinality property must be ignored.

SCR must support the minimum cardinality property for all components even those with compo-
nent descriptions in older namespaces.

112.7 Deployment
A component description contains default information to select target services for each reference.
However, when a component is deployed, it is often necessary to influence the target service selec-
tion in a way that suits the needs of the deployer. Therefore, SCR uses Configurat ion objects from
Configuration Admin to replace and extend the component properties for a component configura-
tion. That is, through Configuration Admin, a deployer can configure component properties.

A component's configuration PIDs are used as keys for obtaining additional component properties
from Configuration Admin. When matching a configuration PID to a Configurat ion object, SCR must
use the Configurat ion object with the best matching PID for the component's bundle. See Targeted
PIDs on page 89 for more information on targeted PIDs and Extenders and Targeted PIDs on page 90
for more information on selecting the Configurat ion object with the best matching PID.

The following situations can arise when looking for Configurat ion objects:

• No Configuration - If the component's configurat ion-pol icy is set to ignore or there are no Config-
urations with a PID or factory PID matching any of the configuration PIDs, then component con-
figurations will not obtain component properties from Configuration Admin. Only component
properties specified in the component description or via the ComponentFactory.newInstance
method will be used.

• Not Satisfied - If the component's configurat ion-pol icy is set to require and, for each configuration
PID, there is no Configuration with a matching PID or factory PID, then the component configu-
ration is not satisfied and will not be activated.

• Single Configuration - If none of the configuration PIDs matches a factory PID, then component
configurations will obtain additional component properties from Configuration Admin.

• Factory Configuration - If one of the configuration PIDs matches a factory PID, with zero or more
Configurations, then for each Configuration of the factory PID, a component configuration must
be created that will obtain additional component properties from Configuration Admin.

It is a configuration error if more than one of the configuration PIDs match a factory PID and
SCR must log an error message with the Log Service, if present. If the configurat ion-pol icy is set
to optional , the component configuration must be satisfied without the configurations PIDs
which match a factory PID. If the configurat ion-pol icy is set to require , the component configu-
ration is not satisfied and will not be activated.

A factory configuration must not be used if the component is a factory component. This is be-
cause SCR is not free to create component configurations as necessary to support multiple Con-
figurations. When SCR detects this condition, it must log an error message with the Log Service,
if present, and ignore the component description.

Declarative Services Specification Version 1.4 Deployment

OSGi Enterprise Release 7 Page 247

SCR must obtain the Configurat ion objects from the Configuration Admin service using the Bun-
dle Context of the bundle containing the component. SCR must only use Configurat ion objects for
which the bundle containing the component has visibility. See Location Binding on page 91.

To ensure Configuration Plugins can participate in the configuration process, SCR must use the
Configurat ion.getProcessedPropert ies method when obtaining the configuration data from a Con-
figurat ion object. To use the getProcessedPropert ies method, SCR must supply a Service Reference
for a ManagedService or ManagedServiceFactory service. The ManagedService or ManageService-
Factory service must be registered using the Bundle Context of the bundle containing the compo-
nent. If SCR registers one of these services for the purpose of using the service's Service Reference
for the call to getProcessedPropert ies , SCR should register the service without a service.pid service
property so that the service itself is not called by Configuration Admin.

For example, there is a component named com.acme.cl ient with a reference named HTTP that re-
quires an Http Service which must be bound to a component com.acme.httpserver which provides
an Http Service. A deployer can establish the following configuration:

[PID=com.acme.client, factoryPID=null]
HTTP.target = (component.name=com.acme.httpserver)

112.7.1 Configuration Changes
SCR must track changes in the Configurat ion objects matching the configuration PIDs of a com-
ponent description. Changes include the creating, updating and deleting of Configurat ion objects
matching the configuration PIDs. The actions SCR must take when a configuration change for a
component configuration occurs are based upon how the configurat ion-pol icy and modified attrib-
utes are specified in the component description, whether a component configuration becomes satis-
fied, remains satisfied or becomes unsatisfied and the type and number of matching Configurat ion
objects.

With targeted PIDs, multiple Configurat ion objects can exist which can match a configuration PID.
Creation of a Configurat ion object with a better matching PID than a Configurat ion object current-
ly being used by a component configuration results in a configuration change for the component
configuration with the new Configurat ion object replacing the currently used Configurat ion ob-
ject. Deletion of a Configurat ion object currently being used by a component configuration when
there is another Configurat ion object matching the configuration PID also results in a configuration
change for the component configuration with the Configurat ion object having the best matching
PID replacing the currently used, and now deleted, Configurat ion object.

112.7.1.1 Ignore Configuration Policy

For configurat ion-pol icy of ignore , component configurations are unaffected by configuration
changes since the component properties do not include properties from Configurat ion objects.

112.7.1.2 Require Configuration Policy

For configurat ion-pol icy of require , component configurations require a Configurat ion object for
each specified configuration PID. With a factory configuration, there can be zero or more matching
Configurat ion objects which will result in a component configuration for each Configurat ion object
of the factory configuration. With a factory component, multiple component configurations can be
created all using the matching Configurat ion objects.

A configuration change can cause a component configuration to become unsatisfied if any of the
following occur:

• Each configuration PID of the component description does not have a matching Configurat ion
object.

• A target property change results in a bound service of a static reference ceasing to be a target ser-
vice.

Deployment Declarative Services Specification Version 1.4

Page 248 OSGi Enterprise Release 7

• A target property change results in unbound target services for a static reference with the greedy
policy option.

• A target property change or minimum cardinality property change results in a reference falling
below the minimum cardinality.

• The component description does not specify the modified attribute.

112.7.1.3 Optional Configuration Policy

For configurat ion-pol icy of optional , component configurations do not require Configurat ion ob-
jects. Since matching Configurat ion objects are optional, component configurations can be satis-
fied with zero or more matched configuration PIDs. If a Configurat ion object is then created which
matches a configuration PID, this is a configuration change for the component configurations that
are not using the created Configurat ion object. If a Configurat ion object is deleted which matches a
configuration PID, this is a configuration change for the component configurations using the delet-
ed Configurat ion object.

Furthermore, with a factory configuration matching a configuration PID, the factory configuration
can provide zero or more Configurat ion objects which will result in a component configuration for
each Configurat ion object or a single component configuration when zero matching Configurat ion
objects are provided. With a factory component, multiple component configurations can be created
all using the Configurat ion objects matching the configuration PIDs.

A configuration change can cause a component configuration to become unsatisfied if any of the
following occur:

• A target property change results in a bound service of a static reference ceasing to be a target ser-
vice.

• A target property change results in unbound target services for a static reference with the greedy
policy option.

• A target property change or minimum cardinality property change results in a reference falling
below the minimum cardinality.

• The component description does not specify the modified attribute.

112.7.1.4 Configuration Change Actions

If a component configuration becomes unsatisfied:

• SCR must deactivate the component configuration.
• If the component configuration was not created from a factory component, SCR must attempt to

satisfy the component configuration with the current configuration state.

If a component configuration remains satisfied:

• If the component configuration has been activated, the modified method is called to provide the
updated component properties. See Modification on page 240 for more information.

• If the component configuration is registered as a service, SCR must modify the service properties.

112.7.1.5 Coordinator Support

The Coordinator Service Specification on page 499 defines a mechanism for multiple parties to col-
laborate on a common task without a priori knowledge of who will collaborate in that task. Like
Configuration Admin Service Specification on page 85, SCR must participate in such scenarios to coordi-
nate with provisioning or configuration tasks.

If configurations changes occur and an implicit coordination exists, SCR must delay taking action
on the configuration changes until the coordination terminates, regardless of whether the coordina-
tion fails or terminates regularly.

Declarative Services Specification Version 1.4 Annotations

OSGi Enterprise Release 7 Page 249

112.8 Annotations
A number of CLASS retention annotations have been provided to allow tools to construct the com-
ponent description XML from the Java class files. The Component Annotations are intended to be
used during build time to generate the component description XML.

Component Property Types, which are user defined annotations, can be used to describe component
properties in the component description XML and to access those component properties at runtime
in a type safe manner.

112.8.1 Component Annotations
The Component Annotations provide a convenient way to create the component description XML
during build time. Since annotations are placed in the source file and can use types, fields, and
methods, they can significantly simplify the use of Declarative Services.

The Component Annotations are build time annotations because one of the key aspects of Declar-
ative Services is its laziness. SCR can easily read the component description XML from the bundle,
preprocess it, and cache the results between framework invocations. This way it is unnecessary
to load a class from the bundle when the bundle is started and/or scan the classes for annotations.
Component Annotations are not recognized by SCR at runtime.

The Component Annotations are not inherited, they can only be used on a given class, annotations
on its super class hierarchy or interfaces are not taken into account.

The primary annotation is the Component annotation. It indicates that a class is a component. Its
defaults create the easiest to use component:

• Its name is the class name
• It registers all of the class's directly implemented interfaces as services
• The instance will be shared by all bundles
• It is enabled
• It is immediate if it has no services, otherwise it is delayed
• It has an optional configuration policy
• The configuration PID is the class name

For example, the following class registers a Speech service that can run on a Macintosh:

pubic interface Speech {
 void say(String what) throws Exception;
}

@Component
public class MacSpeech implements Speech {
 ScriptEngine engine =
 new ScriptEngineManager().getEngineByName("AppleScript");

 public void say(String message) throws Exception {
 engine.eval("say \"" + message.replace('"','\'' + "\"");
 }
}

The previous example would be processed at build time into a component description similar to the
following XML:

<scr:component name="com.example.MacSpeech"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0">

Annotations Declarative Services Specification Version 1.4

Page 250 OSGi Enterprise Release 7

 <implementation class="com.acme.impl.MacSpeech"/>
 <service>
 <provide interface="com.acme.service.speech.Speech"/>
 </service>
</scr:component>

It is possible to add activate and deactivate methods on the component with the Activate and Deac-
t ivate annotations. If the component wants to be updated for changes in the configuration proper-
ties than it can also indicated the modified method with the Modified annotation. For example:

@Activate
void open(Map<String,?> properties) { ... }

@Deactivate
void close() { ... }

@Modified
void modified(Map<String,?> properties) { ... }

The Activate annotation can also be used on a field or a constructor. When used on a field, the field
will be set during activation of the component. When used on a constructor, the constructor will be
used to construct the component instances.

@Activate
ComponentContext context;

@Activate
public MacSpeech(Map<String,?> properties) { ... }

If a component has dependencies on other services then they can be referenced with the Refer-
ence annotation that can be applied to a bind method, a field, or a constructor parameter. For a bind
method, the defaults for the Reference annotation are:

• The name of the bind method or field is used for the name of the reference.
• 1:1 cardinality.
• Static reluctant policy.
• The requested service is the type of the first parameter of the bind method.
• It will infer a default unset method and updated method based on the name of the bind method.

For example:

@Reference(cardinality=MULTIPLE, policy=DYNAMIC)
void setLogService(LogService log, Map<String,?> props) { ... }
void unsetLogService(LogService log) { ... }
void updatedLogService(Map<String,?> map) { ...}

For a field, the defaults for the Reference annotation are:

• The name of the bind method or field is used for the name of the reference.
• 1:1 cardinality if the field is not a collection. 0..n cardinality if the field is a collection.
• Static reluctant policy if the field is not declared volatile. Dynamic reluctant policy if the field is

declared volatile.
• The requested service is the type of the field.

For example:

@Reference

Declarative Services Specification Version 1.4 Annotations

OSGi Enterprise Release 7 Page 251

volatile Collection<LogService> log;

For a constructor parameter, the defaults for the Reference annotation are:

• The name of the parameter is used for the name of the reference.
• 1:1 cardinality if the field is not a collection. 0..n cardinality if the field is a collection.
• Static reluctant policy.
• The requested service is the type of the field.

For example:

@Activate
public MacSpeech(@Reference Collection<LogService> log) { ... }

112.8.2 Component Property Types
Component properties can be defined and accessed through a user defined annotation type, called a
component property type, containing the property names, property types and default values. A compo-
nent property type allows properties to be defined and accessed in a type safe manner. Component
property types can themselves be annotated with the ComponentPropertyType meta-annotation.

The following example shows the definition of a component property type called Config which de-
fines three properties where the name of the property is the name of the method, the type of the
property is the return type of the method and the default value for the property is the default value
of the method.

@ComponentPropertyType
public @interface Config {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

Component property types can be used in two ways:

• Component property types can be used to annotate the component implementation class, along
side the Component annotation. The annotation usage can specify property values which can be
different than the default values declared in the component property type.

To be used in this way, the component property type must be annotated with the Component-
PropertyType meta-annotation so that, at build time, the annotation is recognized as a compo-
nent property type.

• Component property types can be used as parameter types in the component's constructor and
life cycle methods, or as field types for activation fields. The component implementation can use
objects of a component property type at runtime to access component property values in a type
safe manner.

To be used in this way, it is recommended the component property type be annotated with the
ComponentPropertyType meta-annotation but it is not required.

Both ways define property names, types and values for the component.

The following example shows the component implementation annotated with the example Con-
fig component property type which specifies a property value for the component which is differ-
ent than the default value. The example also shows the activate method taking the example Config
component property type as a parameter type and the method implementation accesses component
property values by invoking methods on the component property type object.

@Component

Annotations Declarative Services Specification Version 1.4

Page 252 OSGi Enterprise Release 7

@Config(names="myapp")
public class MyComponent {
 @Activate
 void activate(Config config) {
 if (config.enabled()) {
 // do something
 }
 for (String name:config.names()) {
 // do something with each name
 }
 }
}

If a component implementation needs to access component properties which are not represented
by a component property type, it can use a type of Map to receive the properties map in addition to
component property types. For example:

@Component
public class MyComponent {
 @Activate
 void activate(Config config, Map<String, ?> allProperties) {
 if (config.enabled()) {
 // do something
 }
 if (allProperties.get("other.prop") != null) {
 // do something
 }
 }
}

Component property types must be defined as annotation types. This is done for several reasons.
First, the limitations on annotation type definitions make them well suited for component prop-
erty types. The methods must have no parameters and the return types supported are limited to a
set which is well suited for component properties. Second, annotation types support default values
which is useful for defining the default value of a component property. Finally, as annotations, they
can be used to annotate component implementation classes.

At build time, the component property types must be processed to potentially generate property ele-
ments in the component description. See Ordering of Generated Component Properties on page 255.

At runtime, when SCR needs to provide a component instance an activation object whose type is a
component property type, SCR must construct an instance of the component property type whose
methods are backed by the values of the component properties for the component instance. This ob-
ject can then be used to obtain the property values in a type safe manner.

112.8.2.1 Component Property Mapping

Each method of a configuration property type is mapped to a component property. The property
name is derived from the method name. Certain common property name characters, such as full
stop ('.' \u002E) and hyphen-minus (' - ' \u002D) are not valid in Java identifiers. So the name of a
method must be converted to its corresponding property name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are converted to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are converted to a

single dollar sign.

Declarative Services Specification Version 1.4 Annotations

OSGi Enterprise Release 7 Page 253

• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-
other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.
• If the component property type declares a PREFIX_ field whose value is a compile-time constant

String, then the property name is prefixed with the value of the PREFIX_ field.

Table 112.11 contains some name mapping examples.

Table 112.11 Component Property Name Mapping Examples

Component Property Type Method Name Component Property Name
myProperty143 myProperty143
$new new
my$$prop my$prop
dot_prop dot.prop
_secret .secret
another__prop another_prop
three___prop three_.prop
four_$__prop four._prop
five_$_prop five. .prop
six$_$prop six-prop
seven$$_$prop seven$.prop

However, if the component property type is a single-element annotation, see 9.7.3 in [7] The Java Lan-
guage Specification, Java SE 8 Edition, then the property name for the value method is derived from the
name of the component property type rather than the name of the method.

In this case, the simple name of the component property type, that is, the name of the class without
any package name or outer class name, if the component property type is an inner class, must be
converted to the property name as follows:

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each upper case character is converted to lower case.
• All other characters are unchanged.
• If the component property type declares a PREFIX_ field whose value is a compile-time constant

String, then the property name is prefixed with the value of the PREFIX_ field.

Table 112.12 contains some mapping examples for the value method.

Table 112.12 Single-Element Annotation Mapping Examples for value Method

Component Property Type Name value Method Component Property Name
ServiceRanking service.ranking
Some_Name some_name
OSGiProperty osgi .property

If the component property type is a marker annotation, see 9.7.2 in [7] The Java Language Specification,
Java SE 8 Edition, then the property name is derived from the name of the component property type,
as is described above for single-element annotations, and the value of the property is Boolean.TRUE .
Marker annotations can be used to annotate component implementation classes to set a component
property to the value Boolean.TRUE . However, since marker annotations have no methods, they are
of no use as parameter types in the component's constructor and life cycle methods, or as field types
for activation fields.

Annotations Declarative Services Specification Version 1.4

Page 254 OSGi Enterprise Release 7

The property type can be directly derived from the type of the method. All types supported for an-
notation elements can be used except for annotation types. Method types of an annotation type or
array thereof are not supported. A tool processing the component property types must ignore such
methods.

If the method type is Class or Class[] , then the property type must be Str ing or Str ing[] , respectively,
whose values are fully qualified class names in the form returned by the Class.getName() method.

If the method type is an enumeration type or an array thereof, then the property type must be Str ing
or Str ing[] , respectively, whose values are the names of the enum constants in the form returned by
the Enum.name() method.

112.8.2.2 Coercing Component Property Values

When a component property type is used as an activation object type, SCR must create an object
that implements the component property type and maps the methods of the component proper-
ty type to component properties. The name of the method is converted to the property name as de-
scribed in Component Property Mapping on page 252. The property value may need to be coerced
to the type of the method. In Table 112.13, the columns are source types, that is, the type of the com-
ponent property value, and the rows are target types, that is, the method types. The property value
is v; number is a primitive numerical type and Number is a wrapper numerical type. An invalid co-
ercion is represented by throw . Such a coercion attempt must result in throwing a Component Ex-
ception when the component property type method is called. Any other coercion error, such as pars-
ing a non-numerical string to a number or the inability to coerce a string into a Class or enum ob-
ject, must be wrapped in a Component Exception and thrown when the component property type
method is called.

Table 112.13 Coercion From Property Value to Method Type

target \ source String Boolean Character Number Collection/array
String v v. toString() v. toString() v. toString() If v has no elements, nul l ; other-

wise the first element of v is co-
erced.

boolean Boolean. parse-
Boolean(v)

v. booleanVal-
ue()

v. charValue() !
= 0

v. doubleVal-
ue() != 0

If v has no elements, fa lse ; other-
wise the first element of v is co-
erced.

char v. length() > 0 ?
v. charAt(0) : 0

v. booleanVal-
ue() ? 1 : 0

v. charValue() (char) v. intVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

number Number.
parseNumber(
v)

v. booleanVal-
ue() ? 1 : 0

(number) v.
charValue()

v. numberVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

Class Bundle. load-
Class(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

EnumType EnumType. val-
ueOf(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

annotation type throw throw throw throw throw
array A single element array is created and v is coerced into the single el-

ement of the new array.
An array the size of v is created
and each element of v is coerced
into the corresponding element
of the new array.

Component properties whose names do not map to component property type methods are ignored.
If there is no corresponding component property for a component property type method, the com-
ponent property type method must:

Declarative Services Specification Version 1.4 Annotations

OSGi Enterprise Release 7 Page 255

• Return 0 for numerical and char method types.
• Return fa lse for boolean method type.
• Return nul l for String, Class, and enum.
• Return an empty array for array method types.
• Throw a ComponentException for annotation method types.

112.8.2.3 Standard Component Property Types

Component property types for standard service properties are specified in the
org.osgi .service.component.propertytypes package.

The ServiceDescr ipt ion component property type can be used to add the service.descr ipt ion ser-
vice property to a component. The ServiceRanking component property type can be used to add the
service.ranking service property to a component. The ServiceVendor component property type can
be used to add the service.vendor service property to a component. For example, using these compo-
nent property types as annotations:

@Component
@ServiceDescription(”My Acme Service implementation”)
@ServiceRanking(100)
@ServiceVendor("My Corp")
public class MyComponent implements AcmeService {}

will result in the following component properties:

<property name=”service.description” value=”My Acme Service implementation”/>
<property name=”service.ranking” type=”Integer” value=”100”/>
<property name=”service.vendor” value=”My Corp”/>

The ExportedService component property type can be used to specify service properties for remote
services.

112.8.3 Ordering of Generated Component Properties
The Component annotation contains two ways to define component properties via the property and
propert ies elements. See Property and Properties Elements on page 227. If Component Annotations
are used to describe the component, then any component property types used as the type of an acti-
vation object or used to annotate the component implementation class must also be processed since
component property types can be used to define component property values as well. See Component
Property Types on page 251. A tool processing the Component Annotations and the component
property types must write the defined component properties into the generated component descrip-
tion in the following order.

1. Properties defined through component property types used as the type of an activation object.

If any of the referenced component property types have methods with defaults, then the gener-
ated component description must include a property element for each such method with the
property name mapped from the method name, the property type mapped from the method
type, and the property value set to the method's default value. See Component Property Mapping
on page 252. The generated property elements must be added to the component description
by processing the component property types used as the type of an activation object in the fol-
lowing order:
a. The component property types used as parameters to the constructor.
b. The component property types used as activation fields. The fields are processed in lexico-

graphical order, using Str ing.compareTo , of the field names.
c. The component property types used as parameters to the activate method.
d. The component property types used as parameters to the modified method.

Service Component Runtime Declarative Services Specification Version 1.4

Page 256 OSGi Enterprise Release 7

e. The component property types used as parameters to the deactivate method.

If a method has more than one component property type parameter, the component property
types are processed in the order of the method parameters.

For component property type methods without a default value or with a default value of an
empty array, a property element must not be generated.

2. Properties defined through component property types annotating the component implementa-
tion class.

The generated component description must include a property element for each such method
with the property name mapped from the method name, the property type mapped from the
method type, and the property value set to the method's value. See Component Property Mapping
on page 252. The generated property elements must be added to the component description
by processing the component property types annotating the component implementation class
in the order that the annotations appear in the component implementation's class file. However,
the order of the RuntimeVisibleAnnotations and RuntimeInvis ibleAnnotations attributes in the
class file is unspecified by [6] The Java Virtual Machine Specification, Java SE 8 Edition so care must
be taken when using component property types of different RetentionPol icy that have method
names in common.

For component property type methods with a value of an empty array, a property element must
not be generated.

3. property element of the Component annotation.
4. propert ies element of the Component annotation.

This means that the properties defined through component property types are declared first in the
generated component description, followed by all properties defined through the property element
of the Component annotation and finally the properties entries defined through the propert ies ele-
ment of the Component annotation.

Since property values defined later in the component description override property values defined
earlier in the component description, this means that property values defined in propert ies element
of the Component annotation can override property values defined in property element of the Com-
ponent annotation which can override values defined by values in the component property types.

112.9 Service Component Runtime
Service Component Runtime (SCR) is the actor that manages the components and their life cycle
and allows introspection of the components.

112.9.1 Relationship to OSGi Framework
SCR must have access to the Bundle Context of any bundle that contains a component. SCR needs
access to the Bundle Context for the following reasons:

• To be able to register and get services on behalf of a bundle with components.
• To interact with the Configuration Admin on behalf of a bundle with components.
• To provide a component its Bundle Context when the Component Context getBundleContext

method is called.

SCR should use the Bundle.getBundleContext() method to obtain the Bundle Context reference.

112.9.2 Starting and Stopping SCR
When SCR is implemented as a bundle, any component configurations activated by SCR must be
deactivated when the SCR bundle is stopped. When the SCR bundle is started, it must process any

Declarative Services Specification Version 1.4 Service Component Runtime

OSGi Enterprise Release 7 Page 257

components that are declared in bundles that are started. This includes bundles which are started
and are awaiting lazy activation.

112.9.3 Logging Messages
When SCR must log a message to the Log Service, it must use a Logger named for the component
implementation class and associated with the bundle declaring the component. To obtain the Log-
ger object, SCR must call the LoggerFactory.getLogger(Bundle bundle, Str ing name, Class logger-
Type) method passing the bundle declaring the component as the first argument and the fully quali-
fied name of the component implementation class as the second argument. If SCR cannot know the
component implementation class name, because the error is not associated with a component or
the error occurred before the component description is processed, then SCR must use the bundle's
Root Logger, that is, the Logger named ROOT .

112.9.4 Locating Component Methods and Fields
SCR will need to locate activate, deactivate, modified, bind, updated, and unbind methods as well
as fields in a component instance. These members will be located, and called or modified, using re-
flection. The declared members of each class in the component implementation class's hierarchy are
examined for a suitable member. If a suitable member is found in a class, and it is accessible to the
component implementation class, then that member must be used. If suitable members are found
in a class but none of the suitable members are accessible by the component implementation class,
then the search for suitable members terminates with no suitable member having been located. If
no suitable members are found in a class, the search continues in the superclass.

Only members that are accessible to the component implementation class will be used. If the mem-
ber has the publ ic or protected access modifier, then access is permitted. Otherwise, if the member
has the private access modifier, then access is permitted only if the member is declared in the com-
ponent implementation class. Otherwise, if the member has default access, also known as pack-
age private access, then access is permitted only if the member is declared in the component imple-
mentation class or if the member is declared in a superclass and all classes in the hierarchy from the
component implementation class to the superclass, inclusive, are in the same package and loaded
by the same class loader.

It is recommended that these members should not be declared with the publ ic access modifier so
that they do not appear as public members on the component instance when it is used as a service
object. Having these members declared publ ic allows any code to call or access the members with
reflection, even if a Security Manager is installed. These members are generally intended to only be
called or modified by SCR.

112.9.5 Bundle Activator Interaction
A bundle containing components may also declare a Bundle Activator. Such a bundle may also be
marked for lazy activation. Since components are activated by SCR and Bundle Activators are called
by the OSGi Framework, a bundle using both components and a Bundle Activator must take care.
The Bundle Activator's start method must not rely upon SCR having activated any of the bundle's
components. However, the components can rely upon the Bundle Activator's start method hav-
ing been called. That is, there is a happens-before relationship between the Bundle Activator's start
method being run and the components being activated.

112.9.6 Introspection
SCR provides an introspection API for examining the runtime state of the components in bundles
processed by SCR. SCR must register a ServiceComponentRuntime service upon startup. The Service
Component Runtime service provides methods to inspect the component descriptions and compo-
nent configurations as well as inspect and modify the enabled state of components. The service uses
Data Transfer Objects (DTO) as parameters and return values. The rules for Data Transfer Objects are
specified in OSGi Core Release 7.

Service Component Runtime Declarative Services Specification Version 1.4

Page 258 OSGi Enterprise Release 7

The Service Component Runtime service provides the following methods.

• getComponentDescr ipt ionDTOs(Bundle. . .) - For each specified bundle, if the bundle is active
and processed by SCR, the returned collection will contain a ComponentDescr ipt ionDTO for
each valid component description in the bundle.

• getComponentDescr ipt ionDTO(Bundle,Str ing) - If the specified bundle is active and processed
by SCR, and the specified bundle contains a valid component description with the specified
name, the method will return a ComponentDescr ipt ionDTO for the component description.

• getComponentConfigurat ionDTOs(ComponentDescr ipt ionDTO) - If the specified Component-
Descr ipt ionDTO represents a valid component description from an active bundle processed by
SCR, the returned collection will contain a ComponentConfigurat ionDTO for each component
configuration of the component.

• isComponentEnabled(ComponentDescr ipt ionDTO) - Returns true if the specified Component
Description DTO represents a valid component description from an active bundle processed by
SCR, and the component is enabled. Otherwise, the method returns fa lse .

• enableComponent(ComponentDescr ipt ionDTO) - If the specified Component Description DTO
represents a valid component description from an active bundle processed by SCR, the compo-
nent is enabled. This method must return after changing the enabled state of the specified com-
ponent. Any actions that result from this, such as activating or deactivating a component config-
uration, must occur asynchronously to this method call. The method returns a Promise that will
be resolved when the actions that result from changing the enabled state of the specified compo-
nent have completed.

• disableComponent(ComponentDescr ipt ionDTO) - If the specified Component Description DTO
represents a valid component description from an active bundle processed by SCR, the compo-
nent is disabled. This method must return after changing the enabled state of the specified com-
ponent. Any actions that result from this, such as activating or deactivating a component config-
uration, must occur asynchronously to this method call. The method returns a Promise that will
be resolved when the actions that result from changing the enabled state of the specified compo-
nent have completed.

The runtime state of the components can change at any time. So any information returned by these
methods only provides a snapshot of the state at the time of the method call.

There are a number of DTOs available via the Service Component Runtime service.

Declarative Services Specification Version 1.4 Service Component Runtime

OSGi Enterprise Release 7 Page 259

Figure 112.6 Service Component Runtime DTOs

<<service>>
Service Component
Runtime

Component
Description DTO

Component
Configuration DTO

Reference DTO
Satisfied
Reference DTO

Service Reference
DTO

0..* 0..*

0..*
0..*

0..*

1

1

Unsatisfied
Reference DTO

0..*

1 0..*

The two main DTOs are ComponentDescr ipt ionDTO , which represents a component description,
and ComponentConfigurat ionDTO , which represents a component configuration. The Component
Description DTO contains an array of ReferenceDTO objects which represent each declared refer-
ence in the component description. The Component Configuration DTO contains an array of Satis-
fiedReferenceDTO objects and an array of UnsatisfiedReferenceDTO objects. A Satisfied Reference
DTO represents a satisfied reference of the component configuration and an Unsatisfied Reference
DTO represents an unsatisfied reference of the component configuration. The Component Config-
uration DTO for a satisfied component configuration must contain no Unsatisfied Reference DTOs.
The Component Configuration DTO for an unsatisfied component configuration may contain some
Satisfied Reference DTOs and some Unsatisfied Reference DTOs. This information can be used to di-
agnose why the component configuration is not satisfied.

SCR must register the ServiceComponentRuntime service with the service.changecount service
property. See org.osgi .f ramework.Constants.SERVICE_CHANGECOUNT in OSGi Core Release 7.
Whenever the Service Component Runtime DTOs available from the ServiceComponentRuntime
service change, SCR modify the service.changecount service property with an updated change
count value. This allows interested parties to be notified of changes to the DTOs by observing Ser-
vice Events of type MODIFIED for the ServiceComponentRuntime service.

112.9.7 Capabilities
SCR must provide the following capabilities.

• A capability in the osgi .extender namespace declaring an extender with the name
COMPONENT_CAPABILITY_NAME . This capability must also declare a uses constraint for the
org.osgi .service.component package. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.component";
 version:Version="1.4";

Security Declarative Services Specification Version 1.4

Page 260 OSGi Enterprise Release 7

 uses:="org.osgi.service.component"

This capability must follow the rules defined for the osgi.extender Namespace on page 631.

A bundle that contains service components should require the osgi .extender capability from
SCR. This requirement will wire the bundle to the SCR implementation and ensure that SCR is
using the same org.osgi .service.component package as the bundle if the bundle uses that pack-
age.

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.4)(!(version>=2.0)))"

The RequireServiceComponentRuntime annotation can be used to require this capability. The
Component annotation is meta-annotated with this annotation.

SCR must only process a bundle's service components if one of the following is true:
• The bundle's wiring has a required wire for at least one osgi .extender capability with the

name osgi .component and the first of these required wires is wired to SCR.
• The bundle's wiring has no required wire for an osgi .extender capability with the name

osgi .component .

Otherwise, SCR must not process the bundle's service components.
• A capability in the osgi .service namespace representing the ServiceComponentRuntime service.

This capability must also declare a uses constraint for the org.osgi .service.component.runtime
package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.component.runtime.ServiceComponentRuntime";
 uses:="org.osgi.service.component.runtime"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

112.10 Security
When Java permissions are enabled, SCR must perform the following security procedures.

112.10.1 Service Permissions
Declarative services are built upon the existing OSGi service infrastructure. This means that Service
Permission applies regarding the ability to publish, find or bind services.

If a component specifies a service, then component configurations for the component cannot be sat-
isfied unless the component's bundle has ServicePermission[<provides>, REGISTER] for each pro-
vided interface specified for the service.

If a component's reference does not specify optional cardinality, the reference cannot be satisfied
unless the component's bundle has ServicePermission[<interface>, GET] for the specified interface
in the reference. If the reference specifies optional cardinality but the component's bundle does not
have ServicePermission[<interface>, GET] for the specified interface in the reference, no service
must be bound for this reference.

If a component is a factory component, then the above Service Permission checks still apply. But the
component's bundle is not required to have ServicePermission[ComponentFactory, REGISTER] as
the Component Factory service is registered by SCR.

SCR must have ServicePermission[ServiceComponentRuntime, REGISTER] permission to register
the ServiceComponentRuntime service. Administrative bundles wishing to use the ServiceCompo-

Declarative Services Specification Version 1.4 Component Description Schema

OSGi Enterprise Release 7 Page 261

nentRuntime service must have ServicePermission[ServiceComponentRuntime, GET] permission.
In general, this permission should only be granted to administrative bundles to limit access to the
potentially intrusive methods provided by this service.

112.10.2 Required Admin Permission
SCR requires AdminPermission[*,CONTEXT] because it needs access to the bundle's Bundle Context
object with the Bundle.getBundleContext() method.

112.10.3 Using hasPermission
SCR does all publishing, finding and binding of services on behalf of the component using the Bun-
dle Context of the component's bundle. This means that normal stack-based permission checks
will check SCR and not the component's bundle. Since SCR is registering and getting services on be-
half of a component's bundle, SCR must call the Bundle.hasPermission method to validate that a
component's bundle has the necessary permission to register or get a service.

112.10.4 Configuration Multi-Locations and Regions
SCR must ensure a bundle has the proper Configurat ionPermission for a Configuration used by its
components when the Configuration has a multi-location. See Using Multi-Locations on page 103 for
more information on multi-locations and Regions on page 104 for more information on regions. If a
bundle does not have the necessary permission for a multi-location Configuration, then SCR must
act as if the Configuration does not exist for the bundle.

112.11 Component Description Schema
This XML Schema defines the component description grammar.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.4.0"
 targetNamespace="http://www.osgi.org/xmlns/scr/v1.4.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.4.0">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for component descriptions used by
 the Service Component Runtime (SCR). Component description
 documents may be embedded in other XML documents. SCR will
 process all XML documents listed in the Service-Component
 manifest header of a bundle. XML documents containing
 component descriptions may contain a single, root component
 element or one or more component elements embedded in a
 larger document. Use of the namespace for component
 descriptions is mandatory. The attributes and subelements
 of a component element are always unqualified.
 </documentation>
 </annotation>
 <element name="component" type="scr:Tcomponent" />
 <complexType name="Tcomponent">
 <sequence>
 <annotation>
 <documentation xml:lang="en">
 Implementations of SCR must not require component
 descriptions to specify the subelements of the component
 element in the order as required by the schema. SCR
 implementations must allow other orderings since
 arbitrary orderings do not affect the meaning of the
 component description. Only the relative ordering of
 property and properties element have meaning.
 </documentation>
 </annotation>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="property" type="scr:Tproperty" />

Component Description Schema Declarative Services Specification Version 1.4

Page 262 OSGi Enterprise Release 7

 <element name="properties" type="scr:Tproperties" />
 </choice>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="factory-property" type="scr:Tproperty" />
 <element name="factory-properties" type="scr:Tproperties" />
 </choice>
 <element name="service" type="scr:Tservice" minOccurs="0"
 maxOccurs="1" />
 <element name="reference" type="scr:Treference"
 minOccurs="0" maxOccurs="unbounded" />
 <element name="implementation" type="scr:Timplementation" />
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="enabled" type="boolean" default="true"
 use="optional" />
 <attribute name="name" type="token" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the class attribute of the nested implementation
 element. If multiple component elements use the same
 value for the class attribute of their nested
 implementation element, then using the default value
 for this attribute will result in duplicate names.
 In this case, this attribute must be specified with
 a unique value.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="factory" type="string" use="optional" />
 <attribute name="immediate" type="boolean" use="optional" />
 <attribute name="configuration-policy"
 type="scr:Tconfiguration-policy" default="optional" use="optional" />
 <attribute name="activate" type="token" use="optional"
 default="activate" />
 <attribute name="deactivate" type="token" use="optional"
 default="deactivate" />
 <attribute name="modified" type="token" use="optional" />
 <attribute name="configuration-pid" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the name attribute of this element.
 </documentation>
 </annotation>
 <simpleType>
 <restriction>
 <simpleType>
 <list itemType="token" />
 </simpleType>
 <minLength value="1" />
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="activation-fields" use="optional">
 <simpleType>
 <restriction>
 <simpleType>
 <list itemType="token" />
 </simpleType>
 <minLength value="1" />
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="init" type="unsignedByte" default="0"
 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Timplementation">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="class" type="token" use="required" />

Declarative Services Specification Version 1.4 Component Description Schema

OSGi Enterprise Release 7 Page 263

 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tproperty">
 <simpleContent>
 <extension base="string">
 <attribute name="name" type="string" use="required" />
 <attribute name="value" type="string" use="optional" />
 <attribute name="type" type="scr:Tproperty_type"
 default="String" use="optional" />
 <anyAttribute processContents="lax" />
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="Tproperties">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="entry" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tservice">
 <sequence>
 <element name="provide" type="scr:Tprovide" minOccurs="1"
 maxOccurs="unbounded" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="scope" type="scr:Tservice_scope" default="singleton"
 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tprovide">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="interface" type="token" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Treference">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="token" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the interface attribute of this element. If multiple
 instances of this element within a component element
 use the same value for the interface attribute, then
 using the default value for this attribute will result
 in duplicate names. In this case, this attribute
 must be specified with a unique value.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="interface" type="token" use="required" />
 <attribute name="cardinality" type="scr:Tcardinality"
 default="1..1" use="optional" />
 <attribute name="policy" type="scr:Tpolicy" default="static"
 use="optional" />
 <attribute name="policy-option" type="scr:Tpolicy-option"
 default="reluctant" use="optional" />
 <attribute name="target" type="string" use="optional" />
 <attribute name="bind" type="token" use="optional" />
 <attribute name="unbind" type="token" use="optional" />
 <attribute name="updated" type="token" use="optional" />
 <attribute name="scope" type="scr:Treference_scope" default="bundle"
 use="optional" />
 <attribute name="field" type="token" use="optional" />

Component Description Schema Declarative Services Specification Version 1.4

Page 264 OSGi Enterprise Release 7

 <attribute name="field-option" type="scr:Tfield-option" default="replace"
 use="optional" />
 <attribute name="field-collection-type" type="scr:Tfield-collection-type"
 default="service" use="optional" />
 <attribute name="parameter" type="unsignedByte" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <simpleType name="Tproperty_type">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Long" />
 <enumeration value="Double" />
 <enumeration value="Float" />
 <enumeration value="Integer" />
 <enumeration value="Byte" />
 <enumeration value="Character" />
 <enumeration value="Boolean" />
 <enumeration value="Short" />
 </restriction>
 </simpleType>
 <simpleType name="Tcardinality">
 <restriction base="string">
 <enumeration value="0..1" />
 <enumeration value="0..n" />
 <enumeration value="1..1" />
 <enumeration value="1..n" />
 </restriction>
 </simpleType>
 <simpleType name="Tpolicy">
 <restriction base="string">
 <enumeration value="static" />
 <enumeration value="dynamic" />
 </restriction>
 </simpleType>
 <simpleType name="Tpolicy-option">
 <restriction base="string">
 <enumeration value="reluctant" />
 <enumeration value="greedy" />
 </restriction>
 </simpleType>
 <simpleType name="Tconfiguration-policy">
 <restriction base="string">
 <enumeration value="optional" />
 <enumeration value="require" />
 <enumeration value="ignore" />
 </restriction>
 </simpleType>
 <simpleType name="Tservice_scope">
 <restriction base="string">
 <enumeration value="singleton" />
 <enumeration value="bundle" />
 <enumeration value="prototype" />
 </restriction>
 </simpleType>
 <simpleType name="Treference_scope">
 <restriction base="string">
 <enumeration value="bundle" />
 <enumeration value="prototype" />
 <enumeration value="prototype_required" />
 </restriction>
 </simpleType>
 <simpleType name="Tfield-option">
 <restriction base="string">
 <enumeration value="replace" />
 <enumeration value="update" />
 </restriction>
 </simpleType>
 <simpleType name="Tfield-collection-type">
 <restriction base="string">
 <enumeration value="service" />
 <enumeration value="properties" />
 <enumeration value="reference" />
 <enumeration value="serviceobjects" />
 <enumeration value="tuple" />
 </restriction>

Declarative Services Specification Version 1.4 org.osgi.service.component

OSGi Enterprise Release 7 Page 265

 </simpleType>
 <attribute name="must-understand" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension. This attribute must be qualified when used.
 </documentation>
 </annotation>
 </attribute>
</schema>

SCR must not require component descriptions to specify the elements in the order required by the
schema. SCR must allow other orderings since arbitrary orderings of these elements do not affect
the meaning of the component description. Only the relative ordering of property , propert ies and
reference elements have meaning for overriding previously set property values.

The schema is also available in digital form from [5] OSGi XML Schemas.

112.12 org.osgi.service.component

Service Component Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component; vers ion="[1.4,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component; vers ion="[1.4,1.5)"

112.12.1 Summary

• ComponentConstants - Defines standard names for Service Component constants.
• ComponentContext - A Component Context object is used by a component instance to interact

with its execution context including locating services by reference name.
• ComponentException - Unchecked exception which may be thrown by Service Component

Runtime.
• ComponentFactory - When a component is declared with the factory attribute on its compo-

nent element, Service Component Runtime will register a Component Factory service to allow
new component configurations to be created and activated rather than automatically creating
and activating component configuration as necessary.

• ComponentInstance - A ComponentInstance encapsulates a component instance of an activat-
ed component configuration.

• ComponentServiceObjects - Allows multiple service objects for a service to be obtained.

112.12.2 public interface ComponentConstants
Defines standard names for Service Component constants.

Provider Type Consumers of this API must not implement this type

112.12.2.1 public static final String COMPONENT_CAPABILITY_NAME = "osgi.component"

Capability name for Service Component Runtime.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

org.osgi.service.component Declarative Services Specification Version 1.4

Page 266 OSGi Enterprise Release 7

 Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.4)(!(version>=2.0)))"

Since 1.3

112.12.2.2 public static final String COMPONENT_FACTORY = "component.factory"

A service registration property for a Component Factory that contains the value of the factory at-
tribute. The value of this property must be of type Str ing .

112.12.2.3 public static final String COMPONENT_ID = "component.id"

A component property that contains the generated id for a component configuration. The value of
this property must be of type Long .

The value of this property is assigned by Service Component Runtime when a component config-
uration is created. Service Component Runtime assigns a unique value that is larger than all previ-
ously assigned values since Service Component Runtime was started. These values are NOT persis-
tent across restarts of Service Component Runtime.

112.12.2.4 public static final String COMPONENT_NAME = "component.name"

A component property for a component configuration that contains the name of the component
as specified in the name attribute of the component element. The value of this property must be of
type Str ing .

112.12.2.5 public static final String COMPONENT_SPECIFICATION_VERSION = "1.4.0"

Compile time constant for the Specification Version of Declarative Services.

Used in Version and Requirement annotations. The value of this compile time constant will change
when the specification version of Declarative Services is updated.

Since 1.4

112.12.2.6 public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6

The component configuration was deactivated because the bundle was stopped.

Since 1.1

112.12.2.7 public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4

The component configuration was deactivated because its configuration was deleted.

Since 1.1

112.12.2.8 public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3

The component configuration was deactivated because its configuration was changed.

Since 1.1

112.12.2.9 public static final int DEACTIVATION_REASON_DISABLED = 1

The component configuration was deactivated because the component was disabled.

Since 1.1

112.12.2.10 public static final int DEACTIVATION_REASON_DISPOSED = 5

The component configuration was deactivated because the component was disposed.

Since 1.1

112.12.2.11 public static final int DEACTIVATION_REASON_REFERENCE = 2

The component configuration was deactivated because a reference became unsatisfied.

Declarative Services Specification Version 1.4 org.osgi.service.component

OSGi Enterprise Release 7 Page 267

Since 1.1

112.12.2.12 public static final int DEACTIVATION_REASON_UNSPECIFIED = 0

The reason the component configuration was deactivated is unspecified.

Since 1.1

112.12.2.13 public static final String REFERENCE_TARGET_SUFFIX = ".target"

The suffix for reference target properties. These properties contain the filter to select the target ser-
vices for a reference. The value of this property must be of type Str ing .

112.12.2.14 public static final String SERVICE_COMPONENT = "Service-Component"

Manifest header specifying the XML documents within a bundle that contain the bundle's Service
Component descriptions.

The attribute value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

112.12.3 public interface ComponentContext
A Component Context object is used by a component instance to interact with its execution context
including locating services by reference name. Each component instance has a unique Component
Context.

A component instance may obtain its Component Context object through its activate, modified, and
deactivate methods.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.3.1 public void disableComponent(String name)

name The name of a component.

□ Disables the specified component name. The specified component name must be in the same bun-
dle as this component.

This method must return after changing the enabled state of the specified component name. Any ac-
tions that result from this, such as activating or deactivating a component configuration, must oc-
cur asynchronously to this method call.

112.12.3.2 public void enableComponent(String name)

name The name of a component or nul l to indicate all components in the bundle.

□ Enables the specified component name. The specified component name must be in the same bundle
as this component.

This method must return after changing the enabled state of the specified component name. Any ac-
tions that result from this, such as activating or deactivating a component configuration, must oc-
cur asynchronously to this method call.

112.12.3.3 public BundleContext getBundleContext()

□ Returns the BundleContext of the bundle which declares this component.

Returns The BundleContext of the bundle declares this component.

112.12.3.4 public ComponentInstance<S> getComponentInstance()

Type Parameters <S>

org.osgi.service.component Declarative Services Specification Version 1.4

Page 268 OSGi Enterprise Release 7

□ Returns the Component Instance object for the component instance associated with this Compo-
nent Context.

Returns The Component Instance object for the component instance.

112.12.3.5 public Dictionary<String, Object> getProperties()

□ Returns the component properties for this Component Context.

Returns The properties for this Component Context. The Dictionary is read only and cannot be modified.

112.12.3.6 public ServiceReference<?> getServiceReference()

□ If the component instance is registered as a service using the service element, then this method re-
turns the service reference of the service provided by this component instance.

This method will return nul l if the component instance is not registered as a service.

Returns The ServiceReference object for the component instance or nul l if the component instance is not
registered as a service.

112.12.3.7 public Bundle getUsingBundle()

□ If the component instance is registered as a service using the servicescope="bundle" or
servicescope="prototype" attribute, then this method returns the bundle using the service provided
by the component instance.

This method will return nul l if:

• The component instance is not a service, then no bundle can be using it as a service.
• The component instance is a service but did not specify the servicescope="bundle" or

servicescope="prototype" attribute, then all bundles using the service provided by the compo-
nent instance will share the same component instance.

• The service provided by the component instance is not currently being used by any bundle.

Returns The bundle using the component instance as a service or nul l .

112.12.3.8 public S locateService(String name)

Type Parameters <S>

name The name of a reference as specified in a reference element in this component's description.

□ Returns the service object for the specified reference name.

If the cardinality of the reference is 0..n or 1. .n and multiple services are bound to the reference,
the service with the highest ranking (as specified in its Constants.SERVICE_RANKING property)
is returned. If there is a tie in ranking, the service with the lowest service id (as specified in its
Constants.SERVICE_ID property); that is, the service that was registered first is returned.

Returns A service object for the referenced service or nul l if the reference cardinality is 0..1 or 0..n and no
bound service is available.

Throws ComponentException– If Service Component Runtime catches an exception while activating the
bound service.

112.12.3.9 public S locateService(String name, ServiceReference<S> reference)

Type Parameters <S>

<S> Type of Service.

name The name of a reference as specified in a reference element in this component's description.

reference The ServiceReference to a bound service. This must be a ServiceReference provided to the compo-
nent via the bind or unbind method for the specified reference name.

Declarative Services Specification Version 1.4 org.osgi.service.component

OSGi Enterprise Release 7 Page 269

□ Returns the service object for the specified reference name and ServiceReference .

Returns A service object for the referenced service or nul l if the specified ServiceReference is not a bound ser-
vice for the specified reference name.

Throws ComponentException– If Service Component Runtime catches an exception while activating the
bound service.

112.12.3.10 public Object[] locateServices(String name)

name The name of a reference as specified in a reference element in this component's description.

□ Returns the service objects for the specified reference name.

Returns An array of service objects for the referenced service or nul l if the reference cardinality is 0..1 or 0..n
and no bound service is available. If the reference cardinality is 0..1 or 1. .1 and a bound service is
available, the array will have exactly one element.

Throws ComponentException– If Service Component Runtime catches an exception while activating a
bound service.

112.12.4 public class ComponentException
extends RuntimeException
Unchecked exception which may be thrown by Service Component Runtime.

112.12.4.1 public ComponentException(String message, Throwable cause)

message The message for the exception.

cause The cause of the exception. May be nul l .

□ Construct a new ComponentException with the specified message and cause.

112.12.4.2 public ComponentException(String message)

message The message for the exception.

□ Construct a new ComponentException with the specified message.

112.12.4.3 public ComponentException(Throwable cause)

cause The cause of the exception. May be nul l .

□ Construct a new ComponentException with the specified cause.

112.12.4.4 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

112.12.4.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

112.12.5 public interface ComponentFactory<S>
<S> Type of Service

org.osgi.service.component Declarative Services Specification Version 1.4

Page 270 OSGi Enterprise Release 7

When a component is declared with the factory attribute on its component element, Service Com-
ponent Runtime will register a Component Factory service to allow new component configurations
to be created and activated rather than automatically creating and activating component configura-
tion as necessary.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.5.1 public ComponentInstance<S> newInstance(Dictionary<String, ?> properties)

properties Additional properties for the component configuration or nul l if there are no additional properties.

□ Create and activate a new component configuration. Additional properties may be provided for the
component configuration.

Returns A ComponentInstance object encapsulating the component instance of the component configura-
tion. The component configuration has been activated and, if the component specifies a service ele-
ment, the component instance has been registered as a service.

Throws ComponentException– If Service Component Runtime is unable to activate the component configu-
ration.

112.12.6 public interface ComponentInstance<S>
<S> Type of Service

A ComponentInstance encapsulates a component instance of an activated component configura-
tion. ComponentInstances are created whenever a component configuration is activated.

ComponentInstances are never reused. A new ComponentInstance object will be created when the
component configuration is activated again.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.6.1 public void dispose()

□ Dispose of the component configuration for this component instance. The component configura-
tion will be deactivated. If the component configuration has already been deactivated, this method
does nothing.

112.12.6.2 public S getInstance()

□ Returns the component instance of the activated component configuration.

Returns The component instance or nul l if the component configuration has been deactivated.

112.12.7 public interface ComponentServiceObjects<S>
<S> Type of Service

Allows multiple service objects for a service to be obtained.

A component instance can receive a ComponentServiceObjects object via a reference that is typed
ComponentServiceObjects .

For services with prototype scope, multiple service objects for the service can be obtained. For ser-
vices with singleton or bundle scope, only one, use-counted service object is available.

Any unreleased service objects obtained from this ComponentServiceObjects object are automati-
cally released by Service Component Runtime when the service becomes unbound.

See Also ServiceObjects

Since 1.3

Declarative Services Specification Version 1.4 org.osgi.service.component.annotations

OSGi Enterprise Release 7 Page 271

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.7.1 public S getService()

□ Returns a service object for the associated service.

This method will always return nul l when the associated service has been become unbound.

Returns A service object for the associated service or nul l if the service is unbound, the customized service
object returned by a ServiceFactory does not implement the classes under which it was registered or
the ServiceFactory threw an exception.

Throws I l legalStateException– If the component instance that received this ComponentServiceObjects ob-
ject has been deactivated.

See Also ungetService(Object)

112.12.7.2 public ServiceReference<S> getServiceReference()

□ Returns the ServiceReference for the service associated with this ComponentServiceObjects object.

Returns The ServiceReference for the service associated with this ComponentServiceObjects object.

112.12.7.3 public void ungetService(S service)

service A service object previously provided by this ComponentServiceObjects object.

□ Releases a service object for the associated service.

The specified service object must no longer be used and all references to it should be destroyed after
calling this method.

Throws I l legalStateException– If the component instance that received this ComponentServiceObjects ob-
ject has been deactivated.

I l legalArgumentException– If the specified service object was not provided by this ComponentSer-
viceObjects object.

See Also getService()

112.13 org.osgi.service.component.annotations

Service Component Annotations Package Version 1.4.

This package is not used at runtime. Annotated classes are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

112.13.1 Summary

• Activate - Identify the annotated member as part of the activation of a Service Component.
• Collect ionType - Collection types for the Reference annotation.
• Component - Identify the annotated class as a Service Component.
• ComponentPropertyType - Identify the annotated annotation as a Component Property Type.
• Configurat ionPol icy - Configuration Policy for the Component annotation.
• Deactivate - Identify the annotated method as the deactivate method of a Service Component.
• FieldOption - Field options for the Reference annotation.
• Modified - Identify the annotated method as the modified method of a Service Component.
• Reference - Identify the annotated member or parameter as a reference of a Service Component.
• ReferenceCardinal ity - Cardinality for the Reference annotation.

org.osgi.service.component.annotations Declarative Services Specification Version 1.4

Page 272 OSGi Enterprise Release 7

• ReferencePol icy - Policy for the Reference annotation.
• ReferencePol icyOption - Policy option for the Reference annotation.
• ReferenceScope - Reference scope for the Reference annotation.
• RequireServiceComponentRuntime - This annotation can be used to require the Service Compo-

nent Runtime to process Declarative Services components.
• ServiceScope - Service scope for the Component annotation.

112.13.2 @Activate
Identify the annotated member as part of the activation of a Service Component.

When this annotation is applied to a:

• Method - The method is the activate method of the Component.
• Constructor - The constructor will be used to construct the Component and can be called with

activation objects and bound services as parameters.
• Field - The field will contain an activation object of the Component. The field must be set after

the constructor is called and before calling any other method on the fully constructed compo-
nent instance. That is, there is a happens-before relationship between the field being set and call-
ing any method on the fully constructed component instance such as the activate method.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The init , act ivate, and act ivat ion-fields attr ibutes of the component element of a Component
Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD , FIELD , CONSTRUCTOR

112.13.3 enum CollectionType
Collection types for the Reference annotation.

Since 1.4

112.13.3.1 SERVICE

The service collection type is used to indicate the collection holds the bound service objects.

This is the default collection type.

112.13.3.2 REFERENCE

The reference collection type is used to indicate the collection holds Service References for the
bound services.

112.13.3.3 SERVICEOBJECTS

The serviceobjects collection type is used to indicate the collection holds Component Service Ob-
jects for the bound services.

112.13.3.4 PROPERTIES

The properties collection type is used to indicate the collection holds unmodifiable Maps contain-
ing the service properties of the bound services.

The Maps must implement Comparable with the compareTo method comparing service property
maps using the same ordering as ServiceReference.compareTo based upon service ranking and ser-
vice id.

Declarative Services Specification Version 1.4 org.osgi.service.component.annotations

OSGi Enterprise Release 7 Page 273

112.13.3.5 TUPLE

The tuple collection type is used to indicate the collection holds unmodifiable Map.Entries whose
key is an unmodifiable Map containing the service properties of the bound service, as specified in
PROPERTIES, and whose value is the bound service object.

The Map.Entries must implement Comparable with the compareTo method comparing service
property maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

112.13.3.6 public String toString()

112.13.3.7 public static CollectionType valueOf(String name)

112.13.3.8 public static CollectionType[] values()

112.13.4 @Component
Identify the annotated class as a Service Component.

The annotated class is the implementation class of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The component element of a Component Descr ipt ion.

Retention CLASS

Target TYPE

112.13.4.1 String name default ""

□ The name of this Component.

If not specified, the name of this Component is the fully qualified type name of the class being anno-
tated.

See Also The name attr ibute of the component element of a Component Descr ipt ion.

112.13.4.2 Class<?>[] service default {}

□ The types under which to register this Component as a service.

If no service should be registered, the empty value {} must be specified.

If not specified, the service types for this Component are all the directly implemented interfaces of
the class being annotated.

See Also The service element of a Component Descr ipt ion.

112.13.4.3 String factory default ""

□ The factory identifier of this Component. Specifying a factory identifier makes this Component a
Factory Component.

If not specified, the default is that this Component is not a Factory Component.

See Also The factory attr ibute of the component element of a Component Descr ipt ion.

112.13.4.4 boolean servicefactory default false

□ Declares whether this Component uses the OSGi ServiceFactory concept and each bundle using this
Component's service will receive a different component instance.

This element is ignored when the scope() element does not have the default value. If true , this Com-
ponent uses bundle service scope. If fa lse or not specified, this Component uses singleton service

org.osgi.service.component.annotations Declarative Services Specification Version 1.4

Page 274 OSGi Enterprise Release 7

scope. If the factory() element is specified or the immediate() element is specified with true , this ele-
ment can only be specified with fa lse .

See Also The scope attr ibute of the service element of a Component Descr ipt ion.

Deprecated Since 1.3. Replaced by scope().

112.13.4.5 boolean enabled default true

□ Declares whether this Component is enabled when the bundle declaring it is started.

If true or not specified, this Component is enabled. If fa lse , this Component is disabled.

See Also The enabled attr ibute of the component element of a Component Descr ipt ion.

112.13.4.6 boolean immediate default false

□ Declares whether this Component must be immediately activated upon becoming satisfied or
whether activation should be delayed.

If true , this Component must be immediately activated upon becoming satisfied. If fa lse , activa-
tion of this Component is delayed. If this property is specified, its value must be fa lse if the factory()
property is also specified or must be true if the service() property is specified with an empty value.

If not specified, the default is fa lse if the factory() property is specified or the service() property is
not specified or specified with a non-empty value and true otherwise.

See Also The immediate attr ibute of the component element of a Component Descr ipt ion.

112.13.4.7 String[] property default {}

□ Properties for this Component.

Each property string is specified as "name=value" . The type of the property value can be specified in
the name as name:type=value . The type must be one of the property types supported by the type at-
tribute of the property element of a Component Description.

To specify a property with multiple values, use multiple name, value pairs. For example, {"foo=bar",
" foo=baz"} .

See Also The property element of a Component Descr ipt ion.

112.13.4.8 String[] properties default {}

□ Property entries for this Component.

Specifies the name of an entry in the bundle whose contents conform to a standard Java Properties
File. The entry is read and processed to obtain the properties and their values.

See Also The propert ies element of a Component Descr ipt ion.

112.13.4.9 String xmlns default ""

□ The XML name space of the Component Description for this Component.

If not specified, the XML name space of the Component Description for this Component should be
the lowest Declarative Services XML name space which supports all the specification features used
by this Component.

See Also The XML name space specif ied for a Component Descr ipt ion.

112.13.4.10 ConfigurationPolicy configurationPolicy default OPTIONAL

□ The configuration policy of this Component.

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID equals the name of the component.

Declarative Services Specification Version 1.4 org.osgi.service.component.annotations

OSGi Enterprise Release 7 Page 275

If not specified, the configuration policy is based upon whether the component is also annotated
with the Meta Type Designate annotation.

• Not annotated with Designate - The configuration policy is OPTIONAL.
• Annotated with Designate(factory=false) - The configuration policy is OPTIONAL.
• Annotated with Designate(factory=true) - The configuration policy is REQUIRE.

See Also The configurat ion-pol icy attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

112.13.4.11 String[] configurationPid default "$"

□ The configuration PIDs for the configuration of this Component.

Each value specifies a configuration PID for this Component.

If no value is specified, the name of this Component is used as the configuration PID of this Compo-
nent.

A special string ("$") can be used to specify the name of the component as a configuration PID. The
NAME constant holds this special string. For example:

 @Component(configurationPid={"com.acme.system", Component.NAME})

Tools creating a Component Description from this annotation must replace the special string with
the actual name of this Component.

See Also The configurat ion-pid attr ibute of the component element of a Component Descr ipt ion.

Since 1.2

112.13.4.12 ServiceScope scope default DEFAULT

□ The service scope for the service of this Component.

If not specified (and the deprecated servicefactory() element is not specified), the singleton service
scope is used. If the factory() element is specified or the immediate() element is specified with true ,
this element can only be specified with the singleton service scope.

See Also The scope attr ibute of the service element of a Component Descr ipt ion.

Since 1.3

112.13.4.13 Reference[] reference default {}

□ The lookup strategy references of this Component.

To access references using the lookup strategy, Reference annotations are specified naming the refer-
ence and declaring the type of the referenced service. The referenced service can be accessed using
one of the locateService methods of ComponentContext .

To access references using method injection, bind methods are annotated with Reference. To access
references using field injection, fields are annotated with Reference. To access references using con-
structor injection, constructor parameters are annotated with Reference.

See Also The reference element of a Component Descr ipt ion.

Since 1.3

112.13.4.14 String[] factoryProperty default {}

□ Factory properties for this Factory Component.

Each factory property string is specified as "name=value" . The type of the factory property value can
be specified in the name as name:type=value . The type must be one of the factory property types
supported by the type attribute of the factory-property element of a Component Description.

org.osgi.service.component.annotations Declarative Services Specification Version 1.4

Page 276 OSGi Enterprise Release 7

To specify a factory property with multiple values, use multiple name, value pairs. For example,
{"foo=bar", " foo=baz"} .

If specified, the factory() element must also be specified to indicate the component is a Factory Com-
ponent.

See Also The factory-property element of a Component Descr ipt ion.

Since 1.4

112.13.4.15 String[] factoryProperties default {}

□ Factory property entries for this Factory Component.

Specifies the name of an entry in the bundle whose contents conform to a standard Java Properties
File. The entry is read and processed to obtain the factory properties and their values.

If specified, the factory() element must also be specified to indicate the component is a Factory Com-
ponent.

See Also The factory-propert ies element of a Component Descr ipt ion.

Since 1.4

112.13.4.16 String NAME = "$"

Special string representing the name of this Component.

This string can be used in configurationPid() to specify the name of the component as a configura-
tion PID. For example:

 @Component(configurationPid={"com.acme.system", Component.NAME})

Tools creating a Component Description from this annotation must replace the special string with
the actual name of this Component.

Since 1.3

112.13.5 @ComponentPropertyType
Identify the annotated annotation as a Component Property Type.

Component Property Types can be applied as annotations to the implementation class of the Com-
ponent. They can also be used as activation objects which means they can be used as parameter
types for the component's constructor and life cycle methods Activate, Deactivate, and Modified as
well as activation fields.

Component Property Types do not have to be annotated with this annotation to be used as parame-
ter types but they must be annotated with this annotation to be used as annotations on the imple-
mentation class of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also Component Property Types.

Since 1.4

Retention CLASS

Target ANNOTATION_TYPE

112.13.6 enum ConfigurationPolicy
Configuration Policy for the Component annotation.

Declarative Services Specification Version 1.4 org.osgi.service.component.annotations

OSGi Enterprise Release 7 Page 277

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID is the name of the component.

Since 1.1

112.13.6.1 OPTIONAL

Use the corresponding Configuration object if present but allow the component to be satisfied even
if the corresponding Configuration object is not present.

112.13.6.2 REQUIRE

There must be a corresponding Configuration object for the component configuration to become
satisfied.

112.13.6.3 IGNORE

Always allow the component configuration to be satisfied and do not use the corresponding Config-
uration object even if it is present.

112.13.6.4 public String toString()

112.13.6.5 public static ConfigurationPolicy valueOf(String name)

112.13.6.6 public static ConfigurationPolicy[] values()

112.13.7 @Deactivate
Identify the annotated method as the deactivate method of a Service Component.

The annotated method is the deactivate method of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The deactivate attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.8 enum FieldOption
Field options for the Reference annotation.

Since 1.3

112.13.8.1 UPDATE

The update field option is used to update the collection referenced by the field when there are
changes to the bound services.

This field option can only be used when the field reference has dynamic policy and multiple cardi-
nality.

112.13.8.2 REPLACE

The replace field option is used to replace the field value with a new value when there are changes
to the bound services.

112.13.8.3 public String toString()

org.osgi.service.component.annotations Declarative Services Specification Version 1.4

Page 278 OSGi Enterprise Release 7

112.13.8.4 public static FieldOption valueOf(String name)

112.13.8.5 public static FieldOption[] values()

112.13.9 @Modified
Identify the annotated method as the modified method of a Service Component.

The annotated method is the modified method of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The modified attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.10 @Reference
Identify the annotated member or parameter as a reference of a Service Component.

When the annotation is applied to a method, the method is the bind method of the reference.

When the annotation is applied to a field, the field will contain the bound service(s) of the refer-
ence.

When the annotation is applied to a parameter of a constructor, the parameter will contain the
bound service(s) of the reference.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

In the generated Component Description for a component, the references must be ordered in as-
cending lexicographical order (using Str ing.compareTo) of the reference names.

See Also The reference element of a Component Descr ipt ion.

Retention CLASS

Target METHOD , FIELD , PARAMETER

112.13.10.1 String name default ""

□ The name of this reference.

The name of this reference must be specified when using this annotation in the
Component.reference() element since there is no annotated member from which the name can be
determined. If not specified, the name of this reference is based upon how this annotation is used:

• Annotated method - If the method name begins with bind , set or add , that prefix is removed to
create the name of the reference. Otherwise, the name of the reference is the method name.

• Annotated field - The name of the reference is the field name.
• Annotated constructor parameter - The name of the reference is the parameter name.

See Also The name attr ibute of the reference element of a Component Descr ipt ion.

112.13.10.2 Class<?> service default Object.class

□ The type of the service for this reference.

Declarative Services Specification Version 1.4 org.osgi.service.component.annotations

OSGi Enterprise Release 7 Page 279

The type of the service for this reference must be specified when using this annotation in the
Component.reference() element since there is no annotated member from which the type of the ser-
vice can be determined.

If not specified, the type of the service for this reference is based upon how this annotation is used:

• Annotated method - The type of the service is the type of the first parameter of the method.
• Annotated field - The type of the service is based upon the type of the field being annotated and

the cardinality of the reference. If the cardinality is either 0..n, or 1..n, the type of the field must
be one of java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of java.ut i l .Col lect ion so the type of the
service is the generic type of the collection. Otherwise, the type of the service is the type of the
field.

• Annotated constructor parameter - The type of the service is based upon the type of the para-
meter being annotated and the cardinality of the reference. If the cardinality is either 0..n, or
1..n, the type of the parameter must be one of java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of
java.ut i l .Col lect ion so the type of the service is the generic type of the collection. Otherwise, the
type of the service is the type of the parameter.

See Also The interface attr ibute of the reference element of a Component Descr ipt ion.

112.13.10.3 ReferenceCardinality cardinality default MANDATORY

□ The cardinality of this reference.

If not specified, the cardinality of this reference is based upon how this annotation is used:

• Annotated method - The cardinality is 1..1.
• Annotated field - The cardinality is based on the type of the field. If the type is either

java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of java.ut i l .Col lect ion , the cardinality is 0..n. Oth-
erwise the cardinality is 1..1.

• Component.reference() element - The cardinality is 1..1.
• Annotated constructor parameter - The cardinality is based on the type of the parameter. If the

type is either java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of java.ut i l .Col lect ion , the cardinali-
ty is 0..n. Otherwise the cardinality is 1..1.

• Component.reference() element - The cardinality is 1..1.

See Also The cardinal ity attr ibute of the reference element of a Component Descr ipt ion.

112.13.10.4 ReferencePolicy policy default STATIC

□ The policy for this reference.

If not specified, the policy of this reference is based upon how this annotation is used:

• Annotated method - The policy is STATIC.
• Annotated field - The policy is based on the modifiers of the field. If the field is declared volat i le ,

the policy is ReferencePolicy.DYNAMIC. Otherwise the policy is STATIC.
• Annotated constructor parameter - The policy is STATIC. STATIC policy must be used for con-

structor parameters.
• Component.reference() element - The policy is STATIC.

See Also The pol icy attr ibute of the reference element of a Component Descr ipt ion.

112.13.10.5 String target default ""

□ The target property for this reference.

If not specified, no target property is set.

See Also The target attr ibute of the reference element of a Component Descr ipt ion.

org.osgi.service.component.annotations Declarative Services Specification Version 1.4

Page 280 OSGi Enterprise Release 7

112.13.10.6 ReferencePolicyOption policyOption default RELUCTANT

□ The policy option for this reference.

If not specified, the RELUCTANT reference policy option is used.

See Also The pol icy-option attr ibute of the reference element of a Component Descr ipt ion.

Since 1.2

112.13.10.7 ReferenceScope scope default BUNDLE

□ The reference scope for this reference.

If not specified, the bundle reference scope is used.

See Also The scope attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.10.8 String bind default ""

□ The name of the bind method for this reference.

If specified and this reference annotates a method, the specified name must match the name of the
annotated method.

If not specified, the name of the bind method is based upon how this annotation is used:

• Annotated method - The name of the annotated method is the name of the bind method.
• Annotated field - There is no bind method name.
• Annotated constructor parameter - There is no bind method name.
• Component.reference() element - There is no bind method name.

If there is a bind method name, the component must contain a method with that name.

See Also The bind attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.10.9 String updated default ""

□ The name of the updated method for this reference.

If not specified, the name of the updated method is based upon how this annotation is used:

• Annotated method - The name of the updated method is created from the name of the annotated
method. If the name of the annotated method begins with bind , set or add , that prefix is replaced
with updated to create the name candidate for the updated method. Otherwise, updated is pre-
fixed to the name of the annotated method to create the name candidate for the updated method.
If the component type contains a method with the candidate name, the candidate name is used
as the name of the updated method. To declare no updated method when the component type
contains a method with the candidate name, the value "-" must be used.

• Annotated field - There is no updated method name.
• Annotated constructor parameter - There is no updated method name.
• Component.reference() element - There is no updated method name.

If there is an updated method name, the component must contain a method with that name.

See Also The updated attr ibute of the reference element of a Component Descr ipt ion.

Since 1.2

112.13.10.10 String unbind default ""

□ The name of the unbind method for this reference.

Declarative Services Specification Version 1.4 org.osgi.service.component.annotations

OSGi Enterprise Release 7 Page 281

If not specified, the name of the unbind method is based upon how this annotation is used:

• Annotated method - The name of the unbind method is created from the name of the annotated
method. If the name of the annotated method begins with bind , set or add , that prefix is replaced
with unbind , unset or remove , respectively, to create the name candidate for the unbind method.
Otherwise, un is prefixed to the name of the annotated method to create the name candidate for
the unbind method. If the component type contains a method with the candidate name, the can-
didate name is used as the name of the unbind method. To declare no unbind method when the
component type contains a method with the candidate name, the value "-" must be used.

• Annotated field - There is no unbind method name.
• Annotated constructor parameter - There is no unbind method name.
• Component.reference() element - There is no unbind method name.

If there is an unbind method name, the component must contain a method with that name.

See Also The unbind attr ibute of the reference element of a Component Descr ipt ion.

112.13.10.11 String field default ""

□ The name of the field for this reference.

If specified and this reference annotates a field, the specified name must match the name of the an-
notated field.

If not specified, the name of the field is based upon how this annotation is used:

• Annotated method - There is no field name.
• Annotated field - The name of the annotated field is the name of the field.
• Annotated constructor parameter - There is no field name.
• Component.reference() element - There is no field name.

If there is a field name, the component must contain a field with that name.

See Also The fie ld attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.10.12 FieldOption fieldOption default REPLACE

□ The field option for this reference.

If not specified, the field option is based upon how this annotation is used:

• Annotated method - There is no field option.
• Annotated field - The field option is based upon the policy and cardinality of the reference and

the modifiers of the field. If the policy is ReferencePolicy.DYNAMIC, the cardinality is 0..n or 1..n,
and the field is declared f inal , the field option is FieldOption.UPDATE. Otherwise, the field op-
tion is FieldOption.REPLACE.

• Annotated constructor parameter - There is no field option.
• Component.reference() element - There is no field option.

See Also The fie ld-option attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.10.13 int parameter default 0

□ The zero-based parameter number of the constructor parameter for this reference.

If specified and this reference annotates an constructor parameter, the specified value must match
the zero-based parameter number of the annotated constructor parameter.

org.osgi.service.component.annotations Declarative Services Specification Version 1.4

Page 282 OSGi Enterprise Release 7

If not specified, the parameter number is based upon how this annotation is used:

• Annotated method - There is no parameter number.
• Annotated field - There is no parameter number.
• Annotated constructor parameter - The zero-based parameter number of the parameter.
• Component.reference() element - There is no parameter number.

If there is a parameter number, the component must declare a constructor that has a parameter hav-
ing the zero-based parameter number.

See Also The parameter attr ibute of the reference element of a Component Descr ipt ion. , The init at-
tr ibute of the component element of a Component Descr ipt ion.

Since 1.4

112.13.10.14 CollectionType collectionType default SERVICE

□ The collection type for this reference.

If not specified, the collection type is based upon how this annotation is used:

• Annotated method - There is no collection type.
• Annotated field - The collection type is based upon the cardinality of the reference and the gener-

ic type of the field. If the cardinality is 0..n or 1..n, the collection type is inferred from the generic
type of the list or collection. Otherwise, there is no collection type

• Annotated constructor method parameter - The collection type is based upon the cardinality of
the reference and the generic type of the parameter. If the cardinality is 0..n or 1..n, the collection
type is inferred from the generic type of the list or collection. Otherwise, there is no collection
type

• Component.reference() element - There is no collection type.

See Also The fie ld-col lect ion-type attr ibute of the reference element of a Component Descr ipt ion.

Since 1.4

112.13.11 enum ReferenceCardinality
Cardinality for the Reference annotation.

Specifies if the reference is optional and if the component implementation support a single bound
service or multiple bound services.

112.13.11.1 OPTIONAL

The reference is optional and unary. That is, the reference has a cardinality of 0..1 .

112.13.11.2 MANDATORY

The reference is mandatory and unary. That is, the reference has a cardinality of 1. .1 .

112.13.11.3 MULTIPLE

The reference is optional and multiple. That is, the reference has a cardinality of 0..n .

112.13.11.4 AT_LEAST_ONE

The reference is mandatory and multiple. That is, the reference has a cardinality of 1. .n .

112.13.11.5 public String toString()

112.13.11.6 public static ReferenceCardinality valueOf(String name)

Declarative Services Specification Version 1.4 org.osgi.service.component.annotations

OSGi Enterprise Release 7 Page 283

112.13.11.7 public static ReferenceCardinality[] values()

112.13.12 enum ReferencePolicy
Policy for the Reference annotation.

112.13.12.1 STATIC

The static policy is the most simple policy and is the default policy. A component instance never
sees any of the dynamics. Component configurations are deactivated before any bound service for
a reference having a static policy becomes unavailable. If a target service is available to replace the
bound service which became unavailable, the component configuration must be reactivated and
bound to the replacement service.

112.13.12.2 DYNAMIC

The dynamic policy is slightly more complex since the component implementation must proper-
ly handle changes in the set of bound services. With the dynamic policy, SCR can change the set of
bound services without deactivating a component configuration. If the component uses method
injection to access services, then the component instance will be notified of changes in the set of
bound services by calls to the bind and unbind methods.

112.13.12.3 public String toString()

112.13.12.4 public static ReferencePolicy valueOf(String name)

112.13.12.5 public static ReferencePolicy[] values()

112.13.13 enum ReferencePolicyOption
Policy option for the Reference annotation.

Since 1.2

112.13.13.1 RELUCTANT

The reluctant policy option is the default policy option for both static and dynamic reference poli-
cies. When a new target service for a reference becomes available, references having the reluctant
policy option for the static policy or the dynamic policy with a unary cardinality will ignore the
new target service. References having the dynamic policy with a multiple cardinality will bind the
new target service.

112.13.13.2 GREEDY

The greedy policy option is a valid policy option for both static and dynamic reference policies.
When a new target service for a reference becomes available, references having the greedy policy
option will bind the new target service.

112.13.13.3 public String toString()

112.13.13.4 public static ReferencePolicyOption valueOf(String name)

112.13.13.5 public static ReferencePolicyOption[] values()

112.13.14 enum ReferenceScope
Reference scope for the Reference annotation.

org.osgi.service.component.annotations Declarative Services Specification Version 1.4

Page 284 OSGi Enterprise Release 7

Since 1.3

112.13.14.1 BUNDLE

A single service object is used for all references to the service in this bundle.

112.13.14.2 PROTOTYPE

If the bound service has prototype service scope, then each instance of the component with this ref-
erence can receive a unique instance of the service. If the bound service does not have prototype ser-
vice scope, then this reference scope behaves the same as BUNDLE.

112.13.14.3 PROTOTYPE_REQUIRED

Bound services must have prototype service scope. Each instance of the component with this refer-
ence can receive a unique instance of the service.

112.13.14.4 public String toString()

112.13.14.5 public static ReferenceScope valueOf(String name)

112.13.14.6 public static ReferenceScope[] values()

112.13.15 @RequireServiceComponentRuntime
This annotation can be used to require the Service Component Runtime to process Declarative Ser-
vices components. It can be used directly, or as a meta-annotation.

Since 1.4

Retention CLASS

Target TYPE , PACKAGE

112.13.16 enum ServiceScope
Service scope for the Component annotation.

Since 1.3

112.13.16.1 SINGLETON

When the component is registered as a service, it must be registered as a bundle scope service but
only a single instance of the component must be used for all bundles using the service.

112.13.16.2 BUNDLE

When the component is registered as a service, it must be registered as a bundle scope service and
an instance of the component must be created for each bundle using the service.

112.13.16.3 PROTOTYPE

When the component is registered as a service, it must be registered as a prototype scope service and
an instance of the component must be created for each distinct request for the service.

112.13.16.4 DEFAULT

Default element value for annotation. This is used to distinguish the default value for an element
and should not otherwise be used.

112.13.16.5 public String toString()

Declarative Services Specification Version 1.4 org.osgi.service.component.runtime

OSGi Enterprise Release 7 Page 285

112.13.16.6 public static ServiceScope valueOf(String name)

112.13.16.7 public static ServiceScope[] values()

112.14 org.osgi.service.component.runtime

Service Component Runtime Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.runtime; vers ion="[1.4,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component.runtime; vers ion="[1.4,1.5)"

112.14.1 Summary

• ServiceComponentRuntime - The ServiceComponentRuntime service represents the Declara-
tive Services actor, known as Service Component Runtime (SCR), that manages the service com-
ponents and their life cycle.

112.14.2 public interface ServiceComponentRuntime
The ServiceComponentRuntime service represents the Declarative Services actor, known as Service
Component Runtime (SCR), that manages the service components and their life cycle. The Service-
ComponentRuntime service allows introspection of the components managed by Service Compo-
nent Runtime.

This service differentiates between a ComponentDescriptionDTO and a ComponentConfigura-
tionDTO. A ComponentDescriptionDTO is a representation of a declared component description. A
ComponentConfigurationDTO is a representation of an actual instance of a declared component de-
scription parameterized by component properties.

This service must be registered with a Constants.SERVICE_CHANGECOUNT service property that
must be updated each time the SCR DTOs available from this service change.

Access to this service requires the ServicePermission[ServiceComponentRuntime, GET] permis-
sion. It is intended that only administrative bundles should be granted this permission to limit ac-
cess to the potentially intrusive methods provided by this service.

Since 1.3

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.14.2.1 public Promise<Void> disableComponent(ComponentDescriptionDTO description)

description The component description to disable. Must not be nul l .

□ Disables the specified component description.

If the specified component description is currently disabled, this method has no effect.

This method must return after changing the enabled state of the specified component description.
Any actions that result from this, such as activating or deactivating a component configuration,
must occur asynchronously to this method call.

org.osgi.service.component.runtime Declarative Services Specification Version 1.4

Page 286 OSGi Enterprise Release 7

Returns A promise that will be resolved when the actions that result from changing the enabled state of the
specified component have completed. If the provided description does not belong to an active bun-
dle, a failed promise is returned.

See Also isComponentEnabled(ComponentDescriptionDTO)

112.14.2.2 public Promise<Void> enableComponent(ComponentDescriptionDTO description)

description The component description to enable. Must not be nul l .

□ Enables the specified component description.

If the specified component description is currently enabled, this method has no effect.

This method must return after changing the enabled state of the specified component description.
Any actions that result from this, such as activating or deactivating a component configuration,
must occur asynchronously to this method call.

Returns A promise that will be resolved when the actions that result from changing the enabled state of the
specified component have completed. If the provided description does not belong to an active bun-
dle, a failed promise is returned.

See Also isComponentEnabled(ComponentDescriptionDTO)

112.14.2.3 public Collection<ComponentConfigurationDTO>
getComponentConfigurationDTOs(ComponentDescriptionDTO description)

description The component description. Must not be nul l .

□ Returns the component configurations for the specified component description.

Returns A collection containing a snapshot of the current component configurations for the specified com-
ponent description. An empty collection is returned if there are none or if the provided component
description does not belong to an active bundle.

112.14.2.4 public ComponentDescriptionDTO getComponentDescriptionDTO(Bundle bundle, String name)

bundle The bundle declaring the component description. Must not be nul l .

name The name of the component description. Must not be nul l .

□ Returns the ComponentDescriptionDTO declared with the specified name by the specified bundle.

Only component descriptions from active bundles are returned. nul l if no such component is de-
clared by the given bundle or the bundle is not active.

Returns The declared component description or nul l if the specified bundle is not active or does not declare a
component description with the specified name.

112.14.2.5 public Collection<ComponentDescriptionDTO> getComponentDescriptionDTOs(Bundle... bundles)

bundles The bundles whose declared component descriptions are to be returned. Specifying no bundles, or
the equivalent of an empty Bundle array, will return the declared component descriptions from all
active bundles.

□ Returns the component descriptions declared by the specified active bundles.

Only component descriptions from active bundles are returned. If the specified bundles have no de-
clared components or are not active, an empty collection is returned.

Returns The declared component descriptions of the specified active bundles . An empty collection is re-
turned if there are no component descriptions for the specified active bundles.

112.14.2.6 public boolean isComponentEnabled(ComponentDescriptionDTO description)

description The component description. Must not be nul l .

□ Returns whether the specified component description is currently enabled.

Declarative Services Specification Version 1.4 org.osgi.service.component.runtime.dto

OSGi Enterprise Release 7 Page 287

The enabled state of a component description is initially set by the enabled attribute of the compo-
nent description.

Returns true if the specified component description is currently enabled. Otherwise, fa lse .

See Also enableComponent(ComponentDescriptionDTO), disableComponent(ComponentDescriptionDTO),
ComponentContext.disableComponent(String), ComponentContext.enableComponent(String)

112.15 org.osgi.service.component.runtime.dto

Service Component Runtime Data Transfer Objects Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.runtime.dto; vers ion="[1.4,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component.runtime.dto; vers ion="[1.4,1.5)"

112.15.1 Summary

• ComponentConfigurat ionDTO - A representation of an actual instance of a declared component
description parameterized by component properties.

• ComponentDescr ipt ionDTO - A representation of a declared component description.
• ReferenceDTO - A representation of a declared reference to a service.
• SatisfiedReferenceDTO - A representation of a satisfied reference.
• UnsatisfiedReferenceDTO - A representation of an unsatisfied reference.

112.15.2 public class ComponentConfigurationDTO
extends DTO
A representation of an actual instance of a declared component description parameterized by com-
ponent properties.

Since 1.3

Concurrency Not Thread-safe

112.15.2.1 public static final int ACTIVE = 8

The component configuration is active.

This is the normal operational state of a component configuration.

112.15.2.2 public ComponentDescriptionDTO description

The representation of the component configuration's component description.

112.15.2.3 public static final int FAILED_ACTIVATION = 16

The component configuration failed to activate.

This means the component configuration is satisfied but that either:

• an exception occurred loading the implementation class,
• the static initializer threw an exception,

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.4

Page 288 OSGi Enterprise Release 7

• the constructor threw an exception, or
• the activate method threw an exception.

The failure information from the exception is available from failure.

Since 1.4

112.15.2.4 public String failure

The failure information if the component configuration state is FAILED_ACTIVATION.

This is the failure exception converted to a String using:

 StringWriter sw = new StringWriter();
 exception.printStackTrace(new PrintWriter(sw));
 sw.toString();

This must be nul l if the component configuration state is not FAILED_ACTIVATION.

Since 1.4

112.15.2.5 public long id

The id of the component configuration.

The id is a non-persistent, unique value assigned at runtime. The id is also available as the
component. id component property. The value of this field is unspecified if the state of this compo-
nent configuration is unsatisfied.

112.15.2.6 public Map<String, Object> properties

The component properties for the component configuration.

See Also ComponentContext.getProperties()

112.15.2.7 public static final int SATISFIED = 4

The component configuration is satisfied.

Any services declared by the component description are registered.

112.15.2.8 public SatisfiedReferenceDTO[] satisfiedReferences

The satisfied references.

Each SatisfiedReferenceDTO in the array represents a satisfied reference of the component configu-
ration. The array must be empty if the component configuration has no satisfied references.

112.15.2.9 public ServiceReferenceDTO service

The registered service of the component configuration.

This must be non-nul l if the component configuration is registered as a service. Otherwise it must be
nul l .

Since 1.4

112.15.2.10 public int state

The current state of the component configuration.

This is one of UNSATISFIED_CONFIGURATION, UNSATISFIED_REFERENCE, SATISFIED, ACTIVE,
or FAILED_ACTIVATION.

112.15.2.11 public static final int UNSATISFIED_CONFIGURATION = 1

The component configuration is unsatisfied due to a missing required configuration.

Declarative Services Specification Version 1.4 org.osgi.service.component.runtime.dto

OSGi Enterprise Release 7 Page 289

112.15.2.12 public static final int UNSATISFIED_REFERENCE = 2

The component configuration is unsatisfied due to an unsatisfied reference.

112.15.2.13 public UnsatisfiedReferenceDTO[] unsatisfiedReferences

The unsatisfied references.

Each UnsatisfiedReferenceDTO in the array represents an unsatisfied reference of the component
configuration. The array must be empty if the component configuration has no unsatisfied refer-
ences.

112.15.2.14 public ComponentConfigurationDTO()

112.15.3 public class ComponentDescriptionDTO
extends DTO
A representation of a declared component description.

Since 1.3

Concurrency Not Thread-safe

112.15.3.1 public String activate

The name of the activate method.

This is declared in the activate attribute of the component element. This must be nul l if the compo-
nent description does not declare an activate method name.

112.15.3.2 public String[] activationFields

The activation fields.

These are declared in the activat ion-fields attribute of the component element. The array must be
empty if the component description does not declare any activation fields.

Since 1.4

112.15.3.3 public BundleDTO bundle

The bundle declaring the component description.

112.15.3.4 public String[] configurationPid

The configuration pids.

These are declared in the configurat ion-pid attribute of the component element. This must contain
the default configuration pid if the component description does not declare a configuration pid.

112.15.3.5 public String configurationPolicy

The configuration policy.

This is declared in the configurat ion-pol icy attribute of the component element. This must be the
default configuration policy if the component description does not declare a configuration policy.

112.15.3.6 public String deactivate

The name of the deactivate method.

This is declared in the deactivate attribute of the component element. This must be nul l if the com-
ponent description does not declare a deactivate method name.

112.15.3.7 public boolean defaultEnabled

The initial enabled state.

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.4

Page 290 OSGi Enterprise Release 7

This is declared in the enabled attribute of the component element.

112.15.3.8 public String factory

The component factory name.

This is declared in the factory attribute of the component element. This must be nul l if the compo-
nent description is not declared as a factory component.

112.15.3.9 public Map<String, Object> factoryProperties

The factory properties.

These are declared in the component description by the factory-property and factory-propert ies el-
ements. This must be nul l if the component description is not declared as a factory component.

Since 1.4

112.15.3.10 public boolean immediate

The immediate state.

This is declared in the immediate attribute of the component element.

112.15.3.11 public String implementationClass

The fully qualified name of the implementation class.

This is declared in the class attribute of the implementation element.

112.15.3.12 public int init

The constructor parameter count.

This is declared in the in it attribute of the component element. This must be 0 if the component de-
scription does not declare an in it attribute.

Since 1.4

112.15.3.13 public String modified

The name of the modified method.

This is declared in the modified attribute of the component element. This must be nul l if the compo-
nent description does not declare a modified method name.

112.15.3.14 public String name

The name of the component.

This is declared in the name attribute of the component element. This must be the default name if
the component description does not declare a name.

112.15.3.15 public Map<String, Object> properties

The component properties.

These are declared in the component description by the property and propert ies elements as well as
the target attribute of the reference elements.

112.15.3.16 public ReferenceDTO[] references

The referenced services.

These are declared in the reference elements. The array must be empty if the component descrip-
tion does not declare references to any services.

112.15.3.17 public String scope

The service scope.

Declarative Services Specification Version 1.4 org.osgi.service.component.runtime.dto

OSGi Enterprise Release 7 Page 291

This is declared in the scope attribute of the service element. This must be nul l if the component de-
scription does not declare any service interfaces.

112.15.3.18 public String[] serviceInterfaces

The fully qualified names of the service interfaces.

These are declared in the interface attribute of the provide elements. The array must be empty if the
component description does not declare any service interfaces.

112.15.3.19 public ComponentDescriptionDTO()

112.15.4 public class ReferenceDTO
extends DTO
A representation of a declared reference to a service.

Since 1.3

Concurrency Not Thread-safe

112.15.4.1 public String bind

The name of the bind method of the reference.

This is declared in the bind attribute of the reference element. This must be nul l if the component
description does not declare a bind method for the reference.

112.15.4.2 public String cardinality

The cardinality of the reference.

This is declared in the cardinal ity attribute of the reference element. This must be the default cardi-
nality if the component description does not declare a cardinality for the reference.

112.15.4.3 public String collectionType

The collection type for the reference.

This is declared in the f ie ld-col lect ion-type attribute of the reference element. This must be nul l if
the component description does not declare a collection type for the reference.

Since 1.4

112.15.4.4 public String field

The name of the field of the reference.

This is declared in the f ie ld attribute of the reference element. This must be nul l if the component
description does not declare a field for the reference.

112.15.4.5 public String fieldOption

The field option of the reference.

This is declared in the f ie ld-option attribute of the reference element. This must be nul l if the com-
ponent description does not declare a field for the reference.

112.15.4.6 public String interfaceName

The service interface of the reference.

This is declared in the interface attribute of the reference element.

112.15.4.7 public String name

The name of the reference.

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.4

Page 292 OSGi Enterprise Release 7

This is declared in the name attribute of the reference element. This must be the default name if the
component description does not declare a name for the reference.

112.15.4.8 public Integer parameter

The zero-based parameter number of the constructor parameter for the reference.

This is declared in the parameter attribute of the reference element. This must be nul l if the compo-
nent description does not declare a parameter number for the reference.

Since 1.4

112.15.4.9 public String policy

The policy of the reference.

This is declared in the pol icy attribute of the reference element. This must be the default policy if
the component description does not declare a policy for the reference.

112.15.4.10 public String policyOption

The policy option of the reference.

This is declared in the pol icy-option attribute of the reference element. This must be the default
policy option if the component description does not declare a policy option for the reference.

112.15.4.11 public String scope

The scope of the reference.

This is declared in the scope attribute of the reference element. This must be the default scope if the
component description does not declare a scope for the reference.

112.15.4.12 public String target

The target of the reference.

This is declared in the target attribute of the reference element. This must be nul l if the component
description does not declare a target for the reference.

112.15.4.13 public String unbind

The name of the unbind method of the reference.

This is declared in the unbind attribute of the reference element. This must be nul l if the component
description does not declare an unbind method for the reference.

112.15.4.14 public String updated

The name of the updated method of the reference.

This is declared in the updated attribute of the reference element. This must be nul l if the compo-
nent description does not declare an updated method for the reference.

112.15.4.15 public ReferenceDTO()

112.15.5 public class SatisfiedReferenceDTO
extends DTO
A representation of a satisfied reference.

Since 1.3

Concurrency Not Thread-safe

Declarative Services Specification Version 1.4 org.osgi.service.component.propertytypes

OSGi Enterprise Release 7 Page 293

112.15.5.1 public ServiceReferenceDTO[] boundServices

The bound services.

Each ServiceReferenceDTO in the array represents a service bound to the satisfied reference. The ar-
ray must be empty if there are no bound services.

112.15.5.2 public String name

The name of the declared reference.

This is declared in the name attribute of the reference element of the component description.

See Also ReferenceDTO.name

112.15.5.3 public String target

The target property of the satisfied reference.

This is the value of the component property whose name is the concatenation of the declared refer-
ence name and ".target". This must be nul l if no target property is set for the reference.

112.15.5.4 public SatisfiedReferenceDTO()

112.15.6 public class UnsatisfiedReferenceDTO
extends DTO
A representation of an unsatisfied reference.

Since 1.3

Concurrency Not Thread-safe

112.15.6.1 public String name

The name of the declared reference.

This is declared in the name attribute of the reference element of the component description.

See Also ReferenceDTO.name

112.15.6.2 public String target

The target property of the unsatisfied reference.

This is the value of the component property whose name is the concatenation of the declared refer-
ence name and ".target". This must be nul l if no target property is set for the reference.

112.15.6.3 public ServiceReferenceDTO[] targetServices

The target services.

Each ServiceReferenceDTO in the array represents a target service for the reference. The array must
be empty if there are no target services. The upper bound on the number of target services in the ar-
ray is the upper bound on the cardinality of the reference.

112.15.6.4 public UnsatisfiedReferenceDTO()

112.16 org.osgi.service.component.propertytypes

Component Property Types Package Version 1.4.

When used as annotations, component property types are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

org.osgi.service.component.propertytypes Declarative Services Specification Version 1.4

Page 294 OSGi Enterprise Release 7

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.propertytypes; vers ion="[1.4,2.0)"

112.16.1 Summary

• ExportedService - Component Property Type for the remote service properties for an exported
service.

• ServiceDescr ipt ion - Component Property Type for the service.descr ipt ion service property.
• ServiceRanking - Component Property Type for the service.ranking service property.
• ServiceVendor - Component Property Type for the service.vendor service property.

112.16.2 @ExportedService
Component Property Type for the remote service properties for an exported service.

This annotation can be used on a Component to declare the values of the remote service properties
for an exported service.

See Also Component Property Types , Remote Services Specif icat ion

Since 1.4

Retention CLASS

Target TYPE

112.16.2.1 Class<?>[] service_exported_interfaces

□ Service property marking the service for export. It defines the interfaces under which the service
can be exported.

If an empty array is specified, the property is not added to the component description.

Returns The exported service interfaces.

See Also Constants.SERVICE_EXPORTED_INTERFACES

112.16.2.2 String[] service_exported_configs default {}

□ Service property identifying the configuration types that should be used to export the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The configuration types.

See Also Constants.SERVICE_EXPORTED_CONFIGS

112.16.2.3 String[] service_exported_intents default {}

□ Service property identifying the intents that the distribution provider must implement to distribute
the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The intents that the distribution provider must implement to distribute the service.

See Also Constants.SERVICE_EXPORTED_INTENTS

Declarative Services Specification Version 1.4 org.osgi.service.component.propertytypes

OSGi Enterprise Release 7 Page 295

112.16.2.4 String[] service_exported_intents_extra default {}

□ Service property identifying the extra intents that the distribution provider must implement to dis-
tribute the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The extra intents that the distribution provider must implement to distribute the service.

See Also Constants.SERVICE_EXPORTED_INTENTS_EXTRA

112.16.2.5 String[] service_intents default {}

□ Service property identifying the intents that the distribution provider must implement to distribute
the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The intents that the service implements.

See Also Constants.SERVICE_INTENTS

112.16.3 @ServiceDescription
Component Property Type for the service.descr ipt ion service property.

This annotation can be used on a Component to declare the value of the
Constants.SERVICE_DESCRIPTION service property.

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

112.16.3.1 String value

□ Service property identifying a service's description.

Returns The service description.

See Also Constants.SERVICE_DESCRIPTION

112.16.4 @ServiceRanking
Component Property Type for the service.ranking service property.

This annotation can be used on a Component to declare the value of the
Constants.SERVICE_RANKING service property.

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

112.16.4.1 int value

□ Service property identifying a service's ranking.

Returns The service ranking.

See Also Constants.SERVICE_RANKING

References Declarative Services Specification Version 1.4

Page 296 OSGi Enterprise Release 7

112.16.5 @ServiceVendor
Component Property Type for the service.vendor service property.

This annotation can be used on a Component to declare the value of the
Constants.SERVICE_VENDOR service property.

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

112.16.5.1 String value

□ Service property identifying a service's vendor.

Returns The service vendor.

See Also Constants.SERVICE_VENDOR

112.17 References

[1] Automating Service Dependency Management in a Service-Oriented Component Model
Humberto Cervantes, Richard S. Hall, Proceedings of the Sixth Component-Based Software Engi-
neering Workshop, May 2003, pp. 91-96
http://www-adele.imag.fr/Les.Publications/intConferences/CBSE2003Cer.pdf

[2] Service Binder
Humberto Cervantes, Richard S. Hall
http://gravity.sourceforge.net/servicebinder

[3] Java Properties File
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html

[4] Extensible Markup Language (XML) 1.0
http://www.w3.org/TR/REC-xml/

[5] OSGi XML Schemas
https://www.osgi.org/developer/specifications/

[6] The Java Virtual Machine Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html

[7] The Java Language Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

112.18 Changes
• Added support for factory properties on Component Factory service. See Factory Component on

page 210 and Factory Property and Factory Properties Elements on page 233.
• Clarified that if SCR cannot locate a referenced field, an error must be logged.
• The Reference annotation is updated to allow the f ie ld-col lect ion-type to be set if the desired

type cannot be properly inferred by the annotation processing tool. See col lect ionType .
• A new FAILED_ACTIVATION state is added to ComponentConfigurat ionDTO along with a fa i lure

field to hold the failure exception.

http://www-adele.imag.fr/Les.Publications/intConferences/CBSE2003Cer.pdf
http://gravity.sourceforge.net/servicebinder
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
http://www.w3.org/TR/REC-xml/
https://www.osgi.org/developer/specifications/
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

Declarative Services Specification Version 1.4 Changes

OSGi Enterprise Release 7 Page 297

• Delayed Component on page 235 is updated to clarify when a component configuration may be
reclaimed.

• Component property types can be used as annotations on a component implementation class.
See Component Property Types on page 251.

• A set of standard component property types for standard service properties has been defined. See
Standard Component Property Types on page 255.

• If there is no corresponding component property for a component property type method return-
ing an array type, the component property type method must return an empty array instead of
null. See Coercing Component Property Values on page 254.

• Component Property Mapping on page 252 is updated to add support for mapping to hyphen-mi-
nus in component property names, to add special handling for the mapping of the value method
in component property types which are single-element annotations, and to add support for PRE-
FIX_.

• Special support is added for references to Loggers from the Log Service specification. SCR will
convert a reference to a LoggerFactory to a Logger object on behalf of the component. See Logger
Support on page 222.

• Support is added for injecting activation objects into fields. See Activation Objects on page 238.
• Support is added for constructor injection. See Constructor Injection on page 216.
• SCR must ensure Configuration Plugins participate in the configuration process. See Deployment

on page 246.
• SCR must support implicit coordinations. See Coordinator Support on page 248.

Changes Declarative Services Specification Version 1.4

Page 298 OSGi Enterprise Release 7

Event Admin Service Specification Version 1.4 Introduction

OSGi Enterprise Release 7 Page 299

113 Event Admin Service Specification

Version 1.4

113.1 Introduction
Nearly all the bundles in an OSGi framework must deal with events, either as an event publisher or
as an event handler. So far, the preferred mechanism to disperse those events have been the service
interface mechanism.

Dispatching events for a design related to X, usually involves a service of type XListener . Howev-
er, this model does not scale well for fine grained events that must be dispatched to many different
handlers. Additionally, the dynamic nature of the OSGi environment introduces several complexi-
ties because both event publishers and event handlers can appear and disappear at any time.

The Event Admin service provides an inter-bundle communication mechanism. It is based on a
event publish and subscribe model, popular in many message based systems.

This specification defines the details for the participants in this event model.

113.1.1 Essentials

• Simplifications - The model must significantly simplify the process of programming an event
source and an event handler.

• Dependencies - Handle the myriad of dependencies between event sources and event handlers for
proper cleanup.

• Synchronicity - It must be possible to deliver events asynchronously or synchronously with the
caller.

• Event Window - Only event handlers that are active when an event is published must receive this
event, handlers that register later must not see the event.

• Performance - The event mechanism must impose minimal overhead in delivering events.
• Selectivity - Event listeners must only receive notifications for the event types for which they are

interested
• Reliability - The Event Admin must ensure that events continue to be delivered regardless the

quality of the event handlers.
• Security - Publishing and receiving events are sensitive operations that must be protected per

event type.
• Extensibility - It must be possible to define new event types with their own data types.
• Native Code - Events must be able to be passed to native code or come from native code.
• OSGi Events - The OSGi Framework, as well as a number of OSGi services, already have number of

its own events defined. For uniformity of processing, these have to be mapped into generic event
types.

113.1.2 Entities

• Event - An Event object has a topic and a Dictionary object that contains the event properties. It is
an immutable object.

• Event Admin - The service that provides the publish and subscribe model to Event Handlers and
Event Publishers.

Event Admin Architecture Event Admin Service Specification Version 1.4

Page 300 OSGi Enterprise Release 7

• Event Handler - A service that receives and handles Event objects.
• Event Publisher - A bundle that sends event through the Event Admin service.
• Event Subscriber - Another name for an Event Handler.
• Topic - The name of an Event type.
• Event Properties - The set of properties that is associated with an Event.

Figure 113.1 The Event Admin service org.osgi.service.event package

Event Publisher
Impl

an Event
Consumer Impl

receive
event

send
event

<<service>>
Event Admin

Event Admin Impl

<<service>>
Event Handler1 0..n

<<class>>
Event

113.1.3 Synopsis
The Event Admin service provides a place for bundles to publish events, regardless of their destina-
tion. It is also used by Event Handlers to subscribe to specific types of events.

Events are published under a topic, together with a number of event properties. Event Handlers can
specify a filter to control the Events they receive on a very fine grained basis.

113.1.4 What To Read

• Architects - The Event Admin Architecture on page 300 provides an overview of the Event Admin
service.

• Event Publishers - The Event Publisher on page 304 provides an introduction of how to write an
Event Publisher. The Event Admin Architecture on page 300 provides a good overview of the de-
sign.

• Event Subscribers/Handlers - The Event Handler on page 302 provides the rules on how to sub-
scribe and handle events.

113.2 Event Admin Architecture
The Event Admin is based on the Publish-Subscribe pattern. This pattern decouples sources from their
handlers by interposing an event channel between them. The publisher posts events to the channel,
which identifies which handlers need to be notified and then takes care of the notification process.
This model is depicted in Figure 113.2.

Event Admin Service Specification Version 1.4 The Event

OSGi Enterprise Release 7 Page 301

Figure 113.2 Channel Pattern

Publisher <<service>>
Event Handler

1
0..n

<<service>>
Event Admin

1
0..n

handleEventsendEvent
postEvent

In this model, the event source and event handler are completely decoupled because neither has any
direct knowledge of the other. The complicated logic of monitoring changes in the event publishers
and event handlers is completely contained within the event channel. This is highly advantageous
in an OSGi environment because it simplifies the process of both sending and receiving events.

113.3 The Event
Events have the following attributes:

• Topic - A topic that defines what happened. For example, when a bundle is started an event is
published that has a topic of org/osgi/framework/BundleEvent/STARTED .

• Properties - Zero or more properties that contain additional information about the event. For
example, the previous example event has a property of bundle. id which is set to a Long object,
among other properties.

113.3.1 Topics
The topic of an event defines the type of the event. It is fairly granular in order to give handlers the
opportunity to register for just the events they are interested in. When a topic is designed, its name
should not include any other information, such as the publisher of the event or the data associated
with the event, those parts are intended to be stored in the event properties.

The topic is intended to serve as a first-level filter for determining which handlers should receive
the event. Event Admin service implementations use the structure of the topic to optimize the dis-
patching of the events to the handlers.

Topics are arranged in a hierarchical namespace. Each level is defined by a token and levels are sepa-
rated by solidi (' / ' \u002F). More precisely, the topic must conform to the following grammar:

 topic ::= token ('/' token) * // See General Syntax Definitions in Core

Topics should be designed to become more specific when going from left to right. Handlers can pro-
vide a prefix that matches a topic, using the preferred order allows a handler to minimize the num-
ber of prefixes it needs to register.

Topics are case-sensitive. As a convention, topics should follow the reverse domain name scheme
used by Java packages to guarantee uniqueness. The separator must be a solidus (' / ' \u002F) instead
of the full stop ('.' \u002E).

This specification uses the convention ful ly/qual i f ied/package/ClassName/ACTION . If necessary, a
pseudo-class-name is used.

113.3.2 Properties
Information about the actual event is provided as properties. The property name is a case-sensitive
string and the value can be any object. Although any Java object can be used as a property value, on-
ly Str ing objects and the eight primitive types (plus their wrappers) should be used. Other types can-
not be passed to handlers that reside external from the Java VM.

Event Handler Event Admin Service Specification Version 1.4

Page 302 OSGi Enterprise Release 7

Another reason that arbitrary classes should not be used is the mutability of objects. If the values are
not immutable, then any handler that receives the event could change the value. Any handlers that
received the event subsequently would see the altered value and not the value as it was when the
event was sent.

The topic of the event is available as a property with the key EVENT_TOPIC . This allows filters to in-
clude the topic as a condition if necessary.

113.3.3 High Performance
An event processing system can become a bottleneck in large systems. One expensive aspect of the
Event object is its properties and its immutability. This combination requires the Event object to cre-
ate a copy of the properties for each object. There are many situations where the same properties are
dispatched through Event Admin, the topic is then used to signal the information. Creating the copy
of the properties can therefore take unnecessary CPU time and memory. However, the immutability
of the Event object requires the properties to be immutable.

For this reason, this specification also provides an immutable Map with the Event Properties class.
This class implements an immutable map that is recognized and trusted by the Event object to not
mutate. Using an Event Properties object allows a client to create many different Event objects with
different topics but sharing the same properties object.

The following example shows how an event poster can limit the copying of the properties.

void foo(EventAdmin eventAdmin) {
 Map<String,Object> props = new HashMap<String,Object>();
 props.put("foo", 1);
 EventProperties eventProps = new EventProperties(props);

 for (int i=0; i<1000; i++)
 eventAdmin.postEvent(new Event("my/topic/" + i, eventProps));
}

113.4 Event Handler
Event handlers must be registered as services with the OSGi framework under the object class
org.osgi .service.event.EventHandler .

Event handlers should be registered with a property (constant from the EventConstants class)
EVENT_TOPIC . The value being a Str ing , Str ing[] or Collect ion<Str ing> object that describes which
topics the handler is interested in. A wildcard asterisk ('* ' \u002A) may be used as the last token of a
topic name, for example com/action/* . This matches any topic that shares the same first tokens. For
example, com/action/* matches com/action/l isten .

Event Handlers which have not specified the EVENT_TOPIC service property must not receive
events.

The value of each entry in the EVENT_TOPIC service registration property must conform to the fol-
lowing grammar:

topic-scope ::= '*' | (topic '/*'?)

The EventTopics component property type can be used for this property on Declarative Services
components.

Event handlers can also be registered with a service property named EVENT_FILTER . The value of
this property must be a string containing a Framework filter specification. Any of the event's prop-
erties can be used in the filter expression.

Event Admin Service Specification Version 1.4 Event Handler

OSGi Enterprise Release 7 Page 303

event-filter ::= filter // See Filter Syntax in Core

Each Event Handler is notified for any event which belongs to the topics the handler has expressed
an interest in. If the handler has defined a EVENT_FILTER service property then the event properties
must also match the filter expression. If the filter is an error, then the Event Admin service should
log a warning and further ignore the Event Handler. The EventFi l ter component property type can
be used for this property on Declarative Services components.

For example, a bundle wants to see all Log Service events with a level of WARNING or ERROR , but it
must ignore the INFO and DEBUG events. Additionally, the only events of interest are when the bun-
dle symbolic name starts with com.acme .

public AcmeWatchDog implements BundleActivator,
 EventHandler {
 final static String [] topics = new String[] {
 "org/osgi/service/log/LogEntry/LOG_WARNING",
 "org/osgi/service/log/LogEntry/LOG_ERROR" };

 public void start(BundleContext context) {
 Dictionary d = new Hashtable();
 d.put(EventConstants.EVENT_TOPIC, topics);
 d.put(EventConstants.EVENT_FILTER,
 "(bundle.symbolicName=com.acme.*)");
 context.registerService(EventHandler.class.getName(),
 this, d);
 }
 public void stop(BundleContext context) {}

 public void handleEvent(Event event) {
 //...
 }
}

If there are multiple Event Admin services registered with the Framework then all Event Admin ser-
vices must send their published events to all registered Event Handlers.

113.4.1 Ordering
In the default case, an Event Handler will receive posted (asynchronous) events from a single thread
in the same order as they were posted. Maintaining this ordering guarantee requires the Event Ad-
min to serialize the delivery of events instead of, for example, delivering the events on different
worker threads. There are many scenarios where this ordering is not really required. For this reason,
an Event Handler can signal to the Event Admin that events can be delivered out of order. This is no-
tified with the EVENT_DELIVERY service property. This service property can be used in the following
way:

• Not set or set to both - The Event Admin must deliver the events in the proper order.
• DELIVERY_ASYNC_ORDERED - Events must be delivered in order.
• DELIVERY_ASYNC_UNORDERED - Allow the events to be delivered in any order.

The EventDel ivery component property type can be used for this property on Declarative Services
components.

Event Publisher Event Admin Service Specification Version 1.4

Page 304 OSGi Enterprise Release 7

113.5 Event Publisher
To fire an event, the event source must retrieve the Event Admin service from the OSGi service reg-
istry. Then it creates the event object and calls one of the Event Admin service's methods to fire the
event either synchronously or asynchronously.

The following example is a class that publishes a time event every 60 seconds.

public class TimerEvent extends Thread
 implements BundleActivator {
 Hashtable time = new Hashtable();
 ServiceTracker tracker;

 public TimerEvent() { super("TimerEvent"); }

 public void start(BundleContext context) {
 tracker = new ServiceTracker(context,
 EventAdmin.class.getName(), null);
 tracker.open();
 start();
 }

 public void stop(BundleContext context) {
 interrupt();
 tracker.close();
 }

 public void run() {
 while (! Thread.interrupted()) try {
 Calendar c = Calendar.getInstance();
 set(c,Calendar.MINUTE,"minutes");
 set(c,Calendar.HOUR,"hours");
 set(c,Calendar.DAY_OF_MONTH,"day");
 set(c,Calendar.MONTH,"month");
 set(c,Calendar.YEAR,"year");

 EventAdmin ea =
 (EventAdmin) tracker.getService();
 if (ea != null)
 ea.sendEvent(new Event("com/acme/timer",
 time));
 Thread.sleep(60000-c.get(Calendar.SECOND)*1000);
 } catch(InterruptedException e) {
 return;
 }
 }

 void set(Calendar c, int field, String key) {
 time.put(key, new Integer(c.get(field)));
 }
}

Event Admin Service Specification Version 1.4 Specific Events

OSGi Enterprise Release 7 Page 305

113.6 Specific Events

113.6.1 General Conventions
Some handlers are more interested in the contents of an event rather than what actually happened.
For example, a handler wants to be notified whenever an Exception is thrown anywhere in the sys-
tem. Both Framework Events and Log Entry events may contain an exception that would be of inter-
est to this hypothetical handler. If both Framework Events and Log Entries use the same property
names then the handler can access the Exception in exactly the same way. If some future event type
follows the same conventions then the handler can receive and process the new event type even
though it had no knowledge of it when it was compiled.

The following properties are suggested as conventions. When new event types are defined they
should use these names with the corresponding types and values where appropriate. These values
should be set only if they are not nul l

A list of these property names can be found in the following table.

Table 113.1 General property names for events

Name Type Notes
BUNDLE_SIGNER Str ing |

Col lect ion
<Str ing>

A bundle's signers DN

BUNDLE_VERSION Version A bundle's version
BUNDLE_SYMBOLICNAME Str ing A bundle's symbolic name
EVENT Object The actual event object. Used when rebroadcasting an

event that was sent via some other event mechanism
EXCEPTION Throwable An exception or error
EXCEPTION_MESSAGE Str ing Must be equal to exception.getMessage() .
EXCEPTION_CLASS Str ing Must be equal to the name of the Exception class.
MESSAGE Str ing A human-readable message that is usually not localized.
SERVICE Service Ref-

erence
A Service Reference

SERVICE_ID Long A service's id
SERVICE_OBJECTCLASS Str ing[] A service's objectClass
SERVICE_PID Str ing |

Col lect ion
<Str ing>

A service's persistent identity. A PID that is spec-
ified with a Str ing[] must be coerced into a
Collect ion<Str ing> .

TIMESTAMP Long The time when the event occurred, as reported by
System.currentTimeMil l is()

The topic of an OSGi event is constructed by taking the fully qualified name of the event class, sub-
stituting a solidus (' / ' \u002F)for every full stop, and appending a solidus followed by the name of
the constant that defines the event type. For example, the topic of

BundleEvent.STARTED

Event becomes

org/osgi/framework/BundleEvent/STARTED

If a type code for the event is unknown then the event must be ignored.

Specific Events Event Admin Service Specification Version 1.4

Page 306 OSGi Enterprise Release 7

113.6.2 OSGi Events
In order to present a consistent view of all the events occurring in the system, the existing Frame-
work-level events are mapped to the Event Admin's publish-subscribe model. This allows event sub-
scribers to treat framework events exactly the same as other events.

It is the responsibility of the Event Admin service implementation to map these Framework events
to its queue.

The properties associated with the event depends on its class as outlined in the following sections.

113.6.3 Framework Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/FrameworkEvent/<eventtype>

The following event types are supported:

STARTED
ERROR
PACKAGES_REFRESHED
STARTLEVEL_CHANGED
WARNING
INFO

Other events are ignored, no event will be send by the Event Admin. The following event properties
must be set for a Framework Event.

• event - (FrameworkEvent) The original event object.

If the FrameworkEvent getBundle method returns a non-nul l value, the following fields must be set:

• bundle. id - (Long) The source's bundle id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if the bundle's

symbolic name is not nul l .
• bundle.version - (Version) The version of the bundle, if set.
• bundle.s igner - (Str ing|Col lect ion<Str ing>) The DNs of the signers.
• bundle - (Bundle) The source bundle.

If the FrameworkEvent getThrowable method returns a non-nul l value:

• exception.class - (Str ing) The fully-qualified class name of the attached Exception.
• exception.message -(Str ing) The message of the attached exception. Only set if the Exception

message is not nul l .
• exception - (Throwable) The Exception returned by the getThrowable method.

113.6.4 Bundle Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/BundleEvent/<event type>

The following event types are supported:

INSTALLED
STARTED
STOPPED

Event Admin Service Specification Version 1.4 Event Admin Service

OSGi Enterprise Release 7 Page 307

UPDATED
UNINSTALLED
RESOLVED
UNRESOLVED

Unknown events must be ignored.

The following event properties must be set for a Bundle Event. If listeners require synchronous de-
livery then they should register a Synchronous Bundle Listener with the Framework.

• event - (BundleEvent) The original event object.
• bundle. id - (Long) The source's bundle id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if the bundle's

symbolic name is not nul l .
• bundle.version - (Version) The version of the bundle, if set.
• bundle.s igner - (Str ing|Col lect ion<Str ing>) The DNs of the signers.
• bundle - (Bundle) The source bundle.

113.6.5 Service Event
Service Events must be delivered asynchronously with the topic:

org/osgi/framework/ServiceEvent/<eventtype>

The following event types are supported:

REGISTERED
MODIFIED
UNREGISTERING

Unknown events must be ignored.

• event - (ServiceEvent) The original Service Event object.
• service - (ServiceReference) The result of the getServiceReference method
• service. id - (Long) The service's ID.
• service.pid - (Str ing or Col lect ion<Str ing>) The service's persistent identity. Only set if not nul l .

If the PID is specified as a Str ing[] then it must be coerced into a Collect ion<Str ing> .
• service.objectClass - (Str ing[]) The service's object class.

113.6.6 Other Event Sources
Several OSGi service specifications define their own event model. It is the responsibility of these ser-
vices to map their events to Event Admin events. Event Admin is seen as a core service that will be
present in most devices. However, if there is no Event Admin service present, applications are not
mandated to buffer events.

113.7 Event Admin Service
The Event Admin service must be registered as a service with the object class
org.osgi .service.event.EventAdmin . Multiple Event Admin services can be registered. Pub-
lishers should publish their event on the Event Admin service with the highest value for the
SERVICE_RANKING service property. This is the service selected by the getServiceReference method.

The Event Admin service is responsible for tracking the registered handlers, handling event notifica-
tions and providing at least one thread for asynchronous event delivery.

Event Admin Service Event Admin Service Specification Version 1.4

Page 308 OSGi Enterprise Release 7

113.7.1 Synchronous Event Delivery
Synchronous event delivery is initiated by the sendEvent method. When this method is invoked,
the Event Admin service determines which handlers must be notified of the event and then notifies
each one in turn. The handlers can be notified in the caller's thread or in an event-delivery thread,
depending on the implementation. In either case, all notifications must be completely handled be-
fore the sendEvent method returns to the caller.

Synchronous event delivery is significantly more expensive than asynchronous delivery. All things
considered equal, the asynchronous delivery should be preferred over the synchronous delivery.

Callers of this method will need to be coded defensively and assume that synchronous event notifi-
cations could be handled in a separate thread. That entails that they must not be holding any moni-
tors when they invoke the sendEvent method. Otherwise they significantly increase the likelihood
of deadlocks because Java monitors are not reentrant from another thread by definition. Not hold-
ing monitors is good practice even when the event is dispatched in the same thread.

113.7.2 Asynchronous Event Delivery
Asynchronous event delivery is initiated by the postEvent method. When this method is invoked,
the Event Admin service must determine which handlers are interested in the event. By collecting
this list of handlers during the method invocation, the Event Admin service ensures that only han-
dlers that were registered at the time the event was posted will receive the event notification. This is
the same as described in Delivering Events of OSGi Core Release 7.

The Event Admin service can use more than one thread to deliver events. If it does then it must guar-
antee that each handler receives the events in the same order as the events were posted, unless this
handler allows unordered deliver, see Ordering on page 303. This ensures that handlers see events
in their expected order. For example, for some handlers it would be an error to see a destroyed event
before the corresponding created event.

Before notifying each handler, the event delivery thread must ensure that the handler is still regis-
tered in the service registry. If it has been unregistered then the handler must not be notified.

113.7.3 Order of Event Delivery
Asynchronous events are delivered in the order in which they arrive in the event queue. Thus if two
events are posted by the same thread then they will be delivered in the same order (though other
events may come between them). However, if two or more events are posted by different threads
then the order in which they arrive in the queue (and therefore the order in which they are deliv-
ered) will depend very much on subtle timing issues. The event delivery system cannot make any
guarantees in this case. An Event Handler can indicate that the ordering is not relevant, allowing the
Event Admin to more aggressively parallelize the event deliver, see Ordering on page 303.

Synchronous events are delivered as soon as they are sent. If two events are sent by the same thread,
one after the other, then they must be guaranteed to be processed serially and in the same order.
However, if two events are sent by different threads then no guarantees can be made. The events can
be processed in parallel or serially, depending on whether or not the Event Admin service dispatches
synchronous events in the caller's thread or in a separate thread.

Note that if the actions of a handler trigger a synchronous event, then the delivery of the first event
will be paused and delivery of the second event will begin. Once delivery of the second event has
completed, delivery of the first event will resume. Thus some handlers may observe the second
event before they observe the first one.

Event Admin Service Specification Version 1.4 Reliability

OSGi Enterprise Release 7 Page 309

113.8 Reliability

113.8.1 Exceptions in callbacks
If a handler throws an Exception during delivery of an event, it must be caught by the Event Admin
service and handled in some implementation specific way. If a Log Service is available the exception
should be logged. Once the exception has been caught and dealt with, the event delivery must con-
tinue with the next handlers to be notified, if any.

As the Log Service can also forward events through the Event Admin service there is a potential for a
loop when an event is reported to the Log Service.

113.8.2 Dealing with Stalled Handlers
Event handlers should not spend too long in the handleEvent method. Doing so will prevent other
handlers in the system from being notified. If a handler needs to do something that can take a while,
it should do it in a different thread.

An event admin implementation can attempt to detect stalled or deadlocked handlers and deal with
them appropriately. Exactly how it deals with this situation is left as implementation specific. One
allowed implementation is to mark the current event delivery thread as invalid and spawn a new
event delivery thread. Event delivery must resume with the next handler to be notified.

Implementations can choose to blacklist any handlers that they determine are misbehaving. Black-
listed handlers must not be notified of any events. If a handler is blacklisted, the event admin should
log a message that explains the reason for it.

113.9 Interoperability with Native Applications
Implementations of the Event Admin service can support passing events to, and/or receiving events
from native applications.

If the implementation supports native interoperability, it must be able to pass the topic of the event
and its properties to/from native code. Implementations must be able to support property values of
the following types:

• Str ing objects, including full Unicode support
• Integer, Long, Byte, Short , F loat, Double, Boolean, Character objects
• Single-dimension arrays of the above types (including Str ing)
• Single-dimension arrays of Java's eight primitive types (int , long, byte, short , f loat , double,

boolean, char)

Implementations can support additional types. Property values of unsupported types must be silent-
ly discarded.

113.10 Capabilities

113.10.1 osgi.implementation Capability
The Event Admin implementation bundle must provide the osgi . implementation capability with
the name EVENT_ADMIN_IMPLEMENTATION . This capability can be used by provisioning tools and
during resolution to ensure that an Event Admin implementation is present. The capability must
also declare a uses constraint for the org.osgi .service.event package and provide the version of this
specification:

Security Event Admin Service Specification Version 1.4

Page 310 OSGi Enterprise Release 7

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.event";
 uses:="org.osgi.service.event";
 version:Version="1.4"

The RequireEventAdmin annotation can be used to require this capability.

This capability must follow the rules defined for the osgi.implementation Namespace on page 635.

113.10.2 osgi.service Capability
The bundle providing the Event Admin service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service.event package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.event.EventAdmin";
 uses:="org.osgi.service.event"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

113.11 Security

113.11.1 Topic Permission
The TopicPermission class allows fine-grained control over which bundles may post events to a giv-
en topic and which bundles may receive those events.

The target parameter for the permission is the topic name. TopicPermission classes uses a wildcard
matching algorithm similar to the BasicPermission class, except that solidi (' / ' \u002F) are used as
separators instead of full stop characters. For example, a name of a/b/* implies a/b/c but not x/y/z or
a/b .

There are two available actions: PUBLISH and SUBSCRIBE . These control a bundle's ability to either
publish or receive events, respectively. Neither one implies the other.

113.11.2 Required Permissions
Bundles that need to register an event handler must be granted
ServicePermission [org.osgi .service.event.EventHandler , REGISTER]. In addition, handlers require
TopicPermission[<topic>, SUBSCRIBE] for each topic they want to be notified about.

Bundles that need to publish an event must be granted
ServicePermission[org.osgi .service.event.EventAdmin, GET] so that they may retrieve the Event
Admin service and use it. In addition, event sources require TopicPermission[<topic>, PUBLISH] for
each topic they want to send events to.

Bundles that need to iterate the handlers registered with the system must be granted
ServicePermission[org.osgi .service.event.EventHandler, GET] to retrieve the event handlers from
the service registry.

Only a bundle that contains an Event Admin service implementation should be granted
ServicePermission[org.osgi .service.event.EventAdmin, REGISTER] to register the event channel
admin service.

113.11.3 Security Context During Event Callbacks
During an event notification, the Event Admin service's Protection Domain will be on the stack
above the handler's Protection Domain. In the case of a synchronous event, the event publisher's
protection domain can also be on the stack.

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Enterprise Release 7 Page 311

Therefore, if a handler needs to perform a secure operation using its own privileges, it must invoke
the doPriv i leged method to isolate its security context from that of its caller.

The event delivery mechanism must not wrap event notifications in a doPriv i leged call.

113.12 org.osgi.service.event

Event Admin Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.event; vers ion="[1.4,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.event; vers ion="[1.4,1.5)"

113.12.1 Summary

• Event - An event.
• EventAdmin - The Event Admin service.
• EventConstants - Defines standard names for EventHandler properties.
• EventHandler - Listener for Events.
• EventPropert ies - The properties for an Event.
• TopicPermission - A bundle's authority to publish or subscribe to event on a topic.

113.12.2 public class Event
An event. Event objects are delivered to EventHandler services which subscribe to the topic of the
event.

Concurrency Immutable

113.12.2.1 public Event(String topic, Map<String, ?> properties)

topic The topic of the event.

properties The event's properties (may be nul l). A property whose key is not of type Str ing will be ignored. If
the specified properties is an EventProperties object, then it will be directly used. Otherwise, a copy
of the specified properties is made.

□ Constructs an event.

Throws I l legalArgumentException– If topic is not a valid topic name.

Since 1.2

113.12.2.2 public Event(String topic, Dictionary<String, ?> properties)

topic The topic of the event.

properties The event's properties (may be nul l). A property whose key is not of type Str ing will be ignored. A
copy of the specified properties is made.

□ Constructs an event.

Throws I l legalArgumentException– If topic is not a valid topic name.

org.osgi.service.event Event Admin Service Specification Version 1.4

Page 312 OSGi Enterprise Release 7

113.12.2.3 public final boolean containsProperty(String name)

name The name of the property.

□ Indicate the presence of an event property. The event topic is present using the property name
"event.topics".

Returns true if a property with the specified name is in the event. This property may have a nul l value. fa lse
otherwise.

Since 1.3

113.12.2.4 public boolean equals(Object object)

object The Event object to be compared.

□ Compares this Event object to another object.

An event is considered to be equal to another event if the topic is equal and the properties are equal.
The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a Event and is equal to this object; fa lse otherwise.

113.12.2.5 public final Object getProperty(String name)

name The name of the property to retrieve.

□ Retrieve the value of an event property. The event topic may be retrieved with the property name
"event.topics".

Returns The value of the property, or nul l if not found.

113.12.2.6 public final String[] getPropertyNames()

□ Returns a list of this event's property names. The list will include the event topic property name
"event.topics".

Returns A non-empty array with one element per property.

113.12.2.7 public final String getTopic()

□ Returns the topic of this event.

Returns The topic of this event.

113.12.2.8 public int hashCode()

□ Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.

113.12.2.9 public final boolean matches(Filter filter)

filter The filter to test.

□ Tests this event's properties against the given filter using a case sensitive match.

Returns true If this event's properties match the filter, false otherwise.

113.12.2.10 public String toString()

□ Returns the string representation of this event.

Returns The string representation of this event.

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Enterprise Release 7 Page 313

113.12.3 public interface EventAdmin
The Event Admin service. Bundles wishing to publish events must obtain the Event Admin service
and call one of the event delivery methods.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

113.12.3.1 public void postEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

□ Initiate asynchronous, ordered delivery of an event. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

Throws SecurityException– If the caller does not have TopicPermission[topic,PUBLISH] for the topic speci-
fied in the event.

113.12.3.2 public void sendEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

□ Initiate synchronous delivery of an event. This method does not return to the caller until delivery of
the event is completed.

Throws SecurityException– If the caller does not have TopicPermission[topic,PUBLISH] for the topic speci-
fied in the event.

113.12.4 public interface EventConstants
Defines standard names for EventHandler properties.

Provider Type Consumers of this API must not implement this type

113.12.4.1 public static final String BUNDLE = "bundle"

The Bundle object of the bundle relevant to the event. The type of the value for this event property
is Bundle.

Since 1.1

113.12.4.2 public static final String BUNDLE_ID = "bundle.id"

The Bundle id of the bundle relevant to the event. The type of the value for this event property is
Long .

Since 1.1

113.12.4.3 public static final String BUNDLE_SIGNER = "bundle.signer"

The Distinguished Names of the signers of the bundle relevant to the event. The type of the value
for this event property is Str ing or Collect ion of Str ing .

113.12.4.4 public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"

The Bundle Symbolic Name of the bundle relevant to the event. The type of the value for this event
property is Str ing .

113.12.4.5 public static final String BUNDLE_VERSION = "bundle.version"

The version of the bundle relevant to the event. The type of the value for this event property is Ver-
sion.

Since 1.2

org.osgi.service.event Event Admin Service Specification Version 1.4

Page 314 OSGi Enterprise Release 7

113.12.4.6 public static final String DELIVERY_ASYNC_ORDERED = "async.ordered"

Event Handler delivery quality value specifying the Event Handler requires asynchronously de-
livered events be delivered in order. Ordered delivery is the default for asynchronously delivered
events.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_UNORDERED. However,
if both this value and DELIVERY_ASYNC_UNORDERED are specified for an event handler, this val-
ue takes precedence.

See Also EVENT_DELIVERY

Since 1.3

113.12.4.7 public static final String DELIVERY_ASYNC_UNORDERED = "async.unordered"

Event Handler delivery quality value specifying the Event Handler does not require asynchronously
delivered events be delivered in order. This may allow an Event Admin implementation to optimize
asynchronous event delivery by relaxing ordering requirements.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_ORDERED. How-
ever, if both this value and DELIVERY_ASYNC_ORDERED are specified for an event handler,
DELIVERY_ASYNC_ORDERED takes precedence.

See Also EVENT_DELIVERY

Since 1.3

113.12.4.8 public static final String EVENT = "event"

The forwarded event object. Used when rebroadcasting an event that was sent via some other event
mechanism. The type of the value for this event property is Object .

113.12.4.9 public static final String EVENT_ADMIN_IMPLEMENTATION = "osgi.event"

The name of the implementation capability for the Event Admin specification

Since 1.4

113.12.4.10 public static final String EVENT_ADMIN_SPECIFICATION_VERSION = "1.4.0"

The version of the implementation capability for the Event Admin specification

Since 1.4

113.12.4.11 public static final String EVENT_DELIVERY = "event.delivery"

Service Registration property specifying the delivery qualities requested by an Event Handler ser-
vice.

Event handlers MAY be registered with this property. Each value of this property is a string specify-
ing a delivery quality for the Event handler.

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also DELIVERY_ASYNC_ORDERED, DELIVERY_ASYNC_UNORDERED

Since 1.3

113.12.4.12 public static final String EVENT_FILTER = "event.filter"

Service Registration property specifying a filter to further select Event s of interest to an Event Han-
dler service.

Event handlers MAY be registered with this property. The value of this property is a string contain-
ing an LDAP-style filter specification. Any of the event's properties may be used in the filter expres-
sion. Each event handler is notified for any event which belongs to the topics in which the handler

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Enterprise Release 7 Page 315

has expressed an interest. If the event handler is also registered with this service property, then the
properties of the event must also match the filter for the event to be delivered to the event handler.

If the filter syntax is invalid, then the Event Handler must be ignored and a warning should be
logged.

The value of this property must be of type Str ing .

See Also Event, Filter

113.12.4.13 public static final String EVENT_TOPIC = "event.topics"

Service registration property specifying the Event topics of interest to an Event Handler service.

Event handlers SHOULD be registered with this property. Each value of this property is a string that
describe the topics in which the handler is interested. An asterisk ('*') may be used as a trailing wild-
card. Event Handlers which do not have a value for this property must not receive events. More pre-
cisely, the value of each string must conform to the following grammar:

 topic-description := '*' | topic ('/*')?
 topic := token ('/' token)*

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Event

113.12.4.14 public static final String EXCEPTION = "exception"

An exception or error. The type of the value for this event property is Throwable .

113.12.4.15 public static final String EXCEPTION_CLASS = "exception.class"

The name of the exception type. Must be equal to the name of the class of the exception in the event
property EXCEPTION. The type of the value for this event property is Str ing .

Since 1.1

113.12.4.16 public static final String EXCEPTION_MESSAGE = "exception.message"

The exception message. Must be equal to the result of calling getMessage() on the exception in the
event property EXCEPTION. The type of the value for this event property is Str ing .

113.12.4.17 public static final String EXECPTION_CLASS = "exception.class"

This constant was released with an incorrectly spelled name. It has been replaced by
EXCEPTION_CLASS

Deprecated As of 1.1. Replaced by EXCEPTION_CLASS.

113.12.4.18 public static final String MESSAGE = "message"

A human-readable message that is usually not localized. The type of the value for this event proper-
ty is Str ing .

113.12.4.19 public static final String SERVICE = "service"

A service reference. The type of the value for this event property is ServiceReference.

113.12.4.20 public static final String SERVICE_ID = "service.id"

A service's id. The type of the value for this event property is Long .

113.12.4.21 public static final String SERVICE_OBJECTCLASS = "service.objectClass"

A service's objectClass. The type of the value for this event property is Str ing[] .

org.osgi.service.event Event Admin Service Specification Version 1.4

Page 316 OSGi Enterprise Release 7

113.12.4.22 public static final String SERVICE_PID = "service.pid"

A service's persistent identity. The type of the value for this event property is Str ing or Collect ion of
Str ing .

113.12.4.23 public static final String TIMESTAMP = "timestamp"

The time when the event occurred, as reported by System.currentTimeMil l is() . The type of the val-
ue for this event property is Long .

113.12.5 public interface EventHandler
Listener for Events.

EventHandler objects are registered with the Framework service registry and are notified with an
Event object when an event is sent or posted.

EventHandler objects can inspect the received Event object to determine its topic and properties.

EventHandler objects must be registered with a service property EventConstants.EVENT_TOPIC
whose value is the list of topics in which the event handler is interested.

For example:

 String[] topics = new String[] {"com/isv/*"};
 Hashtable ht = new Hashtable();
 ht.put(EventConstants.EVENT_TOPIC, topics);
 context.registerService(EventHandler.class.getName(), this, ht);

Event Handler services can also be registered with an EventConstants.EVENT_FILTER service prop-
erty to further filter the events. If the syntax of this filter is invalid, then the Event Handler must be
ignored by the Event Admin service. The Event Admin service should log a warning.

Security Considerations. Bundles wishing to monitor Event objects will require
ServicePermission[EventHandler,REGISTER] to register an EventHandler service. The bundle must
also have TopicPermission[topic,SUBSCRIBE] for the topic specified in the event in order to receive
the event.

See Also Event

Concurrency Thread-safe

113.12.5.1 public void handleEvent(Event event)

event The event that occurred.

□ Called by the EventAdmin service to notify the listener of an event.

113.12.6 public class EventProperties
implements Map<String, Object>
The properties for an Event. An event source can create an EventProperties object if it needs to reuse
the same event properties for multiple events.

The keys are all of type Str ing . The values are of type Object . The key "event.topics" is ignored as
event topics can only be set when an Event is constructed.

Once constructed, an EventProperties object is unmodifiable. However, the values of the map used
to construct an EventProperties object are still subject to modification as they are not deeply copied.

Since 1.3

Concurrency Immutable

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Enterprise Release 7 Page 317

113.12.6.1 public EventProperties(Map<String, ?> properties)

properties The properties to use for this EventProperties object (may be nul l).

□ Create an EventProperties from the specified properties.

The specified properties will be copied into this EventProperties. Properties whose key is not of type
Str ing will be ignored. A property with the key "event.topics" will be ignored.

113.12.6.2 public void clear()

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.12.6.3 public boolean containsKey(Object name)

name The property name.

□ Indicates if the specified property is present.

Returns true If the property is present, fa lse otherwise.

113.12.6.4 public boolean containsValue(Object value)

value The property value.

□ Indicates if the specified value is present.

Returns true If the value is present, fa lse otherwise.

113.12.6.5 public Set<Map.Entry<String, Object>> entrySet()

□ Return the property entries.

Returns A set containing the property name/value pairs.

113.12.6.6 public boolean equals(Object object)

object The EventPropert ies object to be compared.

□ Compares this EventPropert ies object to another object.

The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a EventPropert ies and is equal to this object; fa lse otherwise.

113.12.6.7 public Object get(Object name)

name The name of the specified property.

□ Return the value of the specified property.

Returns The value of the specified property.

113.12.6.8 public int hashCode()

□ Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.

113.12.6.9 public boolean isEmpty()

□ Indicate if this properties is empty.

Returns true If this properties is empty, fa lse otherwise.

org.osgi.service.event Event Admin Service Specification Version 1.4

Page 318 OSGi Enterprise Release 7

113.12.6.10 public Set<String> keySet()

□ Return the names of the properties.

Returns The names of the properties.

113.12.6.11 public Object put(String key, Object value)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.12.6.12 public void putAll(Map<? extends String, ? extends Object> map)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.12.6.13 public Object remove(Object key)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.12.6.14 public int size()

□ Return the number of properties.

Returns The number of properties.

113.12.6.15 public String toString()

□ Returns the string representation of this object.

Returns The string representation of this object.

113.12.6.16 public Collection<Object> values()

□ Return the properties values.

Returns The values of the properties.

113.12.7 public final class TopicPermission
extends Permission
A bundle's authority to publish or subscribe to event on a topic.

A topic is a slash-separated string that defines a topic.

For example:

 org/osgi/service/foo/FooEvent/ACTION

TopicPermission has two actions: publ ish and subscr ibe .

Concurrency Thread-safe

113.12.7.1 public static final String PUBLISH = "publish"

The action string publ ish .

113.12.7.2 public static final String SUBSCRIBE = "subscribe"

The action string subscr ibe .

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Enterprise Release 7 Page 319

113.12.7.3 public TopicPermission(String name, String actions)

name Topic name.

actions publ ish ,subscr ibe (canonical order).

□ Defines the authority to publish and/or subscribe to a topic within the EventAdmin service.

The name is specified as a slash-separated string. Wildcards may be used. For example:

 org/osgi/service/fooFooEvent/ACTION
 com/isv/*
 *

A bundle that needs to publish events on a topic must have the appropriate TopicPermission for that
topic; similarly, a bundle that needs to subscribe to events on a topic must have the appropriate Top-
icPermssion for that topic.

113.12.7.4 public boolean equals(Object obj)

obj The object to test for equality with this TopicPermission object.

□ Determines the equality of two TopicPermission objects. This method checks that specified Top-
icPermission has the same topic name and actions as this TopicPermission object.

Returns true if obj is a TopicPermission , and has the same topic name and actions as this TopicPermission ob-
ject; fa lse otherwise.

113.12.7.5 public String getActions()

□ Returns the canonical string representation of the TopicPermission actions.

Always returns present TopicPermission actions in the following order: publ ish ,subscr ibe .

Returns Canonical string representation of the TopicPermission actions.

113.12.7.6 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

113.12.7.7 public boolean implies(Permission p)

p The target permission to interrogate.

□ Determines if the specified permission is implied by this object.

This method checks that the topic name of the target is implied by the topic name of this object. The
list of TopicPermission actions must either match or allow for the list of the target object to imply
the target TopicPermission action.

 x/y/*,"publish" -> x/y/z,"publish" is true
 *,"subscribe" -> x/y,"subscribe" is true
 *,"publish" -> x/y,"subscribe" is false
 x/y,"publish" -> x/y/z,"publish" is false

Returns true if the specified TopicPermission action is implied by this object; fa lse otherwise.

113.12.7.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing TopicPermission objects.

Returns A new PermissionCol lect ion object.

org.osgi.service.event.annotations Event Admin Service Specification Version 1.4

Page 320 OSGi Enterprise Release 7

113.13 org.osgi.service.event.annotations

Event Admin Annotations Package Version 1.4.

This package contains annotations that can be used to require the Event Admin implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

113.13.1 Summary

• RequireEventAdmin - This annotation can be used to require the Event Admin implementation.

113.13.2 @RequireEventAdmin
This annotation can be used to require the Event Admin implementation. It can be used directly, or
as a meta-annotation.

This annotation is applied to several of the Event Admin component property type annotations
meaning that it does not normally need to be applied to Declarative Services components which use
the Event Admin.

Since 1.4

Retention CLASS

Target TYPE , PACKAGE

113.14 org.osgi.service.event.propertytypes

Event Admin Component Property Types Package Version 1.4.

When used as annotations, component property types are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.event.propertytypes; vers ion="[1.4,2.0)"

113.14.1 Summary

• EventDel ivery - Component Property Type for the EventConstants.EVENT_DELIVERY service
property of an EventHandler service.

• EventFi l ter - Component Property Type for the EventConstants.EVENT_FILTER service property
of an EventHandler service.

• EventTopics - Component Property Type for the EventConstants.EVENT_TOPIC service proper-
ty of an EventHandler service.

113.14.2 @EventDelivery
Component Property Type for the EventConstants.EVENT_DELIVERY service property of an Even-
tHandler service.

This annotation can be used on an EventHandler component to declare the value of the
EventConstants.EVENT_DELIVERY service property.

Event Admin Service Specification Version 1.4 org.osgi.service.event.propertytypes

OSGi Enterprise Release 7 Page 321

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

113.14.2.1 String[] value

□ Service property specifying the Event delivery qualities requested by an EventHandler service.

The supported delivery qualities are:

• EventConstants.DELIVERY_ASYNC_ORDERED
• EventConstants.DELIVERY_ASYNC_UNORDERED}

Returns The requested event delivery qualities.

See Also EventConstants.EVENT_DELIVERY

113.14.3 @EventFilter
Component Property Type for the EventConstants.EVENT_FILTER service property of an Even-
tHandler service.

This annotation can be used on an EventHandler component to declare the value of the
EventConstants.EVENT_FILTER service property.

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

113.14.3.1 String value

□ Service property specifying the Event filter to an EventHandler service.

Returns The event filter.

See Also EventConstants.EVENT_FILTER

113.14.4 @EventTopics
Component Property Type for the EventConstants.EVENT_TOPIC service property of an Even-
tHandler service.

This annotation can be used on an EventHandler component to declare the values of the
EventConstants.EVENT_TOPIC service property.

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

113.14.4.1 String[] value

□ Service property specifying the Event topics of interest to an EventHandler service.

Returns The event topics.

See Also EventConstants.EVENT_TOPIC

Changes Event Admin Service Specification Version 1.4

Page 322 OSGi Enterprise Release 7

113.15 Changes
• Added org.osgi .service.event.annotations and org.osgi .service.event.propertytypes packages.
• Added Capabilities on page 309.

Remote Service Admin Service Specification Version 1.1 Introduction

OSGi Enterprise Release 7 Page 323

122 Remote Service Admin Service
Specification

Version 1.1

122.1 Introduction
The OSGi Core Release 7 framework specifies a model where bundles can use distributed services.
The basic model for OSGi remote services is that a bundle can register services that are exported to a
communication Endpoint and use services that are imported from a communication Endpoint. How-
ever, chapter Remote Services on page 25 does not explain what services are exported and/or import-
ed; it leaves such decisions to the distribution provider. The distribution provider therefore per-
forms multiple roles and cannot be leveraged by other bundles in scenarios that the distribution
provider had not foreseen.

The primary role of the distribution provider is purely mechanical; it creates Endpoints and regis-
ters service proxies and enables their communication. The second role is about the policies around
the desired topology. The third role is discovery. To establish a specific topology it is necessary to
find out about exported services in other frameworks.

This specification therefore defines an API for the distribution provider and discovery of services in
a network. A management agent can use this API to provide an actual distribution policy. This man-
agement agent, called the Topology Manager, can control the export and import of services delegat-
ing the intrinsic knowledge of the low level details of communication protocols, proxying of ser-
vices, and discovering services in the network to services defined in this specification.

This specification is an extension of the Remote Service chapter. Though some aspects are repeated
in this specification, a full understanding of the Remote Services chapter is required for full under-
standing of this document.

122.1.1 Essentials

• Simple - Make it as simple as possible for a Topology Manager to implement distribution policies.
• Dynamic - Discover available Endpoints dynamically, for example through a discovery protocol

like [3] Service Location Protocol (SLP) or [4] JGroups.
• Inform - Provide a mechanism to inform other parties about created and removed Endpoints.
• Configuration - Allow bundles to describe Endpoints as a bundle resource that are provided to the

Distribution Provider.
• Selective - Not all parties are interested in all services. Endpoint registries must be able to express

the scope of services they are interested in.
• Multiple - Allow the collaboration of multiple Topology Managers, Remote Service Admin ser-

vices, and Discovery Providers.
• Dynamic - Allow the dynamic discovery of Endpoints.
• Federated - Enable a global view of all available services in a distributed environment.

Introduction Remote Service Admin Service Specification Version 1.1

Page 324 OSGi Enterprise Release 7

122.1.2 Entities

• Remote Service Admin - An implementation of this specification provides the mechanisms to im-
port and export services through a set of configuration types. The Remote Service Admin service
is a passive Distribution Provider, not taking any action to export or import itself.

• Topology Manager - The Topology Manager provides the policy for importing and exporting ser-
vices through the Remote Service Admin service.

• Endpoint - An Endpoint is a communications access mechanism to a service in another frame-
work, a (web) service, another process, or a queue or topic destination, etc., requiring some proto-
col for communications.

• Endpoint Description - A properties based description of an Endpoint. Endpoint Descriptions can
be exchanged between different frameworks to create connections to each other's services. End-
point Descriptions can also be created to Endpoints not originating in an OSGi Framework.

• Endpoint Description Provider - A party that can inform others about the existence of Endpoints.
• Endpoint Event Listener – A listener service that receives events relating to Endpoints that match

its scope. This Endpoint Event Listener is used symmetrically to implement a federated registry.
The Topology Manager can use it to notify interested parties about created and removed End-
points, as well as to receive notifications from other parties, potentially remote, about their avail-
able Endpoints.

• Endpoint Listener – An older version of the Endpoint Event Listener defined by version 1.0 of this
specification. The Endpoint Event Listener supersedes the Endpoint Listener, and should be used
in preference where possible.

• Remote Service Admin Listener - A listener service that is informed of all the primitive actions that
the Remote Service Admin performs like importing and exporting as well as errors.

• Endpoint Configuration Extender - A bundle that can detect configuration data describing an End-
point Description in a bundle resource, using the extender pattern.

• Discovery – An Endpoint Event Listener that detects the Endpoint Descriptions through some dis-
covery protocol.

• Cluster - A group of computing systems that closely work together, usually in a fast network.

Figure 122.1 Remote Service Admin Entities

Topology
Manager Impl

configured
Endpoint

XML

Remote Service
Admin Impl

Client impl Discovery Impl

Endpoint
Event Listener

 Endpoint
Event
Listener

Remote
Service
Admin

Remote
Service
Admin
Listener

Imported &
Exported
Services

to an
Endpoint

1

0..n

0..n

discovered by

network/
cluster

discovers/
announces

discovers

announces

1

122.1.3 Synopsis
Topology Managers are responsible for the distribution policies of a OSGi framework. To implement
a policy, a Topology Manager must be aware of the environment, for this reason, it can register:

Remote Service Admin Service Specification Version 1.1 Introduction

OSGi Enterprise Release 7 Page 325

• Service listeners to detect services that can be exported according to the Remote Services chapter.
• Listener and Find Hook services to detect bundles that have an interest in specific services that

potentially could be imported.
• A Remote Service Admin Listener service to detect the activity of other Topology Managers.
• Endpoint Event Listener and Endpoint Listener services to detect Endpoints that are made avail-

able through discovery protocols, configuration data, or other means.

Using this information, the manager implements a topology using the Remote Service Admin ser-
vice. A Topology Manager that wants to export a service can create an Export Registration by provid-
ing one or more Remote Service Admin services a Service Reference plus a Map with the required
properties. A Remote Service Admin service then creates a number of Endpoints based on the avail-
able configuration types and returns a collection of ExportRegistrat ion objects. A collection is re-
turned because a single service can be exported to multiple Endpoints depending on the available
configuration type properties.

Each Export Registration is specific for the caller and represents an existing or newly created End-
point. The Export Registration associates the exported Service Reference with an Endpoint Descrip-
tion. If there are problems with the export operation, the Remote Service Admin service reports
these on the Export Registration objects. That is, not all the returned Export Registrations have to be
valid.

An Endpoint Description is a property based description of an Endpoint. Some of these properties
are defined in this specification, other properties are defined by configuration types. These config-
uration types must follow the same rules as the configuration types defined in the Remote Services
chapter. Remote Service Admin services that support the configuration types in the Endpoint De-
scription can import a service from that Endpoint solely based on that Endpoint Description.

In similar vein, the Topology Manager can import a service from a remote system by creating an Im-
port Registration out of an Endpoint Description. The Remote Service Admin service then registers a
service that is a proxy for the remote Endpoint and returns an ImportRegistrat ion object. If there are
problems with the import, the Remote Service Admin service that cannot be detected early, then the
Remote Service Admin service reports these on the returned ImportRegistrat ion object.

For introspection, the Remote Service Admin can list its current set of Import and Export References
so that a Topology Manager can get the current state. The Remote Service Admin service also in-
forms all Topology Managers and observers of the creation, deletion, and errors of Import and Ex-
port Registrations through the Remote Service Admin Listener service. Interested parties like the
Topology Manager can register such a service and will be called back with the initial state as well as
any subsequent changes.

An important aspect of the Topology Manager is the distributed nature of the scenarios it plays an
orchestrating role in. A Topology Manager needs to be aware of Endpoints in the network, not just
the ones provided by Remote Service Admin services in its local framework. The Endpoint Event Lis-
tener service is specified for this purpose. This service is provided for both directions, symmetrically.
That is, it is used by the Topology Manager to inform any observers about the existence of Endpoints
that are locally available, as well as for parties that represent a discovery mechanism. For example
Endpoints available on other systems, Endpoint Descriptions embedded in resources in bundles, or
Endpoint Descriptions that are available in some other form.

Endpoint Event Listener services are not always interested in the complete set of available End-
points because this set can potentially be very large. For example, if a remote registry like [5] UDDI
is used then the number of Endpoints can run into the thousands or more. An Endpoint Event Lis-
tener service can therefore scope the set of Endpoints with an OSGi LDAP style filter. Parties that can
provide information about Endpoints must only notify Endpoint Event Listener services when the
Endpoint Description falls within the scope of the Endpoint Listener service. Parties that use some
discovery mechanism can use the scope to trigger directed searches across the network.

Actors Remote Service Admin Service Specification Version 1.1

Page 326 OSGi Enterprise Release 7

122.1.3.1 Endpoint Listener Services

The 1.0 version of this specification defined an Endpoint Listener service, which has an identical
purpose and similar behaviors to an Endpoint Event Listener service. Unfortunately the design of
the Endpoint Listener limited its extensibility, meaning that it had to be replaced in version 1.1 of
this specification.

In order to maintain backward compatible interoperability with Remote Service Admin 1.0 actors,
Remote Service Admin 1.1 actors must continue to register Endpoint Listener services as well as
Endpoint Event Listener services. They must also continue to call Endpoint Listener services as well
as EndpointEventListener services.

122.2 Actors
The OSGi Remote Services specification is about the distribution of services. This specification does
not outline the details of how the distribution provider knows the desired topology, this policy as-
pect is left up to implementations. In many situations, this is a desirable architecture because it pro-
vides freedom of implementation to the distribution provider. However, such an architecture does
not enable a separation of the mechanisms and policy. Therefore, this Remote Service Admin specifi-
cation provides an architecture that enables a separate bundle from the distribution provider to de-
fine the topology. It splits the responsibility of the Remote Service specification in a number of roles.
These roles can all have different implementations but they can collaborate through the services de-
fined in this specification. These roles are:

• Topology Managers - Topology Managers are the (anonymous) players that implement the poli-
cies for distributing services; they are closely aligned with the concept of an OSGi management
agent. It is expected that Topology Managers will be developed for scenarios like import/export
all applicable services, configuration based imports- and exports, and scenarios like fail-over,
load-balancing, as well as standards like domain managers for the [6] Service Component Architec-
ture (SCA).

• Remote Service Admin - The Remote Service Admin service provides the basic mechanism to im-
port and export services. This service is policy free; it will not distribute services without explic-
itly being told so. A OSGi framework can host multiple Remote Service Admin services that, for
example, support different configuration types.

• Discovery - To implement a distribution policy, a Topology Manager must be aware of what End-
points are available. This specification provides an abstraction of a federated Endpoint registry.
This registry can be used to both publish as well as consume Endpoints from many different
sources. The federated registry is defined for local services but is intended to be used with stan-
dard and proprietary service discovery protocols. The federated registry is implemented with the
Endpoint Event Listener service.

These roles are depicted in Figure 122.2 on page 326.

Figure 122.2 Roles

Topology
Manager

Remote Service
Admin

Discovery

instructs

informs
and learns from

Remote Service Admin Service Specification Version 1.1 Topology Managers

OSGi Enterprise Release 7 Page 327

122.3 Topology Managers
Distributed processing has become mainstream because of the massive scale required for Internet
applications. Only with distributed architectures is it possible to scale systems to Internet size with
hundreds of millions of users. To allow a system to scale, servers are grouped in clusters where they
can work in unison or geographically dispersed in even larger configurations. The distribution of
the work-load is crucial for the amount of scalability provided by an architecture and often has do-
main specific dispatching techniques. For example, the hash of a user id can be used to select the
correct profile database server. In this fast moving world it is very unlikely that a single architecture
or distribution policy would be sufficient to satisfy many users. It is therefore that this specification
separates the how from the what. The complex mechanics of importing and exporting services are
managed by a Remote Service Admin service (the how) while the different policies are implemented
by Topology Managers (the what). This separation of concerns enables the development of Topology
Managers that can run on many different systems, providing high user functionality. For example,
a Topology Manager could implement a fail-over policy where some strategic services are redirect-
ed when their connections fail. Other Topology Managers could use a discovery protocol like SLP to
find out about other systems in a cluster and automatically configure the cluster.

The key value of this architecture is demonstrated by the example of an SCA domain controller. An
SCA domain controller receives a description of a domain (a set of systems and modules) and must
ensure that the proper connections are made between the participating SCA modules. By splitting
the roles, an SCA domain manager can be developed that can run on any compatible Remote Service
Admin service implementation.

122.3.1 Multiple Topology Managers
There is no restriction on the number of Topology Managers, nor is there a restriction on the num-
ber of Remote Service Admin service implementations. It is up to the deployer of the OSGi frame-
work to select the appropriate set of these service implementations. It is the responsibility of the
Topology Managers to listen to the Remote Service Admin Listener and track Endpoints created and
deleted by other Topology Managers and act appropriately.

122.3.2 Example Use Cases

122.3.2.1 Promiscuous Policy

A cluster is a set of machines that are connected in a network. The simplest policy for a Topology
Manager is to share exported services in such a cluster. Such a policy is very easy to implement with
the Remote Services Admin service. In the most basic form, this Topology Manager would use some
multicast protocol to communicate with its peers. These peers would exchange EndpointDescr ip-
t ion objects of exported services. Each Topology Manager would then import any exported service.

This scenario can be improved by separating the promiscuous policy from the discovery. Instead of
embedding the multicast protocol, a Topology manager could use the Endpoint Event Listener ser-
vice. This service allows the discovery of remote services. At the same time, the Topology Manager
could tell all other Endpoint Event Listener services about the services it has created, allowing them
to be used by others in the network.

Splitting the Topology Manager and discovery in two bundles allows different implementations of
the discovery bundle, for example, to use different protocols. See PROMISCUOUS_POLICY .

122.3.2.2 Fail Over

A more elaborate scheme is a fail-over policy. In such a policy a service can be replaced by a service
from another machine. There are many ways to implement such a policy, an simple example strate-
gy is provided here for illustration.

Endpoint Description Remote Service Admin Service Specification Version 1.1

Page 328 OSGi Enterprise Release 7

A Fail-Over Topology Manager is given a list of stateless services that require fail-over, for example
through the Configuration Admin Service Specification on page 85. The Fail-Over Manager tracks the
systems in the its cluster that provide such services. This tracking can use an embedded protocol or
it can be based on the Endpoint Event Listener service model.

In the Fail-Over policy, the fail-over manager only imports a single service and then tracks the error
status of the imported service through the Remote Service Admin Listener service. If it detects the
service is becoming unavailable, it closes the corresponding Import Registration and imports a ser-
vice from an alternative system instead. In Figure 122.3, there are 4 systems in a cluster. The topolo-
gy/fail-over manager ensures that there is always one of the services in system A , B , or C available in
D .

Figure 122.3 Fail Over Scenario in a cluster

System

A

Topology
Manager

CB

D

There are many possible variations on this scenario. The managers could exchange load informa-
tion, allowing the service switch to be influenced by the load of the target systems. The important
aspect is that the Topology Manager can ignore the complex details of discovery protocols, commu-
nication protocols, and service proxying and instead focus on the topology. See FAIL_OVER_POLICY .

122.4 Endpoint Description
An Endpoint is a point of rendezvous of distribution providers. It is created by an exporting distrib-
ution provider or some other party, and is used by importing distribution providers to create a con-
nection. An Endpoint Description describes an Endpoint in such a way that an importing Remote Ser-
vice Admin service can create this connection if it recognizes the configuration type that is used for
that Endpoint. The configuration type consists of a name and a set of properties associated with that
name.

The core concept of the Endpoint Description is a Map of properties. The structure of this map is the
same as service properties, and the defined properties are closely aligned with the properties of an
imported service. An EndpointDescr ipt ion object must only consist of the data types that are sup-
ported for service properties. This makes the property map serializable with many different mecha-
nisms. The EndpointDescr ipt ion class provides a convenient way to access the properties in a type
safe way.

An Endpoint Description has case insensitive keys, just like the Service Reference's properties.

The properties map must contain all the prescribed service properties of the exported service af-
ter intents have been processed, as if the service was registered as an imported service. That is, the
map must not contain any properties that start with service.exported.* but it must contain the
service. imported .* variation of these properties. The Endpoint Description must reflect the import-
ed service properties because this simplifies the use of filters from the service hooks. Filters applied
to the Endpoint Description can then be the same filters as applied by a bundle to select an import-
ed service from the service registry.

Remote Service Admin Service Specification Version 1.1 Endpoint Description

OSGi Enterprise Release 7 Page 329

The properties that can be used in an Endpoint Description are listed in Table 122.1. The Remote-
Constants class contains the constants for all of these property names.

Table 122.1 Endpoint Properties

Endpoint Property Name Type Description
service.exported.* Must not be set
service. imported * Must always be set to some value. See

SERVICE_IMPORTED .
objectClass Str ing[] Must be set to the value of

service.exported. interfaces , of the exported service
after expanding any wildcards. Though this proper-
ty will be overridden by the framework for the cor-
responding service registration, it must be set in the
Endpoint Description to simplify the filter matching.
These interface names are available with the getInter-
faces() method.

service. intents Str ing+ Intents implemented by the exporting distribution
provider and, if applicable, the exported service itself.
Any qualified intents must have their expanded form
present. These expanded intents are available with the
getIntents() method. See SERVICE_INTENTS .

endpoint.service. id Long The service id of the exported service. Can be absent
or 0 if the corresponding Endpoint is not for an OSGi
service. The remote service id is available as getSer-
viceId() . See also ENDPOINT_SERVICE_ID .

endpoint.framework.uuid Str ing A universally unique id identifying the instance of the
exporting framework. Can be absent if the correspond-
ing Endpoint is not for an OSGi service. See Framework
UUID on page 331. The remote framework UUID is
available with the getFrameworkUUID() method. See
also ENDPOINT_FRAMEWORK_UUID .

endpoint. id Str ing The Id for this Endpoint, can never be nul l . This infor-
mation is available with the getId() . See Endpoint Id on
page 331 and also ENDPOINT_ID .

endpoint.package.

 vers ion.<package-name>

Str ing The Java package version for the embed-
ded <package>. For example, the property
endpoint.package.version.com.acme=1.3 de-
scribes the version for the com.acme package. The
version for a package can be obtained with the
getPackageVersion(Str ing) .

The version does not have to be set, if not set, the value
must be assumed to be 0.

service. imported.configs Str ing+ The configuration types that can be used to implement
the corresponding Endpoint. This property maps to the
corresponding property in the Remote Services chap-
ter. This property can be obtained with the getConfig-
urat ionTypes() method.

The Export Registration has all the possible con-
figuration types, where the Import Registration
reports the configuration type actually used.
SERVICE_IMPORTED_CONFIGS .

Endpoint Description Remote Service Admin Service Specification Version 1.1

Page 330 OSGi Enterprise Release 7

Endpoint Property Name Type Description
<config>.* * Where <config> is one of the configuration type names

listed in service. imported.configs . The content of
these properties must be valid for creating a connec-
tion to the Endpoint in another framework. That is,
any locally readable URLs from bundles must be con-
verted in such a form that they can be read by the im-
porting framework. How this is done is configuration
type specific.

* * All remaining public service properties must be
present (that is, not starting with full stop ('.' \u002E)).
If the values can not be marshaled by the Distribution
Provider then they must be ignored.

The EndpointDescr ipt ion class has a number of constructors that make it convenient to instantiate
it for different purposes:

• EndpointDescr ipt ion(Map) - Instantiate the Endpoint Description from a Map object.
• EndpointDescr ipt ion(ServiceReference,Map) - Instantiate an Endpoint Description based on a

Service Reference and a Map. The base properties of this Endpoint Description are the Service
Reference properties but the properties in the given Map must override any of their case variants
in the Service Reference. This allows the construction of an Endpoint Description from an ex-
portable service while still allowing overrides of specific properties by the Topology Manager.

The Endpoint Description must use the allowed properties as given in Table 122.1 on page 329.
The Endpoint Description must automatically skip any service.exported.* properties.

The Endpoint Description provides the following methods to access the properties in a more conve-
nient way:

• getInterfaces() - Answers a list of Java interface names. These are the interfaces under which the
services must be registered. These interface names can also be found at the objectClass property.
A service can only be imported when there is at least one Java interface name available.

• getConfigurat ionTypes() - Answer the configuration types that are used for exporting this End-
point. The configuration types are associated with a number of properties.

• getId() - Returns an Id uniquely identifying an Endpoint. The syntax of this Id should be defined
in the specification for the associated configuration type. Two Endpoint Descriptions with the
same Id describe the same Endpoint.

• getFrameworkUUID() - Get a Universally Unique Identifier (UUID) for the framework instance
that has created the Endpoint, Framework UUID on page 331.

• getServiceId() - Get the service id for the framework instance that has created the Endpoint. If
there is no service on the remote side the value must be 0.

• getPackageVersion(Str ing) - Get the version for the given package.
• getIntents() - Get the list of specified intents.
• getPropert ies() - Get all the properties.

Two Endpoint Descriptions are deemed equal when their Endpoint Id is equal. The Endpoint Id is a
mandatory property of an Endpoint Description, it is further described at Endpoint Id on page 331.
The hash code is therefore also based on the Endpoint Id.

122.4.1 Validity
A valid Endpoint Description must at least satisfy the following assertions:

• It must have a non-nul l Id that uniquely identifies the Endpoint

Remote Service Admin Service Specification Version 1.1 Endpoint Description

OSGi Enterprise Release 7 Page 331

• It must at least have one Java interface name
• It must at least have one configuration type set
• Any version for the packages must have a valid version syntax.

122.4.2 Mutability
An EndpointDescr ipt ion object is immutable and with all final fields. It can be freely used between
different threads.

122.4.3 Endpoint Id
An Endpoint Id is an opaque unique identifier for an Endpoint. This uniqueness must at least hold
for the entire network in which the Endpoint is used. There is no syntax defined for this string ex-
cept that white space at the beginning and ending must be ignored. The actual syntax for this End-
point Id must be defined by the actual configuration type.

Two Endpoint Descriptions are deemed identical when their Endpoint Id is equal. The Endpoint Ids
must be compared as string compares with leading and trailing spaces removed. The Endpoint De-
scription class must use the Str ing class' hash Code from the Endpoint Id as its own hashCode .

The simplest way to ensure that a growth in the number of EndpointDescriptions and/or the size
of the connected group does not violate the required uniqueness of Endpoint Ids is for implementa-
tions to make their Endpoint Ids globally unique. This protects against clashes regardless of changes
to the connected group.

Whilst globally unique identifiers (GUIDs) are a simple solution to the Endpoint Id uniqueness
problem, they are not easy to implement in all environments. In some systems they can be prohib-
itively expensive to create, or of insufficient entropy to be genuinely unique. Some distribution
providers may therefore choose not to use random GUIDs.

In the case where no globally unique value is used the following actions are recommended (al-
though not required).

• Distribution Providers protect against intra-framework clashes using some known value unique
to the service, for example the service id.

• Distribution Providers protect against inter-provider collisions within a single framework by us-
ing some unique value, such as the distribution provider's bundle id. The distribution provider
bundle's symbolic name is insufficient, as there may be multiple versions of the same distribu-
tion provider installed within a single framework.

• Distribution Providers protect against inter-framework collisions using some value unique to
the framework, such as the framework UUID.

122.4.4 Framework UUID
Each framework registers its services with a service id that is only unique for that specific frame-
work. The OSGi framework is not a singleton, making it possible that a single VM process holds
multiple OSGi frameworks. Therefore, to identify an OSGi service uniquely it is necessary to identi-
fy the framework that has registered it. This identifier is a Universally Unique IDentifier (UUID) that is
set for each framework. This UUID is contained in the following framework property:

org.osgi.framework.uuid

If an Endpoint Description has no associated OSGi service then the UUID of that Endpoint Descrip-
tion must not be set and its service id must be 0.

A local Endpoint Description will have its framework UUID set to the local framework. This makes
it straightforward to filter for Endpoint Descriptions that are describing local Endpoints or that de-
scribe remote Endpoints. For example, a manager can take the filter from a listener and ensure that
it is only getting remote Endpoint Descriptions:

Remote Service Admin Remote Service Admin Service Specification Version 1.1

Page 332 OSGi Enterprise Release 7

(&
 (!
 (service.remote.framework.uuid
 =72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)
)
 (objectClass=org.osgi.service.log.LogService)
)

Where 72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72 is the UUID of the local framework. A discovery
bundle can register the following filter in its scope to receive all locally generated Endpoints:

(service.remote.framework.uuid
 =72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

122.4.5 Resource Containment
Configuration types can use URLs to point to local resources describing in detail the Endpoint pa-
rameters for specific protocols. However, the purpose of an Endpoint Description is to describe an
Endpoint to a remote system. This implies that there is some marshaling process that will transfer
the Endpoint Description to another process. This other process is unlikely to be able to access re-
source URLs. Local bundle resource URLs are only usable in the framework that originates them but
even HTTP based URLs can easily run into problems due to firewalls or lack of routing.

Therefore, the properties for a configuration type should be stored in such a way that the receiving
process can access them. One way to achieve this is to contain the configuration properties com-
pletely in the Endpoint Description and ensure they only use the basic data types that the remote
services chapter in the core requires every Distribution Provider to support.

The Endpoint Description XML format provides an xml element that is specifically added to make it
easy to embed XML based configuration documents. The XML Schema is defined in Endpoint Descrip-
tion Extender Format on page 343.

122.5 Remote Service Admin
The Remote Service Admin service abstracts the core functionality of a distribution provider: ex-
porting a service to an Endpoint and importing services from an Endpoint. However, in contrast
with the distribution provider of the Remote Services specification, the Remote Service Admin ser-
vice must be told explicitly what services to import and export.

122.5.1 Exporting
An exportable service can be exported with the exportService(ServiceReference,Map) method. This
method creates a number of Endpoints by inspecting the merged properties from the Service Refer-
ence and the given Map. Any property in the Map overrides the Service Reference properties, regard-
less of case. That is, if the map contains a key then it will override any case variant of this key in the
Service Reference. However, if the Map contains the objectClass or service. id property key in any
case variant, then these properties must not override the Service Reference's value.

The Remote Service Admin service must interpret the merged properties according to the Remote
Services chapter. This means that it must look at the following properties (as defined in chapter Re-
mote Services on page 25):

• service.exported.configs - (Str ing+) A list of configuration types that should be used to export
this service. Each configuration type represents the configuration parameters for an Endpoint.
A Remote Service Admin service should create an Endpoint for each configuration type that it
supports and ignore the types it does not recognize. If this property is not set, then the Remote

Remote Service Admin Service Specification Version 1.1 Remote Service Admin

OSGi Enterprise Release 7 Page 333

Service Admin implementation must choose a convenient configuration type that then must be
reported on the Endpoint Description with the service. imported.configs associated with the re-
turned Export Registration.

• service.exported. intents - (Str ing+) A list of intents that the Remote Service Admin service must
implement to distribute the given service.

• service.exported. intents.extra - (Str ing+) This property is merged with the
service.exported. intents property.

• service.exported. interfaces - (Str ing+) This property must be set; it marks this service for ex-
port and defines the interfaces. The list members must all be contained in the types listed in
the objectClass service property from the Service Reference. The single value of an asterisk ('* '
\u002A) indicates all interfaces in the registration's objectClass property and ignore the classes.
Being able to set this property outside the Service Reference implies that the Topology Manager
can export any registered service, also services not specifically marked to be exported.

• service. intents - (Str ing+) A list of intents that this service has implemented.

A Topology Manager cannot remove properties, nul l is invalid as a property value.

The Remote Service Admin returns a collection of ExportRegistrat ion objects. This collection must
contain an entry for each configuration type the Remote Service Admin has recognized. Unrecog-
nized configuration types must be ignored. Recognized configuration types which require intents
that are not supported by the Remote Service Admin must also be ignored. However, it is possible
that this list contains invalid registrations, see Invalid Registrations on page 336.

If a Service was already exported then the Remote Service Admin must still return a new ExportReg-
istrat ion object that is linked with the earlier registrations. That is, an Endpoint can be shared be-
tween multiple Export Registrations. The Remote Service Admin service must ensure that the cor-
responding Endpoint remains available as long as there is at least one open Export Registration for
that Endpoint.

For each successful creation of an export registration, the Remote Service Admin service must pub-
lish an EXPORT_REGISTRATION event, see Events on page 341. This event must be emitted, even if
the Endpoint already existed and is thus shared with another Export Registration. If the creation of
an Endpoint runs into an error, an EXPORT_ERROR event must be emitted.

Each valid Export Registration corresponds to an Endpoint for the given service. This Endpoint
must remain active until all of the Export Registrations are closed that share this Endpoint.

The Endpoint can now be published so that other processes or systems can import this Endpoint. To
aid with this import, the Export Registration has a getExportReference() method that returns an Ex-
portReference object. This reference provides the following information:

• getExportedEndpoint() - This is the associated Endpoint Description. This Endpoint Description
is a properties based description of an Endpoint. The property keys and their semantics are out-
lined in Endpoint Description on page 328. It can be used to inform other systems of the avail-
ability of an Endpoint.

• getExportedService() - The Service Reference to the exported service.

Both methods must return nul l when the associated Export Registration is closed.

A Distribution Provider that recognizes the configuration type in an Endpoint can create a connec-
tion to an Endpoint on other systems as long as firewalls and networks permit. The Endpoint De-
scription can therefore be communicated to other systems to announce the availability of an End-
point. The Topology Manager can optionally announce the availability of an Endpoint to the End-
point Event Listener services, see Discovery on page 337. The decision to announce the availability
of an Endpoint is one of the policies that is provided by a specific Topology Manager.

The Export Registrations remain open until:

• Explicitly closed by the Topology Manager, or

Remote Service Admin Remote Service Admin Service Specification Version 1.1

Page 334 OSGi Enterprise Release 7

• The Remote Service Admin service is no longer used by the Topology Manager that created the
Export Registration.

If the Remote Service Admin service can no longer maintain the corresponding Endpoint due to fail-
ures than these should be reported through the events. However, the registrations should remain
open until explicitly closed by the Topology Manager.

See Registration Life Cycle on page 336 for more information.

The Export Registrations are not permanent; persistence is in the realm of the Topology Manager.

122.5.2 Importing
To import a service, a Topology Manager must have an Endpoint Description that describes the End-
point the imported service should connect to. With this Endpoint Description, a Remote Service
Admin service can then import the corresponding Endpoint. A Topology Manager can obtain these
Endpoint Descriptions through internal configuration; it can use the discovery model enabled by
the Endpoint Event Listener service, see Discovery on page 337, or some alternate means.

A service can be imported with the Remote Service Admin importService(EndpointDescr ipt ion)
method. This method takes an Endpoint Description and picks one of the embedded configuration
types to establish a connection with the corresponding Endpoint to create a local service proxy. This
proxy can then be mapped to either a remote OSGi service or an alternative, for example a web ser-
vice. In certain cases the service proxy can be lazy, only verifying the reachability of the Endpoint
when it is actually invoked for the first time. This implies that a service proxy can block when in-
voked until the proper communication setup has taken place.

If the Remote Service Admin service does not recognize any of the configuration types then it must
return nul l . If there are multiple configuration types recognized then the Remote Service Admin is
free to select any one of the recognized types.

The Remote Service Admin service must ensure that service properties are according to the Remote
Services chapter for an imported service. This means that it must register the following properties:

• service. imported - (*) Must be set to any value.
• service. imported.configs - (Str ing+) The configuration information used to import this service.

Any associated properties for this configuration types must be properly mapped to the import-
ing system. For example, a URL in these properties must point to a valid resource when used in
the importing framework, see Resource Containment on page 332. Multiple configuration types
can be listed if they are synonyms for exactly the same Endpoint that is used to export this ser-
vice.

• service. intents - (Str ing+) The Remote Service Admin must set this property to convey the com-
bined intents of:
• The exporting service, and
• The intents that the exporting distribution provider adds, and
• The intents that the importing distribution provider adds.

• Any additional properties listed in the Endpoint Description that should not be excluded. See
Endpoint Description on page 328 for more details about the properties in the Endpoint Descrip-
tion.

A Remote Service Admin service must strictly follow the rules for importing a service as outlined in
the Remote Services chapter.

The Remote Service Admin must return an ImportRegistrat ion object or nul l . Even if an Import Reg-
istration is returned, it can still be an invalid registration, see Invalid Registrations on page 336 if the
setup of the connection failed asynchronously. The Import Registration must always be a new ob-
ject. Each valid Import Registration corresponds to a proxy service, potentially shared, that was cre-
ated for the given Endpoint. The issues around proxying are described in Proxying on page 336.

Remote Service Admin Service Specification Version 1.1 Remote Service Admin

OSGi Enterprise Release 7 Page 335

For each successful creation of an import registration, the Remote Service Admin service must pub-
lish an IMPORT_REGISTRATION event, if there is an error it must publish an IMPORT_ERROR , see
Events on page 341.

For more information see Registration Life Cycle on page 336.

The Import Registration provides access to an ImportReference object with the getImportRefer-
ence() . This object has the following methods:

• getImportedEndpoint() - Provides the Endpoint Description for this imported service.
• getImportedService() - Provides the Service Reference for the service proxy.

The Import Registration will remain open as long as:

• The corresponding remote Endpoint remains available, and
• The Remote Service Admin service is still in use by the Topology Manager that created the Im-

port Registration.

That is, the Import Registrations are not permanent, any persistence is in the realm of the Topology
Manager. See Registration Life Cycle on page 336 for more details.

122.5.3 Updates
Services Registrations are dynamic and service properties may change during the lifetime of a ser-
vice. Remote services must mirror these dynamics without making it appear as though the service
has become unavailable. This requires that the exporting distribution provider and the importing
distribution provider support the changing of service properties.

There are two types of service properties:

• Properties that are intended to be consumed by the distribution provider, such as: the export-
ed interfaces and configuration types, exported intents and configuration type specific proper-
ties. These properties are typically prefixed with 'service.' or 'endpoint.' see Table 122.1 on page
329.

• Service properties not intended for the distribution provider. These are typically used to commu-
nicate information to the consumer of the service and are often specific to the domain of the ser-
vice.

The following methods to support the updating of service properties on Export Registrations and
the propagation of these updates to the remote proxies via Import Registrations.

• ExportRegistration.update(Map) - Allows the Topology Manager to update an existing export
registration it created after receiving a notification of changed properties on the remoted service.

• ImportRegistration.update(EndpointDescr ipt ion) - Allows the Topology Manager to update the
import registration representing a remote service after the remote service properties have been
updated. Typically the topology manager is notified of such change via the Discovery mecha-
nism.

The distribution provider must support the updates of service properties not intended for the dis-
tribution provider, where supported property values are as defined in the Filter Syntax of OSGi Core
Release 7. Distribution providers may support updates to a wider set of properties or data types, but
these may fail with other implementations.

122.5.4 Reflection
The Remote Service Admin service provides the following methods to get the list of the current ex-
ported and imported services:

Remote Service Admin Remote Service Admin Service Specification Version 1.1

Page 336 OSGi Enterprise Release 7

• getExportedServices() - List the Export References for services that are exported by this Remote
Service Admin service as directed by any of the Topology Managers.

• getImportedEndpoints() - List the Import References for services that have been imported by this
Remote Service Admin service as directed by any of the Topology Managers.

122.5.5 Registration Life Cycle
All registrations obtained through a Remote Service Admin service are life cycle bound to the Topol-
ogy Manager that created it. That is, if a Topology Manager ungets its Remote Service Admin service,
all registrations obtained through this service must automatically be closed. This model ensures
that all registrations are properly closed if either the Remote Service Admin or the Topology Manag-
er stops because in both cases the framework performs the unget automatically. Such behavior can
be achieved by implementing the Remote Service Admin service as a Service Factory.

122.5.6 Invalid Registrations
The Remote Service Admin service is explicitly allowed to return invalid Import and Export Registra-
tions. First, in a communications stack it can take time to discover that there are issues, allowing the
registration to return before it has completed can potentially save time. Second, it allows the Topol-
ogy Manager to discover problems with the configuration information. Without the invalid Export
Registrations, the Topology Manager would have to scan the log or associate the Remote Service Ad-
min Events with a specific import/export method call, something that can be difficult to do.

If the registration is invalid, the getException() method must return a Throwable object. If the regis-
tration has initialized correctly, this method will return nul l . The getExportReference() and getIm-
portReference() methods must throw an Illegal State Exception when the registration is invalid.
A Remote Service Admin service is allowed to block for a reasonable amount of time when any of
these methods is called, including the getException method, to finish initialization.

An invalid registration can be considered as never having been opened, it is therefore not necessary
to close it; however, closing an invalid or closed registration must be a dummy operation and never
throw an Exception. However, a failed registration must generate a corresponding error event.

122.5.7 Proxying
It is the responsibility of the Remote Service Admin service to properly proxy an imported service.
This specification does not mandate the technique used to proxy an Endpoint as a service in the OS-
Gi framework. The OSGi Remote Services specification allows a distribution provider to limit what
it can proxy.

One of the primary aspects of a proxy is to ensure class space consistency between the exporting
bundle and importing bundles. This can require the generation of a proxy-per-bundle to match the
proper class spaces. It is the responsibility of the Remote Service Admin to ensure that no Class Cast
Exceptions occur.

A common technique to achieve maximum class space compatibility is to use a Service Factory. A
Service Factory provides the calling bundle when it first gets the service, making it straightforward
to verify the package version of the interface that the calling bundle uses. Knowing the bundle that
requests the service allows the creation of specialized proxies for each bundle. The interface class(es)
for the proxy can then be loaded directly from the bundle, ensuring class compatibility. Interfaces
should be loadable by the bundle otherwise that bundle can not use the interface in its code. If an in-
terface cannot be loaded then it can be skipped. A dedicated class loader can then be created that has
visibility to all these interfaces and is used to define the proxy class. This design ensures proper vis-
ibility and consistency. Implementations can optimize this model by sharing compatible class load-
ers between bundles.

The proxy will have to call arbitrary methods on arbitrary services. This has a large number of secu-
rity implications, see Security on page 351.

Remote Service Admin Service Specification Version 1.1 Discovery

OSGi Enterprise Release 7 Page 337

122.6 Discovery
The topology of the distributed system is decided by the Topology Manager. However, in a distrib-
uted environment, the Topology Manager needs to discover Endpoints in other frameworks. There
is a very large number of ways how a Topology Manager could learn about other Endpoints, rang-
ing from static configuration, a centralized administration, all the way to fully dynamic discovery
protocols like the Service Location Protocol (SLP) or JGroups. To support the required flexibility, this
specification defines an Endpoint Event Listener service that allows the dissemination of Endpoint in-
formation. This service provides a symmetric solution because the problem is symmetric: it is used
by a Topology Manager to announce changes in its local topology as well as find out about other
Endpoint Descriptions. Where those other Endpoint Descriptions come from can vary widely. This
design is depicted in Figure 122.4 on page 337.

Figure 122.4 Examples

Topology
Manager

Static
Configuration

 Endpoint
Event
Listener

discovers/
announces

discovers

announces Network
Discovery

Configuration
Extender

Managed
Service Factory

Topology
Map

networks

displays
display

extends

 Endpoint
Event
Listener

The design of the Endpoint Event Listener allows a federated registry of Endpoint Descriptions. Any
party that is interested in Endpoint Descriptions should register an Endpoint Event Listener service.
This will signal that it is interested in topology information to any Endpoint Description Providers.
Each Endpoint Event Listener service must be registered with a service property that holds a set of
filter strings to indicate the scope of its interest. These filters must match an Endpoint Description
before the corresponding Endpoint Event Listener service is notified of the availability of an End-
point Description. Scoping is intended to limit the delivery of unnecessary Endpoint Descriptions as
well as signal the need for specific Endpoints.

In addition to providing an Endpoint Event Listener actors must provide an Endpoint Listener. This
may, or may not, be the same service object as the Endpoint Event Listener. Registering an Endpoint
Listener in addition to an Endpoint Event Listener ensures that Endpoint announcements from ver-
sion 1.0 actors will continue to be visible. If a service object is advertised as both an Endpoint Listen-
er and an Endpoint Event Listener then version 1.1 actors must use the Endpoint Event Listener in-
terface of the service in preference, and not call it as an Endpoint Listener. For this reason the End-
point Listener interface is marked as Deprecated . The reason that the Endpoint Event Listener inter-
face should be preferred is that it supports more advanced notification types, such as modification
events.

A Topology Manager has knowledge of its local Endpoints and is likely to be only interested in re-
mote Endpoints. It can therefore set the scope to only match remote Endpoint Descriptions. See
Framework UUID on page 331 for how to limit the scope to local or remote Endpoints. At the

Discovery Remote Service Admin Service Specification Version 1.1

Page 338 OSGi Enterprise Release 7

same time, a Topology manager should inform any locally registered Endpoint Event Listener and
Endpoint Listener services about Endpoints that it has created or deleted.

This architecture allows many different use cases. For example, a bundle could display a map of the
topology by registering an Endpoint Event Listener with a scope for local Endpoints. Another ex-
ample is the use of SLP to announce local Endpoints to a network and to discover remote Endpoints
from other parties on this network.

An instance of this design is shown in Figure 122.5 on page 338. In this figure, there are 3 frame-
works that collaborate through some discovery bundle. The Top framework has created an Endpoint
and decides to notify all Endpoint Event Listeners and Endpoint Listeners registered in this frame-
work that are scoped to this new Endpoint. Local bundle D has set its scope to all Endpoint Descrip-
tions that originate from its local framework, it therefore receives the Endpoint Description from T .
Bundle D then sends the Endpoint Description to all its peers on the network.

In the Quark framework, the manager bundle T has expressed an interest by setting its scope to
a filter that matches the Endpoint Description from the Top framework. When the bundle D on
the Quark framework receives the Endpoint Description from bundle D on the Top framework, it
matches it against all local Endpoint Event Listener's scope. In this case, the local manager bundle T
matches and is given the Endpoint Description. The manager then uses the Remote Service Admin
service to import the exported service described by the given Endpoint Description.

Figure 122.5 Endpoint Discovery Architecture. T=Topology Manager, D=Discovery

D

DD T

T

T

Framework

Bundle

EndpointEventListener Service

Endpoint

Endpoint connection

Service connection

Framework Quark Framework Charm

Imported/Exported-Service

Top
Framework

Network

The previous description is just one of the possible usages of the Endpoint Event Listener. For ex-
ample, the discovery bundles could communicate the scopes to their peers. These peers could then
register an Endpoint Event Listener per peer, minimizing the network traffic because Endpoint De-
scriptions do not have to be broadcast to all peers.

Another alternative usage is described in Endpoint Description Extender Format on page 343. In this
chapter the extender pattern is used to retrieve Endpoint Descriptions from resources in locally ac-
tive bundles.

122.6.1 Scope and Filters
An Endpoint Event Listener or Endpoint Listener service is registered with the
ENDPOINT_LISTENER_SCOPE service property. This property, which is Str ing+ , must be set and
must contain at least one filter. If there is not at least one filter, then that Endpoint Event Listener or
Endpoint Listener must not receive any Endpoint Descriptions.

Remote Service Admin Service Specification Version 1.1 Discovery

OSGi Enterprise Release 7 Page 339

Each filter in the scope is applied against the properties of the Endpoint Description until one suc-
ceeds. Only if one succeeds is the Endpoint informed about the existence of an Endpoint.

The Endpoint Description is designed to reflect the properties of the imported service, there is there-
fore a correspondence with the filters that are used by bundles that are listening for service registra-
tions. The purpose of this design is to match the filter available through Listener Hook services, see
On Demand on page 341.

However, the purpose of the filters is more generic than just this use case. It can also be used to spec-
ify the interest in local Endpoints or remote Endpoints. For example, Topology Managers are only
interested in remote Endpoints while discoverers are only interested in local Endpoints. It is easy to
discriminate between local and remote by filtering on the endpoint.framework.uuid property. End-
point Descriptions contain the Universally Unique ID (UUID) of the originating framework. This
UUID must be available from the local framework as well. See Framework UUID on page 331.

122.6.2 Endpoint Event Listener Interface
The EndpointEventListener interface has the following method:

• endpointChanged(EndpointEvent,Str ing) – Notify the Endpoint Event Listener of changes to an
Endpoint. The change could entail the addition or removal of an Endpoint or the modification
of the properties of an existing Endpoint. Multiple identical events should be counted as a single
such event.

These methods must only be called if the Endpoint Event Listener service has a filter in its scope
that matches the Endpoint Description properties.

The Endpoint Event Listener interface is idempotent. Endpoint Description Providers must inform an
Endpoint Event Listener service (and its deprecated predecessor Endpoint Listener service) that is
registered of all their matching Endpoints. The only way to find out about all available Endpoints is
to register an Endpoint Event Listener (or Endpoint Listener) that is then informed by all available
Endpoint Description Providers of their known Endpoint Descriptions that match their scope.

122.6.3 Endpoint Listener Interface
The EndpointListener interface is marked as Deprecated because the EndpointEventListener inter-
face must be used in preference when both are implemented by the same object. The EndpointEvent
interface has the following methods:

• endpointAdded(EndpointDescr ipt ion,Str ing) – Notify the Endpoint Listener of a new Endpoint
Description. The second parameter is the filter that matched the Endpoint Description. Register-
ing the same Endpoint multiple times counts as a single registration.

• endpointRemoved(EndpointDescr ipt ion,Str ing) – Notify the Endpoint Listener that the provid-
ed Endpoint Description is no longer available.

These methods must only be called if the Endpoint Listener service has a filter in its scope that
matches the Endpoint Description properties. The reason for the filter string in the methods is to
simplify and speed up matching an Endpoint Description to the cause of interest. For example, if the
Listener Hook is used to do on demand import of services, then the filter can be associated with the
Listener Info of the hook, see On Demand on page 341. If multiple filters in the scope match the
Endpoint Description than the first filter in the scope must be passed.

The Endpoint Listener interface is idempotent. Endpoint Description Providers must inform an End-
point Listener service that is registered of all their matching Endpoints.

122.6.4 Endpoint Event Listener and Endpoint Listener Implementations
An Endpoint Event Listener service tracks the known Endpoints in its given scope. There are poten-
tially a large number of bundles involved in creating this federated registry of Endpoints. To ensure

Discovery Remote Service Admin Service Specification Version 1.1

Page 340 OSGi Enterprise Release 7

that no Endpoint Descriptions are orphaned or unnecessarily missed, an Endpoint Event Listener
implementation must follow the following rules:

• Registration – The Endpoint Event Listener service is called with an event of type ADDED for all
known Endpoint Descriptions that the bundles in the local framework are aware of. Similar-
ly, Endpoint Listener services are called with an endpointAdded(EndpointDescr ipt ion,Str ing)
method for all these.

• Tracking providers – An Endpoint Event Listener or Endpoint Listener must track the bundles
that provide it with Endpoint Descriptions. If a bundle that provided Endpoint Descriptions is
stopped, all Endpoint Descriptions that were provided by that bundle must be removed. This can
be implemented straightforwardly with a Service Factory.

• Scope modification – An Endpoint Event Listener or Endpoint Listener is allowed to modify the set
of filters in its scope through a service property modification. This modification must result in
new and/or existing Endpoint Descriptions to be added, however, existing Endpoints that are no
longer in scope are not required to be explicitly removed by the their sources. It is the responsi-
bility for the Endpoint Listener to remove these orphaned Endpoint Description from its view.

• Endpoint mutability – An Endpoint Description can change its Properties. The way this is
handled is different for Endpoint Event Listeners and Endpoint Listeners. An Endpoint
Event Listener receives a change event of type MODIFIED when the Properties of an exist-
ing Endpoint are modified. If the modification means that the Endpoint no longer match-
es the listener scope an event of type MODIFIED_ENDMATCH is sent instead. Endpoint Lis-
tener services receive a sequence of endpointRemoved(EndpointDescr ipt ion,Str ing) and
endpointAdded(EndpointDescr ipt ion,Str ing) callbacks when the Properties of an Endpoint are
modified.

Endpoint Descriptions can be added from different sources and providers of Endpoint Descriptions
often use asynchronous and potentially unreliable communications. An implementation must
therefore handle the addition of multiple equal Endpoint Descriptions from different sources as
well as from the same source. Implementations must not count the number of registrations, a re-
move operation of an Endpoint Description is final for each source. That is, if source A added End-
point Description e , then it can only be removed by source A . However, if source A added e multiple
times, then it only needs to be removed once. Removals of Endpoint Descriptions that have not been
added (or were removed before) should be ignored.

The discovery of Endpoints is a fundamentally indeterministic process and implementations of
Endpoint Event Listener services should realize that there are no guarantees that an added Endpoint
Description is always describing a valid Endpoint.

122.6.5 Endpoint Description Providers
The Endpoint Event Listener and Endpoint Listener services are based on an asynchronous, unre-
liable, best effort model because there are few guarantees in a distributed world. It is the task of an
Endpoint Description Provider, for example a discovery bundle, to keep the Endpoint Event Listener
services up to date of any Endpoint Descriptions the provider is aware of and that match the tracked
service's scope.

If an Endpoint Event Listener or Endpoint Listener service is registered, a provider must add all
matching Endpoint Descriptions that it is aware of and match the tracked listener's scope. This can
be done during registration or asynchronously later. For example, it is possible to use the filters in
the scope to request remote systems for any Endpoint Descriptions that match those filters. For ex-
pediency reasons, the service registration event should not be delayed until those results return; it is
therefore applicable to add these Endpoint Descriptions later when the returns from the remote sys-
tems finally arrive.

If a tracked listener service object is advertised as both an Endpoint Event Listener and an Endpoint
Listener then the EndpointDescription Provider must ignore the EndpointListener interface, and
treat the listener only as an Endpoint Event Listener. Remote Service Admin 1.0 actors will be un-

Remote Service Admin Service Specification Version 1.1 Events

OSGi Enterprise Release 7 Page 341

aware of the EndpointEventListener interface, and will treat the service object purely as an Endpoint
Listener. This restriction ensures that all actors will treat the service either as an Endpoint Event
Listener, or an Endpoint Listener, but never as both. As a result the listener service will not have to
disambiguate duplicate events from a single source. If an Endpoint Description Provider uses both
the Endpoint Listener and Endpoint Event Listener interfaces of a single service object then the re-
sulting behavior is undefined. The implementation may detect the misuse and throw an Exception,
process or ignore the events from one of the interfaces, or it may simply corrupt the internal registry
of Endpoints within the listener.

A tracked Endpoint Event Listener or Endpoint Listener is allowed to modify its scope by setting
new properties on its Service Registration. An Endpoint Description provider must process the new
scope and add any newly matching Endpoint Descriptions. It is not necessary to remove any End-
point Descriptions that were added before but no longer match the new scope. Removing those or-
phaned descriptions is the responsibility of the listener implementation.

It is not necessary to remove any registered Endpoint Descriptions when the Endpoint Event Lis-
tener or Endpoint Listener is unregistered; also here it is the responsibility of the listener to do the
proper cleanup.

122.6.6 On Demand
A common distribution policy is to import services that are being listened for by local bundles. For
example, when a bundle opens a Service Tracker on the Log Service, a Topology Manager could be
notified and attempt to find a Log Service in the local cluster and then import this service in the lo-
cal Service Registry.

The OSGi framework provides service hooks for exactly this purpose. A Topology Manager can reg-
ister a Listener Hook service and receive the information about bundles that have specified an inter-
ests in specific services.

For example, a bundle creates the following Service Tracker:

ServiceTracker st = new ServiceTracker(context,
 LogService.class.getName());
st.open();

This Service Tracker will register a Service Listener with the OSGi framework. This will cause the
framework to add a ListenerInfo to any Listener Hook services. The getFi l ter method on a Listen-
erInfo object provides a filter that is directly applicable for the Endpoint Event Listener's scope. In
the previous example, this would be the filter:

(objectClass=org.osgi.service.log.LogService)

A Topology Manager could verify if this listener is satisfied. That is, if it has at least one service. If no
such service could be found, it could then add this filter to its Endpoint Event Listener's scope to de-
tect remote implementations of this service. If such an Endpoint is detected, it could then request
the import of this service through the Remote Service Admin service.

122.7 Events
The Remote Service Admin service must synchronously inform any Remote Service Admin Listen-
er services of events as they happen. Client of the events should return quickly and not perform any
but trivial processing in the same thread.

The following event types are defined:

Events Remote Service Admin Service Specification Version 1.1

Page 342 OSGi Enterprise Release 7

• EXPORT_ERROR - An exported service has run into an unrecoverable error, although the Export
Registration has not been closed yet. The event carries the Export Registration as well as the Ex-
ception that caused the problem, if present.

• EXPORT_REGISTRATION - The Remote Service Admin has registered a new Export Registration.
• EXPORT_UNREGISTRATION - An Export Registration has been closed, the service is no longer

exported and the Endpoint is no longer active when this was the last registration for that ser-
vice/Endpoint combination.

• EXPORT_UPDATE - An exported service is updated. The service properties have changed.
• EXPORT_WARNING - An exported service is experiencing problems but the Endpoint is still avail-

able.
• IMPORT_ERROR - An imported service has run into a fatal error and has been shut down. The Im-

port Registration should be closed by the Topology Manager that created them.
• IMPORT_REGISTRATION - A new Import Registration was created for a potentially existing ser-

vice/Endpoint combination.
• IMPORT_UNREGISTRATION - An Import Registration was closed, removing the proxy if this was

the last registration.
• IMPORT_UPDATE - An imported service is updated. The service properties have changed.
• IMPORT_WARNING - An imported service is experiencing problems but can continue to function.

The following properties are available on the event:

• getType() - The type of the event.
• getException() - Any exception, if present.
• getExportReference() - An export reference, if applicable.
• getImportReference() - An import reference, if applicable.
• getSource() - The source of the event, the Remote Service Admin service.

122.7.1 Event Admin Mapping
All Remote Service Admin events must be posted, which is asynchronously, to the Event Admin ser-
vice, if present, under the following topic:

org/osgi/service/remoteserviceadmin/<type>

Where <type> represents the type of the event, for example IMPORT_ERROR .

The Event Admin event must have the following properties:

• bundle - (Bundle) The Remote Service Admin bundle
• bundle. id - (Long) The id of the Remote Service Admin bundle.
• bundle.symbol icname - (Str ing) The Bundle Symbolic Name of the Remote Service Admin

bundle.version - (Version) The version of the Remote Service Admin bundle.
• bundle.s igner - (Str ing[]) Signer of the Remote Service Admin bundle
• exception - (Throwable) The Exception, if present. Also reported on the cause property for back-

ward compatibility.
• exception.class - (Str ing) The fully-qualified class name of the attached Exception.
• exception.message -(Str ing) The message of the attached exception. Only set if the Exception

message is not nul l .
• endpoint.service. id - (Long) Remote service id, if present
• endpoint.framework.uuid - (Str ing) Remote service's Framework UUID, if present
• endpoint. id - (Str ing) The id of the Endpoint, if present
• objectClass - (Str ing[]) The interface names, if present

Remote Service Admin Service Specification Version 1.1 Endpoint Description Extender Format

OSGi Enterprise Release 7 Page 343

• service. imported.configs - (Str ing+) The configuration types of the imported services, if present
• t imestamp - (Long) The time when the event occurred
• event - (RemoteServiceAdminEvent) The RemoteServiceAdminEvent object that caused this

event.

122.8 Endpoint Description Extender Format
The Endpoint Description Extender format is a possibility to deliver Endpoint Descriptions in bun-
dles. This section defines an XML schema and how to locate XML definition resources that use this
schema to define Endpoint Descriptions. The definition resource is a simple property based model
that can define the same information as the properties on an imported service. If a bundle with the
description is ready (ACTIVE or lazy activation and in the STARTING state), then this static descrip-
tion can be disseminated through the Endpoint Event Listeners that have specified an interest in
this description. If the bundle is stopped, the corresponding Endpoints must be removed.

XML documents containing remote service descriptions must be specified by the Remote-Service
header in the manifest. The structure of the Remote Service header is:

Remote-Service ::= header // See Common Header Syntax in Core

The value of the header is a comma separated list of paths. A path is:

• A directory if it ends with a solidus (' / ' \u002F). A directory is scanned for *.xml files.
• A path with wildcards. Such a path can use the wildcards in its last component, as defined in the

f indEntr ies method.
• A complete path, not having wildcards not ending in a solidus (' / ' \u002F).

The Remote-Service header has no architected directives or attributes, unrecognized attributes and
directives must be ignored.

A Remote-Service manifest header specified in a fragment must be ignored. However, XML docu-
ments referenced by a bundle's Remote-Service manifest header can be contained in attached frag-
ments. The required behavior for this is implemented in the f indEntr ies method.

The extender must process each XML document specified in this header. If an XML document speci-
fied by the header cannot be located in the bundle and its attached fragments, the extender must log
an error message with the Log Service, if present, and continue.

For example:

Remote-Service: lib/, remote/osgi/*.dsc, cnf/google.xml

This matches all resources in the lib directory matching *.xml , all resources in the /remote/osgi di-
rectory that end with .dsc , as well as the google.xml resource in the cnf directory.

The namespace of these XML resources must be:

 http://www.osgi .org/xmlns/rsa/v1.0.0

This namespace describes a set of Endpoint Descriptions, where each Endpoint Description can pro-
vide a set of properties. The structure of this schema is:

endpoint-descriptions ::= <endpoint-description>*
endpoint-description ::= <property>*
property ::= (<array> | <list> | <set>| <xml>)?
array ::= <value> *

Endpoint Description Extender Format Remote Service Admin Service Specification Version 1.1

Page 344 OSGi Enterprise Release 7

list ::= <value> *
set ::= <value> *
xml ::= <*> *

This structure is depicted in Figure 122.6 on page 344.

Figure 122.6 Endpoint Description XML Structure

endpoint-
descriptions

endpoint-
description

property

0..n

0..n

list setarray xml

0,1

<any>value

1

1

1

0..n

111 1

0..n

The property element has the attributes listed in table Table 122.2.

Table 122.2 Property Attributes

Attribute Type Description
name Str ing The required name of the property. The type maps to the

XML Schema xsd:str ing type.

Remote Service Admin Service Specification Version 1.1 Endpoint Description Extender Format

OSGi Enterprise Release 7 Page 345

Attribute Type Description
value-type Str ing

| long

| Long

| double

| Double

| f loat

| F loat

| int

| Integer

| byte

| Byte

| char

| Character

| boolean

| Boolean

| short

| Short

The optional type name of the property, the default is
Str ing . Any value in the value attribute or the value ele-
ment when collections are used must be converted to the
corresponding Java types. If the primitive form, for exam-
ple byte , is specified for non-array types, then the value
must be silently converted to the corresponding wrapper
type.

value Str ing The value. Must be converted to the specified type if this
is not the Str ing type. The value attribute must not be used
when the property element has a child element.

A property can have an array , l ist , set , or xml child element. If a child element is present then it is an
error if the value attribute is defined. It is also an error of there is no child element and no value at-
tribute.

The array , l ist , or set are multi-valued. That is, they contain 0 or more value elements. A value el-
ement contains text (a string) that must be converted to the given value-type or if not specified,
left as is. Conversion must trim the leading and trailing white space characters as defined in the
Character. isWhitespace method. No trimming must be done for strings. An array of primitive inte-
gers like int[] {1,42,97} can be encoded as follows:

<property name="integers" value-type="int">
 <array>
 <value> 1</value>
 <value>42</value>
 <value>97</value>
 </array>
</property>

The xml element is used to convey XML from other namespaces, it is allowed to contain one foreign
XML root element, with any number of children, that will act as the root element of an XML doc-
ument. This root element will be included in the corresponding property as a string. The XML ele-
ment must be a valid XML document but not contain the XML processing instructions, the part be-
tween the <? and ?> . The value-type of the property must be Str ing or not set when an xml element
is used, using another type is invalid.

The xml element can be used to embed configuration information, making the Endpoint Descrip-
tion self contained.

Endpoint Description Extender Format Remote Service Admin Service Specification Version 1.1

Page 346 OSGi Enterprise Release 7

The following is an example of an endpoint-descr ipt ions resource.

<?xml version="1.0" encoding="UTF-8"?>
<endpoint-descriptions xmlns="http://www.osgi.org/xmlns/rsa/v1.0.0">
 <endpoint-description>
 <property name="service.intents">
 <list>
 <value>SOAP</value>
 <value>HTTP</value>
 </list>
 </property>
 <property name="endpoint.id" value="http://ws.acme.com:9000/hello"/>
 <property name="endpoint.package.version.com.acme" value="4.2"/>
 <property name="objectClass">
 <array>
 <value>com.acme.Foo</value>
 </array>
 </property>
 <property name="service.imported.configs" value="com.acme"/>
 <property name="com.acme.ws.xml">
 <xml>
 <config xmlns="http://acme.com/defs">
 <port>1029</port>
 <host>www.acme.com</host>
 </config>
 </xml>
 </property>
 </endpoint-description>
</endpoint-descriptions>

Besides being in a separate resource, the static configuration as described here could also be part of
a larger XML file. In that case the parser must ignore elements not part of the http://www.osgi .org/
xmlns/rsa/v1.0.0 namespace schema.

122.8.1 XML Schema
This namespace of the schema is:

http://www.osgi.org/xmlns/rsa/v1.0.0

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:rsa="http://www.osgi.org/xmlns/rsa/v1.0.0"
 targetNamespace="http://www.osgi.org/xmlns/rsa/v1.0.0"
 elementFormDefault="qualified" version="1.0.1">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for endpoint descriptions used by
 the Remote Service Admin Specification. Endpoint descriptions
 are used to describe remote services to a client in cases
 where a real live Discovery system isn't used. An extender,
 such as a local Discovery Service can look for service
 descriptions in installed bundles and inform the Topology
 Manager of these remote services. The Topology Manager can then
 instruct the Remote Service Admin to create client proxies for
 these services.
 </documentation>
 </annotation>

 <element name="endpoint-descriptions" type="rsa:Tendpoint-descriptions" />

 <complexType name="Tendpoint-descriptions">
 <sequence>

Remote Service Admin Service Specification Version 1.1 Endpoint Description Extender Format

OSGi Enterprise Release 7 Page 347

 <element name="endpoint-description" type="rsa:Tendpoint-description"
 minOccurs="1" maxOccurs="unbounded" />
 <!--
 It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig to use
 namespace="##any" below.
 -->
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tendpoint-description">
 <annotation>
 <documentation xml:lang="en">
 A Distribution Provider can register a proxy with the properties
 provided. Whether or not it is instructed to do so, is up to the
 Topology Manager. If any 'intents' properties are specified then the
 Distribution Provider should only register a proxy if it can support
 those intents.
 </documentation>
 </annotation>
 <sequence>
 <element name="property" type="rsa:Tproperty" minOccurs="1"
 maxOccurs="unbounded" />
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tproperty" mixed="true">
 <sequence>
 <choice minOccurs="0" maxOccurs="1">
 <element name="array" type="rsa:Tmulti-value"/>
 <element name="list" type="rsa:Tmulti-value"/>
 <element name="set" type="rsa:Tmulti-value"/>
 <element name="xml" type="rsa:Txml"/>
 </choice>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <attribute name="name" type="string" use="required" />
 <attribute name="value" type="string" use="optional" />
 <attribute name="value-type" type="rsa:Tvalue-types" default="String" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tmulti-value">
 <sequence>
 <element name="value" minOccurs="0" maxOccurs="unbounded" type="rsa:Tvalue"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tvalue" mixed="true">
 <sequence>
 <element name="xml" minOccurs="0" maxOccurs="1" type="rsa:Txml"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <!-- Specifies the data type of a property or of the elements in a multi-value
 property. Numerical and boolean values are trimmed before they are processed.
 Simple types are automatically boxed if needed. Only the array data type
 allows for simple type values. When specifying a simple type on any other
 type of property it will automatically be boxed. -->
 <simpleType name="Tvalue-types">
 <restriction base="string">
 <enumeration value="String" />

Capability Namespaces Remote Service Admin Service Specification Version 1.1

Page 348 OSGi Enterprise Release 7

 <enumeration value="long" />
 <enumeration value="Long" />
 <enumeration value="double" />
 <enumeration value="Double" />
 <enumeration value="float" />
 <enumeration value="Float" />
 <enumeration value="int" />
 <enumeration value="Integer" />
 <enumeration value="byte" />
 <enumeration value="Byte" />
 <enumeration value="char" />
 <enumeration value="Character" />
 <enumeration value="boolean" />
 <enumeration value="Boolean" />
 <enumeration value="short" />
 <enumeration value="Short" />
 </restriction>
 </simpleType>

 <!-- This complex type allows literal XML to be specified in an <xml/> tag (which
 is more convenient than putting it in a CDATA section).
 The embedded XML must be well-formed and not be in the rsa namespace. It will
 be put in a String value of a property or in an element of a multi-value
 property of base type String. The XML will be prefixed with the standard
 <?XML ?> header which is copied from the enclosing document. Hence it will
 carry the same version and encoding as the document in the rsa namespace. -->
 <complexType name="Txml">
 <sequence>
 <any namespace="##other" minOccurs="1" maxOccurs="1"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <attribute name="must-understand" type="boolean" default="false">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension.
 </documentation>
 </annotation>
 </attribute>
</schema>

122.9 Capability Namespaces

122.9.1 Local Discovery Extender
A bundle containing Endpoint Description Extender resources can indicate its dependency on the
Remote Service Admin extender by declaring a requirement on the osgi .extender namespace.

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.remoteserviceadmin.localdiscovery)
 (version>=1.0)(!(version>=2.0)))"

With this constraint declared a bundle that depends on the extender will fail to resolve if no exten-
der is present in the framework.

Implementations of this specification must provide this extender capability at version 1.0 as fol-
lows:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.remoteserviceadmin.localdiscovery";
 version:Version="1.0";
 uses:="org.osgi.service.remoteserviceadmin"

Remote Service Admin Service Specification Version 1.1 Capability Namespaces

OSGi Enterprise Release 7 Page 349

The reason that the extender capability is declared at version 1.0 is because the extender is un-
changed from version 1.0 of this specification.

122.9.2 Discovery Provider Capability
Discovery Providers use the osgi . remoteserviceadmin.discovery namespace to declare themselves
as such. The version defined for this namespace indicates the version of this specification that the
discovery provider supports.

This namespace has a defined attribute, protocols of type List<Str ing> , which contains a list of the
discovery protocols supported by the discovery provider. Local discovery providers (using the End-
point Description Extender Format on page 343), should use the value local to indicate that they sup-
port this. Additionally, it defines a version attribute. Other values for the protocols attribute are im-
plementation specific.

Table 122.3 osgi.remoteserviceadmin.discovery Namespace

Name Kind M/O Type Syntax Description
protocols CA M List<Str ing> symbol ic-name The discovery protocols supported. A value of lo-

cal indicates support for the Endpoint Description
Extender Format on page 343.

version CA M Version version This version must correspond to the version of
the Remote Service Admin specification.

Example: A discovery provider that provides local and SLP discovery:

Provide-Capability: osgi.remoteserviceadmin.discovery;
 protocols:List<String>="SLP,local"; version:Version=1.1

122.9.3 Distribution Provider Capability
Distribution providers advertise their supported distribution mechanisms using configuration
types. These are selected at runtime using the service.exported.configs service property. Distribu-
tion providers can use the osgi . remoteserviceadmin.distr ibution namespace with attribute configs ,
of type List<Str ing> , to advertise the supported config types.

Table 122.4 osgi.remoteserviceadmin.distribution Namespace

Name Kind M/O Type Syntax Description
configs CA M List<Str ing> symbol ic-name Supported configuration types. See Endpoint De-

scription on page 328 .
version CA M Version version This version must correspond to the version of

the Remote Service Admin specification.

Example: A Distribution provider that supports the org.acme.jaxws and org.acme.jaxrs configura-
tion types:

Provide-Capability: osgi.remoteserviceadmin.distribution;
 configs:List<String>="org.acme.jaxws,org.acme.jaxrs"; version:Version=1.1

122.9.4 Topology Manager Capability
Remote Service Admin topology managers may use different policies when determin-
ing which services to export and/or import. Topology managers use the namespace
osgi . remoteserviceadmin.topology to declare this behavior. This namespace defines the pol icy at-

Advice to implementations Remote Service Admin Service Specification Version 1.1

Page 350 OSGi Enterprise Release 7

tribute of type List<Str ing> . Values are implementation specific, but example definitions can be
found at Example Use Cases on page 327.

Table 122.5 osgi.remoteserviceadmin.topology Namespace

Name Kind M/O Type Syntax Description
pol icy CA M List<Str ing> symbol ic-name The policy used for importing and exporting ser-

vices. In general the policy is implementation
specific.

version CA M Version version This version must correspond to the version of
the Remote Service Admin specification.

Example: A Topology manager that supports a promiscuous policy:

Provide-Capability: osgi.remoteserviceadmin.topology;
 policy:List<String>=promiscuous; version:Version=1.1

122.9.5 Service Capability
The Distribution Provider provides the Remote Service Admin service. To inform tools about this ser-
vice it must provide the osgi .service namespace representing the RemoteServiceAdmin service. This
capability must also declare a uses constraint for the org.osgi .service.remoteserviceadmin package:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.remoteserviceadmin.RemoteServiceAdmin";
 uses:="org.osgi.service.remoteserviceadmin"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

122.10 Advice to implementations
This section is not intended to be normative, but offers advice to implementations as to how the
complexity of supporting both the new Endpoint Event Listener and Endpoint Listener services can
be managed and minimized. This advice applies to both Discovery Providers and Topology Man-
agers implementing Remote Service Admin 1.1 .

122.10.1 Notifying listeners
Endpoint Event Listeners and Endpoint Listeners have a very similar behavior and lifecycle. They
also use the same property names to define their scope filter. It is therefore relatively simple for an
Endpoint Description Provider to notify both Endpoint Listener and Endpoint Event Listeners using
a single code path.

One possible mechanism is to track both the listener types using the same Service Tracker. If the
tracked Service Reference advertises the EndpointEventListener interface then it must be treated as
an Endpoint Event Listener. If not then the Endpoint Listener service can be wrapped in an adapter
that converts Endpoint Event Listener events into the appropriate Endpoint Listener calls. The main
notification code path can then treat every listener as an Endpoint Event Listener.

122.10.2 Receiving Endpoint lifecycle notifications
The Remote Service Admin 1.1 specification is backward compatible with version 1.0 , meaning that
version 1.1 actors must register an Endpoint Listener service. There is no restriction requiring this
listener to be the same service as the Endpoint Event Listener, however there is a significant advan-
tage to combining the listeners into a single service registration.

Remote Service Admin Service Specification Version 1.1 Security

OSGi Enterprise Release 7 Page 351

By making the two listeners a single service object a bundle can guarantee that it will not receive
multiple notifications for the same event. If the service registrations are separate then Endpoint De-
scription Providers will see two separate listeners, and notify them both. As a single service registra-
tion only one event will occur, and using the highest mutually supported version of the Remote Ser-
vice Admin Specification.

122.11 Security
From a security point of view distribution is a significant threat. A Distribution Provider requires
very significant capabilities to be able to proxy services. In many situations it will be required to
grant the distribution provider All Permission. It is therefore highly recommended that Distribution
Providers use trusted links and ensure that it is not possible to attack a system through the Remote
Services Admin service and used discovery protocols.

122.11.1 Import and Export Registrations
Import and Export Registrations are capabilities. That is, they can only be obtained when the caller
has the proper permissions but once obtained they are no longer checked. The caller should there-
fore be careful to share those objects with other bundles. Export and Import References are free to
share.

122.11.2 Endpoint Permission
The Remote Service Admin implementation requires a large set of permissions because it must be
able to distribute potentially any service. Giving these extensive capabilities to all Topology Man-
agers would make it harder to developer general Topology Managers that implements specific sce-
narios. For this reason, this specification provides an Endpoint Permission.

When an Endpoint Permission must be verified, it must be created with an Endpoint Description as
argument, like:

sm.checkPermission(new EndpointPermission(anEndpoint,localUUID,READ));

The standard name and action constructor is used to define a permission. The name argument is a
filter expression. The filter for an Endpoint Permission is applied to the properties of an Endpoint
Description. The localUUID must map to the UUID of the framework of the caller of this construc-
tor, see Framework UUID on page 331. This localUUID is used to allow a the permissions to use the
<<LOCAL>> magic name in the permission filter to refer to the local framework.

The filter expression can use the following magic value:

• <<LOCAL>> - This value represents the framework UUID of the framework that this bundle be-
longs to. The following example restricts the visibility to descriptions of local Endpoints:

 ALLOW {
 ...EndpointPermission
 "(endpoint.framework.uuid=<<LOCAL>>)"
 "READ" }

An Endpoint Permission that has the actions listed in the following table.

Table 122.6 Endpoint Permission Actions

Action Methods Description
IMPORT importService(EndpointDescr ipt ion) Import an Endpoint
EXPORT exportService(ServiceReference,Map) Export a service

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 352 OSGi Enterprise Release 7

Action Methods Description
READ getExportedServices()

getImportedEndpoints()

remoteAdminEvent(RemoteServiceAdminEvent)

See the presence of distributed ser-
vices. The IMPORT and EXPORT action
imply READ . Distribution of events to
the Remote Service Admin Listener.
The Remote Service Admin must ver-
ify that the listener's bundle has the
proper permission. No events should
be delivered that are not implied.

122.12 org.osgi.service.remoteserviceadmin

Remote Service Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.remoteserviceadmin; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.remoteserviceadmin; vers ion="[1.1 ,1 .2)"

122.12.1 Summary

• EndpointDescr ipt ion - A description of an endpoint that provides sufficient information for a
compatible distribution provider to create a connection to this endpoint An Endpoint Descrip-
tion is easy to transfer between different systems because it is property based where the property
keys are strings and the values are simple types.

• EndpointEvent - An Endpoint Event.
• EndpointEventListener - A white board service that represents a listener for endpoints.
• EndpointListener - Deprecated white board service that represents a listener for endpoints.
• EndpointPermission - A bundle's authority to export, import or read an Endpoint.
• ExportReference - An Export Reference associates a service with a local endpoint.
• ExportRegistrat ion - An Export Registration associates a service to a local endpoint.
• ImportReference - An Import Reference associates an active proxy service to a remote endpoint.
• ImportRegistrat ion - An Import Registration associates an active proxy service to a remote end-

point.
• RemoteConstants - Provide the definition of the constants used in the Remote Service Admin

specification.
• RemoteServiceAdmin - A Remote Service Admin manages the import and export of services.
• RemoteServiceAdminEvent - Provides the event information for a Remote Service Admin event.
• RemoteServiceAdminListener - A RemoteServiceAdminEvent listener is notified synchronously

of any export or import registrations and unregistrations.

122.12.2 public class EndpointDescription
A description of an endpoint that provides sufficient information for a compatible distribution
provider to create a connection to this endpoint An Endpoint Description is easy to transfer be-
tween different systems because it is property based where the property keys are strings and the val-
ues are simple types. This allows it to be used as a communications device to convey available end-

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Enterprise Release 7 Page 353

point information to nodes in a network. An Endpoint Description reflects the perspective of an im-
porter. That is, the property keys have been chosen to match filters that are created by client bundles
that need a service. Therefore the map must not contain any service.exported.* property and must
contain the corresponding service. imported.* ones. The service. intents property must contain the
intents provided by the service itself combined with the intents added by the exporting distribution
provider. Qualified intents appear fully expanded on this property.

Concurrency Immutable

122.12.2.1 public EndpointDescription(Map<String, ?> properties)

properties The map from which to create the Endpoint Description. The keys in the map must be type Str ing
and, since the keys are case insensitive, there must be no duplicates with case variation.

□ Create an Endpoint Description from a Map.

The endpoint.id, service.imported.configs and objectClass properties must be set.

Throws I l legalArgumentException– When the properties are not proper for an Endpoint Description.

122.12.2.2 public EndpointDescription(ServiceReference<?> reference, Map<String, ?> properties)

reference A service reference that can be exported.

properties Map of properties. This argument can be nul l . The keys in the map must be type Str ing and, since
the keys are case insensitive, there must be no duplicates with case variation.

□ Create an Endpoint Description based on a Service Reference and a Map of properties. The proper-
ties in the map take precedence over the properties in the Service Reference.

This method will automatically set the endpoint.framework.uuid and endpoint.service.id properties
based on the specified Service Reference as well as the service.imported property if they are not spec-
ified as properties.

The endpoint.id, service.imported.configs and objectClass properties must be set.

Throws I l legalArgumentException– When the properties are not proper for an Endpoint Description

122.12.2.3 public boolean equals(Object other)

other The EndpointDescr ipt ion object to be compared.

□ Compares this EndpointDescr ipt ion object to another object.

An Endpoint Description is considered to be equal to another Endpoint Description if their ids are
equal.

Returns true if object is a EndpointDescr ipt ion and is equal to this object; fa lse otherwise.

122.12.2.4 public List<String> getConfigurationTypes()

□ Returns the configuration types. A distribution provider exports a service with an endpoint. This
endpoint uses some kind of communications protocol with a set of configuration parameters. There
are many different types but each endpoint is configured by only one configuration type. However,
a distribution provider can be aware of different configuration types and provide synonyms to in-
crease the change a receiving distribution provider can create a connection to this endpoint. This
value of the configuration types is stored in the RemoteConstants.SERVICE_IMPORTED_CONFIGS
service property.

Returns An unmodifiable list of the configuration types used for the associated endpoint and optionally syn-
onyms.

122.12.2.5 public String getFrameworkUUID()

□ Return the framework UUID for the remote service, if present. The value of the remote framework
UUID is stored in the RemoteConstants.ENDPOINT_FRAMEWORK_UUID endpoint property.

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 354 OSGi Enterprise Release 7

Returns Remote Framework UUID, or nul l if this endpoint is not associated with an OSGi framework having
a framework UUID.

122.12.2.6 public String getId()

□ Returns the endpoint's id. The id is an opaque id for an endpoint. No two different endpoints must
have the same id. Two Endpoint Descriptions with the same id must represent the same endpoint.
The value of the id is stored in the RemoteConstants.ENDPOINT_ID property.

Returns The id of the endpoint, never nul l . The returned value has leading and trailing whitespace removed.

122.12.2.7 public List<String> getIntents()

□ Return the list of intents implemented by this endpoint. The intents are based on the service.intents
on an imported service, except for any intents that are additionally provided by the importing distri-
bution provider. All qualified intents must have been expanded. This value of the intents is stored in
the RemoteConstants.SERVICE_INTENTS service property.

Returns An unmodifiable list of expanded intents that are provided by this endpoint.

122.12.2.8 public List<String> getInterfaces()

□ Provide the list of interfaces implemented by the exported service. The value of the interfaces is de-
rived from the objectClass property.

Returns An unmodifiable list of Java interface names implemented by this endpoint.

122.12.2.9 public Version getPackageVersion(String packageName)

packageName The name of the package for which a version is requested.

□ Provide the version of the given package name. The version is encoded by prefixing the given pack-
age name with endpoint.package.version., and then using this as an endpoint property key. For ex-
ample:

 endpoint.package.version.com.acme

The value of this property is in String format and will be converted to a Version object by this
method.

Returns The version of the specified package or Version.emptyVersion if the package has no version in this
Endpoint Description.

Throws I l legalArgumentException– If the version property value is not String.

122.12.2.10 public Map<String, Object> getProperties()

□ Returns all endpoint properties.

Returns An unmodifiable map referring to the properties of this Endpoint Description.

122.12.2.11 public long getServiceId()

□ Returns the service id for the service exported through this endpoint. This is the service id un-
der which the framework has registered the service. This field together with the Framework
UUID is a globally unique id for a service. The value of the remote service id is stored in the
RemoteConstants.ENDPOINT_SERVICE_ID endpoint property.

Returns Service id of a service or 0 if this Endpoint Description does not relate to an OSGi service.

122.12.2.12 public int hashCode()

□ Returns a hash code value for the object.

Returns An integer which is a hash code value for this object.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Enterprise Release 7 Page 355

122.12.2.13 public boolean isSameService(EndpointDescription other)

other The Endpoint Description to look at

□ Answers if this Endpoint Description refers to the same service instance as the given Endpoint De-
scription. Two Endpoint Descriptions point to the same service if they have the same id or their
framework UUIDs and remote service ids are equal.

Returns True if this endpoint description points to the same service as the other

122.12.2.14 public boolean matches(String filter)

filter The filter to test.

□ Tests the properties of this EndpointDescr ipt ion against the given filter using a case insensitive
match.

Returns true If the properties of this EndpointDescr ipt ion match the filter, fa lse otherwise.

Throws I l legalArgumentException– If f i l ter contains an invalid filter string that cannot be parsed.

122.12.2.15 public String toString()

□ Returns the string representation of this EndpointDescription.

Returns String form of this EndpointDescription.

122.12.3 public class EndpointEvent
An Endpoint Event.

EndpointEvent objects are delivered to all registered EndpointEventListener services
where the EndpointDescription properties match one of the filters specified in the
EndpointEventListener.ENDPOINT_LISTENER_SCOPE registration properties of the Endpoint
Event Listener.

A type code is used to identify the type of event. The following event types are defined:

• ADDED
• REMOVED
• MODIFIED
• MODIFIED_ENDMATCH

Additional event types may be defined in the future.

See Also EndpointEventListener

Since 1.1

Concurrency Immutable

122.12.3.1 public static final int ADDED = 1

An endpoint has been added.

This EndpointEvent type indicates that a new endpoint has been added. The endpoint is represented
by the associated EndpointDescription object.

122.12.3.2 public static final int MODIFIED = 4

The properties of an endpoint have been modified.

This EndpointEvent type indicates that the properties of an existing endpoint have been modified.
The endpoint is represented by the associated EndpointDescription object and its properties can be

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 356 OSGi Enterprise Release 7

obtained via EndpointDescription.getProperties(). The endpoint properties still match the filters as
specified in the EndpointEventListener.ENDPOINT_LISTENER_SCOPE filter.

122.12.3.3 public static final int MODIFIED_ENDMATCH = 8

The properties of an endpoint have been modified and the new properties no longer match the
listener's filter.

This EndpointEvent type indicates that the properties of an existing endpoint
have been modified and no longer match the filter. The endpoint is represented by
the associated EndpointDescription object and its properties can be obtained via
EndpointDescription.getProperties(). As a consequence of the modification the filters as specified in
the EndpointEventListener.ENDPOINT_LISTENER_SCOPE do not match any more.

122.12.3.4 public static final int REMOVED = 2

An endpoint has been removed.

This EndpointEvent type indicates that an endpoint has been removed. The endpoint is represented
by the associated EndpointDescription object.

122.12.3.5 public EndpointEvent(int type, EndpointDescription endpoint)

type The event type. See getType().

endpoint The endpoint associated with the event.

□ Constructs a EndpointEvent object from the given arguments.

122.12.3.6 public EndpointDescription getEndpoint()

□ Return the endpoint associated with this event.

Returns The endpoint associated with the event.

122.12.3.7 public int getType()

□ Return the type of this event.

The type values are:

• ADDED
• REMOVED
• MODIFIED
• MODIFIED_ENDMATCH

Returns The type of this event.

122.12.4 public interface EndpointEventListener
A white board service that represents a listener for endpoints. An Endpoint Event Listener repre-
sents a participant in the distributed model that is interested in Endpoint Descriptions. This white
board service can be used in many different scenarios. However, the primary use case is to allow a
remote manager to be informed of Endpoint Descriptions available in the network and inform the
network about available Endpoint Descriptions. Both the network bundle and the manager bundle
register an Endpoint Event Listener service. The manager informs the network bundle about End-
points that it creates. The network bundles then uses a protocol like SLP to announce these local
end-points to the network. If the network bundle discovers a new Endpoint through its discovery
protocol, then it sends an Endpoint Description to all the Endpoint Listener services that are regis-
tered (except its own) that have specified an interest in that endpoint. Endpoint Event Listener ser-
vices can express their scope with the service property ENDPOINT_LISTENER_SCOPE. This service
property is a list of filters. An Endpoint Description should only be given to a Endpoint Event Listen-

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Enterprise Release 7 Page 357

er when there is at least one filter that matches the Endpoint Description properties. This filter mod-
el is quite flexible. For example, a discovery bundle is only interested in locally originating Endpoint
Descriptions. The following filter ensures that it only sees local endpoints.

 (org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

In the same vein, a manager that is only interested in remote Endpoint Descriptions can use a filter
like:

 (!(org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72))

Where in both cases, the given UUID is the UUID of the local framework that can be found in the
Framework properties. The Endpoint Event Listener's scope maps very well to the service hooks. A
manager can just register all filters found from the Listener Hook as its scope. This will automatical-
ly provide it with all known endpoints that match the given scope, without having to inspect the fil-
ter string. In general, when an Endpoint Description is discovered, it should be dispatched to all reg-
istered Endpoint Event Listener services. If a new Endpoint Event Listener is registered, it should be
informed about all currently known Endpoints that match its scope. If a getter of the Endpoint Lis-
tener service is unregistered, then all its registered Endpoint Description objects must be removed.
The Endpoint Event Listener models a best effort approach. Participating bundles should do their ut-
most to keep the listeners up to date, but implementers should realize that many endpoints come
through unreliable discovery processes. The Endpoint Event Listener supersedes the EndpointLis-
tener interface as it also supports notifications around modifications of endpoints.

Since 1.1

Concurrency Thread-safe

122.12.4.1 public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"

Specifies the interest of this listener with filters. This listener is only interested in Endpoint Descrip-
tions where its properties match the given filter. The type of this property must be Str ing+ .

122.12.4.2 public void endpointChanged(EndpointEvent event, String filter)

event The event containing the details about the change.

filter The filter from the ENDPOINT_LISTENER_SCOPE that matches (or for
EndpointEvent.MODIFIED_ENDMATCH and EndpointEvent.REMOVED used to match) the end-
point, must not be nul l .

□ Notification that an endpoint has changed. Details of the change is captured in the Endpoint Event
provided. This could be that an endpoint was added, removed or modified.

122.12.5 public interface EndpointListener
Deprecated white board service that represents a listener for endpoints. An Endpoint Listener rep-
resents a participant in the distributed model that is interested in Endpoint Descriptions. The End-
point Listener is called back when matching endpoints are added or removed. Consumers interest-
ed in the modification of endpoints, when associated service properties are changed, should use
an EndpointEventListener instead. This white board service can be used in many different scenar-
ios. However, the primary use case is to allow a remote manager to be informed of Endpoint De-
scriptions available in the network and inform the network about available Endpoint Descriptions.
Both the network bundle and the manager bundle register an Endpoint Listener service. The man-
ager informs the network bundle about Endpoints that it creates. The network bundles then uses
a protocol like SLP to announce these local end-points to the network. If the network bundle dis-
covers a new Endpoint through its discovery protocol, then it sends an Endpoint Description to
all the Endpoint Listener services that are registered (except its own) that have specified an inter-
est in that endpoint. Endpoint Listener services can express their scope with the service property
ENDPOINT_LISTENER_SCOPE. This service property is a list of filters. An Endpoint Description
should only be given to a Endpoint Listener when there is at least one filter that matches the End-

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 358 OSGi Enterprise Release 7

point Description properties. This filter model is quite flexible. For example, a discovery bundle is
only interested in locally originating Endpoint Descriptions. The following filter ensure that it only
sees local endpoints.

 (org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

In the same vein, a manager that is only interested in remote Endpoint Descriptions can use a filter
like:

 (!(org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72))

Where in both cases, the given UUID is the UUID of the local framework that can be found in the
Framework properties. The Endpoint Listener's scope maps very well to the service hooks. A man-
ager can just register all filters found from the Listener Hook as its scope. This will automatically
provide it with all known endpoints that match the given scope, without having to inspect the fil-
ter string. In general, when an Endpoint Description is discovered, it should be dispatched to all reg-
istered Endpoint Listener services. If a new Endpoint Listener is registered, it should be informed
about all currently known Endpoints that match its scope. If a getter of the Endpoint Listener ser-
vice is unregistered, then all its registered Endpoint Description objects must be removed. The End-
point Listener models a best effort approach. Participating bundles should do their utmost to keep
the listeners up to date, but implementers should realize that many endpoints come through unreli-
able discovery processes.

Deprecated As of 1.1. Replaced by EndpointEventListener.

Concurrency Thread-safe

122.12.5.1 public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"

Specifies the interest of this listener with filters. This listener is only interested in Endpoint Descrip-
tions where its properties match the given filter. The type of this property must be Str ing+ .

122.12.5.2 public void endpointAdded(EndpointDescription endpoint, String matchedFilter)

endpoint The Endpoint Description to be published

matchedFilter The filter from the ENDPOINT_LISTENER_SCOPE that matched the endpoint, must not be nul l .

□ Register an endpoint with this listener. If the endpoint matches one of the filters registered with the
ENDPOINT_LISTENER_SCOPE service property then this filter should be given as the matchedFi l-
ter parameter. When this service is first registered or it is modified, it should receive all known end-
points matching the filter.

122.12.5.3 public void endpointRemoved(EndpointDescription endpoint, String matchedFilter)

endpoint The Endpoint Description that is no longer valid.

matchedFilter The filter from the ENDPOINT_LISTENER_SCOPE that matched the endpoint, must not be nul l .

□ Remove the registration of an endpoint. If an endpoint that was registered with the
endpointAdded(EndpointDescription, String) method is no longer available then this method
should be called. This will remove the endpoint from the listener. It is not necessary to remove end-
points when the service is unregistered or modified in such a way that not all endpoints match the
interest filter anymore.

122.12.6 public final class EndpointPermission
extends Permission
A bundle's authority to export, import or read an Endpoint.

• The export action allows a bundle to export a service as an Endpoint.
• The import action allows a bundle to import a service from an Endpoint.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Enterprise Release 7 Page 359

• The read action allows a bundle to read references to an Endpoint.

Permission to read an Endpoint is required in order to detect events regarding an Endpoint. Untrust-
ed bundles should not be able to detect the presence of certain Endpoints unless they have the ap-
propriate EndpointPermission to read the specific service.

Concurrency Thread-safe

122.12.6.1 public static final String EXPORT = "export"

The action string export . The export action implies the read action.

122.12.6.2 public static final String IMPORT = "import"

The action string import . The import action implies the read action.

122.12.6.3 public static final String READ = "read"

The action string read .

122.12.6.4 public EndpointPermission(String filterString, String actions)

filterString The filter string or "*" to match all endpoints.

actions The actions read , import , or export .

□ Create a new EndpointPermission with the specified filter.

The filter will be evaluated against the endpoint properties of a requested EndpointPermission.

There are three possible actions: read , import and export . The read action allows the owner of this
permission to see the presence of distributed services. The import action allows the owner of this
permission to import an endpoint. The export action allows the owner of this permission to export
a service.

Throws I l legalArgumentException– If the filter has an invalid syntax or the actions are not valid.

122.12.6.5 public EndpointPermission(EndpointDescription endpoint, String localFrameworkUUID, String actions)

endpoint The requested endpoint.

localFrameworkU-
UID

The UUID of the local framework. This is used to support matching the endpoint.framework.uuid
endpoint property to the <<LOCAL>> value in the filter expression.

actions The actions read , import , or export .

□ Creates a new requested EndpointPermission object to be used by code that must perform checkPer-
mission . EndpointPermission objects created with this constructor cannot be added to an Endpoint-
Permission permission collection.

Throws I l legalArgumentException– If the endpoint is nul l or the actions are not valid.

122.12.6.6 public boolean equals(Object obj)

obj The object to test for equality.

□ Determines the equality of two EndpointPermission objects. Checks that specified object has the
same name, actions and endpoint as this EndpointPermission .

Returns true If obj is a EndpointPermission , and has the same name, actions and endpoint as this Endpoint-
Permission object; fa lse otherwise.

122.12.6.7 public String getActions()

□ Returns the canonical string representation of the actions. Always returns present actions in the fol-
lowing canonical order: read , import , export .

Returns The canonical string representation of the actions.

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 360 OSGi Enterprise Release 7

122.12.6.8 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

122.12.6.9 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a EndpointPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

122.12.6.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing EndpointPermission objects.

Returns A new PermissionCol lect ion object suitable for storing EndpointPermission objects.

122.12.7 public interface ExportReference
An Export Reference associates a service with a local endpoint. The Export Reference can be used to
reference an exported service. When the service is no longer exported, all methods must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.7.1 public EndpointDescription getExportedEndpoint()

□ Return the Endpoint Description for the local endpoint.

Returns The Endpoint Description for the local endpoint. Must be nul l when the service is no longer export-
ed.

122.12.7.2 public ServiceReference<?> getExportedService()

□ Return the service being exported.

Returns The service being exported. Must be nul l when the service is no longer exported.

122.12.8 public interface ExportRegistration
An Export Registration associates a service to a local endpoint. The Export Registration can
be used to delete the endpoint associated with an this registration. It is created with the
RemoteServiceAdmin.exportService(ServiceReference,Map) method. When this Export Registration
has been closed, all methods must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.8.1 public void close()

□ Delete the local endpoint and disconnect any remote distribution providers. After this method re-
turns, all methods must return nul l . This method has no effect when this registration has already
been closed or is being closed.

122.12.8.2 public Throwable getException()

□ Return the exception for any error during the export process. If the Remote Service Admin for some
reasons is unable to properly initialize this registration, then it must return an exception from this
method. If no error occurred, this method must return nul l . The error must be set before this Export
Registration is returned. Asynchronously occurring errors must be reported to the log.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Enterprise Release 7 Page 361

Returns The exception that occurred during the initialization of this registration or nul l if no exception oc-
curred.

122.12.8.3 public ExportReference getExportReference()

□ Return the Export Reference for the exported service.

Returns The Export Reference for this registration, or nul l if this Import Registration is closed.

Throws I l legalStateException– When this registration was not properly initialized. See getException().

122.12.8.4 public EndpointDescription update(Map<String, ?> properties)

properties properties to be merged with the current service properties for the ServiceReference rep-
resented by this ExportRegistration. If null is passed then the original properties passed to
RemoteServiceAdmin.exportService(ServiceReference, Map) will be used.

□ Update the endpoint represented by this ExportRegistration and return an updated EndpointDe-
scription. If this method returns an updated EndpointDescription, then the object returned via get-
ExportReference() must also have been updated to return this new object. If this method does not re-
turn an updated EndpointDescription then the object returned via getExportReference() should re-
main unchanged. When creating the updated EndpointDescription the ServiceReference original-
ly passed to RemoteServiceAdmin.exportService(ServiceReference, Map) must be queried to pick
up any changes to its service properties. If this argument is null then the original properties passed
when creating this ExportRegistration should be used when constructing the updated EndpointDe-
scription. Otherwise the new properties should be used, and replace the original properties for sub-
sequent calls to the update method.

Returns The updated EndpointDescription for this registration or null if there was a failure updating the
endpoint. If a failure occurs then it can be accessed using getException().

Throws I l legalStateException– If this registration is closed, or when this registration was not properly ini-
tialized. See getException().

Since 1.1

122.12.9 public interface ImportReference
An Import Reference associates an active proxy service to a remote endpoint. The Import Reference
can be used to reference an imported service. When the service is no longer imported, all methods
must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.9.1 public EndpointDescription getImportedEndpoint()

□ Return the Endpoint Description for the remote endpoint.

Returns The Endpoint Description for the remote endpoint. Must be nul l when the service is no longer im-
ported.

122.12.9.2 public ServiceReference<?> getImportedService()

□ Return the Service Reference for the proxy for the endpoint.

Returns The Service Reference to the proxy for the endpoint. Must be nul l when the service is no longer im-
ported.

122.12.10 public interface ImportRegistration
An Import Registration associates an active proxy service to a remote endpoint. The Import
Registration can be used to delete the proxy associated with an endpoint. It is created with the

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 362 OSGi Enterprise Release 7

RemoteServiceAdmin.importService(EndpointDescription) method. When this Import Registration
has been closed, all methods must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.10.1 public void close()

□ Close this Import Registration. This must close the connection to the endpoint and unregister the
proxy. After this method returns, all other methods must return nul l . This method has no effect
when this registration has already been closed or is being closed.

122.12.10.2 public Throwable getException()

□ Return the exception for any error during the import process. If the Remote Service Admin for some
reasons is unable to properly initialize this registration, then it must return an exception from this
method. If no error occurred, this method must return nul l . The error must be set before this Import
Registration is returned. Asynchronously occurring errors must be reported to the log.

Returns The exception that occurred during the initialization of this registration or nul l if no exception oc-
curred.

122.12.10.3 public ImportReference getImportReference()

□ Return the Import Reference for the imported service.

Returns The Import Reference for this registration, or nul l if this Import Registration is closed.

Throws I l legalStateException– When this registration was not properly initialized. See getException().

122.12.10.4 public boolean update(EndpointDescription endpoint)

endpoint The updated endpoint

□ Update the local service represented by this ImportRegistration. After this method returns the End-
pointDescription returned via getImportReference() must have been updated.

Returns true if the endpoint was successfully updated, fa lse otherwise. If the update fails then the failure can
be retrieved from getException().

Throws I l legalStateException– When this registration is closed, or if it was not properly initialized. See ge-
tException().

I l legalArgumentException– When the supplied EndpointDescription does not represent the same
endpoint as this ImportRegistration.

Since 1.1

122.12.11 public class RemoteConstants
Provide the definition of the constants used in the Remote Service Admin specification.

Concurrency Immutable

122.12.11.1 public static final String ENDPOINT_FRAMEWORK_UUID = "endpoint.framework.uuid"

Endpoint property identifying the universally unique id of the exporting framework. Can be absent
if the corresponding endpoint is not for an OSGi service.

The value of this property must be of type Str ing .

122.12.11.2 public static final String ENDPOINT_ID = "endpoint.id"

Endpoint property identifying the id for this endpoint. This service property must always be set.

The value of this property must be of type Str ing .

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Enterprise Release 7 Page 363

122.12.11.3 public static final String ENDPOINT_PACKAGE_VERSION_ = "endpoint.package.version."

Prefix for an endpoint property identifying the interface Java package version for an interface. For
example, the property endpoint.package.version.com.acme=1.3 describes the version of the pack-
age for the com.acme.Foo interface. This endpoint property for an interface package does not have
to be set. If not set, the value must be assumed to be 0.

Since endpoint properties are stored in a case insensitive map, case variants of a package name are
folded together.

The value of properties having this prefix must be of type Str ing .

122.12.11.4 public static final String ENDPOINT_SERVICE_ID = "endpoint.service.id"

Endpoint property identifying the service id of the exported service. Can be absent or 0 if the corre-
sponding endpoint is not for an OSGi service.

The value of this property must be of type Long .

122.12.11.5 public static final String REMOTE_CONFIGS_SUPPORTED = "remote.configs.supported"

Service property identifying the configuration types supported by a distribution provider. Regis-
tered by the distribution provider on one of its services to indicate the supported configuration
types.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.6 public static final String REMOTE_INTENTS_SUPPORTED = "remote.intents.supported"

Service property identifying the intents supported by a distribution provider. Registered by the dis-
tribution provider on one of its services to indicate the vocabulary of implemented intents.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.7 public static final String SERVICE_EXPORTED_CONFIGS = "service.exported.configs"

Service property identifying the configuration types that should be used to export the service. Each
configuration type represents the configuration parameters for an endpoint. A distribution provider
should create an endpoint for each configuration type that it supports.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.8 public static final String SERVICE_EXPORTED_INTENTS = "service.exported.intents"

Service property identifying the intents that the distribution provider must implement to distrib-
ute the service. Intents listed in this property are reserved for intents that are critical for the code to
function correctly, for example, ordering of messages. These intents should not be configurable.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.9 public static final String SERVICE_EXPORTED_INTENTS_EXTRA = "service.exported.intents.extra"

Service property identifying the extra intents that the distribution provider must implement to dis-
tribute the service. This property is merged with the service.exported. intents property before the

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 364 OSGi Enterprise Release 7

distribution provider interprets the listed intents; it has therefore the same semantics but the prop-
erty should be configurable so the administrator can choose the intents based on the topology. Bun-
dles should therefore make this property configurable, for example through the Configuration Ad-
min service.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.10 public static final String SERVICE_EXPORTED_INTERFACES = "service.exported.interfaces"

Service property marking the service for export. It defines the interfaces under which this service
can be exported. This list must be a subset of the types under which the service was registered. The
single value of an asterisk ('* ' \u002A) indicates all the interface types under which the service was
registered excluding the non-interface types. It is strongly recommended to only export interface
types and not concrete classes due to the complexity of creating proxies for some type of concrete
classes.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.11 public static final String SERVICE_IMPORTED = "service.imported"

Service property identifying the service as imported. This service property must be set by a distribu-
tion provider to any value when it registers the endpoint proxy as an imported service. A bundle can
use this property to filter out imported services.

The value of this property may be of any type.

See Also Remote Services Specif icat ion

122.12.11.12 public static final String SERVICE_IMPORTED_CONFIGS = "service.imported.configs"

Service property identifying the configuration types used to import the service. Any associated
properties for this configuration types must be properly mapped to the importing system. For ex-
ample, a URL in these properties must point to a valid resource when used in the importing frame-
work. If multiple configuration types are listed in this property, then they must be synonyms for ex-
actly the same remote endpoint that is used to export this service.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion , SERVICE_EXPORTED_CONFIGS

122.12.11.13 public static final String SERVICE_INTENTS = "service.intents"

Service property identifying the intents that this service implement. This property has a dual pur-
pose:

• A bundle can use this service property to notify the distribution provider that these intents are
already implemented by the exported service object.

• A distribution provider must use this property to convey the combined intents of: The exporting
service, and the intents that the exporting distribution provider adds, and the intents that the im-
porting distribution provider adds.

To export a service, a distribution provider must expand any qualified intents. Both the exporting
and importing distribution providers must recognize all intents before a service can be distributed.
The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Enterprise Release 7 Page 365

122.12.12 public interface RemoteServiceAdmin
A Remote Service Admin manages the import and export of services. A Distribution Provider can ex-
pose a control interface. This interface allows a Topology Manager to control the export and import
of services. The API allows a Topology Manager to export a service, to import a service, and find out
about the current imports and exports.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.12.1 public Collection<ExportRegistration> exportService(ServiceReference<?> reference, Map<String, ?>
properties)

reference The Service Reference to export.

properties The properties to create a local Endpoint that can be implemented by this Remote Service Admin.
If this is nul l , the Endpoint will be determined by the properties on the service. The properties are
the same as given for an exported service. They override any properties in the specified Service Ref-
erence (case insensitive). The properties objectClass and service. id , in any case variant, are ignored.
Those properties in the Service Reference cannot be overridden. This parameter can be nul l , this
should be treated as an empty map.

□ Export a service to a given Endpoint. The Remote Service Admin must create an Endpoint from the
given description that can be used by other Distribution Providers to connect to this Remote Ser-
vice Admin and use the exported service. The property keys of a Service Reference are case insensi-
tive while the property keys of the specified propert ies map are case sensitive. A property key in the
specified propert ies map must therefore override any case variant property key in the properties of
the specified Service Reference.

If the caller does not have the appropriate EndpointPermission[endpoint,EXPORT] for an Endpoint,
and the Java Runtime Environment supports permissions, then the getException method on the cor-
responding returned ExportRegistration will return a SecurityException .

Returns A Collect ion of ExportRegistrations for the specified Service Reference and properties. Multiple Ex-
port Registrations may be returned because a single service can be exported to multiple Endpoints
depending on the available configuration type properties and the intents that they support. The re-
sult is never nul l but may be empty if this Remove Service Admin does not recognize any of the con-
figuration types, or if the Remote Service Admin cannot support the relevant intents.

Throws I l legalArgumentException– If any of the properties for this configuration type has a value that is
not syntactically correct, or if the service properties and the overlaid properties do not contain a
RemoteConstants.SERVICE_EXPORTED_INTERFACES entry. This means that implementations
must not ignore invalid values for property names that they recognize.

122.12.12.2 public Collection<ExportReference> getExportedServices()

□ Return the currently active Export References.

If the caller does not have the appropriate EndpointPermission[endpoint,READ] for an Endpoint,
and the Java Runtime Environment supports permissions, then returned collection will not contain
a reference to the exported Endpoint.

Returns A Collect ion of ExportReferences that are currently active.

122.12.12.3 public Collection<ImportReference> getImportedEndpoints()

□ Return the currently active Import References.

If the caller does not have the appropriate EndpointPermission[endpoint,READ] for an Endpoint,
and the Java Runtime Environment supports permissions, then returned collection will not contain
a reference to the imported Endpoint.

Returns A Collect ion of ImportReferences that are currently active.

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 366 OSGi Enterprise Release 7

122.12.12.4 public ImportRegistration importService(EndpointDescription endpoint)

endpoint The Endpoint Description to be used for import.

□ Import a service from an Endpoint. The Remote Service Admin must use the given Endpoint to cre-
ate a proxy. This method can return nul l if the service could not be imported.

Returns An Import Registration that combines the Endpoint Description and the Service Reference or nul l if
the Endpoint could not be imported.

Throws SecurityException– If the caller does not have the appropriate
EndpointPermission[endpoint, IMPORT] for the Endpoint, and the Java Runtime Environment sup-
ports permissions.

122.12.13 public class RemoteServiceAdminEvent
Provides the event information for a Remote Service Admin event.

Concurrency Immutable

122.12.13.1 public static final int EXPORT_ERROR = 6

A fatal exporting error occurred. The Export Registration has been closed.

122.12.13.2 public static final int EXPORT_REGISTRATION = 2

Add an export registration. The Remote Service Admin will send this event when it exports a ser-
vice. When the RemoteServiceAdminListener service is registered, the Remote Service Admin must
notify the listener of all existing Export Registrations.

122.12.13.3 public static final int EXPORT_UNREGISTRATION = 3

Remove an export registration. The Remote Service Admin will send this event when it removes the
export of a service.

122.12.13.4 public static final int EXPORT_UPDATE = 10

Update an export registration. The Remote Service Admin will send this event when it exports a ser-
vice.

Since 1.1

122.12.13.5 public static final int EXPORT_WARNING = 7

A problematic situation occurred, the export is still active.

122.12.13.6 public static final int IMPORT_ERROR = 5

A fatal importing error occurred. The Import Registration has been closed.

122.12.13.7 public static final int IMPORT_REGISTRATION = 1

Add an import registration. The Remote Service Admin will send this event when it imports a ser-
vice. When the RemoteServiceAdminListener service is registered, the Remote Service Admin must
notify the listener of all existing Import Registrations.

122.12.13.8 public static final int IMPORT_UNREGISTRATION = 4

Remove an import registration. The Remote Service Admin will send this event when it removes the
import of a service.

122.12.13.9 public static final int IMPORT_UPDATE = 9

Update an import registration. The Remote Service Admin will send this event when it updates a
service.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Enterprise Release 7 Page 367

Since 1.1

122.12.13.10 public static final int IMPORT_WARNING = 8

A problematic situation occurred, the import is still active.

122.12.13.11 public RemoteServiceAdminEvent(int type, Bundle source, ExportReference exportReference, Throwable
exception)

type The event type.

source The source bundle, must not be nul l .

exportReference The exportReference, can not be nul l .

exception Any exceptions encountered, can be nul l .

□ Create a Remote Service Admin Event for an export notification.

122.12.13.12 public RemoteServiceAdminEvent(int type, Bundle source, ImportReference importReference, Throwable
exception)

type The event type.

source The source bundle, must not be nul l .

importReference The importReference, can not be nul l .

exception Any exceptions encountered, can be nul l .

□ Create a Remote Service Admin Event for an import notification.

122.12.13.13 public Throwable getException()

□ Return the exception for this event.

Returns The exception or nul l .

122.12.13.14 public ExportReference getExportReference()

□ Return the Export Reference for this event.

Returns The Export Reference or nul l .

122.12.13.15 public ImportReference getImportReference()

□ Return the Import Reference for this event.

Returns The Import Reference or nul l .

122.12.13.16 public Bundle getSource()

□ Return the bundle source of this event.

Returns The bundle source of this event.

122.12.13.17 public int getType()

□ Return the type of this event.

Returns The type of this event.

122.12.14 public interface RemoteServiceAdminListener
A RemoteServiceAdminEvent listener is notified synchronously of any export or import registra-
tions and unregistrations.

If the Java Runtime Environment supports permissions, then filtering is done. RemoteServiceAd-
minEvent objects are only delivered to the listener if the bundle which defines the listener object's

org.osgi.service.remoteserviceadmin.namespace Remote Service Admin Service Specification Version 1.1

Page 368 OSGi Enterprise Release 7

class has the appropriate EndpointPermission[endpoint,READ] for the endpoint referenced by the
event.

See Also RemoteServiceAdminEvent

Concurrency Thread-safe

122.12.14.1 public void remoteAdminEvent(RemoteServiceAdminEvent event)

event The RemoteServiceAdminEvent object.

□ Receive notification of any export or import registrations and unregistrations as well as errors and
warnings.

122.13 org.osgi.service.remoteserviceadmin.namespace

Remote Service Admin Namespaces Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

122.13.1 Summary

• DiscoveryNamespace - Remote Services Discovery Provider Capability and Requirement Name-
space.

• Distr ibutionNamespace - Remote Services Distribution Provider Capability and Requirement
Namespace.

• TopologyNamespace - Remote Services Topology Manager Capability and Requirement Name-
space.

122.13.2 public final class DiscoveryNamespace
extends Namespace
Remote Services Discovery Provider Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

Concurrency Immutable

122.13.2.1 public static final String CAPABILITY_PROTOCOLS_ATTRIBUTE = "protocols"

The capability attribute used to specify the discovery protocols supported by this discovery
provider. The value of this attribute must be of type Str ing or List<Str ing> .

122.13.2.2 public static final String DISCOVERY_NAMESPACE = "osgi.remoteserviceadmin.discovery"

Namespace name for Remote Services discovery provider capabilities and requirements.

122.13.3 public final class DistributionNamespace
extends Namespace
Remote Services Distribution Provider Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

Concurrency Immutable

122.13.3.1 public static final String CAPABILITY_CONFIGS_ATTRIBUTE = "configs"

The capability attribute used to specify the config types supported by this distribution provider. The
value of this attribute must be of type Str ing or List<Str ing> .

Remote Service Admin Service Specification Version 1.1 References

OSGi Enterprise Release 7 Page 369

122.13.3.2 public static final String DISTRIBUTION_NAMESPACE = "osgi.remoteserviceadmin.distribution"

Namespace name for Remote Services distribution provider capabilities and requirements.

122.13.4 public final class TopologyNamespace
extends Namespace
Remote Services Topology Manager Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

Concurrency Immutable

122.13.4.1 public static final String CAPABILITY_POLICY_ATTRIBUTE = "policy"

The capability attribute used to specify the policy or policies supported by this topology manager.
The value of this attribute must be of type Str ing or List<Str ing> . Policy names are typically imple-
mentation specific, however the Remote Services Specification defines the promiscuous and fail-over
policies for common use cases.

122.13.4.2 public static final String FAIL_OVER_POLICY = "fail-over"

The attribute value for Topology managers with a fail-over policy

See Also TopologyNamespace.CAPABILITY_POLICY_ATTRIBUTE

122.13.4.3 public static final String PROMISCUOUS_POLICY = "promiscuous"

The attribute value for Topology managers with a promiscuous policy

See Also TopologyNamespace.CAPABILITY_POLICY_ATTRIBUTE

122.13.4.4 public static final String TOPOLOGY_NAMESPACE = "osgi.remoteserviceadmin.topology"

Namespace name for Remote Services topology manager capabilities and requirements.

122.14 References

[1] OSGi Service Property Namespace
https://www.osgi.org/service-property-namespace/

[2] UUIDs
http://en.wikipedia.org/wiki/Universally_Unique_Identifier

[3] Service Location Protocol (SLP)
http://en.wikipedia.org/wiki/Service_Location_Protocol

[4] JGroups
http://www.jgroups.org/

[5] UDDI
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration

[6] Service Component Architecture (SCA)
http://www.osoa.org/display/Main/Home

https://www.osgi.org/service-property-namespace/
http://en.wikipedia.org/wiki/Universally_Unique_Identifier
http://en.wikipedia.org/wiki/Service_Location_Protocol
http://www.jgroups.org/
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration
http://www.osoa.org/display/Main/Home

References Remote Service Admin Service Specification Version 1.1

Page 370 OSGi Enterprise Release 7

JTA Transaction Services Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 371

123 JTA Transaction Services
Specification

Version 1.0

123.1 Introduction
Transactions are the key abstraction to provide reliability with large scale distributed systems and
are a primary component of enterprise systems. This specification provides an OSGi service based
design for the Java Transaction Architecture (JTA) Specification, which describes the standard trans-
action model for Java applications. Providing the JTA specification as a service based model enables
the use of independent implementations. This JTA Transaction Services Specification provides a
managed model, where an Application Container (such as the Java EE EJB container) manages the
transaction and the enlistment of resources, and an unmanaged model, where each application is re-
sponsible for these tasks itself.

This specification provides a brief overview of JTA and then the use of it through 3 transaction ser-
vices: User Transaction, Transaction Manager, and Transaction Synchronization.

This specification is based on [1] Java Transaction API Specification 1.1.

123.1.1 Essentials

• Portability - It is important that applications are easy to port from other environments that sup-
port JTA.

• Plugability - Allow different vendors to provide implementations of this specification.
• JTA Compatible - Support full JTA 1.1 Specification

123.1.2 Entities

• JTA Provider - Implementation of this specification. It is responsible, on request from a Transac-
tion Originator, for starting and ending transactions and coordinating the work of Resource Man-
agers that become involved in each Transaction. This entity provides the User Transaction ser-
vice, Transaction Manager service, and the Transaction Synchronization Registry service.

• Transaction - An atomic unit of work that is associated with a thread of execution.
• Transaction Originator - An Application or its Container, that directs the JTA Provider to begin and

end Transactions.
• User Transaction - A service used by a Transaction Originator for beginning and ending transac-

tions.
• Transaction Manager - A service used by a Transaction Originator for managing both transaction

demarcation and enlistment of Durable Resources or Volatile Resources.
• Transaction Synchronization Registry - A service for enlistment of Volatile Resources for getting no-

tifications before and after ending Transactions.
• Application Bundle - An entity that initiates work that executes under a Transaction.
• Container - An entity that is distinct from the Application and which provides a managed envi-

ronment for Applications. Unmanaged environments do not distinguish between the Applica-
tion and Container entities.

Introduction JTA Transaction Services Specification Version 1.0

Page 372 OSGi Enterprise Release 7

• Resource Manager - Provides the transactional resources whose work is externally coordinat-
ed by a JTA Provider. Examples of Resource Managers include databases, Java Message Service
providers and enterprise information systems.

• Durable Resource - A resource whose work is made durable when the Transaction is successful-
ly committed. Durable Resources can be enlisted with a Transaction to ensure that work is per-
formed within the scope of the Transaction and to participate in the outcome of a Transaction.
Durable Resource enlistment is the responsibility of the Application Bundle or its Container.
Durable Resources implement the javax.transact ion.xa.XAResource interface

• Volatile Resource - Resources that are associated with a Transaction but are no longer needed after
the Transaction, for example transaction-scoped caches. Volatile Resources are registered with
the JTA Provider to receive notifications before and after the outcome of the Transaction. Volatile
Resources implement the javax.transact ion.Synchronizat ion interface

• Transaction Services - The triplet of the User Transaction, Transaction Manager, and Transaction
Synchronization Registry services registered by the JTA Provider.

Figure 123.1 Transaction Service Specification Entities

JTA Provider

Managed
Application Impl

Application
Container Impl

Resource
Manager Impl

User
Transaction

Transaction
Manager

XA Protocol

Transaction
Synchronization
Registry

* a resource specific service

<<interface>>
XAResource

XA Resource Impl

123.1.3 Dependencies
This specification is based on the following packages:

javax.transaction
javax.transaction.xa

These packages must be exported as version 1.1.

123.1.4 Synopsis
The JTA Provider register the Transaction Services:

• User Transaction - Offers transaction demarcation capabilities to an Application bundle.
• Transaction Manager - Offers transaction demarcation and further transaction management capa-

bilities to an Application Bundle or an Application Container.
• Transaction Synchronization Registry - Offers a callback registration service for volatile transaction-

al participants wishing to be notified of the completion of the transaction.

A JTA Provider must register these services when it is started. A JTA Provider may put restrictions
on which bundles can use these services. For example, in a Java EE environment, the JTA Provider
does not expose the TransactionManager interface to applications. An OSGi environment which

JTA Transaction Services Specification Version 1.0 JTA Overview

OSGi Enterprise Release 7 Page 373

supports the Java EE specifications will typically provide access to the Transaction Manager service
only to Java EE Containers.

A typical example of the use of a transaction is for transferring money from one bank account to
another. Two Durable Resources are involved, one provided by the database from which the mon-
ey is to be withdrawn and another provided by the database to which the money will be deposited.
An Application Bundle acting as the Transaction Originator gets the User Transaction service and
uses it to begin a transaction. This transaction is associated with the current thread (implicitly) by
the JTA Provider. On the same thread of execution, the Application Bundle connects to the database
from which the money is to be withdrawn and updates the balance in the source account by the
amount to be debited.

The database is a resource manager whose connections have associated XA Resources; the first time
a connection is used within the scope of a new transaction the Application Bundle, or a Container,
obtains the XA Resource associated with the connection and enlists it with the JTA Provider through
the Transaction Manager service. On the same thread of execution, the Application Bundle connects
to the second database and updates the balance in the target account by the amount to be credited.
An XA Resource for the second connection is enlisted with the Transaction Manager service as well
by the Application Bundle or a Container.

Now that the money has been transferred the Transaction Originator requests a commit of the
Transaction (on the same thread of execution) via the User Transaction Service, causing the JTA
Provider to initiate the two-phase commit process with the two Resource Managers through the en-
listed XA Resources. The transaction is then atomically committed or rolled back.

123.2 JTA Overview
A transaction is a unit of work in which interactions with multiple participants can be coordinat-
ed by a third party such that the final outcome of these interactions has well-defined transactional
semantics. A variety of well-known transaction models exist with specific characteristics; the trans-
actions described in this specification provide Atomic Consistent Isolated and Durable (ACID) seman-
tics as defined in [2] XA+ Specification whereby all the participants in a transaction are coordinated to
an atomic outcome in which the work of all the participants is either completely committed or com-
pletely rolled back.

The [2] XA+ Specification defines a Distributed Transaction Processing (DTP) software architecture for
transactional work that is distributed across multiple Resource Managers and coordinated exter-
nally by a Transaction Manager using the two-phase commit XA protocol. The DTP architecture de-
fines the roles of the Transaction Manager and Resource Manager; this specification uses the term JTA
Provider rather than Transaction Manager to distinguish it from the Transaction Manager service. Note
that Distributed Transaction Processing does not imply distribution of transactions across multiple
frameworks or JVMs.

The [1] Java Transaction API Specification 1.1 defines the Java interfaces required for the management
of transactions on the enterprise Java platform.

123.2.1 Global and Local Transactions
A transaction may be a local transaction or a global transaction. A local transaction is a unit of work
that is local to a single Resource Manager and may succeed or fail independently of the work of oth-
er Resource Managers. A global transaction, sometimes referred to as a distributed transaction, is a
unit of work that may encompass multiple Resource Managers and is coordinated by a JTA Provider
external to the Resource Manager(s) as described in the DTP architecture. The term transaction in
this specification always refers to a global transaction.

The JTA Provider is responsible for servicing requests from a Transaction Originator to create and
complete transactions, it manages the state of each transaction it creates, the association of each

JTA Overview JTA Transaction Services Specification Version 1.0

Page 374 OSGi Enterprise Release 7

transaction with the thread of execution, and the coordination of any Resource Managers that be-
come involved in the global transaction. The JTA Provider ensures that each transaction is associat-
ed with, at most, one application thread at a time and provides the means to move that association
from one thread to another as needed.

The model for resource commit coordination is the two phase commit XA protocol, with Resource
Managers being directed by the JTA Provider. The first time an Application accesses a Resource Man-
ager within the scope of a new global transaction, the Application, or its Container, obtains an XA
Resource from the Resource Manager and enlists this XA Resource with the JTA Provider.

At the end of a transaction, the Transaction Originator must decide whether to initiate a commit or
rollback request for all the changes made within the scope of the Transaction. The Transaction Orig-
inator requests that the JTA Provider completes the transaction. The JTA Provider then negotiates
with each enlisted Resource Manager to reach a coordinated outcome. A failure in the transaction at
any point before the second phase of two-phase commit results in the transaction being rolled back.

XA is a presumed abort protocol and implementations of XA-compliant JTA Providers and Resource
Managers can be highly optimized to perform no logging of transactional state until a commit de-
cision is required. A Resource Manager durably records its prepare decision, and a JTA Provider
durably records any commit decision it makes. Failures between a decision on the outcome of a
transaction and the enactment of that outcome are handled during transaction recovery to ensure the
atomic outcome of the transaction.

123.2.2 Durable Resource
Durable Resources are provided by Resource Managers and must implement the XAResource inter-
face described in the [1] Java Transaction API Specification 1.1. An XAResource object is enlisted with
a transaction to ensure that the work of the Resource Manager is associated with the correct transac-
tion and to participate in the two-phase commit process. The XAResource interface is driven by the
JTA Provider during the completion of the transaction and is used to direct the Resource Manager to
commit or rollback any changes made under the corresponding transaction.

123.2.3 Volatile Resource
Volatile resources are components that do not participate in the two phase commit but are called
immediately prior to and after the two phase commit. They implement the [1] Java Transaction API
Specification 1.1 Synchronizat ion interface. If a request is made to commit a transaction then the
volatile participants have the opportunity to perform some before completion processing such as
flushing cached updates to persistent storage. Failures during the before completion processing must
cause the transaction to rollback. In both the commit and rollback cases the volatile resources are
called after two phase commit to perform after completion processing. After completion procession can-
not affect the outcome of the transaction.

123.2.4 Threading
As noted above in Global and Local Transactions on page 373, a global transaction must not be asso-
ciated with more than one application thread at a time but can be moved over time from one appli-
cation thread to another. In some environments Applications run in containers which restrict the
ability of the Application component to explicitly manage the transaction-thread association by re-
stricting access to the Transaction Manager. For example, Java EE application servers provide web
and EJB Containers for application components and, while the Containers themselves can explicitly
manage transaction-thread associations, these containers do not allow the Applications to do so. Ap-
plications running in these containers are required to complete any transactions they start on that
same application thread. In general, Applications that run inside a Container must follow the rules
defined by that Container. For further details of the considerations specific to Java EE containers, see
the section Transactions and Threads in [4] Java Platform, Enterprise Edition (Java EE) Specification, v5.

JTA Transaction Services Specification Version 1.0 Application

OSGi Enterprise Release 7 Page 375

123.3 Application
An Application is a bundle that may use transactions, either as a Transaction Originator or as a bun-
dle that is called as part of an existing transaction. A Transaction Originator Application bundle
starts a transaction and end it with a commit or rollback using the User Transaction or Transaction
Manager service.

A Transaction Originator Application bundle may not make use of Resource Managers itself but
may simply provide transaction demarcation and then call other bundles which do use Resource
Managers. In such a case the Transaction Originator Application bundle requires only the use of the
User Transaction service for transaction demarcation. The called bundles may use the Transaction
Manager service if they use Resource Managers.

Application Bundles that use Resource Managers have to know the enlistment strategy for the Re-
source Managers they use. There are two possibilities:

• Application Bundle Enlistment - The Application Bundle must enlist the Resource Managers itself.
For each Resource Manager it uses it must enlist that Resource Manager with the Transaction
Manager.

• Container-Managed Enlistment - An Application runs in a container, such as a Java EE Container,
which manages the Resource Manager enlistment on behalf of the Application.

These scenarios are explained in the following sections.

123.3.1 No Enlistment
A Transaction Originator Application bundle that uses no Resource Managers itself but starts a
Transaction before calling another bundle may use the User Transaction service to control the Trans-
action demarcation.

For example, an Application can use the User Transaction service to begin a global transaction:

UserTransaction ut = getUserTransaction();
ut.begin();

The User Transaction service associates a transaction with the current thread until that transaction
is completed via:

UserTransaction ut = getUserTransaction();
ut.commit();

Or the equivalent rol lback method. The getUserTransaction method implementation (not shown)
can get the User Transaction service directly from the service registry or from an injected field.

123.3.2 Application Bundle Enlistment
An Application Bundle is responsible for enlisting Resource Managers itself. That is, it must enlist
Resource Manager it uses with the Transaction Manager service. The Transaction Manager service is
an implementation of the JTA TransactionManager interface, registered by the JTA Provider.

For example, an Application Bundle can get an XADataSource object from a Data Source Factory ser-
vice. Such a Data Source object can provide an XAConnection object that then can provide an XARe-
source object. XAResource objects can then be enlisted with the Transaction Manager service.

For example:

TransactionManager tm;
XADataSource left;

Application JTA Transaction Services Specification Version 1.0

Page 376 OSGi Enterprise Release 7

XADataSource right;

void acid() throws Exception {
 tm.begin();
 Transaction transaction = tm.getTransaction() ;
 try {
 XAConnection left = this.left.getXAConnection();
 XAConnection right = this.right.getXAConnection();
 transaction.enlistResource(left.getXAResource());
 transaction.enlistResource(r ight.getXAResource());
 doWork(left.getConnection(), right.getConnection());
 tm.commit();
 } catch(Throwable t) {
 tm.rollback();
 throw t; } }
// ...
void setTransactionManager(TransactionManager tm) { this.tm= tm; }
void setDataSourceFactory(DataSourceFactory dsf) {
 left = dsf.createXADataSource(getLeftProperties());
 right = dsf.createXADataSource(getRightProperties());
}

In the previous example, the Transaction Manager service could have been injected with a compo-
nent model like Declarative Services:

<reference interface="javax.transaction.TransactionManager"
 bind="setTransactionManager"/>
<reference name="dsf" interface="org.osgi.service.jdbc.DataSourceFactory"
 bind="setDataSourceFactory"/>

For example, it is possible to provide a Data Source service that provides automatic enlistment of
the Connection as an XA Resource when one of its getConnection methods is called inside a transac-
tion. The following code contains a Declarative Service component that implement this design. The
component references a Transaction Manager service and a Data Source Factory service and pro-
vides a Data Source service that proxies an XA Data Source. Applications depend on the Data Source
service, assuming that the Data Source service automatically enlists the connections it uses inside a
transaction. See for an overview Figure 123.2 on page 376.

Figure 123.2 Data Source Proxy

Data Source Proxy
Component

Data Source

Transaction
Manager

Data Source
Factory

Application Code

User Transaction

This general purpose Data Source Proxy component can be fully configured by the Configuration
Admin service to instantiate this component for each needed database connection. The Declarative
Services service properties can be used to select a Data Source Factory for the required database dri-
ver (using the target), as well as provide the configuration properties for the creation of an XA Data
Source. That is, such a component could be part of a support library.

The code for such an Application component could start like:

JTA Transaction Services Specification Version 1.0 Application

OSGi Enterprise Release 7 Page 377

public class DataSourceProxy implements DataSource{
 Properties properties = new Properties();
 TransactionManager tm;
 XADataSource xads;

The activate method is called when the component's dependencies are met, that is, there is a Trans-
action Manager service as well as a matching Data Source Factory service. In this method, the prop-
erties of the component are copied to a Propert ies object to be compatible with the Data Source Fac-
tory factory methods.

void activate(ComponentContext c) {
 // copy the properties set by the Config Admin into properties
 ...
}

The relevant methods in the Data Source Proxy component are the getConnection methods. The
contract for this proxy component is that it enlists the XA Data Connection's XA Resource when it is
called inside a transaction. This enlistment is done in the private enl ist method.

public Connection getConnection() throws SQLException{
 XAConnection connection = xads.getXAConnection();
 return enlist(connection); }

public Connection getConnection(String username, String password)
 throws SQLException {
 XAConnection connection = xads.getXAConnection(username,password);
 return enlist(connection); }

The enl ist method checks if there currently is a transaction active. If not, it ignores the enlistment,
the connection will then not be connection to the transaction. If there is a current transaction, it en-
lists the corresponding XA Resource.

private Connection enlist(XAConnection connection)throws SQLException {
 try {
 Transaction transaction = tm.getTransaction();
 if (transaction != null)
 transaction.enlistResource(connection.getXAResource());
 } catch (Exception e) {
 SQLException sqle=
 new SQLException("Failed to enlist");
 sqle.initCause(e);
 throw sqle;
 }
 return connection.getConnection();
}

What remains are a number of boilerplate methods that forward to the XA Data Source or set the de-
pendencies.

void setTransactionManager(TransactionManagertm) { this.tm = tm;}
void setDataSourceFactory(DataSourceFactory dsf) throws Exception{
 xads = dsf.createXADataSource(properties);}
public PrintWriter getLogWriter()
 throws SQLException { return xads.getLogWriter(); }

public int getLoginTimeout()

Resource Managers JTA Transaction Services Specification Version 1.0

Page 378 OSGi Enterprise Release 7

 throws SQLException { return xads.getLoginTimeout();}

public void setLogWriter(PrintWriter out)
 throws SQLException { xads.setLogWriter(out); }

public void setLoginTimeout(int seconds)
 throws SQLException { xads.setLoginTimeout(seconds);}

This is a fully coded example, it only lacks the configuration definitions for the Configuration Ad-
min service.

This example Data Source proxy component makes it possible for an Application to depend on a
Data Source service. The connections the Application uses from this Data Source are automatical-
ly transactional as long as there is a current transaction when the service is called. However, this ap-
proach only works when all bundles in the OSGi framework follow the same enlistment strategy be-
cause this specification does not provide a common enlistment strategy.

123.3.3 Container Managed Enlistment
The Application Container is responsible for enlisting Resource Managers used by the Application.
For example, the Java EE Web and EJB Containers have a well defined model for managing resources
within a transaction. If an Application runs inside a Java EE Container then it is the responsibility of
the Java EE Container to handle the resource enlistment, the actual rules are beyond this specifica-
tion.

A Transaction Originator Application bundle running inside a Container which manages any Re-
source Managers enlistment may use the User Transaction service for transaction demarcation, as-
suming this service is made available by the Container.

When a Java EE Container runs inside an OSGi framework then it must ensure that any services
seen by its contained Applications are the same Transaction services as other bundles on that OSGi
framework.

123.4 Resource Managers
Resource Managers perform work that needs to be committed or rolled back in a transaction. To par-
ticipate in a transaction, a Resource Manager must have an XA Resource enlisted with the current
transaction. This specification does not define how OSGi service implementations should be enlist-
ed. This can be done by a Java EE Container, the Applications themselves, or through some other un-
specified means.

123.5 The JTA Provider
The JTA Provider is the entity that provides the transaction services:

• User Transaction - A service that implements the JTA UserTransaction interface.
• Transaction Manager - A service that implements the JTA TransactionManager interface.
• Transaction Synchronization Registry - A service that implements the JTA TransactionSynchroniza-

t ionRegistry interface.

There can be at most one JTA Provider in an OSGi framework and this JTA Provider must ensure
that at most one transaction is associated with an application thread at any moment in time. All JTA
Provider's transaction services must map to the same underlying JTA implementation. All JTA ser-
vices should only be registered once.

JTA Transaction Services Specification Version 1.0 Life Cycle

OSGi Enterprise Release 7 Page 379

123.5.1 User Transaction
The User Transaction service may be used by an Application bundle, acting as the Transaction Origi-
nator, to demarcate transaction boundaries when the bundle has no need to perform resource enlist-
ment.

123.5.2 Transaction Manager
The Transaction Manager service offers transaction demarcation and further transaction manage-
ment capabilities, such as Durable and Volatile resource enlistment, to an Application bundle or Ap-
plication Container.

123.5.3 Transaction Synchronization Service
The Transaction Synchronization Registry service may be used by an Application bundle or a Con-
tainer. The service provides for the registration of Volatile Resources that implement the JTA Syn-
chronizat ion interface.

For example:

private class MyVolatile implements Synchronization{...}
TransactionSynchronizationRegistry tsr = ...; // may be injected
tsr.registerInterposedSynchronization(new MyVolatile());

123.6 Life Cycle

123.6.1 JTA Provider
The life cycle of the transaction services and bundles that make up the JTA Provider must be dealt
with appropriately such that implementations always ensure the atomic nature of transactions.
When the JTA Provider is stopped and its services are unregistered, the JTA Provider must make
sure that all active transactions are dealt with appropriately. A JTA Provider can decide to rollback
all active transactions or it can decide to keep track of existing active transactions and allow them
to continue to their normal conclusion but not allow any new transactions to be created. Any fail-
ures caused by executing code outside their life cycle can be dealt with as general failures. From a
transactional consistency point of view, stopping the bundle(s) that implement the JTA Provider
while transactional work is in-flight, is no different from a failure of the framework hosting the JTA
Provider. In either case transaction recovery is initiated by the JTA Provider after it has re-started.

There are well-defined XA semantics between a JTA Provider and Resource Managers in the event
of a failure of either at any point in a transaction. If a Resource Manager bundle is stopped while
it is involved in-flight transactions then the JTA Provider should exhibit the same external behav-
ior it does in the event of a communication failure with the Resource Manager. For example a JTA
Provider will respond to an XAER_RMFAIL response resulting from calling the XAResource commit
method by retrying the commit . The mechanism used by the JTA Provider to determine when to
retry the commit is a detail of the implementation.

123.6.2 Application Bundles
Applications can act in the role of the Transaction Originator. There is no guarantee that an Appli-
cation that starts a transaction will always be available to complete the transaction since the client
can fail independently of the JTA Provider. A failure of the Application Bundle to complete, in a
timely fashion, a transaction it originated must finally result in the JTA Provider rolling back the
transaction.

Security JTA Transaction Services Specification Version 1.0

Page 380 OSGi Enterprise Release 7

123.6.3 Error Handling
This specification does not define a specific error handling strategy. Exceptions and errors that occur
during transaction processing can result in the transaction being marked rollback-only by the con-
tainer or framework in which an Application runs or may be left for the Application to handle. An
Application which receives an error or an exception while running under a transaction can choose
to mark the transaction rollback-only.

123.7 Security
This specification relies on the security model of JTA.

123.8 References

[1] Java Transaction API Specification 1.1
http://www.oracle.com/technetwork/java/javaee/jta/index.html

[2] XA+ Specification
Version 2, The Open Group, ISBN: 1-85912-046-6

[3] Transaction Processing
J. Gray and A. Reuter. Morgan Kaufmann Publishers, ISBN 1.55860-190-2

[4] Java Platform, Enterprise Edition (Java EE) Specification, v5
http://jcp.org/en/jsr/detail?id=244

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://jcp.org/en/jsr/detail?id=244

Management Model Specification for JMX™ Technology Version 1.1 Introduction

OSGi Enterprise Release 7 Page 381

124 Management Model Specification
for JMX™ Technology

Version 1.1

124.1 Introduction
The Java Management Extensions (JMX) is the standard API specification for providing a manage-
ment interface to Java SE and Java EE applications. The JMX specification defines the design pat-
terns, APIs, services and architecture for application management, network management and moni-
toring in the Java programming language. The need to administer, monitor and manage a container
is today recognized as a prerequisite in the enterprise software domain.

While OSGi defines a rich API for controlling all aspects of the framework, this API is not suitable
for direct usage in the JMX framework because it was not designed to be remoted. This specifica-
tion provides an interface adaptation of the existing OSGi framework, which can be used to expose
an OSGi Framework manipulation API to any JMX compliant implementation. Interfaces and sys-
tem semantics for a monitoring system are specified for exposing the underlying artifacts of the OS-
Gi framework such as services and bundles. Additionally, the management of a number of core and
compendium services have been standardized in this document.

Finally, a standardized JMX object naming standard is proposed so that management objects are uni-
formly named across implementations such that any JMX compliant system can find, manipulate
and interact with the framework and artifacts that it manages.

This specification requires version 1.2 or later of JMX, which implies the use of Java 5.

124.1.1 Essentials

• Life Cycle - Must allow support of full life cycle management of bundles.
• Batch - Support batch oriented operations to minimize the influence of network capacity and la-

tency.
• Compatible - This specification must work naturally with JMX.
• Efficient - Minimize the number of registered objects to not overload the MBean Server and com-

munication channels.
• Open MBean - Support the Open MBean layer of JMX instead of using domain specific objects.
• Core - Supports all the Framework's operations.
• Core Services - Support the framework services if registered, except for Conditional Permission

Admin.

124.1.2 Entities

• MBean - A Managed Bean. The core concept of JMX to manage an entity.
• MBean Server - The MBean Server is the access point for registering MBeans.
• Manager - The entity that implements the MBeans and registers them with the registered MBean

servers.
• Object Name - A name for an MBean registered with an MBean Server.

Introduction Management Model Specification for JMX™ Technology Version 1.1

Page 382 OSGi Enterprise Release 7

• Bundle State MBean - Provides central access to the state of a bundle in a framework.
• Framework MBean - Represents the general framework's state and can be used to manage the life

cycle of bundles.
• Bundle Wiring State MBean - Provides access to the wiring state of the framework.
• Service State MBean - Provides access to the service information in the service registry. It provides

both a general MBean interface as well as an Open Type description.
• Configuration Admin MBean - Can be used to manipulate a Configuration Admin service.
• Permission Admin MBean - Provides access to the Permission Admin service.
• Provisioning Service MBean - Provides access to the Provisioning Service.
• User Admin MBean - Provides access to the User Admin service.
• Item - A helper class to create Open Types. This class is intended to make the Javadoc easier to

navigate and keep definitions close together. This is otherwise hard to do with Open Type. This
class has no utility for management applications.

• Open Type - A JMX metadata standard to describe MBeans.
• Remote Manager - The entity accessing a MBean Server remotely.
• JConsole - The default Java Remote Manager.

Figure 124.1 MBeans

JMX OSGi
Manager

<<MBean>>
Framework
MBean

<<MBean>>
Bundle State
MBean

<<MBean>>
Service State
MBean

<<MBean>>
Package State
MBean

<<MBean>>
Configuration
Admin MBean

<<MBean>>
Permission
Admin MBean

<<MBean>>
Provisioning
Service MBean

<<MBean>>
User Admin
MBean

PermissionAdmin

Configuration Admin

Provisioning Service

User Admin

MBean Server

<<MBean>>
BundleWiring
State MBean

124.1.3 Synopsis
This specification plays a part in both the OSGi framework as well as in a remote manager.

A JMX OSGi manager bundle obtains one or more MBean servers that are registered as services. The
JMX OSGi manager then registers all its managed beans: Framework MBean, Bundle State MBean,
Package State MBean, and the Service State MBean under their JMX object names. If a number of op-
tional services are registered, then the JMX OSGi bundle must also register a corresponding MBean
with the MBean server for each of the services that it can obtain.

A remote manager can access an MBean Server running in a (remote) VM. The remote manager can
then discover any MBeans. These MBeans can be manipulated as dynamic types or as specific types
as outlined in this specification.

Management Model Specification for JMX™ Technology Version 1.1 JMX Overview

OSGi Enterprise Release 7 Page 383

124.2 JMX Overview
JMX is a specification which defines how arbitrary remote communication protocols and mecha-
nisms can be adapted to interact with the underlying management APIs exposed by JMX compliant
implementations. JMX is not a remote communication standard, the actual protocols can vary. The
JMX architecture is composed of three levels:

• Instrumentation - The managed resources of the system are instrumented using managed beans
(a.k.a. MBeans) which expose their management interfaces through a JMX agent for remote man-
agement and monitoring.

• Agent - The JMX agent layer is mainly represented by the MBean server. This is the managed object
server where the MBeans are registered. The JMX agent includes a set of functions for manipulat-
ing the registered MBeans, which directly expose and control the underlying resources, and then
make them available to remote managers.

• Remote Manager - The remote management layer provides the specification for the actual remote
communication protocol adapters and defines standard connectors which make the JMX agent ac-
cessible to remote managers outside of the Java process that hosts the agent.

The JMX Architecture is depicted in Figure 124.2.

Figure 124.2 JMX Architecture

Resource MBean

Connector
Protocol
Adapter

Managed VM
communicates-with

Application
managed-by

Agent
(MBean Server)

Remote Manager

124.2.1 Connectors and Adapters
Connectors are used to connect an agent with a remote JMX-enabled managers. This form of com-
munication involves a connector in the JMX agent and a connector client in the management appli-
cation. Protocol adapters provide a management view of the JMX agent through a given protocol.

Remote managers that connect to a protocol adapter are usually specific to the given protocol. Re-
mote Managers can be generic consoles (such as JConsole; see [8] Using JConsole to Monitor Appli-
cations), or domain-specific monitoring applications. External applications can interact with the
MBeans through the use of JMX connectors and protocol adapters.

124.2.2 Object Name
All managed objects in JMX are referenced via JMX Object Names. Object Names are strings which
can be resolved within the context of a JMX MBean Server in order. An Object Name consists of two
parts:

ObjectName ::= domain ':' properties
properties ::= property (',' property)*

To avoid collisions between MBeans supplied by different vendors, a recommended convention is to
begin the domain name with the reverse DNS name of the organization that specifies the MBeans,
followed by a full stop ('.' \u002E) and a string whose interpretation is determined by that organiza-
tion.

JMX Overview Management Model Specification for JMX™ Technology Version 1.1

Page 384 OSGi Enterprise Release 7

MBeans specified by the OSGi Alliance have domains that start with osgi .

124.2.3 MBeans
Any object can be registered with an MBean Server and manipulated remotely over an MBean Serv-
er Connection. An MBean Server Connection can represent the a local MBean Server or a remote
MBean Server. An MBean is always identified by an Object Name. The Object Name identifies a re-
mote MBean uniquely within a specific MBean Server Connection.

Standard manipulations of a remote MBean are done through attributes and operations, which are
similar to properties and methods for Java beans. Not all methods on the implementation class can
be used, the registering party must specifically provide access to the methods that can be called re-
motely. The registrar can define the exposed operations with the following mechanisms:

• Design Pattern - Let the registered object implement an MBean interface that has the fully qual-
ified name of the implementation class suffixed with MBean . The MBean server will then
limit access to attributes and properties defined in the MBean interface. For example, the
com.acme.Resource class should implement the com.acme.ResourceMBean interface. The
com.acme.ResourceMBean interface would define the properties and operations.

• Dynamic MBean - Register a Dynamic MBean, which handles the access to the operations and
attributes programmatically. The JMX specification provides the DynamicMBean interface for
this purpose. If the MBean registered with an MBean Server implements this interface, then the
MBean Server must get the MBean's metadata through the DynamicMBean interface instead of
using reflection. Therefore, Dynamic MBeans can provide more rich metadata that describes
their operations and attributes.

• Standard MBean - Register a Standard MBean. A standard MBean works the same as the previous
bullet but does not require the implementation class name to map to the MBean interface name.

Attributes map to properties on the registered MBean interface and operations allow the invocation
of an arbitrary method on the remote MBean with arbitrary parameters. The following code exam-
ple shows how to get a the size property of a remote MBean in this way:

void drop(MBeanServerConnection mbs, ObjectNameobjectName) {
 Integer sizeI = (Integer)
 mbs.getAttribute(objectName, "Size");
 int size = sizeI.intValue();
 if (size > desiredSize) {
 mbs.invoke(objectName,"dropOldest",
 new Integer[] {new Integer(size - desiredSize)},
 new String[] {"int"});
 }
}

In release 1.2 the JMX specification introduced the MBean Server Invocation Handler to simplify the
manipulation of the remote MBeans by creating a proxy for an MBean interface that implements all
the relevant methods. An MBean interface defines the methods and properties for an MBean. The
proxy has a reference to an MBean Server Connection, it can therefore automate the invocation of the
appropriate methods from the MBean interface. Therefore, by using an MBean interface, it is possi-
ble to simplify the remote manager:

MBeanServer mbs = ...;
CacheControlMBean cacheControl = (CacheControlMBean)
 MbeanServerInvocationHandler.newProxyInstance(
 mbs, objectName, CacheControlMBean.class, false);

int size = cacheControl.getSize();
if (size > desiredSize)

Management Model Specification for JMX™ Technology Version 1.1 OSGi JMX Management

OSGi Enterprise Release 7 Page 385

 cacheControl.dropOldest(size - desiredSize);

The creation of the proxy is somewhat verbose, but once it is available, the MBean can be accessed
like a local object. The proxy is much easier to use and read, and much less error-prone, than access-
ing the MBean Server method through invoking operations and getting attributes.

The MBean interface can also ensure a certain amount of type safety. The MBean implementation
can implement the MBean interface and the remote manager uses the proxy implementing this in-
terface. However, neither is required. The MBean can directly implement the methods without im-
plementing the interface and the remote manager can directly manipulate the attributes and invo-
cations.

The key advantage is therefore the documentation of the management interface. Using an MBean
interface, this can be done very concisely and it allows the usage of standard tools for Java source
code and Javadoc.

124.2.4 Open Types
The distributed nature of remote management poses a number of problems for exchanging general
objects.

• Versioning - All participating parties require access to the same version of the object's class.
• Serialization - Not all objects are easy to serialize.
• Size - Arbitrary objects can transitively link to large amounts of data.
• Descriptive - Classes provide little or no support for editing.
• Limited - Classes are Java specific, making it harder to interact with non-Java environments.

An alternative is to limit the management types to be exchanged to small, well defined set. Open
MBeans limit the used data types to small number of types called the basic types. These types are sup-
ported by all JMX 1.2 and later implementations. This basic set of types contains:

• Primitives - boolean, byte, char, short , int , long, f loat , double .
• Primitive Arrays - boolean[], byte[] , char[] , short[] , int[] , long[], f loat[] , double[] .
• Wrappers - Boolean, Byte, Character, Short , Integer, Long, F loat, Double .
• Scalars - Str ing, BigDecimal , B igInteger, Date, ObjectName .
• Complex - CompositeData, TabularData , and complex arrays.
• Return - Void, operation return only.

The Complex types are unique to JMX, they are used to provide access to complex data (like ob-
jects) without using classes. The complex types are self describing. The metadata associated with
these complex types allow a remote manager to discover the structure and automatically construct
a (graphic) user interface for these complex objects.

Open MBeans must be Dynamic MBeans when registered. Furthermore, they must provide Open
MBean variations of the Info objects that describe the operations and attributes.

124.3 OSGi JMX Management
The OSGi JMX Management model is based on Open MBeans, see Open Types on page 385. This
specification declares a number of MBeans for the core Framework, some of the core services, and a
number of compendium services. Though Open MBeans are based on Dynamic MBeans, this spec-
ification uses the traditional MBean interface to define the management interaction patterns. The
implementer of this specification must register an implementation of these interfaces as a Dynamic
MBean. An implementation should provide the additional Open MBeans Info objects for the opera-
tions and attributes.

OSGi JMX Management Management Model Specification for JMX™ Technology Version 1.1

Page 386 OSGi Enterprise Release 7

This specification defines the following Open MBeans:

• Core Framework - FrameworkMBean , BundleStateMBean , ServiceStateMBean , BundleWir ingS-
tateMBean, and PackageStateMBean .

• Core Services - PermissionAdminMBean . The Conditional Permission Admin is not included in
this specification.

• Compendium Services - Configurat ionAdminMBean , UserAdminMBean , Provis ioningServiceMBean

124.3.1 Naming
The MBean interfaces have been named after the service they manage. That is the Configurat ionAd-
minMBean interface manages the Configuration Admin service, which is modelled with the Config-
urat ionAdmin interface.

Package names are constructed from taking the corresponding resource package and inserting jmx.
after org.osgi . For example

org.osgi.framework org.osgi.jmx.framework
org.osgi.service.cm org.osgi.jmx.service.cm

It is not possible to use the MBean interface design pattern because the MBean interfaces are in OS-
Gi packages. The design pattern requires the fully qualified name of the implementation suffixed
with MBean to match the MBean interface name. This would require that the implementation class
resides in an OSGi package, which would extend these packages.

However, the StandardMBean class allows the association of one of the OSGi MBean interfaces with
an arbitrary class.

124.3.2 Object Naming
Object Names for OSGi managed MBeans must follow the following structure:

object-name ::= (core | compendium)
 ',version=' version
 ',framework=' framework
 ',uuid=' uuid
 (',' key '=' value)*
core ::= 'osgi.core:' framework-type
compendium ::= 'osgi.compendium:' service-type
framework-type ::= ('type=' token) | service-type
service-type ::= 'service=' token
framework ::= <Bundle symbolic name of the system bundle>
uuid ::= <org.osgi.framework.uuid Framework property'svalue>
key ::= <any jmx supported key>
value ::= <any jmx supported value>

There are the following additional constraints:

• Spaces - Spaces between any of the terminals are not permitted.
• Version - The version must be limited to a major and minor version part. The given version must

identify the package of the corresponding resource. For example, if the Configuration Admin ser-
vice is on version 1.3.2.200910101250 , then the version in the Object Name must be 1.3 .

• Service - The service-type should use the package name of the corresponding service. For exam-
ple, for Configuration Admin this would be service=cm .

The Object Name must contain the framework bundle symbolic name and its UUID so that multi-
ple instances on the same VM can be discriminated. An example of an Object Name is:

osgi.core:type=framework,version=1.7,framework=org.apache.felix.framework, «

Management Model Specification for JMX™ Technology Version 1.1 OSGi JMX Management

OSGi Enterprise Release 7 Page 387

 uuid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6

The advantage of the framework property is that it can be used to simplify the querying for the
MBeans using Object Name patterns. Patterns are names have an asterisk ('* ' \u002A). For instance,
the following query allows a client to find all Framework MBeans for an Apache Felix implementa-
tion without having to rely on knowing the UUID:

ObjectName on = new ObjectName(
 "osgi.core:type=framework,"
 + "version=1.7,framework=org.apache.felix.framework,*");
Set<ObjectInstance> instances = mserver.queryMBeans(on,null);

Furthermore, in many cases, a JMX client may appropriately assume that only a single instance of
the OSGi framework exists in the managed system, as in the following example:

ObjectName on = new ObjectName("osgi.core:type=framework,version=1.7,*");
Set<ObjectInstance> instances = mserver.queryMBeans(on,null);

The uuid and f ramework property keys are only applicable to OSGi JMX Management Model Specifi-
cation Version 1.1 and above.

To maintain backward compatibility, a OSGi JMX Framework package Version 1.7 may register the
first instantiation of an OSGi framework using both the Version 1.0 Object Names as well as the Ob-
ject Names outlined in this specification. In other words, a JMX client may not specify the uuid and/
or framework properties, and still retrieve the MBeans for a OSGi framework instance.

The actual object name prefixes are defined in the MBean interfaces. For example, the Object Name
for the Configuration Admin MBean is:

osgi.compendium:service=cm,version=1.3

It is the responsibility of the party registering the MBean to suffix this with the framework and
UUID.

In this specification, all management interfaces are specified to return opaque Strings or longs
rather than Object Names so that the MBean interfaces contain no JMX specific artifacts and can be
used with a variety of remote access protocols such as SNMP, etc. Non JMX use of these APIs can use
these Strings as their own opaque identifiers without any change to the interfaces themselves.

124.3.3 The MBean Server
An implementation of this specification must find all MBean Servers services that it has access to. It
should then register all MBeans with each server found in the service registry.

A compliant implementation must register all the framework's MBeans: FrameworkMBean,
BundleStateMBean, ServiceStateMBean, BundleWir ingStateMBean and PackageStateMBean . The
registration of the compendium services is optional. However, if they are registered they must im-
plement the behavior as defined in this specification.

124.3.4 Registrations
The OSGi MBeans are designed to minimize the notifications. That is, the objects model a command
interface to access the required information. Their registration is not intended to signify anything
else than the start of the manager bundle and the availability of the underlying resource.

Implementations must always register only one of each of the Framework MBean types (Frame-
work MBean, Service State MBean, Bundle State MBean, Wiring State MBean, and Package State
MBean). All other MBean types depend on the registered services they manage. Each service requires
its unique MBean. If no corresponding service is present, then no MBean should be registered. Modi-
fied events must be ignored. If a manager supports a specific OSGi MBean for a compendium service
then it must register an MBean for each instance of that service.

MBeans Management Model Specification for JMX™ Technology Version 1.1

Page 388 OSGi Enterprise Release 7

124.4 MBeans
This specification defines MBean interfaces listed in the following table. The Object Name specified
in this table is broken into a number of lines for readability, however, newlines and whitespace is
not allowed in the Object Name.

Table 124.1 MBeans

MBean Object Name Description
FrameworkMBean osgi .core:

type=framework,

version=1.7

Provides access to bundle life cycle
methods of the framework includ-
ing batch install and update opera-
tions.

BundleStateMBean osgi .core:

type=bundleState,

version=1.7

Provides detailed access to the state
of one bundle and aggregated state
of a group of bundles.

ServiceStateMBean osgi .core:

type=serviceState,

version=1.7

Provides detailed access to the state
of one service and aggregated state
of a group of services.

PackageStateMBean osgi .core:

type=packageState,

version=1.5

Provides detailed access to the state
of one package and aggregated state
of a group of packages.

PermissionAdminMBean osgi .core:

service=permissionadmin,

version=1.2

Based on the Permission Admin ser-
vice.

Configurat ionAdminMBean osgi .compendium:

service=cm,

version=1.3

Manages a Configuration Admin
service.

Provis ioningServiceMBean osgi .compendium:

service=provis ioning,

version=1.2

Manages a Provisioning Service.

UserAdminMBean osgi .compendium:

service=useradmin,

version=1.1

Manages a User Admin service.

BundleWir ingStateMBean osgi .core:

service=wir ingState,

version=1.1

Reflects the Framework's wiring
state.

124.5 Item
The MBean interfaces do not only define the Java interface, they also define the Open Types. These
types are defined with the I tem class in this specification to simplify the definitions; the Item class
has no role in a management application. The Item class is used to allow the items used in Compos-

Management Model Specification for JMX™ Technology Version 1.1 Security

OSGi Enterprise Release 7 Page 389

ite Types to be encoded in the interface. This is not possible with the standard Open Types because
they use exceptions and use parallel arrays. For example, the following code defines a static Open
Type without the Item class:

static CompositeType HEADER;
static {
 try {
 HEADER = new CompositeType("HEADER" "This is a header",
 new String[] {"KEY", "VALUE"},
 new String[] {"A key for a header", "A value for a header"},
 new OpenType[] { SimpleType.STRING, SimpleType.STRING });
 catch(OpenDataException e) {
 ...
 }
}

This code can be replaced with the I tem class:

static Item KEY = new Item("KEY", "A key forheader", SimpleType.STRING);
static Item VALUE = new Item("VALUE", "A value for header",SimpleType.STRING);
static CompositeType HEADER = Item.composite("HEADER", "Thisis a header",
 KEY, VALUE);

The Item class also provides a number of convenience methods to construct the different Open
Types. However, the intention is to simplify the specification definitions, not as an aid in manage-
ment operations.

124.6 Security
Exposing any system remotely opens up a, potentially, devastating security hole in a system. Remote
entities should establish their identity and the management system should be able to control the ac-
cess these entities have over the management system. JMX seamlessly inter operates with the Java
Authentication and Authorization Service (JAAS) and Java 2 platform Standard Edition (Java SE) Se-
curity Architecture.

The JMX OSGi manager must have access to the services it manages and the operations it invokes. It
is likely that this bundle requires All Permission because it needs to invoke operations on the Con-
ditional Permission Admin. It is strongly advised that implementations limit the set of available per-
missions based on authenticating the remote manager.

124.7 org.osgi.jmx

OSGi JMX Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi . jmx; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi . jmx; vers ion="[1.1 ,1 .2)"

org.osgi.jmx Management Model Specification for JMX™ Technology Version 1.1

Page 390 OSGi Enterprise Release 7

124.7.1 Summary

• I tem - The item class enables the definition of open types in the appropriate interfaces.
• JmxConstants - Constants for OSGi JMX Specification.

124.7.2 public class Item
The item class enables the definition of open types in the appropriate interfaces. This class contains
a number of methods that make it possible to create open types for CompositeType, TabularType,
and ArrayType. The normal creation throws a checked exception, making it impossible to use them
in a static initializer. The constructors are also not very suitable for static construction. An Item in-
stance describes an item in a Composite Type. It groups the triplet of name, description, and Open
Type. These Item instances allows the definitions of an item to stay together.

Concurrency Immutable

124.7.2.1 public Item(String name, String description, OpenType type, String... restrictions)

name The name of the item.

description The description of the item.

type The Open Type of this item.

restrictions Ignored, contains list of restrictions

□ Create a triple of name, description, and type. This triplet is used in the creation of a Composite
Type.

124.7.2.2 public static ArrayType arrayType(int dim, OpenType elementType)

dim The dimension

elementType The element type

□ Return a new Array Type.

Returns A new Array Type

124.7.2.3 public static CompositeType compositeType(String name, String description, Item... items)

name The name of the Tabular Type.

description The description of the Tabular Type.

items The items that describe the composite type.

□ Create a Composite Type

Returns a new Composite Type

Throws RuntimeException– when the Tabular Type throws an OpenDataException

124.7.2.4 public static CompositeType extend(CompositeType parent, String name, String description, Item... items)

parent The parent type, can be nul l

name The name of the type

description The description of the type

items The items that should be added/override to the parent type

□ Extend a Composite Type by adding new items. Items can override items in the parent type.

Returns A new Composite Type that extends the parent type

Throws RuntimeException– when an OpenDataException is thrown

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx

OSGi Enterprise Release 7 Page 391

124.7.2.5 public static TabularType tabularType(String name, String description, CompositeType rowType, String...
index)

name The name of the Tabular Type.

description The description of the Tabular Type.

rowType The Open Type for a row

index The names of the items that form the index .

□ Create a Tabular Type.

Returns A new Tabular Type composed from the parameters.

Throws RuntimeException– when the Tabular Type throws an OpenDataException

124.7.3 public class JmxConstants
Constants for OSGi JMX Specification. Additionally, this class contains a number of utility
types that are used in different places in the specification. These are LONG_ARRAY_TYPE,
STRING_ARRAY_TYPE, and PROPERTIES_TYPE.

Concurrency Immutable

124.7.3.1 public static final String ARRAY_OF = "Array of "

For an encoded array we need to start with ARRAY_OF. This must be followed by one of the names
in SCALAR.

124.7.3.2 public static final String BIGDECIMAL = "BigDecimal"

Value for PROPERTY_TYPE value in the case of java.math.BigDecimal

124.7.3.3 public static final String BIGINTEGER = "BigInteger"

Value for PROPERTY_TYPE value in the case of java.math.BigInteger

124.7.3.4 public static final String BOOLEAN = "Boolean"

Value for PROPERTY_TYPE value in the case of java.lang.Boolean

124.7.3.5 public static final String BYTE = "Byte"

Value for PROPERTY_TYPE value in the case of java.lang.Byte

124.7.3.6 public static final String CHARACTER = "Character"

Value for PROPERTY_TYPE value in the case of java.lang.Character

124.7.3.7 public static final String DOUBLE = "Double"

Value for PROPERTY_TYPE value in the case of java.lang.Double

124.7.3.8 public static final String FLOAT = "Float"

Value for PROPERTY_TYPE value in the case of java.lang.Float

124.7.3.9 public static final String INTEGER = "Integer"

Value for PROPERTY_TYPE value in the case of java.lang.Integer

124.7.3.10 public static final String KEY = "Key"

The key KEY.

124.7.3.11 public static final Item KEY_ITEM

The key of a property. The key is KEY and the type is SimpleType.STRING.

org.osgi.jmx Management Model Specification for JMX™ Technology Version 1.1

Page 392 OSGi Enterprise Release 7

124.7.3.12 public static final String LONG = "Long"

Value for PROPERTY_TYPE value in the case of java.lang.Long

124.7.3.13 public static final ArrayType LONG_ARRAY_TYPE

The MBean Open type for an array of longs

124.7.3.14 public static final String OSGI_COMPENDIUM = "osgi.compendium"

The domain name of the selected OSGi compendium MBeans

124.7.3.15 public static final String OSGI_CORE = "osgi.core"

The domain name of the core OSGi MBeans

124.7.3.16 public static final String P_BOOLEAN = "boolean"

Value for PROPERTY_TYPE value in the case of the boolean primitive type.

124.7.3.17 public static final String P_BYTE = "byte"

Value for PROPERTY_TYPE value in the case of the byte primitive type.

124.7.3.18 public static final String P_CHAR = "char"

Value for PROPERTY_TYPE value in the case of the char primitive type.

124.7.3.19 public static final String P_DOUBLE = "double"

Value for PROPERTY_TYPE value in the case of the double primitive type.

124.7.3.20 public static final String P_FLOAT = "float"

Value for PROPERTY_TYPE value in the case of the f loat primitive type.

124.7.3.21 public static final String P_INT = "int"

Value for PROPERTY_TYPE value in the case of the int primitive type.

124.7.3.22 public static final String P_LONG = "long"

Value for PROPERTY_TYPE value in the case of the long primitive type.

124.7.3.23 public static final String P_SHORT = "short"

Value for PROPERTY_TYPE value in the case of the short primitive type.

124.7.3.24 public static final TabularType PROPERTIES_TYPE

Describes a map with properties. The row type is PROPERTY_TYPE. The index is defined to the KEY
of the property.

124.7.3.25 public static final CompositeType PROPERTY_TYPE

A Composite Type describing a a single property. A property consists of the following items
KEY_ITEM, VALUE_ITEM, and TYPE_ITEM.

124.7.3.26 public static final List<String> SCALAR

A set of all scalars that can be used in the TYPE property of a PROPERTIES_TYPE. This contains the
following names:

• BIGDECIMAL

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx

OSGi Enterprise Release 7 Page 393

• BIGINTEGER
• BOOLEAN
• BYTE
• CHARACTER
• DOUBLE
• FLOAT
• INTEGER
• LONG
• SHORT
• STRING
• VERSION
• P_BYTE
• P_CHAR
• P_DOUBLE
• P_FLOAT
• P_INT
• P_LONG
• P_SHORT

124.7.3.27 public static final String SHORT = "Short"

Value for PROPERTY_TYPE value in the case of java.lang.Short

124.7.3.28 public static final String STRING = "String"

Value for PROPERTY_TYPE value in the case of java.lang.String

124.7.3.29 public static final ArrayType STRING_ARRAY_TYPE

The MBean Open type for an array of strings

124.7.3.30 public static final String TYPE = "Type"

The key TYPE.

124.7.3.31 public static final Item TYPE_ITEM

The type of the property. The key is TYPE and the type is SimpleType.STRING. This string must fol-
low the following syntax:

 type ::= scalar | vector | array
 vector ::= 'Vector of' scalar
 array ::= 'Array of' (scalar | primitive)
 scalar ::= 'String' | 'BigInteger' | 'BigDecimal'
 | 'Byte' | 'Character' | 'Short'
 | 'Integer' | 'Long' | 'Float'
 | 'Double' | 'Version'
 primitive ::= 'byte' | 'char' | 'short'
 | 'int' | 'long' | 'float'
 | 'double'

This encoding does not support arrays in vectors or arrays. Arrays and vectors can only contain
scalars. List properties are encoded as arrays. Empty lists, arrays or vectors are not represented. Null
is not an allowed value.

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 394 OSGi Enterprise Release 7

For example, the encoding of a byte array byte[] {1,2,3,5,7} would look like:

 type: 'Array of byte'
 value: 1,2,3,5,7

Quoting can be used as follows:

 type: 'Array of String'
 value: 'abc', 'def', '\'quoted\'', "'quoted'", "\\"

124.7.3.32 public static final String VALUE = "Value"

The key VALUE.

124.7.3.33 public static final Item VALUE_ITEM

The value of a property. The key is VALUE and the type is SimpleType.STRING. A value will be en-
coded by the string given in TYPE. The syntax for this type is given in TYPE_ITEM.

124.7.3.34 public static final String VECTOR_OF = "Vector of "

For an encoded vector we need to start with ARRAY_OF. This must be followed by one of the names
in SCALAR.

124.7.3.35 public static final String VERSION = "Version"

Value for PROPERTY_TYPE value in the case of Version

Since 1.1

124.8 org.osgi.jmx.framework

OSGi JMX Framework Package Version 1.7.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi . jmx.framework; vers ion="[1.7,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi . jmx.framework; vers ion="[1.7,1 .8)"

124.8.1 Summary

• BundleStateMBean - This MBean represents the Bundle state of the framework.
• FrameworkMBean - The FrameworkMbean provides mechanisms to exert control over the

framework.
• PackageStateMBean - This MBean provides information about the package state of the frame-

work.
• ServiceStateMBean - This MBean represents the Service state of the framework.

124.8.2 public interface BundleStateMBean
This MBean represents the Bundle state of the framework. This MBean also emits events that clients
can use to get notified of the changes in the bundle state of the framework.

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 395

Concurrency Thread-safe

124.8.2.1 public static final String ACTIVATION_POLICY_USED = "ActivationPolicyUsed"

The key ACTIVATION_POLICY_USED, used in ACTIVATION_POLICY_USED_ITEM.

124.8.2.2 public static final Item ACTIVATION_POLICY_USED_ITEM

The item containing the indication whether the bundle activation policy must be used in
BUNDLE_TYPE. The key is ACTIVATION_POLICY_USED and the type is SimpleType.BOOLEAN.

124.8.2.3 public static final String ACTIVE = "ACTIVE"

Constant ACTIVE for the STATE

124.8.2.4 public static final CompositeType BUNDLE_EVENT_TYPE

The Composite Type that represents a bundle event. This composite consists of:

• IDENTIFIER
• LOCATION
• SYMBOLIC_NAME
• EVENT

124.8.2.5 public static final CompositeType BUNDLE_TYPE

The Composite Type that represents a bundle. This composite consist of:

• EXPORTED_PACKAGES
• FRAGMENT
• FRAGMENTS
• HEADERS
• HOSTS
• IDENTIFIER
• IMPORTED_PACKAGES
• LAST_MODIFIED
• LOCATION
• ACTIVATION_POLICY_USED
• PERSISTENTLY_STARTED
• REGISTERED_SERVICES
• REMOVAL_PENDING
• REQUIRED
• REQUIRED_BUNDLES
• REQUIRING_BUNDLES
• START_LEVEL
• STATE
• SERVICES_IN_USE
• SYMBOLIC_NAME
• VERSION

It is used by BUNDLES_TYPE.

124.8.2.6 public static final TabularType BUNDLES_TYPE

The Tabular Type for a list of bundles. The row type is BUNDLE_TYPE and the index is IDENTIFIER.

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 396 OSGi Enterprise Release 7

124.8.2.7 public static final String EVENT = "BundleEvent"

The key EVENT, used in EVENT_ITEM.

124.8.2.8 public static final Item EVENT_ITEM

The item containing the event type. The key is EVENT and the type is SimpleType.INTEGER

124.8.2.9 public static final String EXPORTED_PACKAGES = "ExportedPackages"

The key EXPORTED_PACKAGES, used in EXPORTED_PACKAGES_ITEM.

124.8.2.10 public static final Item EXPORTED_PACKAGES_ITEM

The item containing the exported package names in BUNDLE_TYPE .The key is
EXPORTED_PACKAGES and the the type is JmxConstants.STRING_ARRAY_TYPE.

124.8.2.11 public static final String FRAGMENT = "Fragment"

The key FRAGMENT, used in FRAGMENT_ITEM.

124.8.2.12 public static final Item FRAGMENT_ITEM

The item containing the fragment status in BUNDLE_TYPE. The key is FRAGMENT and the the type
is SimpleType.BOOLEAN.

124.8.2.13 public static final String FRAGMENTS = "Fragments"

The key FRAGMENTS, used in FRAGMENTS_ITEM.

124.8.2.14 public static final Item FRAGMENTS_ITEM

The item containing the list of fragments the bundle is host to in BUNDLE_TYPE. The key is FRAG-
MENTS and the type is JmxConstants.LONG_ARRAY_TYPE.

124.8.2.15 public static final CompositeType HEADER_TYPE

The Composite Type describing an entry in bundle headers. It consists of KEY_ITEM and
VALUE_ITEM.

124.8.2.16 public static final String HEADERS = "Headers"

The key HEADERS, used in HEADERS_ITEM.

124.8.2.17 public static final Item HEADERS_ITEM

The item containing the bundle headers in BUNDLE_TYPE. The key is HEADERS and the the type is
HEADERS_TYPE.

124.8.2.18 public static final TabularType HEADERS_TYPE

The Tabular Type describing the type of the Tabular Data value that is returned from
getHeaders(long) method. The primary item is KEY_ITEM.

124.8.2.19 public static final String HOSTS = "Hosts"

The key HOSTS, used in HOSTS_ITEM.

124.8.2.20 public static final Item HOSTS_ITEM

The item containing the bundle identifiers representing the hosts in BUNDLE_TYPE. The key is
HOSTS and the type is JmxConstants.LONG_ARRAY_TYPE

124.8.2.21 public static final String IDENTIFIER = "Identifier"

The key IDENTIFIER, used in IDENTIFIER_ITEM.

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 397

124.8.2.22 public static final Item IDENTIFIER_ITEM

The item containing the bundle identifier in BUNDLE_TYPE. The key is IDENTIFIER and the the
type is SimpleType.LONG.

124.8.2.23 public static final String IMPORTED_PACKAGES = "ImportedPackages"

The key IMPORTED_PACKAGES, used in EXPORTED_PACKAGES_ITEM.

124.8.2.24 public static final Item IMPORTED_PACKAGES_ITEM

The item containing the imported package names in BUNDLE_TYPE .The key is
IMPORTED_PACKAGES and the the type is JmxConstants.STRING_ARRAY_TYPE.

124.8.2.25 public static final String INSTALLED = "INSTALLED"

Constant INSTALLED for the STATE

124.8.2.26 public static final String KEY = "Key"

The key KEY, used in KEY_ITEM.

124.8.2.27 public static final Item KEY_ITEM

The item describing the key of a bundle header entry. The key is KEY and the type is
SimpleType.STRING.

124.8.2.28 public static final String LAST_MODIFIED = "LastModified"

The key LAST_MODIFIED, used in LAST_MODIFIED_ITEM.

124.8.2.29 public static final Item LAST_MODIFIED_ITEM

The item containing the last modified time in the BUNDLE_TYPE. The key is LAST_MODIFIED and
the the type is SimpleType.LONG.

124.8.2.30 public static final String LOCATION = "Location"

The key LOCATION, used in LOCATION_ITEM.

124.8.2.31 public static final Item LOCATION_ITEM

The item containing the bundle location in BUNDLE_TYPE. The key is LOCATION and the the type
is SimpleType.STRING.

124.8.2.32 public static final String OBJECTNAME = "osgi.core:type=bundleState,version=1.7"

The Object Name prefix for this mbean. The full object name also contains the framework name and
uuid as properties.

124.8.2.33 public static final String PERSISTENTLY_STARTED = "PersistentlyStarted"

The key PERSISTENTLY_STARTED, used in PERSISTENTLY_STARTED_ITEM.

124.8.2.34 public static final Item PERSISTENTLY_STARTED_ITEM

The item containing the indication of persistently started in BUNDLE_TYPE. The key is
PERSISTENTLY_STARTED and the the type is SimpleType.BOOLEAN.

124.8.2.35 public static final String REGISTERED_SERVICES = "RegisteredServices"

The key REGISTERED_SERVICES, used in REGISTERED_SERVICES_ITEM.

124.8.2.36 public static final Item REGISTERED_SERVICES_ITEM

The item containing the registered services of the bundle in BUNDLE_TYPE. The key is
REGISTERED_SERVICES and the the type is JmxConstants.LONG_ARRAY_TYPE.

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 398 OSGi Enterprise Release 7

124.8.2.37 public static final String REMOVAL_PENDING = "RemovalPending"

The key REMOVAL_PENDING, used in REMOVAL_PENDING_ITEM.

124.8.2.38 public static final Item REMOVAL_PENDING_ITEM

The item containing the indication of removal pending in BUNDLE_TYPE. The key is
REMOVAL_PENDING and the type is SimpleType.BOOLEAN.

124.8.2.39 public static final String REQUIRED = "Required"

The key REQUIRED, used in REQUIRED_ITEM.

124.8.2.40 public static final String REQUIRED_BUNDLES = "RequiredBundles"

The key REQUIRED_BUNDLES, used in REQUIRED_BUNDLES_ITEM.

124.8.2.41 public static final Item REQUIRED_BUNDLES_ITEM

The item containing the required bundles in BUNDLE_TYPE. The key is REQUIRED_BUNDLES and
the type is JmxConstants.LONG_ARRAY_TYPE

124.8.2.42 public static final Item REQUIRED_ITEM

The item containing the required status in BUNDLE_TYPE. The key is REQUIRED and the the type
is SimpleType.BOOLEAN.

124.8.2.43 public static final String REQUIRING_BUNDLES = "RequiringBundles"

The key REQUIRING_BUNDLES, used in REQUIRING_BUNDLES_ITEM.

124.8.2.44 public static final Item REQUIRING_BUNDLES_ITEM

The item containing the bundles requiring this bundle in BUNDLE_TYPE. The key is
REQUIRING_BUNDLES and the type is JmxConstants.LONG_ARRAY_TYPE

124.8.2.45 public static final String RESOLVED = "RESOLVED"

Constant RESOLVED for the STATE

124.8.2.46 public static final String SERVICES_IN_USE = "ServicesInUse"

The key SERVICES_IN_USE, used in SERVICES_IN_USE_ITEM.

124.8.2.47 public static final Item SERVICES_IN_USE_ITEM

The item containing the services in use by this bundle in BUNDLE_TYPE. The key is
SERVICES_IN_USE and the the type is JmxConstants.LONG_ARRAY_TYPE.

124.8.2.48 public static final String START_LEVEL = "StartLevel"

The key START_LEVEL, used in START_LEVEL_ITEM.

124.8.2.49 public static final Item START_LEVEL_ITEM

The item containing the start level in BUNDLE_TYPE. The key is START_LEVEL and the the type is
SimpleType.INTEGER.

124.8.2.50 public static final String STARTING = "STARTING"

Constant STARTING for the STATE

124.8.2.51 public static final String STATE = "State"

The key STATE, used in STATE_ITEM.

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 399

124.8.2.52 public static final Item STATE_ITEM

The item containing the bundle state in BUNDLE_TYPE. The key is STATE and the the type is
SimpleType.STRING. The returned values must be one of the following strings:

• INSTALLED
• RESOLVED
• STARTING
• ACTIVE
• STOPPING
• UNINSTALLED
• UNKNOWN

124.8.2.53 public static final String STOPPING = "STOPPING"

Constant STOPPING for the STATE

124.8.2.54 public static final String SYMBOLIC_NAME = "SymbolicName"

The key SYMBOLIC_NAME, used in SYMBOLIC_NAME_ITEM.

124.8.2.55 public static final Item SYMBOLIC_NAME_ITEM

The item containing the symbolic name in BUNDLE_TYPE. The key is SYMBOLIC_NAME and the
the type is SimpleType.STRING.

124.8.2.56 public static final String UNINSTALLED = "UNINSTALLED"

Constant UNINSTALLED for the STATE

124.8.2.57 public static final String UNKNOWN = "UNKNOWN"

Constant UNKNOWN for the STATE

124.8.2.58 public static final String VALUE = "Value"

The key VALUE, used in VALUE_ITEM.

124.8.2.59 public static final Item VALUE_ITEM

The item describing the value of a bundle header entry. The key is VALUE and the type is
SimpleType.STRING.

124.8.2.60 public static final String VERSION = "Version"

The key VERSION, used in VERSION_ITEM.

124.8.2.61 public static final Item VERSION_ITEM

The item containing the symbolic name in BUNDLE_TYPE. The key is SYMBOLIC_NAME and the
the type is SimpleType.STRING.

124.8.2.62 public CompositeData getBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier of the requested bundle

□ Obtain the information regarding a single bundle. The result is defined by the BUNDLE_TYPE Com-
positeType.

Returns A CompositeData object with the bundle information

Throws IOException– if the operation fails

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 400 OSGi Enterprise Release 7

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.63 public long[] getBundleIds() throws IOException

□ List all bundle IDs in the framework.

Returns all the bundle ids in the framework.

Throws IOException– if the operation fails

124.8.2.64 public String[] getExportedPackages(long bundleId) throws IOException

bundleId

□ Answer the list of exported packages for this bundle.

Returns the array of package names, combined with their version in the format <packageName;version>

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.65 public long[] getFragments(long bundleId) throws IOException

bundleId

□ Answer the list of the bundle ids of the fragments associated with this bundle

Returns the array of bundle identifiers

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.66 public String getHeader(long bundleId, String key) throws IOException

bundleId the unique identifier of the bundle

key the key of the header to look up

□ Retrieve a single header from the bundle headers.

Returns the value of associated header

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.67 public String getHeader(long bundleId, String key, String locale) throws IOException

bundleId the unique identifier of the bundle

key the key of the header to look up

locale the locale name into which the header value is to be localized. The value of this parameter follows
the same rules as the locale parameter in Bundle.getHeaders(Str ing locale)

□ Retrieve a single header from the bundle headers.

This method performs the same function as getHeaders(long bundleId) except the manifest header
values are localized to the specified locale.

Returns the value of associated header

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.68 public TabularData getHeaders(long bundleId) throws IOException

bundleId the unique identifier of the bundle

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 401

□ Answer the headers for the bundle uniquely identified by the bundle id. The Tabular Data is typed
by the HEADERS_TYPE.

Returns the table of associated header key and values

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.69 public TabularData getHeaders(long bundleId, String locale) throws IOException

bundleId the unique identifier of the bundle

locale the locale name into which the header values are to be localized. The value of this parameter fol-
lows the same rules as the locale parameter in Bundle.getHeaders(Str ing locale)

□ Answer the headers for the bundle uniquely identified by the bundle id. The Tabular Data is typed
by the HEADERS_TYPE.

This method performs the same function as getHeaders(long bundleId) except the manifest header
values are localized to the specified locale.

Returns the table of associated header key and values

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.70 public long[] getHosts(long fragment) throws IOException

fragment the bundle id of the fragment

□ Answer the list of bundle ids of the bundles which host a fragment

Returns the array of bundle identifiers

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.71 public String[] getImportedPackages(long bundleId) throws IOException

bundleId the bundle identifier

□ Answer the array of the packages imported by this bundle

Returns the array of package names, combined with their version in the format <packageName;version>

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.72 public long getLastModified(long bundleId) throws IOException

bundleId the unique identifier of a bundle

□ Answer the last modified time of a bundle

Returns the last modified time

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.73 public String getLocation(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer the location of the bundle.

Returns The location string of this bundle

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 402 OSGi Enterprise Release 7

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.74 public long[] getRegisteredServices(long bundleId) throws IOException

bundleId the bundle identifier

□ Answer the list of service identifiers representing the services this bundle exports

Returns the list of service identifiers

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.75 public long[] getRequiredBundles(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier to find the dependencies for

□ Answer an array of ids of bundles the given bundle depends on.

Returns the bundle identifiers of the dependencies

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.76 public long[] getRequiringBundles(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

□ Answer the list of identifiers of the bundles which require this bundle

Returns the list of bundle identifiers

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.77 public long[] getServicesInUse(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

□ Answer the list of service identifiers which refer to the the services this bundle is using

Returns the list of service identifiers

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.78 public int getStartLevel(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer the start level of the bundle

Returns the start level

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.79 public String getState(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer the symbolic name of the state of the bundle

Returns the string name of the bundle state

Throws IOException– if the operation fails

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 403

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.80 public String getSymbolicName(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer the symbolic name of the bundle

Returns the symbolic name

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.81 public String getVersion(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer the location of the bundle.

Returns The location string of this bundle

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.82 public boolean isActivationPolicyUsed(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer whether the specified bundle's autostart setting indicates that the activation policy declared
in the bundle's manifest must be used.

Returns true if the bundle's autostart setting indicates the activation policy declared in the manifest must be
used. false if the bundle must be eagerly activated.

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.83 public boolean isFragment(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer whether the bundle is a fragment or not

Returns true if the bundle is a fragment

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.84 public boolean isPersistentlyStarted(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer if the bundle is persistently started when its start level is reached

Returns true if the bundle is persistently started

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.85 public boolean isRemovalPending(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer true if the bundle is pending removal

Returns true if the bundle is pending removal

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 404 OSGi Enterprise Release 7

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.86 public boolean isRequired(long bundleId) throws IOException

bundleId the identifier of the bundle

□ Answer true if the bundle is required by another bundle

Returns true if the bundle is required by another bundle

Throws IOException– if the operation fails

I l legalArgumentException– if the bundle indicated does not exist

124.8.2.87 public TabularData listBundles() throws IOException

□ Answer the bundle state of the system in tabular form. Each row of the returned table represents a
single bundle. The Tabular Data consists of Composite Data that is type by BUNDLES_TYPE.

Returns the tabular representation of the bundle state

Throws IOException– if the operation fails

124.8.2.88 public TabularData listBundles(String... items) throws IOException

items The names of the items to include in the result.

□ Answer the bundle state of the system in tabular form. Each row of the returned table represents a
single bundle. The Tabular Data consists of Composite Data that is type by BUNDLES_TYPE. This
method supports specifying the items that are included in the result. Note that the IDENTIFIER
item is always returns as this the key in the TabularData structure.

Returns the tabular representation of the bundle state

Throws IOException– if the operation fails

124.8.3 public interface FrameworkMBean
The FrameworkMbean provides mechanisms to exert control over the framework. For many opera-
tions, it provides a batch mechanism to avoid excessive message passing when interacting remotely.

Concurrency Thread-safe

124.8.3.1 public static final CompositeType BATCH_ACTION_RESULT_TYPE

The Composite Type for a batch action result. refreshBundle(long) and refreshBundles(long[]).
Notice that a batch action result returns uses an id for the BUNDLE_IN_ERROR while the
BATCH_INSTALL_RESULT_TYPE uses a location. This Composite Type consists of the following
items:

• BUNDLE_IN_ERROR_ID_ITEM
• COMPLETED_ITEM
• ERROR_ITEM
• REMAINING_ID_ITEM
• SUCCESS_ITEM

124.8.3.2 public static final CompositeType BATCH_INSTALL_RESULT_TYPE

The Composite Type which represents the result of a batch install operation. It is used in
installBundles(String[]) and installBundlesFromURL(String[], String[]). This Composite Type consists
of the following items:

• BUNDLE_IN_ERROR_LOCATION_ITEM

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 405

• COMPLETED_ITEM
• ERROR_ITEM
• REMAINING_LOCATION_ITEM
• SUCCESS_ITEM

124.8.3.3 public static final CompositeType BATCH_RESOLVE_RESULT_TYPE

The Composite Type which represents the result of a batch resolve operation. It is used in
refreshBundlesAndWait(long[]) and resolve(long[]). This Composite Type consists of the following
items:

• COMPLETED_ITEM
• SUCCESS_ITEM

124.8.3.4 public static final String BUNDLE_IN_ERROR = "BundleInError"

The key for BUNDLE_IN_ERROR. This key is used with two different items:
BUNDLE_IN_ERROR_ID_ITEM and BUNDLE_IN_ERROR_LOCATION_ITEM that each
have a different type for this key. It is used in BATCH_ACTION_RESULT_TYPE and
BATCH_INSTALL_RESULT_TYPE.

124.8.3.5 public static final Item BUNDLE_IN_ERROR_ID_ITEM

The item containing the bundle which caused the error during the batch operation. This
item describes the bundle in error as an id. The key is BUNDLE_IN_ERROR and the type is
SimpleType.LONG. It is used in BATCH_ACTION_RESULT_TYPE.

See Also BUNDLE_IN_ERROR_LOCATION_ITEM for the item that has a location for the bundle in error.

124.8.3.6 public static final Item BUNDLE_IN_ERROR_LOCATION_ITEM

The item containing the bundle which caused the error during the batch operation. This item
describes the bundle in error as a location. The key is BUNDLE_IN_ERROR and the type is
SimpleType.STRING. It is used in BATCH_INSTALL_RESULT_TYPE.

See Also BUNDLE_IN_ERROR_ID_ITEM for the item that has the id for the bundle in error.

124.8.3.7 public static final String COMPLETED = "Completed"

The key COMPLETED, used in COMPLETED_ITEM.

124.8.3.8 public static final Item COMPLETED_ITEM

The item containing the list of bundles completing the batch operation. The key is COMPLETED
and the type is JmxConstants.LONG_ARRAY_TYPE. It is used in BATCH_ACTION_RESULT_TYPE
and BATCH_INSTALL_RESULT_TYPE.

124.8.3.9 public static final String ERROR = "Error"

The key ERROR, used in ERROR_ITEM.

124.8.3.10 public static final Item ERROR_ITEM

The item containing the error message of the batch operation. The key is ERROR and
the type is SimpleType.STRING. It is used in BATCH_ACTION_RESULT_TYPE and
BATCH_INSTALL_RESULT_TYPE.

124.8.3.11 public static final String OBJECTNAME = "osgi.core:type=framework,version=1.7"

The Object Name prefix for this mbean. The full object name also contains the framework name and
uuid as properties.

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 406 OSGi Enterprise Release 7

124.8.3.12 public static final String REMAINING = "Remaining"

The key REMAINING, used in REMAINING_ID_ITEM and REMAINING_LOCATION_ITEM.

124.8.3.13 public static final Item REMAINING_ID_ITEM

The item containing the list of remaining bundles unprocessed by the failing batch opera-
tion. The key is REMAINING and the type is JmxConstants.LONG_ARRAY_TYPE. It is used in
BATCH_ACTION_RESULT_TYPE and BATCH_INSTALL_RESULT_TYPE.

124.8.3.14 public static final Item REMAINING_LOCATION_ITEM

The item containing the list of remaining bundles unprocessed by the failing batch operation.
The key is REMAINING and the type is JmxConstants.STRING_ARRAY_TYPE. It is used in
BATCH_ACTION_RESULT_TYPE and BATCH_INSTALL_RESULT_TYPE.

124.8.3.15 public static final String SUCCESS = "Success"

The SUCCESS, used in SUCCESS_ITEM.

124.8.3.16 public static final Item SUCCESS_ITEM

The item that indicates if this operation was successful. The key is SUCCESS and the
type is SimpleType.BOOLEAN. It is used in BATCH_ACTION_RESULT_TYPE and
BATCH_INSTALL_RESULT_TYPE.

124.8.3.17 public long[] getDependencyClosure(long[] bundles) throws IOException

bundles The initial bundles IDs for which to generate the dependency closure.

□ Returns the dependency closure for the specified bundles.

A graph of bundles is computed starting with the specified bundles. The graph is expanded by
adding any bundle that is either wired to a package that is currently exported by a bundle in the
graph or requires a bundle in the graph. The graph is fully constructed when there is no bundle out-
side the graph that is wired to a bundle in the graph. The graph may contain UNINSTALLED bundles
that are removal pending.

Returns A bundle ID array containing a snapshot of the dependency closure of the specified bundles, or an
empty array if there were no specified bundles.

Throws IOException– if the operation failed

I l legalArgumentException– if a bundle indicated does not exist

124.8.3.18 public int getFrameworkStartLevel() throws IOException

□ Retrieve the framework start level

Returns the framework start level

Throws IOException– if the operation failed

124.8.3.19 public int getInitialBundleStartLevel() throws IOException

□ Answer the initial start level assigned to a bundle when it is first started

Returns the start level

Throws IOException– if the operation failed

124.8.3.20 public String getProperty(String key) throws IOException

key The name of the requested property.

□ Returns the value of the specified property. If the key is not found in the Framework properties, the
system properties are then searched. The method returns nul l if the property is not found.

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 407

Returns The value of the requested property, or nul l if the property is undefined.

Throws IOException– if the operation failed

124.8.3.21 public long[] getRemovalPendingBundles() throws IOException

□ Returns the bundles IDs that have non-current, in use bundle wirings. This is typically the bundles
which have been updated or uninstalled since the last call to refreshBundles(long[]).

Returns A bundle ID array containing a snapshot of the bundles which have non-current, in use bundle
wirings, or an empty array if there are no such bundles.

Throws IOException– if the operation failed

124.8.3.22 public long installBundle(String location) throws IOException

location the location of the bundle to install

□ Install the bundle indicated by the bundleLocations

Returns the bundle id the installed bundle

Throws IOException– if the operation does not succeed

124.8.3.23 public long installBundleFromURL(String location, String url) throws IOException

location the location to assign to the bundle

url the URL which will supply the bytes for the bundle

□ Install the bundle indicated by the bundleLocations

Returns the bundle id the installed bundle

Throws IOException– if the operation does not succeed

124.8.3.24 public CompositeData installBundles(String[] locations) throws IOException

locations the array of locations of the bundles to install

□ Batch install the bundles indicated by the list of bundleLocationUrls

Returns the resulting state from executing the operation

Throws IOException– if the operation does not succeed

See Also BATCH_INSTALL_RESULT_TYPE for the precise specification of the CompositeData type represent-
ing the returned result.

124.8.3.25 public CompositeData installBundlesFromURL(String[] locations, String[] urls) throws IOException

locations the array of locations to assign to the installed bundles

urls the array of urls which supply the bundle bytes

□ Batch install the bundles indicated by the list of bundleLocationUrls

Returns the resulting state from executing the operation

Throws IOException– if the operation does not succeed

See Also for the precise specification of the CompositeData type representing the returned result.

124.8.3.26 public void refreshBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

□ Force the update, replacement or removal of the packages identified by the specified bundle.

Throws IOException– if the operation failed

I l legalArgumentException– if the bundle indicated does not exist

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 408 OSGi Enterprise Release 7

124.8.3.27 public boolean refreshBundleAndWait(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

□ Force the update, replacement or removal of the packages identified by the specified bundle and
wait until completed.

Returns whether the bundle was successfully resolved after being refreshed.

Throws IOException– if the operation failed

I l legalArgumentException– if the bundle indicated does not exist

124.8.3.28 public void refreshBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers The identifiers of the bundles to refresh, or nul l for all bundles with packages pending removal.

□ Force the update, replacement or removal of the packages identified by the list of bundles.

Throws IOException– if the operation failed

I l legalArgumentException– if a bundle indicated does not exist

124.8.3.29 public CompositeData refreshBundlesAndWait(long[] bundleIdentifiers) throws IOException

bundleIdentifiers The identifiers of the bundles to refresh, or nul l for all bundles with packages pending removal.

□ Force the update, replacement or removal of the packages identified by the list of bundles and wait
until completed.

Returns the result of the refresh operation

Throws IOException– if the operation failed

I l legalArgumentException– if a bundle indicated does not exist

See Also for the precise specification of the CompositeData type representing the returned result.

124.8.3.30 public CompositeData resolve(long[] bundleIdentifiers) throws IOException

bundleIdentifiers The identifiers of the bundles to resolve, or nul l to resolve all unresolved bundles.

□ Same as resolveBundles(long[]) but with a more detailed return type.

Returns the resulting state from executing the operation

Throws IOException– if the operation failed

I l legalArgumentException– if a bundle indicated does not exist

See Also for the precise specification of the CompositeData type representing the returned result.

124.8.3.31 public boolean resolveBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

□ Resolve the bundle indicated by the unique symbolic name and version

Returns true if the bundle was resolved, false otherwise

Throws IOException– if the operation does not succeed

I l legalArgumentException– if the bundle indicated does not exist

124.8.3.32 public boolean resolveBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers The identifiers of the bundles to resolve, or nul l to resolve all unresolved bundles.

□ Batch resolve the bundles indicated by the list of bundle identifiers

Returns true if the bundles were resolved, false otherwise

Throws IOException– if the operation does not succeed

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 409

I l legalArgumentException– if a bundle indicated does not exist

124.8.3.33 public void restartFramework() throws IOException

□ Restart the framework by updating the system bundle

Throws IOException– if the operation failed

124.8.3.34 public void setBundleStartLevel(long bundleIdentifier, int newlevel) throws IOException

bundleIdentifier the bundle identifier

newlevel the new start level for the bundle

□ Set the start level for the bundle identifier

Throws IOException– if the operation failed

124.8.3.35 public CompositeData setBundleStartLevels(long[] bundleIdentifiers, int[] newlevels) throws IOException

bundleIdentifiers the array of bundle identifiers

newlevels the array of new start level for the bundles

□ Set the start levels for the list of bundles.

Returns the resulting state from executing the operation

Throws IOException– if the operation failed

See Also for the precise specification of the CompositeData type representing the returned result.

124.8.3.36 public void setFrameworkStartLevel(int newlevel) throws IOException

newlevel the new start level

□ Set the start level for the framework

Throws IOException– if the operation failed

124.8.3.37 public void setInitialBundleStartLevel(int newlevel) throws IOException

newlevel the new start level

□ Set the initial start level assigned to a bundle when it is first started

Throws IOException– if the operation failed

124.8.3.38 public void shutdownFramework() throws IOException

□ Shutdown the framework by stopping the system bundle

Throws IOException– if the operation failed

124.8.3.39 public void startBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

□ Start the bundle indicated by the bundle identifier

Throws IOException– if the operation does not succeed

I l legalArgumentException– if the bundle indicated does not exist

124.8.3.40 public CompositeData startBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers the array of bundle identifiers

□ Batch start the bundles indicated by the list of bundle identifier

Returns the resulting state from executing the operation

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 410 OSGi Enterprise Release 7

Throws IOException– if the operation does not succeed

See Also for the precise specification of the CompositeData type representing the returned result.

124.8.3.41 public void stopBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

□ Stop the bundle indicated by the bundle identifier

Throws IOException– if the operation does not succeed

I l legalArgumentException– if the bundle indicated does not exist

124.8.3.42 public CompositeData stopBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers the array of bundle identifiers

□ Batch stop the bundles indicated by the list of bundle identifier

Returns the resulting state from executing the operation

Throws IOException– if the operation does not succeed

See Also BATCH_ACTION_RESULT_TYPE for the precise specification of the CompositeData type represent-
ing the returned result.

124.8.3.43 public void uninstallBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

□ Uninstall the bundle indicated by the bundle identifier

Throws IOException– if the operation does not succeed

I l legalArgumentException– if the bundle indicated does not exist

124.8.3.44 public CompositeData uninstallBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers the array of bundle identifiers

□ Batch uninstall the bundles indicated by the list of bundle identifiers

Returns the resulting state from executing the operation

Throws IOException– if the operation does not succeed

See Also BATCH_ACTION_RESULT_TYPE for the precise specification of the CompositeData type represent-
ing the returned result.

124.8.3.45 public void updateBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

□ Update the bundle indicated by the bundle identifier

Throws IOException– if the operation does not succeed

I l legalArgumentException– if the bundle indicated does not exist

124.8.3.46 public void updateBundleFromURL(long bundleIdentifier, String url) throws IOException

bundleIdentifier the bundle identifier

url the URL to use to update the bundle

□ Update the bundle identified by the bundle identifier

Throws IOException– if the operation does not succeed

I l legalArgumentException– if the bundle indicated does not exist

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 411

124.8.3.47 public CompositeData updateBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers the array of bundle identifiers

□ Batch update the bundles indicated by the list of bundle identifier.

Returns the resulting state from executing the operation

Throws IOException– if the operation does not succeed

See Also BATCH_ACTION_RESULT_TYPE for the precise specification of the CompositeData type represent-
ing the returned result.

124.8.3.48 public CompositeData updateBundlesFromURL(long[] bundleIdentifiers, String[] urls) throws IOException

bundleIdentifiers the array of bundle identifiers

urls the array of URLs to use to update the bundles

□ Update the bundle uniquely identified by the bundle symbolic name and version using the contents
of the supplied urls.

Returns the resulting state from executing the operation

Throws IOException– if the operation does not succeed

I l legalArgumentException– if the bundle indicated does not exist

See Also BATCH_ACTION_RESULT_TYPE for the precise specification of the CompositeData type represent-
ing the returned result.

124.8.3.49 public void updateFramework() throws IOException

□ Update the framework by updating the system bundle.

Throws IOException– if the operation failed

124.8.4 public interface PackageStateMBean
This MBean provides information about the package state of the framework.

Concurrency Thread-safe

124.8.4.1 public static final String EXPORTING_BUNDLES = "ExportingBundles"

The key EXPORTING_BUNDLE, used in EXPORTING_BUNDLES_ITEM.

124.8.4.2 public static final Item EXPORTING_BUNDLES_ITEM

The item containing the bundle identifier in PACKAGE_TYPE. The key is EXPORTING_BUNDLES
and the type is JmxConstants.LONG_ARRAY_TYPE.

124.8.4.3 public static final String IMPORTING_BUNDLES = "ImportingBundles"

The key IMPORTING_BUNDLES, used in IMPORTING_BUNDLES_ITEM.

124.8.4.4 public static final Item IMPORTING_BUNDLES_ITEM

The item containing the bundle identifier in PACKAGE_TYPE. The key is IMPORTING_BUNDLES
and the type is JmxConstants.LONG_ARRAY_TYPE.

124.8.4.5 public static final String NAME = "Name"

The key NAME, used in NAME_ITEM.

124.8.4.6 public static final Item NAME_ITEM

The item containing the name of the package in PACKAGE_TYPE. The key is NAME and the type is
SimpleType.LONG.

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 412 OSGi Enterprise Release 7

124.8.4.7 public static final String OBJECTNAME = "osgi.core:type=packageState,version=1.5"

The fully qualified object name of this MBean.

124.8.4.8 public static final CompositeType PACKAGE_TYPE

The Composite Type for a CompositeData representing a package. This type consists of:

• EXPORTING_BUNDLES_ITEM
• IMPORTING_BUNDLES_ITEM
• NAME_ITEM
• REMOVAL_PENDING_ITEM
• VERSION_ITEM

The key is defined as NAME and EXPORTING_BUNDLES

124.8.4.9 public static final TabularType PACKAGES_TYPE

The Tabular Type used in listPackages(). They key is NAME, VERSION, and EXPORTING_BUNDLES.

124.8.4.10 public static final String REMOVAL_PENDING = "RemovalPending"

The name of the item containing the pending removal status of the package in the CompositeData.
Used

124.8.4.11 public static final Item REMOVAL_PENDING_ITEM

The item representing the removal pending status of a package. The key is REMOVAL_PENDING
and the type is SimpleType.BOOLEAN.

124.8.4.12 public static final String VERSION = "Version"

The name of the item containing the package version in the CompositeData. Used in
VERSION_ITEM.

124.8.4.13 public static final Item VERSION_ITEM

The item containing the version of the package in PACKAGE_TYPE. The key is VERSION and the
type is SimpleType.STRING.

124.8.4.14 public long[] getExportingBundles(String packageName, String version) throws IOException

packageName - the package name

version - the version of the package

□ Answer the identifier of the bundle exporting the package

Returns the bundle identifiers exporting such a package

Throws IOException– if the operation fails

I l legalArgumentException– if the package indicated does not exist

124.8.4.15 public long[] getImportingBundles(String packageName, String version, long exportingBundle) throws
IOException

packageName The package name

version The version of the package

exportingBundle The exporting bundle for the given package

□ Answer the list of identifiers of the bundles importing the package

Returns the list of bundle identifiers

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 413

Throws IOException– if the operation fails

I l legalArgumentException– if the package indicated does not exist

124.8.4.16 public boolean isRemovalPending(String packageName, String version, long exportingBundle) throws
IOException

packageName The package name

version The version of the package

exportingBundle The bundle exporting the package

□ Answer if this package is exported by a bundle which has been updated or uninstalled

Returns true if this package is being exported by a bundle that has been updated or uninstalled.

Throws IOException– if the operation fails

I l legalArgumentException– if the package indicated does not exist

124.8.4.17 public TabularData listPackages() throws IOException

□ Answer the package state of the system in tabular form The Tabular Data is typed by
PACKAGES_TYPE, which has PACKAGE_TYPE as its Composite Type.

Returns the tabular representation of the package state

Throws IOException– When fails

124.8.5 public interface ServiceStateMBean
This MBean represents the Service state of the framework. This MBean also emits events that clients
can use to get notified of the changes in the service state of the framework.

Concurrency Thread-safe

124.8.5.1 public static final String BUNDLE_IDENTIFIER = "BundleIdentifier"

The key BUNDLE_IDENTIFIER, used in BUNDLE_IDENTIFIER_ITEM.

124.8.5.2 public static final Item BUNDLE_IDENTIFIER_ITEM

The item containing the bundle identifier in SERVICE_TYPE. The key is BUNDLE_IDENTIFIER and
the type is SimpleType.LONG .

124.8.5.3 public static final String BUNDLE_LOCATION = "BundleLocation"

The key BUNDLE_LOCATION, used in SERVICE_EVENT_TYPE.

124.8.5.4 public static final Item BUNDLE_LOCATION_ITEM

The item containing the bundle location in EVENT_ITEM. The key is BUNDLE_LOCATION and the
the type is SimpleType.STRING .

124.8.5.5 public static final String BUNDLE_SYMBOLIC_NAME = "BundleSymbolicName"

The key BUNDLE_SYMBOLIC_NAME, used in SERVICE_EVENT_TYPE.

124.8.5.6 public static final Item BUNDLE_SYMBOLIC_NAME_ITEM

The item containing the symbolic name in EVENT. The key is BUNDLE_SYMBOLIC_NAME and the
the type is SimpleType.STRING.

124.8.5.7 public static final String EVENT = "ServiceEvent"

The key EVENT, used in EVENT_ITEM.

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 414 OSGi Enterprise Release 7

124.8.5.8 public static final Item EVENT_ITEM

The item containing the event type. The key is EVENT and the type is SimpleType.INTEGER

124.8.5.9 public static final String IDENTIFIER = "Identifier"

The key IDENTIFIER, used IDENTIFIER_ITEM.

124.8.5.10 public static final Item IDENTIFIER_ITEM

The item containing the service identifier in SERVICE_TYPE. The key is IDENTIFIER and the type is
SimpleType.LONG.

124.8.5.11 public static final String OBJECT_CLASS = "objectClass"

The key OBJECT_CLASS, used OBJECT_CLASS_ITEM.

124.8.5.12 public static final Item OBJECT_CLASS_ITEM

The item containing the interfaces of the service in SERVICE_TYPE. The key is OBJECT_CLASS and
the type is JmxConstants.STRING_ARRAY_TYPE.

124.8.5.13 public static final String OBJECTNAME = "osgi.core:type=serviceState,version=1.7"

The Object Name prefix for this mbean. The full object name also contains the framework name and
uuid as properties.

124.8.5.14 public static final String PROPERTIES = "Properties"

The key PROPERTIES, used in PROPERTIES_ITEM.

124.8.5.15 public static final Item PROPERTIES_ITEM

The item containing service properties in SERVICE_TYPE. The key is PROPERTIES and the type is
JmxConstants.PROPERTIES_TYPE.

124.8.5.16 public static final CompositeType SERVICE_EVENT_TYPE

The Composite Type that represents a service event. This composite consists of:

• IDENTIFIER
• OBJECT_CLASS
• BUNDLE_LOCATION
• BUNDLE_SYMBOLIC_NAME
• EVENT

124.8.5.17 public static final CompositeType SERVICE_TYPE

The Composite Type for a CompositeData representing a service. This type consists of:

• BUNDLE_IDENTIFIER
• IDENTIFIER
• OBJECT_CLASS
• PROPERTIES
• USING_BUNDLES

124.8.5.18 public static final TabularType SERVICES_TYPE

The Tabular Type for a Service table. The rows consists of SERVICE_TYPE Composite Data and the
index is IDENTIFIER .

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework

OSGi Enterprise Release 7 Page 415

124.8.5.19 public static final String USING_BUNDLES = "UsingBundles"

The key USING_BUNDLES, used in USING_BUNDLES_ITEM.

124.8.5.20 public static final Item USING_BUNDLES_ITEM

The item containing the bundles using the service in SERVICE_TYPE. The key is USING_BUNDLES
and the type is JmxConstants.LONG_ARRAY_TYPE.

124.8.5.21 public long getBundleIdentifier(long serviceId) throws IOException

serviceId the identifier of the service

□ Answer the bundle identifier of the bundle which registered the service

Returns the identifier for the bundle

Throws IOException– if the operation fails

I l legalArgumentException– if the service indicated does not exist

124.8.5.22 public String[] getObjectClass(long serviceId) throws IOException

serviceId the identifier of the service

□ Answer the list of interfaces that this service implements

Returns the list of interfaces

Throws IOException– if the operation fails

I l legalArgumentException– if the service indicated does not exist

124.8.5.23 public TabularData getProperties(long serviceId) throws IOException

serviceId the identifier of the service

□ Answer the map of properties associated with this service.

Returns the table of properties. These include the standard mandatory service.id and objectClass properties
as defined in the org.osgi .f ramework.Constants interface

Throws IOException– if the operation fails

I l legalArgumentException– if the service indicated does not exist

See Also for the details of the TabularType

124.8.5.24 public CompositeData getProperty(long serviceId, String key) throws IOException

serviceId the identifier of the service

key the property key

□ Return a single property from the specified service.

Returns a CompositeData object holding the value and data type of the property.

Throws IOException– if the operation fails

See Also for the details of the CompositeType.

124.8.5.25 public CompositeData getService(long serviceId) throws IOException

serviceId the ID of the service to look up

□ Obtain information about a given service. The result is defined by the CompositeType
SERVICE_TYPE.

Returns A CompositeData object with the service information

Throws IOException– if the operation fails

org.osgi.jmx.framework Management Model Specification for JMX™ Technology Version 1.1

Page 416 OSGi Enterprise Release 7

I l legalArgumentException– if the service indicated does not exist

124.8.5.26 public long[] getServiceIds() throws IOException

□ List all service IDs in the framework.

Returns all the service ids in the framework.

Throws IOException– if the operation fails

124.8.5.27 public long[] getUsingBundles(long serviceId) throws IOException

serviceId the identifier of the service

□ Answer the list of identifiers of the bundles that use the service

Returns the list of bundle identifiers

Throws IOException– if the operation fails

I l legalArgumentException– if the service indicated does not exist

124.8.5.28 public TabularData listServices() throws IOException

□ Answer the service state of the system in tabular form.

Returns the tabular representation of the service state

Throws IOException– If the operation fails

I l legalArgumentException– if the service indicated does not exist

See Also for the details of the TabularType

124.8.5.29 public TabularData listServices(String clazz, String filter) throws IOException

clazz The class name with which the services were registered or nul l for any class name.

filter A filter expression to match the services or nul l for no additional filter.

□ Answer the service state of the system in tabular form. This method allows the specification of a
class name and a filter to select services to be provided.

Returns the tabular representation of the service state

Throws IOException– If the operation fails

I l legalArgumentException– if the service indicated does not exist

See Also for the details of the TabularType

124.8.5.30 public TabularData listServices(String clazz, String filter, String... serviceTypeItems) throws IOException

clazz The class name with which the services were registered or nul l for any class name.

filter A filter expression to match the services or nul l for no additional filter.

serviceTypeItems The names of the SERVICE_TYPE items to include in the result. For example "objectClass" or "Prop-
erties". Note that the result always returns the "Identifier" item since this serves as the key in the re-
sulting table.

□ Answer the service state of the system in tabular form. Apart from class name and filter, this method
allows the specification of a subset of the SERVICE_TYPE items to be included in the result. Select-
ing only the relevant Service Type items may save bandwidth and improve performance over a re-
mote connection.

Returns the tabular representation of the service state

Throws IOException– If the operation fails

I l legalArgumentException– if the service indicated does not exist

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.service.cm

OSGi Enterprise Release 7 Page 417

See Also for the details of the TabularType

124.9 org.osgi.jmx.service.cm

OSGi JMX Configuration Admin Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi . jmx.service.cm; version="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi . jmx.service.cm; version="[1.3,1 .4)"

124.9.1 Summary

• Configurat ionAdminMBean - This MBean provides the management interface to the OSGi Con-
figuration Administration Service.

124.9.2 public interface ConfigurationAdminMBean
This MBean provides the management interface to the OSGi Configuration Administration Service.

Concurrency Thread-safe

124.9.2.1 public static final String OBJECTNAME = "osgi.compendium:service=cm,version=1.3"

The object name for this mbean.

124.9.2.2 public String createFactoryConfiguration(String factoryPid) throws IOException

factoryPid the persistent id of the factory

□ Create a new configuration instance for the supplied persistent id of the factory, answering the PID
of the created configuration

Returns the PID of the created configuration

Throws IOException– if the operation failed

124.9.2.3 public String createFactoryConfigurationForLocation(String factoryPid, String location) throws IOException

factoryPid the persistent id of the factory

location the bundle location

□ Create a factory configuration for the supplied persistent id of the factory and the bundle location
bound to bind the created configuration to, answering the PID of the created configuration

Returns the pid of the created configuation

Throws IOException– if the operation failed

124.9.2.4 public void delete(String pid) throws IOException

pid the persistent identifier of the configuration

□ Delete the configuration

Throws IOException– if the operation fails

org.osgi.jmx.service.cm Management Model Specification for JMX™ Technology Version 1.1

Page 418 OSGi Enterprise Release 7

124.9.2.5 public void deleteConfigurations(String filter) throws IOException

filter the string representation of the org.osgi .f ramework.Fi l ter

□ Delete the configurations matching the filter specification.

Throws IOException– if the operation failed

I l legalArgumentException– if the filter is invalid

124.9.2.6 public void deleteForLocation(String pid, String location) throws IOException

pid the persistent identifier of the configuration

location the bundle location

□ Delete the configuration

Throws IOException– if the operation fails

124.9.2.7 public String getBundleLocation(String pid) throws IOException

pid the persistent identifier of the configuration

□ Answer the bundle location the configuration is bound to

Returns the bundle location

Throws IOException– if the operation fails

124.9.2.8 public String[][] getConfigurations(String filter) throws IOException

filter the string representation of the org.osgi .f ramework.Fi l ter

□ Answer the list of PID/Location pairs of the configurations managed by this service

Returns the list of configuration PID/Location pairs

Throws IOException– if the operation failed

I l legalArgumentException– if the filter is invalid

124.9.2.9 public String getFactoryPid(String pid) throws IOException

pid the persistent identifier of the configuration

□ Answer the factory PID if the configuration is a factory configuration, null otherwise.

Returns the factory PID

Throws IOException– if the operation fails

124.9.2.10 public String getFactoryPidForLocation(String pid, String location) throws IOException

pid the persistent identifier of the configuration

location the bundle location

□ Answer the factory PID if the configuration is a factory configuration, null otherwise.

Returns the factory PID

Throws IOException– if the operation fails

124.9.2.11 public TabularData getProperties(String pid) throws IOException

pid the persistent identifier of the configuration

□ Answer the contents of the configuration.

Returns the table of contents

Throws IOException– if the operation fails

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.service.permissionadmin

OSGi Enterprise Release 7 Page 419

See Also JmxConstants.PROPERTIES_TYPE for the details of the TabularType

124.9.2.12 public TabularData getPropertiesForLocation(String pid, String location) throws IOException

pid the persistent identifier of the configuration

location the bundle location

□ Answer the contents of the configuration.

Returns the table of contents

Throws IOException– if the operation fails

See Also JmxConstants.PROPERTIES_TYPE for the details of the TabularType

124.9.2.13 public void setBundleLocation(String pid, String location) throws IOException

pid the persistent identifier of the configuration

location the bundle location

□ Set the bundle location the configuration is bound to

Throws IOException– if the operation fails

124.9.2.14 public void update(String pid, TabularData properties) throws IOException

pid the persistent identifier of the configuration

properties the table of properties

□ Update the configuration with the supplied properties For each property entry, the following row is
supplied.

Throws IOException– if the operation fails

See Also JmxConstants.PROPERTIES_TYPE for the details of the TabularType

124.9.2.15 public void updateForLocation(String pid, String location, TabularData properties) throws IOException

pid the persistent identifier of the configuration

location the bundle location

properties the table of properties

□ Update the configuration with the supplied properties For each property entry, the following row is
supplied.

Throws IOException– if the operation fails

See Also JmxConstants.PROPERTIES_TYPE for the details of the TabularType

124.10 org.osgi.jmx.service.permissionadmin

OSGi JMX Permission Admin Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi . jmx.service.permissionadmin; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

org.osgi.jmx.service.provisioning Management Model Specification for JMX™ Technology Version 1.1

Page 420 OSGi Enterprise Release 7

Import-Package: org.osgi . jmx.service.permissionadmin; vers ion="[1.2,1 .3)"

124.10.1 Summary

• PermissionAdminMBean - This MBean represents the OSGi Permission Manager Service

124.10.2 public interface PermissionAdminMBean
This MBean represents the OSGi Permission Manager Service

Concurrency Thread-safe

124.10.2.1 public static final String OBJECTNAME = "osgi.core:service=permissionadmin,version=1.2"

Permission Admin MBean object name.

124.10.2.2 public String[] getPermissions(String location) throws IOException

location location identifying the bundle

□ Answer the list of encoded permissions of the bundle specified by the bundle location

Returns the array of String encoded permissions

Throws IOException– if the operation fails

124.10.2.3 public String[] listDefaultPermissions() throws IOException

□ Answer the list of encoded permissions representing the default permissions assigned to bundle lo-
cations that have no assigned permissions

Returns the array of String encoded permissions

Throws IOException– if the operation fails

124.10.2.4 public String[] listLocations() throws IOException

□ Answer the bundle locations that have permissions assigned to them

Returns the bundle locations

Throws IOException– if the operation fails

124.10.2.5 public void setDefaultPermissions(String[] encodedPermissions) throws IOException

encodedPermis-
sions

the string encoded permissions

□ Set the default permissions assigned to bundle locations that have no assigned permissions

Throws IOException– if the operation fails

124.10.2.6 public void setPermissions(String location, String[] encodedPermissions) throws IOException

location the location of the bundle

encodedPermis-
sions

the string encoded permissions to set

□ Set the permissions on the bundle specified by the bundle location

Throws IOException– if the operation fails

124.11 org.osgi.jmx.service.provisioning

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.service.provisioning

OSGi Enterprise Release 7 Page 421

OSGi JMX Initial Provisioning Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi . jmx.service.provis ioning; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi . jmx.service.provis ioning; vers ion="[1.2,1 .3)"

124.11.1 Summary

• Provis ioningServiceMBean - This MBean represents the management interface to the OSGi Ini-
tial Provisioning Service

124.11.2 public interface ProvisioningServiceMBean
This MBean represents the management interface to the OSGi Initial Provisioning Service

Concurrency Thread-safe

124.11.2.1 public static final String OBJECTNAME = "osgi.compendium:service=provisioning,version=1.2"

Provisioning MBean object name.

124.11.2.2 public void addInformation(TabularData info) throws IOException

info the set of Provisioning Information key/value pairs to add to the Provisioning Information dictio-
nary. Any keys are values that are of an invalid type will be silently ignored.

□ Adds the key/value pairs contained in info to the Provisioning Information dictionary. This method
causes the PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException– if the operation fails

See Also JmxConstants.PROPERTIES_TYPE for details of the Tabular Data

124.11.2.3 public void addInformationFromZip(String zipURL) throws IOException

zipURL the String form of the URL that will be resolved into a ZipInputStream which will be used to
add key/value pairs to the Provisioning Information dictionary and install and start bundles. If
a ZipEntry does not have an Extra field that corresponds to one of the four defined MIME types (
MIME_STRING , MIME_BYTE_ARRAY ,MIME_BUNDLE , and MIME_BUNDLE_URL) in will be silently ig-
nored.

□ Processes the ZipInputStream contents of the provided zipURL and extracts information to add to
the Provisioning Information dictionary, as well as, install/update and start bundles. This method
causes the PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException– if an error occurs while processing the ZipInputStream of the URL. No additions will
be made to the Provisioning Information dictionary and no bundles must be started or installed.

124.11.2.4 public TabularData listInformation() throws IOException

□ Returns a table representing the Provisioning Information Dictionary.

Returns The table representing the manager dictionary.

Throws IOException– if the operation fails

See Also JmxConstants.PROPERTIES_TYPE for details of the Tabular Data

org.osgi.jmx.service.useradmin Management Model Specification for JMX™ Technology Version 1.1

Page 422 OSGi Enterprise Release 7

124.11.2.5 public void setInformation(TabularData info) throws IOException

info the new set of Provisioning Information key/value pairs. Any keys are values that are of an invalid
type will be silently ignored.

□ Replaces the Provisioning Information dictionary with the entries of the supplied table. This
method causes the PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException– if the operation fails

See Also JmxConstants.PROPERTIES_TYPE for details of the Tabular Data

124.12 org.osgi.jmx.service.useradmin

OSGi JMX User Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi . jmx.service.useradmin; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi . jmx.service.useradmin; vers ion="[1.1 ,1 .2)"

124.12.1 Summary

• UserAdminMBean - This MBean provides the management interface to the OSGi User Manager
Service

124.12.2 public interface UserAdminMBean
This MBean provides the management interface to the OSGi User Manager Service

Concurrency Thread-safe

124.12.2.1 public static final CompositeType AUTORIZATION_TYPE

The Composite Type for an Authorization object. It consists of the NAME_ITEM and ROLES_ITEM
items.

124.12.2.2 public static final String CREDENTIALS = "Credentials"

The CREDENTIALS key, used in CREDENTIALS_ITEM.

124.12.2.3 public static final Item CREDENTIALS_ITEM

The item containing the credentials of a user. The key is CREDENTIALS and the type is
JmxConstants.PROPERTIES_TYPE .

124.12.2.4 public static final CompositeType GROUP_TYPE

The Composite Type for a Group. It extends USER_TYPE and adds MEMBERS_ITEM, and
REQUIRED_MEMBERS_ITEM. This type extends the USER_TYPE. It adds:

• MEMBERS
• REQUIRED_MEMBERS

If there are no members or required members an empty array is returned in the respective items.

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.service.useradmin

OSGi Enterprise Release 7 Page 423

124.12.2.5 public static final String MEMBERS = "Members"

The MEMBERS key, used in MEMBERS_ITEM.

124.12.2.6 public static final Item MEMBERS_ITEM

The item containing the members of a group. The key is MEMBERS and the type is
JmxConstants.STRING_ARRAY_TYPE. It is used in GROUP_TYPE.

124.12.2.7 public static final String NAME = "Name"

The key NAME, used in NAME_ITEM.

124.12.2.8 public static final Item NAME_ITEM

The item for the user name for an authorization object. The key is NAME and the type is
SimpleType.STRING.

124.12.2.9 public static final String OBJECTNAME = "osgi.compendium:service=useradmin,version=1.1"

User Admin MBean object name.

124.12.2.10 public static final String PROPERTIES = "Properties"

The PROPERTIES key, used in PROPERTIES_ITEM.

124.12.2.11 public static final Item PROPERTIES_ITEM

The item containing the properties of a Role. The key is PROPERTIES and the type is
JmxConstants.PROPERTIES_TYPE.

124.12.2.12 public static final String REQUIRED_MEMBERS = "RequiredMembers"

The REQUIRED_MEMBERS key, used in REQUIRED_MEMBERS_ITEM.

124.12.2.13 public static final Item REQUIRED_MEMBERS_ITEM

The item containing the required members of a group. The key is REQUIRED_MEMBERS and the
type is JmxConstants.STRING_ARRAY_TYPE. It is used in GROUP_TYPE .

124.12.2.14 public static final CompositeType ROLE_TYPE

The Composite Type for a Role. It contains the following items:

• NAME
• TYPE
• PROPERTIES

124.12.2.15 public static final String ROLES = "Roles"

The key ROLES, used in ROLES_ITEM.

124.12.2.16 public static final Item ROLES_ITEM

The item containing the roles for this authorization object. The key is ROLES. and the type is
JmxConstants.STRING_ARRAY_TYPE.

124.12.2.17 public static final String TYPE = "Type"

The Role TYPE key, used in TYPE_ITEM.

124.12.2.18 public static final Item TYPE_ITEM

The item containing the type of the roles encapsulated by this authorization object. The key is TYPE
and the type is SimpleType.INTEGER.

org.osgi.jmx.service.useradmin Management Model Specification for JMX™ Technology Version 1.1

Page 424 OSGi Enterprise Release 7

124.12.2.19 public static final CompositeType USER_TYPE

A Composite Type for a User. A User contains its Role description and adds the credentials. It ex-
tends ROLE_TYPE and adds CREDENTIALS_ITEM. This type extends the ROLE_TYPE. It adds:

• CREDENTIALS

124.12.2.20 public void addCredential(String key, byte[] value, String username) throws IOException

key The key of the credential to add

value The value of the credential to add

username The name of the user that gets the credential.

□ Add credentials to a user, associated with the supplied key

Throws IOException– if the operation fails

I l legalArgumentException– if the username is not a User

124.12.2.21 public void addCredentialString(String key, String value, String username) throws IOException

key The key of the credential to add

value The value of the credential to add

username The name of the user that gets the credential.

□ Add credentials to a user, associated with the supplied key

Throws IOException– if the operation fails

I l legalArgumentException– if the username is not a User

124.12.2.22 public boolean addMember(String groupname, String rolename) throws IOException

groupname The group name that receives the rolename as member.

rolename The rolename (User or Group) that must be added.

□ Add a member to the group.

Returns true if the role was added to the group

Throws IOException– if the operation fails

I l legalArgumentException– if an invalid group name or role name is specified

124.12.2.23 public void addProperty(String key, byte[] value, String rolename) throws IOException

key The added property key

value The added byte[] property value

rolename The role name that receives the property

□ Add or update a property on a role.

Throws IOException– if the operation fails

I l legalArgumentException– if an invalid role name is specified

124.12.2.24 public void addPropertyString(String key, String value, String rolename) throws IOException

key The key of the property to add

value The value of the property to add (Str ing)

rolename The role name

□ Add or update a property on a role

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.service.useradmin

OSGi Enterprise Release 7 Page 425

Throws IOException– if the operation fails

I l legalArgumentException– if an invalid role name is specified

124.12.2.25 public boolean addRequiredMember(String groupname, String rolename) throws IOException

groupname The group name that is addded

rolename The role that

□ Add a required member to the group

Returns true if the role was added to the group

Throws IOException– if the operation fails

I l legalArgumentException– if an invalid group name or role name is specified

124.12.2.26 public void createGroup(String name) throws IOException

name Name of the group to create

□ Create a Group

Throws IOException– if the operation fails

124.12.2.27 public void createRole(String name) throws IOException

name Ignored.

□ This method was specified in error and must not be used.

Throws IOException– This method will throw an exception if called.

Deprecated This method was specified in error. It does not function and must not be used. Use either
createUser(String) or createGroup(String).

124.12.2.28 public void createUser(String name) throws IOException

name Name of the user to create

□ Create a User

Throws IOException– if the operation fails

124.12.2.29 public CompositeData getAuthorization(String user) throws IOException

user The user name

□ Answer the authorization for the user name. The Composite Data is typed by
AUTORIZATION_TYPE.

Returns the Authorization typed by AUTORIZATION_TYPE.

Throws IOException– if the operation fails

I l legalArgumentException– if the user name is not a User

124.12.2.30 public TabularData getCredentials(String username) throws IOException

username The user name

□ Answer the credentials associated with a user. The returned Tabular Data is typed by
JmxConstants.PROPERTIES_TYPE.

Returns the credentials associated with the user, see JmxConstants.PROPERTIES_TYPE

Throws IOException– if the operation fails

I l legalArgumentException– if the user name is not a User

org.osgi.jmx.service.useradmin Management Model Specification for JMX™ Technology Version 1.1

Page 426 OSGi Enterprise Release 7

124.12.2.31 public CompositeData getGroup(String groupname) throws IOException

groupname The group name

□ Answer the Group associated with the group name. The returned Composite Data is typed by
GROUP_TYPE

Returns the Group, see GROUP_TYPE

Throws IOException– if the operation fails

I l legalArgumentException– if the group name is not a Group

124.12.2.32 public String[] getGroups(String filter) throws IOException

filter The filter to apply

□ Answer the list of group names

Returns The list of group names

Throws IOException– if the operation fails

124.12.2.33 public String[] getImpliedRoles(String username) throws IOException

username The name of the user that has the implied roles

□ Answer the list of implied roles for a user

Returns The list of role names

Throws IOException– if the operation fails

I l legalArgumentException– if the username is not a User

124.12.2.34 public String[] getMembers(String groupname) throws IOException

groupname The name of the group to get the members from

□ Answer the the user names which are members of the group

Returns The list of user names

Throws IOException– if the operation fails

I l legalArgumentException– if the groupname is not a Group

124.12.2.35 public TabularData getProperties(String rolename) throws IOException

rolename The name of the role to get properties from

□ Answer the properties associated with a role. The returned Tabular Data is typed by
JmxConstants.PROPERTIES_TYPE.

Returns the properties associated with the role, see JmxConstants.PROPERTIES_TYPE

Throws IOException– if the operation fails

I l legalArgumentException– if the rolename is not a role

124.12.2.36 public String[] getRequiredMembers(String groupname) throws IOException

groupname The name of the group to get the required members from

□ Answer the list of user names which are required members of this group

Returns The list of user names

Throws IOException– if the operation fails

I l legalArgumentException– if the group name is not a Group

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.service.useradmin

OSGi Enterprise Release 7 Page 427

124.12.2.37 public CompositeData getRole(String name) throws IOException

name The name of the role to get the data from

□ Answer the role associated with a name. The returned Composite Data is typed by ROLE_TYPE.

Returns the Role, see ROLE_TYPE

Throws IOException– if the operation fails

I l legalArgumentException– if the name is not a role

124.12.2.38 public String[] getRoles(String filter) throws IOException

filter The string representation of the org.osgi .f ramework.Fi l ter that is used to filter the roles by applying
to the properties, if nul l all roles are returned.

□ Answer the list of role names which match the supplied filter

Returns The list the role names

Throws IOException– if the operation fails

124.12.2.39 public CompositeData getUser(String username) throws IOException

username The name of the requested user

□ Answer the User associated with the user name. The returned Composite Data is typed by
USER_TYPE.

Returns The User, see USER_TYPE

Throws IOException– if the operation fails

I l legalArgumentException– if the username is not a User

124.12.2.40 public String[] getUsers(String filter) throws IOException

filter The filter to apply

□ Answer the list of user names in the User Admin database

Returns The list of user names

Throws IOException– if the operation fails

124.12.2.41 public String getUserWithProperty(String key, String value) throws IOException

key The key to compare

value The value to compare

□ Answer the user name with the given property key-value pair from the User Admin service data-
base.

Returns The User

Throws IOException– if the operation fails

124.12.2.42 public String[] listGroups() throws IOException

□ Answer the list of group names

Returns The list of group names

Throws IOException– if the operation fails

124.12.2.43 public String[] listRoles() throws IOException

□ Answer the list of role names in the User Admin database

org.osgi.jmx.service.useradmin Management Model Specification for JMX™ Technology Version 1.1

Page 428 OSGi Enterprise Release 7

Returns The list of role names

Throws IOException– if the operation fails

124.12.2.44 public String[] listUsers() throws IOException

□ Answer the list of user names in the User Admin database

Returns The list of user names

Throws IOException– if the operation fails

124.12.2.45 public void removeCredential(String key, String username) throws IOException

key The key of the credential to remove

username The name of the user for which the credential must be removed

□ Remove the credential associated with the given user

Throws IOException– if the operation fails

I l legalArgumentException– if the username is not a User

124.12.2.46 public boolean removeGroup(String name) throws IOException

name

□ Remove the Group associated with the name

Returns true if the remove succeeded

Throws IOException– if the operation fails

I l legalArgumentException– if the name is not a Group

124.12.2.47 public boolean removeMember(String groupname, String rolename) throws IOException

groupname The group name

rolename

□ Remove a role from the group

Returns true if the role was removed from the group

Throws IOException– if the operation fails

I l legalArgumentException– if the groupname is not a Group

124.12.2.48 public void removeProperty(String key, String rolename) throws IOException

key

rolename

□ Remove a property from a role

Throws IOException– if the operation fails

I l legalArgumentException– if the rolename is not a role

124.12.2.49 public boolean removeRole(String name) throws IOException

name

□ Remove the Role associated with the name

Returns true if the remove succeeded

Throws IOException– if the operation fails

I l legalArgumentException– if the name is not a role

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework.wiring

OSGi Enterprise Release 7 Page 429

124.12.2.50 public boolean removeUser(String name) throws IOException

name

□ Remove the User associated with the name

Returns true if the remove succeeded

Throws IOException– if the operation fails

I l legalArgumentException– if the name is not a User

124.13 org.osgi.jmx.framework.wiring

OSGi JMX Framework Wiring Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi . jmx.framework.wir ing; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi . jmx.framework.wir ing; vers ion="[1.1 ,1 .2)"

124.13.1 Summary

• BundleWir ingStateMBean - This MBean represents the bundle wiring state.

124.13.2 public interface BundleWiringStateMBean
This MBean represents the bundle wiring state.

It can be used to retrieve the declared capabilities, declared requirements, and wiring for the current
and past revisions of bundles.

Concurrency Thread-safe

124.13.2.1 public static final String ATTRIBUTES = "Attributes"

The key of ATTRIBUTES_ITEM.

124.13.2.2 public static final Item ATTRIBUTES_ITEM

The item containing the attributes of a capability or requirement. Used in
BUNDLE_REQUIREMENT_TYPE and BUNDLE_CAPABILITY_TYPE. The key is ATTRIBUTES and
the type is ATTRIBUTES_TYPE.

124.13.2.3 public static final TabularType ATTRIBUTES_TYPE

The Tabular Type that holds the attributes for a capability or requirements. The row type is
JmxConstants.PROPERTY_TYPE and the index is JmxConstants.KEY.

124.13.2.4 public static final String BUNDLE_CAPABILITY = "BundleCapability"

The key of BUNDLE_CAPABILITY_ITEM.

124.13.2.5 public static final Item BUNDLE_CAPABILITY_ITEM

The item containing a capability for a bundle in BUNDLE_WIRE_TYPE. The key is
BUNDLE_CAPABILITY and the type is BUNDLE_CAPABILITY_TYPE.

org.osgi.jmx.framework.wiring Management Model Specification for JMX™ Technology Version 1.1

Page 430 OSGi Enterprise Release 7

124.13.2.6 public static final CompositeType BUNDLE_CAPABILITY_TYPE

The Composite Type that represents the capability of a bundle. The composite consists of:

• NAMESPACE
• ATTRIBUTES
• DIRECTIVES

124.13.2.7 public static final String BUNDLE_ID = "BundleId"

The key of BUNDLE_ID_ITEM.

124.13.2.8 public static final Item BUNDLE_ID_ITEM

The item containing a bundle ID. They key is BUNDLE_ID and the type is a long.

124.13.2.9 public static final String BUNDLE_REQUIREMENT = "BundleRequirement"

The key of BUNDLE_REQUIREMENT_ITEM.

124.13.2.10 public static final Item BUNDLE_REQUIREMENT_ITEM

The item containing a requirement for a bundle in BUNDLE_WIRE_TYPE. The key is
BUNDLE_REQUIREMENT and the type is BUNDLE_REQUIREMENT_TYPE.

124.13.2.11 public static final CompositeType BUNDLE_REQUIREMENT_TYPE

The Composite Type that represents the requirement of a bundle. The composite consists of:

• NAMESPACE
• ATTRIBUTES
• DIRECTIVES

124.13.2.12 public static final String BUNDLE_REVISION_ID = "BundleRevisionId"

The key of BUNDLE_REVISION_ID_ITEM.

124.13.2.13 public static final Item BUNDLE_REVISION_ID_ITEM

The item containing a bundle revision ID. A bundle revision ID is always local to the result of a JMX
invocation and do not have a defined meaning across invocation calls. They are used where a result
can potentially contain multiple revisions of the same bundle. The key is BUNDLE_REVISION_ID
and the type is an integer.

124.13.2.14 public static final CompositeType BUNDLE_WIRE_TYPE

The Composite type that represents a bundle wire describing the live association between a
provider of a capability and a requirer of the corresponding requirement.

The composite consists of:

• BUNDLE_REQUIREMENT
• BUNDLE_CAPABILITY
• PROVIDER_BUNDLE_ID
• PROVIDER_BUNDLE_REVISION_ID
• REQUIRER_BUNDLE_ID
• REQUIRER_BUNDLE_REVISION_ID

124.13.2.15 public static final ArrayType BUNDLE_WIRES_TYPE_ARRAY

An array of BUNDLE_WIRE_TYPEs.

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework.wiring

OSGi Enterprise Release 7 Page 431

124.13.2.16 public static final CompositeType BUNDLE_WIRING_TYPE

The Composite Type that represents a bundle wiring. The composite consists of:

• BUNDLE_ID
• BUNDLE_REVISION_ID
• REQUIREMENTS
• CAPABILITIES
• REQUIRED_WIRES
• PROVIDED_WIRES

124.13.2.17 public static final TabularType BUNDLES_WIRING_TYPE

The Tabular Type to hold the wiring of a number of bundles. The row type is
BUNDLE_WIRING_TYPE and the index is the combination of the BUNDLE_ID and the
BUNDLE_REVISION_ID.

124.13.2.18 public static final String CAPABILITIES = "Capabilities"

The key of CAPABILITIES_ITEM.

124.13.2.19 public static final Item CAPABILITIES_ITEM

The item containing the capabilities in REVISION_CAPABILITIES_TYPE and
BUNDLE_WIRING_TYPE. The key is CAPABILITIES and the type is CAPABILITY_TYPE_ARRAY.

124.13.2.20 public static final ArrayType CAPABILITY_TYPE_ARRAY

An array of BUNDLE_CAPABILITY_TYPEs.

124.13.2.21 public static final CompositeType DIRECTIVE_TYPE

The Composite Type that represents a directive for a capability or requirement. The composite con-
sists of:

• KEY
• VALUE

124.13.2.22 public static final String DIRECTIVES = "Directives"

The key of DIRECTIVES_ITEM.

124.13.2.23 public static final Item DIRECTIVES_ITEM

The item containing the directives of a capability or requirement. Used in
BUNDLE_REQUIREMENT_TYPE and BUNDLE_CAPABILITY_TYPE. The key is DIRECTIVES and
the type is DIRECTIVES_TYPE.

124.13.2.24 public static final TabularType DIRECTIVES_TYPE

The Tabular Type that holds the directives for a capability or requirement. The row type is
DIRECTIVE_TYPE and the index is KEY.

124.13.2.25 public static final String KEY = "Key"

The key of KEY_ITEM.

124.13.2.26 public static final Item KEY_ITEM

The item containing the key of a capability or requirement directive. Used in DIRECTIVE_TYPE.
The key is KEY and the type is a String.

org.osgi.jmx.framework.wiring Management Model Specification for JMX™ Technology Version 1.1

Page 432 OSGi Enterprise Release 7

124.13.2.27 public static final String NAMESPACE = "Namespace"

The key of NAMESPACE_ITEM.

124.13.2.28 public static final Item NAMESPACE_ITEM

The item containing the namespace for a capability or requirement. Used in
BUNDLE_REQUIREMENT_TYPE and BUNDLE_CAPABILITY_TYPE. The key is NAMESPACE and
the type is a String.

124.13.2.29 public static final String OBJECTNAME = "osgi.core:type=wiringState,version=1.1"

The Object Name prefix for this mbean. The full object name also contains the framework name and
uuid as properties.

124.13.2.30 public static final String PROVIDED_WIRES = "ProvidedWires"

The key of PROVIDED_WIRES_ITEM.

124.13.2.31 public static final Item PROVIDED_WIRES_ITEM

The item containing the provided wires in BUNDLE_WIRING_TYPE. The key is PROVIDED_WIRES
and the type is BUNDLE_WIRES_TYPE_ARRAY.

124.13.2.32 public static final String PROVIDER_BUNDLE_ID = "ProviderBundleId"

The key of PROVIDER_BUNDLE_ID_ITEM.

124.13.2.33 public static final Item PROVIDER_BUNDLE_ID_ITEM

The item containing the provider bundle ID in BUNDLE_WIRE_TYPE. The key is
PROVIDER_BUNDLE_ID and the type is a long.

124.13.2.34 public static final String PROVIDER_BUNDLE_REVISION_ID = "ProviderBundleRevisionId"

The key of PROVIDER_BUNDLE_REVISION_ID_ITEM.

124.13.2.35 public static final Item PROVIDER_BUNDLE_REVISION_ID_ITEM

The local ID of a provider revision in BUNDLE_WIRE_TYPE. This ID is local to the re-
sult where it resides and has no defined meaning across multiple invocations. The key is
PROVIDER_BUNDLE_REVISION_ID and the type is an int.

124.13.2.36 public static final String REQUIRED_WIRES = "RequiredWires"

The key of REQUIRED_WIRES_ITEM.

124.13.2.37 public static final Item REQUIRED_WIRES_ITEM

The item containing the required wires in BUNDLE_WIRING_TYPE. The key is REQUIRED_WIRES
and the type is BUNDLE_WIRES_TYPE_ARRAY.

124.13.2.38 public static final ArrayType REQUIREMENT_TYPE_ARRAY

An array of BUNDLE_REQUIREMENT_TYPEs.

124.13.2.39 public static final String REQUIREMENTS = "Requirements"

The key of REQUIREMENTS_ITEM.

124.13.2.40 public static final Item REQUIREMENTS_ITEM

The item containing the requirements in REVISION_REQUIREMENTS_TYPE
and BUNDLE_WIRING_TYPE. The key is REQUIREMENTS and the type is
REQUIREMENT_TYPE_ARRAY.

Management Model Specification for JMX™ Technology Version 1.1 org.osgi.jmx.framework.wiring

OSGi Enterprise Release 7 Page 433

124.13.2.41 public static final String REQUIRER_BUNDLE_ID = "RequirerBundleId"

The key of REQUIRER_BUNDLE_ID_ITEM.

124.13.2.42 public static final Item REQUIRER_BUNDLE_ID_ITEM

The item containing the requirer bundle ID in BUNDLE_WIRE_TYPE. The key is
REQUIRER_BUNDLE_ID and the type is long.

124.13.2.43 public static final String REQUIRER_BUNDLE_REVISION_ID = "RequirerBundleRevisionId"

The key of REQUIRER_BUNDLE_REVISION_ID_ITEM.

124.13.2.44 public static final Item REQUIRER_BUNDLE_REVISION_ID_ITEM

The local ID of a requirer revision in BUNDLE_WIRE_TYPE. This ID is local to the re-
sult where it resides and has no defined meaning across multiple invocations. The key is
REQUIRER_BUNDLE_REVISION_ID and the type is an int.

124.13.2.45 public static final CompositeType REVISION_CAPABILITIES_TYPE

The Composite Type that represents the capabilities for a revision. The composite consists of:

• BUNDLE_REVISION_ID
• CAPABILITIES

124.13.2.46 public static final CompositeType REVISION_REQUIREMENTS_TYPE

The Composite Type that represents the requirements of a revision. The composite consists of:

• BUNDLE_REVISION_ID
• REQUIREMENTS

124.13.2.47 public static final TabularType REVISIONS_CAPABILITIES_TYPE

The Tabular Type that holds the capabilities of a revision. The row type is
REVISION_CAPABILITIES_TYPE and the index is BUNDLE_REVISION_ID.

124.13.2.48 public static final TabularType REVISIONS_REQUIREMENTS_TYPE

The Tabular Type that hold the requirements of a revision. The row type is
REVISION_REQUIREMENTS_TYPE and the index is BUNDLE_REVISION_ID.

124.13.2.49 public static final String VALUE = "Value"

The key of VALUE.

124.13.2.50 public static final Item VALUE_ITEM

The item containing the value of a capability or requirement directive. Used in DIRECTIVE_TYPE.
They key is VALUE and the type is a String.

124.13.2.51 public CompositeData[] getCurrentRevisionDeclaredCapabilities(long bundleId, String namespace) throws
IOException, JMException

bundleId The bundle ID.

namespace The namespace of the capabilities to be returned by this operation.

□ Returns the capabilities for the current bundle revision.

Returns the declared capabilities for the current revision of bundleId and namespace .

Throws JMException– if there is a JMX problem.

IOException– if the connection could not be made because of a communication problem.

org.osgi.jmx.framework.wiring Management Model Specification for JMX™ Technology Version 1.1

Page 434 OSGi Enterprise Release 7

See Also for the details of the CompositeData.

124.13.2.52 public CompositeData[] getCurrentRevisionDeclaredRequirements(long bundleId, String namespace)
throws IOException, JMException

bundleId The bundle ID.

namespace The namespace of the requirements to be returned by this operation.

□ Returns the requirements for the current bundle revision.

Returns the declared requirements for the current revision of bundleId and namespace .

Throws JMException– if there is a JMX problem.

IOException– if the connection could not be made because of a communication problem.

See Also for the details of the CompositeData.

124.13.2.53 public CompositeData getCurrentWiring(long bundleId, String namespace) throws IOException,
JMException

bundleId The bundle ID.

namespace The namespace of the requirements and capabilities for which to return information.

□ Returns the bundle wiring for the current bundle revision.

Returns the wiring information for the current revision of bundleId and namespace .

Throws JMException– if there is a JMX problem.

IOException– if the connection could not be made because of a communication problem.

See Also for the details of the CompositeData.

124.13.2.54 public TabularData getCurrentWiringClosure(long rootBundleId, String namespace) throws IOException,
JMException

rootBundleId the root bundle of the closure.

namespace The namespace of the requirements and capabilities for which to return information.

□ Returns the bundle wiring closure for the current revision of the specified bundle. The wiring clo-
sure contains all the wirings from the root bundle revision to all bundle revisions it is wired to and
all their transitive wirings.

Returns a tabular representation of all the wirings in the closure. The bundle revision IDs only have mean-
ing in the context of the current result. The revision of the rootBundle is set to 0. Therefore the root
bundle of the closure can be looked up in the table by its bundle ID and revision 0.

Throws JMException– if there is a JMX problem.

IOException– if the connection could not be made because of a communication problem.

See Also for the details of the TabularData.

124.13.2.55 public TabularData getRevisionsDeclaredCapabilities(long bundleId, String namespace) throws IOException,
JMException

bundleId The bundle ID.

namespace The namespace of the capabilities to be returned by this operation.

□ Returns the capabilities for all revisions of the bundle.

Returns the declared capabilities for all revisions of bundleId

Throws JMException– if there is a JMX problem.

IOException– if the connection could not be made because of a communication problem.

Management Model Specification for JMX™ Technology Version 1.1 References

OSGi Enterprise Release 7 Page 435

See Also for the details of TabularData. The capabilities are in no particular order, and may change in subse-
quent calls to this operation.

124.13.2.56 public TabularData getRevisionsDeclaredRequirements(long bundleId, String namespace) throws
IOException, JMException

bundleId The bundle ID.

namespace The namespace of the requirements to be returned by this operation.

□ Returns the requirements for all revisions of the bundle.

Returns the declared requirements for all revisions of bundleId .

Throws JMException– if there is a JMX problem.

IOException– if the connection could not be made because of a communication problem.

See Also for the details of TabularData. The requirements are in no particular order, and may change in sub-
sequent calls to this operation.

124.13.2.57 public TabularData getRevisionsWiring(long bundleId, String namespace) throws IOException, JMException

bundleId The bundle ID.

namespace The namespace of the requirements and capabilities for which to return information.

□ Returns the bundle wirings for all revisions of the bundle.

Returns the wiring information for all revisions of bundleId and namespace .

Throws JMException– if there is a JMX problem.

IOException– if the connection could not be made because of a communication problem.

See Also for the details of TabularData. The bundle wirings are in no particular order, and may change in sub-
sequent calls to this operations.

124.13.2.58 public TabularData getRevisionsWiringClosure(long rootBundleId, String namespace) throws IOException,
JMException

rootBundleId The root bundle ID.

namespace The namespace of the requirements and capabilities for which to return information.

□ Returns the bundle wiring closure for all revisions of the specified bundle. The wiring closure con-
tains all the wirings from the root bundle revision to all bundle revisions it is wired to and all their
transitive wirings.

Returns a tabular representation of all the wirings in the closure. The bundle revision IDs only have mean-
ing in the context of the current result.

Throws JMException– if there is a JMX problem.

IOException– if the connection could not be made because of a communication problem.

See Also for the details of TabularData. The bundle wirings are in no particular order, and may change in sub-
sequent calls to this operation. Furthermore, the bundle revision IDs are local and cannot be reused
across invocations.

124.14 References

[1] JMX
http://en.wikipedia.org/wiki/JMX

[2] Java Management Extensions (JMX) Technology Overview

http://en.wikipedia.org/wiki/JMX

References Management Model Specification for JMX™ Technology Version 1.1

Page 436 OSGi Enterprise Release 7

http://docs.oracle.com/javase/1.5.0/docs/guide/jmx/overview/JMXoverviewTOC.html

[3] JSR 3: Java Management Extensions (JMX) Specification
http://www.jcp.org/en/jsr/detailid=3

[4] JSR 255: Java Management Extensions (JMX) Specification, version 2.0
http://www.jcp.org/en/jsr/detailid=255

[5] JSR 160: JavaTM Management Extensions (JMX) Remote API
http://www.jcp.org/en/jsr/detailid=160

[6] JSR 262: Web Services Connector for Java Management Extensions (JMX) Agents
http://www.jcp.org/en/jsr/detailid=262

[7] JavaTM Management Extensions (JMXTM)API Specification
http://docs.oracle.com/javase/1.5.0/docs/guide/jmx/spec.html

[8] Using JConsole to Monitor Applications
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

http://docs.oracle.com/javase/1.5.0/docs/guide/jmx/overview/JMXoverviewTOC.html
http://www.jcp.org/en/jsr/detailid=3
http://www.jcp.org/en/jsr/detailid=255
http://www.jcp.org/en/jsr/detailid=160
http://www.jcp.org/en/jsr/detailid=262
http://docs.oracle.com/javase/1.5.0/docs/guide/jmx/spec.html
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Data Service Specification for JDBC™ Technology Version 1.0 Introduction

OSGi Enterprise Release 7 Page 437

125 Data Service Specification for
JDBC™ Technology

Version 1.0

125.1 Introduction
The Java Database Connectivity (JDBC) standard provides an API for applications to interact with
relational database systems from different vendors. To abstract over concrete database systems and
vendor specific characteristics, the JDBC specification provides various classes and Service Provider
Interfaces (SPI) that can be used for database interaction. Implementations are database specific and
provided by the corresponding driver. This specification defines how OSGi-aware JDBC drivers can
provide access to their implementations. Applications can rely on this mechanism to transparent-
ly access drivers and to stay independent from driver specific classes. Additionally, this mechanism
helps to use common OSGi practices and to avoid class loading problems.

This specification uses a number of packages that are defined in Java SE 1.4 or later.

125.1.1 Essentials

• Registration - Provide a mechanism for JDBC driver announcements.
• Lookup - Inspect available database drivers and provide means for driver access.
• Services - Uses a service model for getting the driver objects.
• Compatible - Minimize the amount of work needed to support this specification for existing dri-

vers.

125.1.2 Entities

• Relational Database Management Systems - (RDBMS) An external database system.
• Database Driver - JDBC-compliant database driver that is delivered in a bundle.
• Data Source Factory - Provides one of the different Data Sources that gives access to a database dri-

ver.
• Application - The application that wants to access a relational database system.

Database Driver Data Service Specification for JDBC™ Technology Version 1.0

Page 438 OSGi Enterprise Release 7

Figure 125.1 JDBC Class/Service Overview

Driver Impl

Application Impl

Data Source
Factory

database

125.1.3 Dependencies
The classes and interfaces used in this specification come from the following packages:

javax.sql
java.sql

These packages have no associated version. It is assumed they come from the runtime environment.
This specification is based on Java SE 1.4 or later.

125.1.4 Synopsis
A JDBC Database Driver is the software that maps the JDBC specification to a specific implementa-
tion of a relational database. For OSGi, JDBC drivers are delivered as driver bundles. A driver bun-
dle registers a Data Source Factory service when it is ACTIVE . Service properties are used to specify
the database driver name, version, etc. The Data Source Factory service provides methods to create
DataSource , ConnectionPoolDataSource , XADataSource , or Driver objects. These objects are then
used by an application to interact with the relational database system in the standard way.

The application can query the service registry for available Data Source Factory services. It can se-
lect particular drivers by filtering on the service properties. This service based model is easy to use
with dependency injection frameworks like Blueprint or Declarative Services.

125.2 Database Driver
A Database Driver provides the connection between an Application and a particular database. A sin-
gle OSGi Framework can contain several Database Drivers simultaneously. To make itself available
to Applications, a Database Driver must register a Data Source Factory service. Applications must be
able to find the appropriate Database Driver. The Database Driver must therefore register the Data
Source Factory service with the following service properties:

• OSGI_JDBC_DRIVER_CLASS - (Str ing) The required name of the driver implementation class.
This property is the primary key to find a driver's Data Source Factory. It is not required that
there is an actual class with this name.

• OSGI_JDBC_DRIVER_NAME - (Str ing) The optional driver name. This property is informational.
• OSGI_JDBC_DRIVER_VERSION - (Str ing) The driver version. The version is not required to be an

OSGi version, it should be treated as an opaque string. This version is likely not related to the
package of the implementation class or its bundle.

Data Service Specification for JDBC™ Technology Version 1.0 Applications

OSGi Enterprise Release 7 Page 439

The previous properties are vendor-specific and are meant to further describe the Database Driver to
the Application.

Each Data Source Factory service must relate to a single Database Driver. The Database Driver im-
plementation bundle does not necessarily need to be the registrar of the Data Source Factory service.
Any bundle can provide the Data Source Factory service and delegate to the appropriate driver spe-
cific implementation classes. However, as JDBC driver implementations evolve to include built-in
support for OSGi they can provide the Data Source Factory service themselves. This implies that the
same driver can be registered multiple times.

125.2.1 Life Cycle
A Data Source Factory service should be registered while its Driver Bundle is in the ACTIVE state or
when it has a lazy activation policy and is in the STARTING state.

What happens to the objects created by the Data Source Factory service, and the objects they creat-
ed, is undefined in this specification. Database Drivers are not mandated to track the proper life cy-
cle of these objects.

125.2.2 Package Dependencies
A Database Driver must import the javax.sql package. The java.sql package that contains the Driver
and SQLException interface is automatically visible because it starts with java. . Both packages are
contained in the JRE since Java SE 1.4. These packages are not normally versioned with OSGi version
numbers. Bundles using the Data Source Factory must therefore ensure they get the proper imports,
which is usually from the JRE. Due to the lack of specified metadata, the deployer is responsible for
ensuring this.

125.3 Applications

125.3.1 Selecting the Data Source Factory Service
Applications can query the OSGi service registry for available Database Drivers by getting a list of
Data Source Factory services. Normally, the application needs access to specific drivers that match
their needed relational database type. The service properties can be used to find the desired Data-
base Driver. This model is well supported by dependency injection frameworks like Blueprint or De-
clarative Services. However, it can of course also be used with the basic service methods. The follow-
ing code shows how a Service Tracker can be used to get a Database Driver called ACME DB.

Filter filter = context.createFilter(
 "(&(objectClass=" +
 DataSourceFactory.class.getName() +
 ")(" +
 DataSourceFactory.OSGI_JDBC_DRIVER_CLASS + "=com.acme.db.Driver))");

ServiceTracker tracker = new ServiceTracker(context, filter, null);
tracker.open();

DataSourceFactory dsf = (DataSourceFactory) tracker.getService();

125.3.2 Using Database Drivers
The Data Source Factory service can be used to obtain instances for the following JDBC related
types:

• javax.sql .DataSource
• javax.sql .ConnectionPoolDataSource

Applications Data Service Specification for JDBC™ Technology Version 1.0

Page 440 OSGi Enterprise Release 7

• javax.sql .XADataSource
• java.sql .Driver

Which type of Connection provider that is actually required depends on the Application and the
use case. For each type, the Data Source Factory service provides a method that returns the corre-
sponding instance. Each method takes a Propert ies object as a parameter to pass a configuration to
the Database Driver implementation. The configuration is driver-specific and can be used to speci-
fy the URL for the database and user credentials. Common property names for these configuration
properties are also defined in the DataSourceFactory interface.

A Data Source Factory is not required to implement all of the factory methods. If an implementation
does not support a particular type then it must throw a SQL Exception. This specification does not
provide a mechanism to depend on a Data Source Factory service that implements a particular facto-
ry method.

The following code shows how a DataSource object could be created.

Properties props = new Properties();
props.put(DataSourceFactory.JDBC_URL, "jdbc:acme:ACMEDB");
props.put(DataSourceFactory.JDBC_USER, "foo");
props.put(DataSourceFactory.JDBC_PASSWORD, "secret");
DataSource dataSource = dsf.createDataSource(props);

The DataSourceFactory interface has several static fields that represent common property keys for
the Propert ies instance. General properties are:

• JDBC_DATABASE_NAME
• JDBC_DATASOURCE_NAME
• JDBC_DESCRIPTION
• JDBC_NETWORK_PROTOCOL
• JDBC_PASSWORD
• JDBC_PORT_NUMBER
• JDBC_ROLE_NAME
• JDBC_SERVER_NAME
• JDBC_USER
• JDBC_URL

The following additional property keys are provided for applications that want to create a Connec-
t ionPoolDataSource object or a XAPoolDataSource object:

• JDBC_INITIAL_POOL_SIZE
• JDBC_MAX_IDLE_TIME
• JDBC_MAX_POOL_SIZE
• JDBC_MAX_STATEMENTS
• JDBC_MIN_POOL_SIZE
• JDBC_PROPERTY_CYCLE

Which property keys and values are supported depends on the driver implementation. Drivers can
support additional custom configuration properties.

125.3.3 Using JDBC in OSGi and Containers
The JDBC service provides JDBC driver services, not container services. A typical client would on-
ly use the DataSourceFactory.createDataSource() method to procure a regular Data Source from
which they can obtain (usually non-pooled) connections.

Data Service Specification for JDBC™ Technology Version 1.0 Security

OSGi Enterprise Release 7 Page 441

Containers generally offer connection pools and support XA transactions. The container manages
the pools and does this by using Pooled Connection or XA Connection objects from a driver-imple-
mented respective Connection Pool Data Source or XA Data Source. To support containers, frame-
works, or any client that wants to manage a pool, these Data Source types are included in the Data
Source Factory service. Drivers are permitted to implement their own Data Source using an underly-
ing connection pooling scheme. This is driver-dependent and not related to the OSGi specifications.

The usual set of JDBC properties are defined in the services for use with the Data Source types. They
are the same as what is defined for JDBC and the caller should know which properties make sense
when passed to a given Data Source type. The same result should occur in OSGi as occurs outside
of OSGi. If the driver does not support a given property with a given Data Source type then it can ig-
nore it or it can throw an Exception.

125.4 Security
This specification depends on the JDBC specification for security.

125.5 org.osgi.service.jdbc

JDBC Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jdbc; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jdbc; vers ion="[1.0,1.1)"

125.5.1 Summary

• DataSourceFactory - A factory for JDBC connection factories.

125.5.2 public interface DataSourceFactory
A factory for JDBC connection factories. There are 3 preferred connection factories for get-
ting JDBC connections: javax.sql .DataSource , javax.sql .ConnectionPoolDataSource , and
javax.sql .XADataSource . DataSource providers should implement this interface and register it as an
OSGi service with the JDBC driver class name in the OSGI_JDBC_DRIVER_CLASS property.

Concurrency Thread-safe

125.5.2.1 public static final String JDBC_DATABASE_NAME = "databaseName"

The "databaseName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.2 public static final String JDBC_DATASOURCE_NAME = "dataSourceName"

The "dataSourceName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

org.osgi.service.jdbc Data Service Specification for JDBC™ Technology Version 1.0

Page 442 OSGi Enterprise Release 7

125.5.2.3 public static final String JDBC_DESCRIPTION = "description"

The "description" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.4 public static final String JDBC_INITIAL_POOL_SIZE = "initialPoolSize"

The "initialPoolSize" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.5 public static final String JDBC_MAX_IDLE_TIME = "maxIdleTime"

The "maxIdleTime" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.6 public static final String JDBC_MAX_POOL_SIZE = "maxPoolSize"

The "maxPoolSize" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.7 public static final String JDBC_MAX_STATEMENTS = "maxStatements"

The "maxStatements" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.8 public static final String JDBC_MIN_POOL_SIZE = "minPoolSize"

The "minPoolSize" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.9 public static final String JDBC_NETWORK_PROTOCOL = "networkProtocol"

The "networkProtocol" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.10 public static final String JDBC_PASSWORD = "password"

The "password" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.11 public static final String JDBC_PORT_NUMBER = "portNumber"

The "portNumber" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.12 public static final String JDBC_PROPERTY_CYCLE = "propertyCycle"

The "propertyCycle" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.13 public static final String JDBC_ROLE_NAME = "roleName"

The "roleName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.14 public static final String JDBC_SERVER_NAME = "serverName"

The "serverName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

Data Service Specification for JDBC™ Technology Version 1.0 org.osgi.service.jdbc

OSGi Enterprise Release 7 Page 443

125.5.2.15 public static final String JDBC_URL = "url"

The "url" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.16 public static final String JDBC_USER = "user"

The "user" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.17 public static final String OSGI_JDBC_DRIVER_CLASS = "osgi.jdbc.driver.class"

Service property used by a JDBC driver to declare the driver class when registering a JDBC
DataSourceFactory service. Clients may filter or test this property to determine if the driver is suit-
able, or the desired one.

125.5.2.18 public static final String OSGI_JDBC_DRIVER_NAME = "osgi.jdbc.driver.name"

Service property used by a JDBC driver to declare the driver name when registering a JDBC
DataSourceFactory service. Clients may filter or test this property to determine if the driver is suit-
able, or the desired one.

125.5.2.19 public static final String OSGI_JDBC_DRIVER_VERSION = "osgi.jdbc.driver.version"

Service property used by a JDBC driver to declare the driver version when registering a JDBC
DataSourceFactory service. Clients may filter or test this property to determine if the driver is suit-
able, or the desired one.

125.5.2.20 public ConnectionPoolDataSource createConnectionPoolDataSource(Properties props) throws
SQLException

props The properties used to configure the ConnectionPoolDataSource . nul l indicates no properties. If the
property cannot be set on the ConnectionPoolDataSource being created then a SQLException must
be thrown.

□ Create a new ConnectionPoolDataSource using the given properties.

Returns A configured ConnectionPoolDataSource .

Throws SQLException– If the ConnectionPoolDataSource cannot be created.

125.5.2.21 public DataSource createDataSource(Properties props) throws SQLException

props The properties used to configure the DataSource . nul l indicates no properties. If the property can-
not be set on the DataSource being created then a SQLException must be thrown.

□ Create a new DataSource using the given properties.

Returns A configured DataSource .

Throws SQLException– If the DataSource cannot be created.

125.5.2.22 public Driver createDriver(Properties props) throws SQLException

props The properties used to configure the Driver . nul l indicates no properties. If the property cannot be
set on the Driver being created then a SQLException must be thrown.

□ Create a new Driver using the given properties.

Returns A configured Driver .

Throws SQLException– If the Driver cannot be created.

125.5.2.23 public XADataSource createXADataSource(Properties props) throws SQLException

props The properties used to configure the XADataSource . nul l indicates no properties. If the property can-
not be set on the XADataSource being created then a SQLException must be thrown.

References Data Service Specification for JDBC™ Technology Version 1.0

Page 444 OSGi Enterprise Release 7

□ Create a new XADataSource using the given properties.

Returns A configured XADataSource .

Throws SQLException– If the XADataSource cannot be created.

125.6 References

[1] Java SE 1.4
http://www.oracle.com/technetwork/java/archive-139210.html

http://www.oracle.com/technetwork/java/archive-139210.html

JNDI Services Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 445

126 JNDI Services Specification

Version 1.0

126.1 Introduction
Naming and directory services have long been useful tools in the building of software systems. The
ability to use a programming interface to publish and consume objects can provide many benefits
to any system. The Java Naming and Directory Interface (JNDI) is a registry technology in Java appli-
cations, both in the Java SE and Java EE space. JNDI provides a vendor-neutral set of APIs that allow
clients to interact with a naming service from different vendors.

The JNDI as used in the Java SE environment relies on the class loading model provided by the JDK
to find providers. By default, it attempts to load the JNDI provider class using the Thread Context
Class Loader. In an OSGi environment, this type of Context creation is not desirable since it relies
on the JNDI provider classes being visible to the JNDI client, or require it to set the Context Class
Loader; in both cases breaking modularity. For modularity reasons, it is important that clients are
not required to express a dependency on the implementation of services they use.

This specification will define how JNDI can be utilized from within an OSGi framework. The speci-
fication consists of three key parts:

• OSGi Service Model - How clients interact with JNDI when running inside an OSGi Framework.
• JNDI Provider Model - How JNDI providers can advertise their existence so they are available to

OSGi and traditional clients.
• Traditional Model - How traditional JNDI applications and providers can continue to work in an

OSGi Framework without needing to be rewritten when certain precautions are taken.

126.1.1 Essentials

• Naming Service - Provide an integration model for JNDI API clients and providers.
• Flexible - Provide a standard mechanism for publishing and locating JNDI providers.
• Compatibility - Support the traditional JNDI programming model used by Java SE and Java EE

clients.
• Service Based - Provide a service model that clients and providers can use to leverage JNDI facili-

ties.
• Migration - Provide a mechanism to access OSGi services from a JNDI context.

126.1.2 Entities

• JNDI Implementation - The Implementer of the JNDI Context Manager, JNDI Provider Admin, and
setter of the JNDI static singletons.

• JNDI Client - Any code running within an OSGi bundle that needs to use JNDI.
• JNDI Context Manager - A service that allows clients to obtain Contexts via a service.
• JNDI Provider Admin - A service that allows the conversion of objects for providers.
• JNDI Provider - Provides a Context implementation.
• Context - A Context abstracts a namespace. Implementations are provided by JNDI providers and

the Contexts are used by JNDI clients. The corresponding interface is javax.naming.Context .

Introduction JNDI Services Specification Version 1.0

Page 446 OSGi Enterprise Release 7

• Dir Context - A sub-type of Context that provides mechanisms for examining and updating the at-
tributes of an object in a directory structure, and for performing searches in an hierarchical nam-
ing systems like LDAP. The corresponding interface is javax.naming.directory.DirContext .

• Initial Context Factory - A factory for creating instances of Context objects. This factory
is used to integrate new JNDI Providers. In general, a single Initial Context Factory con-
structs Context objects for a single provider implementation. The corresponding interface is
javax.naming.spi . In it ia lContextFactory .

• Initial Context Factory Builder - A factory for In it ia lContextFactory objects. A single Initial Context
Factory Builder can construct In it ia lContextFactory objects for different types of Contexts. The
interface is javax.naming.spi . In it ia lContextFactoryBui lder .

• Object Factory - Used in conversion of objects. The corresponding interface is
javax.naming.spi .ObjectFactory .

• Dir Object Factory - An Object Factory that takes attribute information for object conversion. The
corresponding interface is javax.naming.spi .DirObjectFactory .

• Object Factory Builder - A factory for ObjectFactory objects. A single Object Factory Builder can
construct ObjectFactory instances for different types of conversions. The corresponding inter-
face is javax.naming.spi .ObjectFactoryBui lder .

• Reference - A description of an object that can be turned into an object through an Object Factory.
The associated Referenceable interface implemented on an object indicates that it can provide a
Reference object.

Figure 126.1 JNDI Service Specification Service Entities

JNDI
Implementation

JNDI Context
Manager

JNDI ClientJNDI Client not
OSGi aware

Initial
Context

Static connection

Initial Context
Factory Provider
Impl

Object Factory
Provider Impl

Object
Factory

Object Factory
Builder Provider
Impl

Object
Factory
Builder

Initial Context
Builder Provider
Impl

Initial
Context
Factory

Initial
Context
Factory
Builder

JNDI
Provider
Admin

JNDI Provider not
OSGi aware

Naming
Manager

126.1.3 Dependencies
The classes and interfaces used in this specification come from the following packages:

javax.naming
javax.naming.spi
javax.naming.directory

JNDI Services Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 447

These packages have no associated version. It is assumed they come from the runtime environment.
This specification is based on Java SE 1.4 or later.

126.1.4 Synopsis
A client bundle wishing to make use of JNDI in order to access JNDI Providers such as LDAP or DNS
in OSGi should not use the Naming Manager but instead use the JNDI Context Manager service.
This service can be asked for a Context based on environment properties. The environment proper-
ties are based on an optional argument in the newInit ia lContext method, the Java System properties,
and an optional resource in the caller's bundle.

These environment properties can specify an implementation class name for a factory that can cre-
ate a Context object. If such a class name is specified, then it is searched for in the service registry. If
such a service is found, then that service is used to create a new Context, which is subsequently re-
turned. If no class name is specified, the service registry is searched for Initial Context Factory ser-
vices. These services are tried in ranking order to see if they can create an appropriate Context, the
first one that can create a Context is then used.

If no class name is specified, all Initial Context Factory Builder services are tried to see if they can
create a Context, the first non-nul l result is used. If no Context can be found, a No Initial Context Ex-
ception is thrown. Otherwise, the JNDI Context Manager service returns an initial Context that us-
es the just created Context from a provider as the backing service. This initial Context delegates all
operations to this backing Context, except operations that use a name that can be interpreted as a
URL, that is, the name contains a colon. URL operations are delegated a URL Context that is associ-
ated with the used scheme. URL Contexts are found through the general object conversion facility
provided by the JNDI Provider Admin service.

The JNDI Provider Admin service provides a general object conversion facility that can be extended
with Object Factory and Object Factory Builder services that are traditionally provided through the
Naming Manager getObject Instance method. A specific case for this conversion is the use of Ref-
erence objects. Reference objects can be used to store objects persistently in a Context implementa-
tion. Reference objects must be converted to their corresponding object when retrieved from a Con-
text.

During the client's use of a Context it is possible that its provider's service is unregistered. In this
case the JNDI Context Manager must release the backing Context. If the initial Context is used and
no backing Context is available, the JNDI Context Manager must re-create a new Context, if possi-
ble. Otherwise a Naming Exception is thrown. If subsequently a proper new backing Context can be
created, the initial Context must start operating again.

The JNDI Context Manager service must track the life cycle of a calling bundle and ensure that any
returned Context objects are closed and returned objects are properly cleaned up when the bundle is
closed or the JNDI Context Manager service is unget.

When the client bundle is stopped, any returned initial Context objects are closed and discarded. If
the Initial Context Factory, or Initial Context Factory Builder, service that created the initial Context
goes away then the JNDI Context Manager service releases the Context backing the initial Context
and attempts to create a replacement Context.

Clients and JNDI Context providers that are unaware of OSGi use static methods to connect to the
JRE JNDI implementation. The In it ia lContext class provides access to a Context from a provider
and providers use the static NamingManager methods to do object conversion and find URL Con-
texts. This traditional model is not aware of OSGi and can therefore only be used reliably if the con-
sequences of this lack of OSGi awareness are managed.

JNDI Overview JNDI Services Specification Version 1.0

Page 448 OSGi Enterprise Release 7

126.2 JNDI Overview
The Java Naming and Directory Interface (JNDI) provides an abstraction for namespaces that is in-
cluded in Java SE. This section describes the basic concepts of JNDI as provided in Java SE. These
concepts are later used in the service model provided by this specification.

126.2.1 Context and Dir Context
The [1] Java Naming and Directory Interface (JNDI) defines an API for namespaces. These namespaces
are abstracted with the Context interface. Namespaces that support attributes, such as a namespace
as the Lightweight Directory Access Protocol (LDAP), are represented by the DirContext class, which
extends the Context class. If applicable, a Context object can be cast to a DirContext object. The dis-
tinction is not relevant for this specification, except in places where it is especially mentioned.

The Context interface models a set of name-to-object bindings within a namespace. These bindings
can be looked-up, created, and updated through the Context interface. The Context interface can be
used for federated, flat, or hierarchical namespaces.

126.2.2 Initial Context
Obtaining a Context for a specific namespace, for example DNS, is handled through the In it ia lCon-
text class. Creating an instance of this class will cause the JRE to find a backing Context. The Initial
Context is only a facade for the backing Context. The facade context provides URL based lookups.

The backing Context is created by a JNDI Provider. How this backing Context is created is an elab-
orate process using class loading techniques or a provisioning mechanism involving builders, see
Naming Manager Singletons on page 449 for more information about the builder provisioning
mechanism.

If there is no Initial Context Factory Builder set, the class name of a class implementing the In i-
t ia lContextFactory interface is specified as a property in the environment. The environment is a
Hashtable object that is constructed from different sources and then merged with System proper-
ties and a resource in the calling bundle, see Environment on page 449. In a standard Java SE JNDI,
the given class name is then used to construct an In it ia lContextFactory object and this object is then
used to create the backing Context. This process is depicted in Figure 126.2 on page 448.

Figure 126.2 Backing Context

Client Initial Context Context

Some Context
Impl

optionally specifies name of implementation in environment

new backing

126.2.3 URL Context Factory
The In it ia lContext class implements the Context interface. It can therefore delegate all the Context
interface methods to the backing Context object. However, it provides a special URL lookup behav-
ior for names that are formed like URLs, that is, names that contain a colon (' : ' \u003A) character.
This behavior is called a URL lookup.

URL lookups are not delegated to the backing Context but are instead first tried via a URL Context
based lookup on the given scheme, like:

JNDI Services Specification Version 1.0 JNDI Overview

OSGi Enterprise Release 7 Page 449

myscheme:foo

For example a lookup using acme:foo/javax.sql .DataSource results in a URL Context being used,
rather than the backing Context.

JNDI uses class loading techniques to search for an ObjectFactory class that can be used to create
this URL Context. The Naming Manager provides a static method getURLContext for this purpose.
If such a URL Context is found, it is used with the requested operation and uses the full URL. If no
such URL Context can be found, the backing Context is asked to perform the operation with the giv-
en name.

The URL lookup behavior is only done when the backing Context was created by the JNDI imple-
mentation in the JRE. If the backing Context had been created through the singleton provisioning
mechanism, then no URL lookup is done for names that have a colon. The URL lookup responsibili-
ty is then left to the backing Context implementation.

126.2.4 Object and Reference Conversion
The NamingManager class provides a way to create objects from a description with the getObject In-
stance method. In general, it will iterate over a number of ObjectFactory objects and ask each one of
them to provide the requested object. The first non-nul l result indicates success. These ObjectFacto-
ry objects are created from an environment property.

A special case for the description argument in the getObject Instance method is the Reference. A Ref-
erence is a description of an object that can be stored persistently. It can be re-created into an actual
object through the static getObject Instance method of the NamingManager class. The Reference ob-
ject describes the actual ObjectFactory implementing class that must be used to create the object.

This default behavior is completely replaced with the Object Factory Builder singleton by getting
the to be used ObjectFactory object directly from the set singleton Object Factory Builder.

126.2.5 Environment
JNDI clients need a way to set the configuration properties to select the proper JNDI Provider. For
example, a JNDI Provider might require an identity and a password in order to access the service.
This type of configuration is referred to as the environment of a Context. The environment is a set of
properties. Common property names can be found in [3] JNDI Standard Property Names. The set of
properties is build from the following sources (in priority order, that is later entries are shadowed by
earlier entries):

1. Properties set in the environment Hashtable object given in the constructor argument (if any) of
the In it ia lContext class.

2. Properties from the Java System Properties
3. Properties found in $JAVA_HOME/l ib/ jndi .propert ies

There are some special rules around the handling of specific properties.

126.2.6 Naming Manager Singletons
The default behavior of the JRE implementation of JNDI can be extended in a standardized way. The
NamingManager class has two static singletons that allow JNDI Providers outside the JRE to provide
In it ia lContextFactory and ObjectFactory objects. These singletons are set with the following static
methods on the NamingManager class:

• setObjectFactoryBui lder(ObjectFactoryBui lder) - A hook to provide ObjectFactory objects.
• setInit ia lContextFactoryBui lder(Init ia lContextFactoryBui lder) - A hook to provide In it ia lCon-

textFactory objects. This hook is consulted to create a Context object that will be associated with
an In it ia lContext object the client creates.

JNDI Context Manager Service JNDI Services Specification Version 1.0

Page 450 OSGi Enterprise Release 7

These JNDI Provider hooks are singletons and must be set before any application code creates an In i-
t ia lContext object or any objects are converted. If these singletons are not set, the JNDI implementa-
tion in the JRE will provide a default behavior that is based on searching through classes defined in
an environment property.

Both singletons can only be set once. A second attempt to set these singletons results in an Illegal
State Exception being thrown.

126.2.7 Built-In JNDI Providers
The Java Runtime Environment (JRE) defines the following default providers:

• LDAP - Lightweight Directory Access Protocol (LDAP) service provider
• COS - CORBA Object Service (COS) naming service provider
• RMI - Remote Method Invocation (RMI) Registry service provider
• DNS - Domain Name System (DNS) service provider

Although these are the default JNDI Service Providers, the JNDI architecture provides a number of
mechanisms to plug-in new types of providers.

126.3 JNDI Context Manager Service
The JNDI Context Manager service allows clients to obtain a Context using the OSGi service model.
By obtaining a JNDI Context Manager service, a client can get a Context object so that it can interact
with the available JNDI Providers. This service replaces the approach where the creation of a new
In it ia lContext object provided the client with access to an In it ia lContext object that was backed by a
JNDI Provider's Context.

The JNDIContextManager interface defines the following methods for obtaining Context objects:

• newInit ia lContext() - Obtain a Context object using the default environment properties.
• newInit ia lContext(Map) - Get a Context object using the default environment properties merged

with the given properties.
• newInit ia lDirContext() - Get a DirContext object using a default environment properties.
• newInit ia lDirContext(Map) -Get a DirContext object using the default environment properties

merged with the given properties.

The JNDI Context Manager service returns Context objects that implement the same behavior as the
In it ia lContext class; the returned Context object does not actually extend the In it ia lContext class, its
only guarantee is that it implements the Context interface.

This Context object is a facade for the context that is created by the JNDI Provider. This JNDI
Provider's Context is called the backing Context. This is similar to the behavior of the In it ia lContext
class. However, in this specification, the facade can change or loose the backing Context due to the
dynamics of the OSGi framework.

The returned facade must also provides URL lookups, just like an Initial Context. However, the URL
Context lookup must be based on Object Factory services with a service property that defines the
scheme.

The environment properties used to create the backing Context are constructed in a similar way as
the environment properties of the Java SE JNDI, see Environment and Bundles on page 451.

The following sections define in detail how a JNDI Provider Context must be created and managed.

JNDI Services Specification Version 1.0 JNDI Context Manager Service

OSGi Enterprise Release 7 Page 451

126.3.1 Environment and Bundles
The Java SE JNDI looks for a file in $JAVAHOME/l ib/ jndi .propert ies , see Environment on page 449.
A JNDI Implementation must not use this information but it must use a resource in the bundle that
uses the JNDI Context Manager service. The order is therefore:

1. Properties set in the environment Hashtable object given in the constructor argument (if any) of
the In it ia lContext class.

2. Properties from the Java System Properties
3. A properties resource from the bundle that uses the service called / jndi .propert ies .

The following four properties do not overwrite other properties but are merged:

• java.naming.factory.object
• java.naming.factory.state
• java.naming.factory.control
• java.naming.factory.ur l .pkgs

These property values are considered lists and the ultimate value used by the JNDI Providers is tak-
en by merging the values found in each stage into a single colon separated list. For more informa-
tion see [3] JNDI Standard Property Names.

The environment consists of the merged properties. This environment is then passed to the Initial
Context Factory Builder for the creation of an Initial Context Factory.

126.3.2 Context Creation
When a client calls one of the newInit ia lContext (or newInit ia lDirContext) methods, the JNDI Con-
text Manager service must construct an object that implements the Context interface based on the
environment properties. All factory methods in the In it ia lContextFactory and In it ia lContextFacto-
ryBui lder classes take a Hashtable object with the environment as an argument, see Environment and
Bundles on page 451.

The caller normally provides a specific property in the environment that specifies the class name of
a provider class. This property is named:

java.naming.factory.initial

The algorithm to find the provider of the requested Context can differ depending on the presence or
absence of the java.naming.factory. init ia l property in the environment.

In the following sections the cases for presence or absence of the java.naming.factory. init ia l prop-
erty are described. Several steps in these algorithm iterate over a set of available services. This iter-
ation must always take place in service ranking order. Service ranking order follows the ordering of
the service.ranking service property, which is the highest service.ranking value, or when equal, the
lowest service. id value.

Exception handling in the following steps is as follows:

• If an Exception is thrown by an Initial Context Factory Builder service, then this Exception must
be logged but further ignored.

• Exceptions thrown by the In it ia lContextFactory objects when creating a Context must be
thrown to the caller.

126.3.2.1 Implementation Class Present in Environment

If the implementation class is specified, a JNDI Provider is searched in the service registry with the
following steps, which stop when a backing Context can be created:

JNDI Context Manager Service JNDI Services Specification Version 1.0

Page 452 OSGi Enterprise Release 7

1. Find a service in ranking order that has a name matching the given implementation class name
as well as the In it ia lContextFactory class name. The searching must take place through the Bun-
dle Context of the requesting bundle but must not require that the requesting bundle imports
the package of the implementation class. If such a matching Initial Context Factory service is
found, it must be used to construct the Context object that will act as the backing Context.

2. Get all the Initial Context Factory Builder services. For each such service, in ranking order:
• Ask the Initial Context Factory Builder service to create a new In it ia lContextFactory object. If

this is nul l then continue with the next service.
• Create the Context with the found Initial Context Factory and return it.

3. If no backing Context could be found using these steps, then the JNDI Context Manager service
must throw a No Initial Context Exception.

126.3.2.2 No Implementation Class Specified

If the environment does not contain a value for the java.naming.factory. init ia l property then the fol-
lowing steps must be used to find a backing Context object.

1. Get all the Initial Context Factory Builder services. For each such service, in ranking order, do:
• Ask the Initial Context Factory Builder service to create a new In it ia lContextFactory object. If

this is nul l , then continue with the next service.
• Create the backing Context object with the found Initial Context Factory service and return

it.
2. Get all the Initial Context Factory services. For each such service, in ranking order, do:

• Ask the Initial Context Factory service to create a new Context object. If this is nul l then con-
tinue with the next service otherwise create a new Context with the created Context as the
backing Context.

3. If no Context has been found, an initial Context is returned without any backing. This returned
initial Context can then only be used to perform URL based lookups.

126.3.3 Rebinding
A JNDI Provider can be added or removed to the service registry at any time because it is an OSGi
service; OSGi services are by their nature dynamic. When a JNDI Provider unregisters an Initial Con-
text Factory that was used to create a backing service then the JNDI Context Manager service must
remove the association between any returned Contexts and their now invalid backing Contexts.

The JNDI Context Manager service must try to find a replacement whenever it is accessed and no
backing Context is available. However, if no such replacement can be found the called function
must result in throwing a No Initial Context Exception.

126.3.4 Life Cycle and Dynamism
When a client has finished with a Context object, then the client must close this Context object
by calling the close method. When a Context object is closed, the resources held by the JNDI Im-
plementation on the client's behalf for that Context must all be released. Releasing these resources
must not affect other, independent, Context objects returned to the same client.

If a client ungets the JNDI Context Manager service, all the Context objects returned through that
service instance must automatically be closed by the JNDI Context Manager. When the JNDI Con-
text Manager service is unregistered, the JNDI Context Manager must automatically close all Con-
texts held.

For more information about life cycle issues, see also Life Cycle Mismatch on page 459.

JNDI Services Specification Version 1.0 JNDI Provider Admin service

OSGi Enterprise Release 7 Page 453

126.4 JNDI Provider Admin service
JNDI provides a general object conversion service, see Object and Reference Conversion on page 449.
For this specification, the responsibility of the static method on the NamingManager getObject In-
stance is replaced with the JNDI Provider Admin service. The JNDIProviderAdmin interface provides
the following methods that can be used to convert a description object to an object:

• getObject Instance(Object,Name,Context,Map) - Used by Context implementations to convert a
description object to another object.

• getObject Instance(Object,Name,Context,Map,Attr ibutes) - Used by a Dir Context implementa-
tions to convert a description object to another object.

In either case, the first argument is an object, called the description. JNDI allows a number of dif-
ferent Java types here. When either method is called, the following algorithm is followed to find
a matching Object Factory to find/create the requested object. This algorithm is identical for both
methods, except that the call that takes the Attr ibutes argument consults Dir Object Factory services
first and then Object Factory services while the method without the Attributes parameter only con-
sults Object Factory services.

1. If the description object is an instance of Referenceable , then get the corresponding Reference
object and use this as the description object.

2. If the description object is not a Reference object then goto step 5.
3. If a factory class name is specified, the JNDI Provider Admin service uses its own Bundle Context

to search for a service registered under the Reference's factory class name. If a matching Object
Factory is found then it is used to create the object from the Reference object and the algorithm
stops here.

4. If no factory class name is specified, iterate over all the Reference object's Str ingRefAddrs objects
with the address type of URL . For each matching address type, use the value to find a matching
URL Context, see URL Context Provider on page 455, and use it to recreate the object. See the
Naming Manager for details. If an object is created then it is returned and the algorithm stops
here.

5. Iterate over the Object Factory Builder services in ranking order. Attempt to use each such ser-
vice to create an ObjectFactory or DirObjectFactory instance. If this succeeds (non nul l) then use
this ObjectFactory or DirObjectFactory instance to recreate the object. If successful, the algo-
rithm stops here.

6. If the description was a Reference and without a factory class name specified, or if the descrip-
tion was not of type Reference, then attempt to convert the object with each Object Factory ser-
vice (or Dir Object Factory service for directories) service in ranking order until a non-nul l value
is returned.

7. If no ObjectFactory implementations can be located to resolve the given description object, the
description object is returned.

If an Exception occurs during the use of an Object Factory Builder service then this exception
should be logged but must be ignored. If, however, an Exception occurs during the calling of a found
ObjectFactory or DirObjecFactory object then this Exception must be re-thrown to the caller of the
JNDI Provider Admin service.

126.5 JNDI Providers
JNDI Providers can be registered by registering an appropriate service. These services are consulted
by the JNDI Implementation for creating a Context as well as creating/finding/converting general
objects.

JNDI Providers JNDI Services Specification Version 1.0

Page 454 OSGi Enterprise Release 7

126.5.1 Initial Context Factory Builder Provider
An Initial Context Factory Builder provider is asked to provide an Initial Context Factory when no
implementation class is specified or no such implementation can be found. An Initial Context Fac-
tory Builder service can be used by containers for other bundles to control the initial Context their
applications receive.

An Initial Context Factory Builder provider must register an Initial Context Factory Builder ser-
vice. The service.ranking property defines the iteration ordering of multiple Initial Context Factory
Builder services. Implementations must be careful to correctly provide defaults.

For example, a container could use a thread local variable to mark the stack for a specific applica-
tion. The implementation of the Initial Context Factory Builder can then detect specific calls from
this application. To make the next code example work, an instance must be registered as an Initial
Context Factory Builder service.

public class Container implements InitialContextFactoryBuilder {
 ThreadLocal<Application> apps;

 void startApp(final Application app) {
 Thread appThread = new Thread(app.getName()) {
 public void run() {
 apps.set(app);
 app.run();
 }}}

 public InitialContextFactory
 createInitialContextFactory(Hashtable<?,?> ht) {
 final Application app = apps.get();
 if (app == null)
 return null;

 return new InitialContextFactory() {
 public Context getInitialContext(Hashtable<?,?>env) {
 return app.getContext(env);
 }
 };
 } }

126.5.2 Initial Context Factory Provider
An Initial Context Factory provides Contexts of a specific type. For example, those contexts allow
communications with an LDAP server. An Initial Context Factory Provider must register the its Ini-
tial Context Factory service under the following names:

• Implementation Class - An Initial Context Factory provider must register a service under the name
of the implementation class. This allows the JNDI Context Manager to find implementations
specified in the environment properties.

• Initial Context Factory - As a general Initial Context Factory. If registered as such, it can be consult-
ed for a default Initial Context. Implementations must be careful to only return a Context when
the environment properties are appropriate. See No Implementation Class Specified on page 452

An Initial Context Factory service can create both DirContext as well as Context objects.

For example, SUN JREs for Java SE provide an implementation of a Context that can answer DNS
questions. The name of the implementation class is a well known constant. The following class can
be used with Declarative Services to provide a lazy implementation of a DNS Context:

JNDI Services Specification Version 1.0 JNDI Providers

OSGi Enterprise Release 7 Page 455

public class DNSProvider implements InitialContextFactory{
 public Context createInitialContextFactory(Hashtable<?,?>env) throws
 NamingException {
 try {
 Class<InitialContextFactory> cf = (Class<InitialContextFactory>)
 l.loadClass("com.sun.jndi.dns.DnsContextFactory");
 InitialContextFactory icf = cf.newInstance();
 return icf.createInitialContextFactory(env);
 } catch(Throwable t) {
 return null;
 }
 }
}

126.5.3 Object Factory Builder Provider
An Object Factory Builder provider must register an Object Factory Builder service. Such a service
can be used to provide ObjectFactory and/or DirObjectFactory objects. An Object Factory Builder
service is requested for such an object when no specific converter can be found. This service can be
leveraged by bundles that act as a container for other bundles to control the object conversion for
their subjects.

126.5.4 Object Factory Provider
An Object Factory provider can participate in the conversion of objects. It must register a service un-
der the following names:

• Implementation Class - A service registered under its implementation class can be leveraged by a
description that is a Reference object. Such an object can contain the name of the factory class.
The implementation class can implement the DirObjectFactory interface or the ObjectFactory
interface.

• Object Factory - The ObjectFactory interface is necessary to ensure class space consistency.
• Dir Object Factory - If the Object Factory provider can accept the additional Attributes argument

in the getObject Instance method of the JNDI Provider Admin service than it must also register
as a Dir Object Factory service.

126.5.5 URL Context Provider
A URL Context Factory is a special type of an Object Factory service. A URL Context Factory must be
registered as an Object Factory service with the following service property:

• osgi . jndi .ur l .scheme - The URL scheme associated with this URL Context, for example acme . The
scheme must not contain the colon (' : ' \u003A).

A URL Context is used for URL based operations on an initial Context. For example, a lookup to
acme:foo/javax.sql .DataSource must not use the provider based lookup mechanism of the backing
Context but instead causes a lookup for the requested URL Context. A URL Context also provides a
secondary mechanism for restoring Reference objects.

When an initial Context returned by the JNDI Context Manager service is given a URL based opera-
tion, it searches in the service registry for an Object Factory service that is published with the URL
scheme property that matches the scheme used from the lookup request.

It then calls the getInstance method on the Object Factory service with the following parameters:

• Object - Should be either a Str ing , Str ing[] , or nul l .
• Name - must be nul l
• Context - must be nul l

OSGi URL Scheme JNDI Services Specification Version 1.0

Page 456 OSGi Enterprise Release 7

• Hashtable - The environment properties.

Calling the getInstance method must return a Context object. This context is then used to perform
the lookup.

The life cycle of the Object Factory used to create the URL Context is tied to the JNDI context that
was used to perform the URL based JNDI operation. By the time JNDI context is closed any Object-
Factory objects held to process the URL lookups must be released (unget).

126.5.6 JRE Context Providers
The Java Runtime Environment (JRE) defines a number of default naming providers., see Built-In
JNDI Providers on page 450. These naming providers are not OSGi aware, but are commonly used
and are provided by the JRE. These naming providers rely on the NamingManager class for object
conversion and finding URL Contexts.

The JRE default providers are made available by the JNDI Implementation. This JNDI Implementa-
tion must register a built-in Initial Context Factory Builder service that is capable of loading any In i-
t ia lContextFactory classes of the JRE providers.

When this built-in Initial Context Factory Builder is called to create an In it ia lContextFactory ob-
ject it must look in the environment properties that were given as an argument and extract the
java.naming.factory. init ia l property; this property contains the name of the class of a provider. The
built-in Initial Context Factory Builder then must use the bootstrap class loader to load the given
In it ia lContextFactory class and creates a new instance with the no arguments constructor and re-
turn it. If this fails, it must return nul l . This mechanism will allow loading of any built-in providers.

This built-in Initial Context Factory Builder service must be registered with no service.ranking prop-
erty. This will give it the default ranking and allows other providers to override the default.

126.6 OSGi URL Scheme
A URL scheme is available that allows JNDI based applications to access services in the service reg-
istry, see Services and State on page 458 about restrictions on these services. The URL scheme is
specified as follows:

service ::= 'osgi:service/' query
query ::= jndi-name | qname ('/' filter)?
jndi-name ::= <any string>

No spaces are allowed between the terms.

This OSGi URL scheme can be used to perform a lookup of a single matching service using the in-
terface name and filter. The URL Context must use the owning bundle to perform the service queries.
The owning bundle is the bundle that requested the initial Context from the JNDI Context Manager
service or received its Context through the In it ia lContext class. The returned objects must not be in-
compatible with the class space of the owning bundle.

The lookup for a URL with the osgi : scheme and service path returns the service with highest
service.ranking and the lowest service. id . This scheme only allows a single service to be found. Mul-
tiple services can be obtained with the osgi : scheme and servicel ist path:

servicelist ::= 'osgi:servicelist/' query?

If this osgi :servicel ist scheme is used from a lookup method then a Context object is returned in-
stead of a service object. Calling the l istBindings method will produce a NamingEnumeration object
that provides Binding objects. A Binding object contains the name, class of the service, and the ser-
vice object. The bound object is the service object contained in the given Context.

JNDI Services Specification Version 1.0 OSGi URL Scheme

OSGi Enterprise Release 7 Page 457

When the Context class l ist method is called, the Naming Enumeration object provides a NameClas-
sPair object. This NameClassPair object will include the name and class of each service in the Con-
text. The l ist method can be useful in cases where a client wishes to iterate over the available ser-
vices without actually getting them. If the service itself is required, then l istBindings method should
be used.

If multiple services matched the criteria listed in the URL, there would be more than one service
available in the Context, and the corresponding Naming Enumeration would contain the same
number of services.

If multiple services match, a call to l istBindings on this Context would return a list of bindings
whose name are a string with the service. id number, for example:

1283

Thus the following lookup is valid:

osgi:servicelist/javax.sql.DataSource/(&(db=mydb)(version=3.1))

A service can provide a JNDI service name if it provides the following service property:

• osgi . jndi .service.name - An alternative name that the service can be looked up by when the osgi :
URL scheme is used.

If a service is published with a JNDI service name then the service matches any URL that has this
service name in the place of interface . For example, if the JNDI service name is foo , then the follow-
ing URL selects this service:

osgi:service/foo

Using a JNDI service name that can be interpreted as an interface name must be avoided, if this hap-
pens the result is undefined.

A JNDI client can also obtain the Bundle Context of the owning bundle by using the osgi : scheme
namespace with the f ramework/bundleContext name. The following URL must return the Bundle
Context of the owning bundle:

osgi:framework/bundleContext

After the NamingEnumeration object has been used it must be closed by the client. Implementations
must then unget any gotten services or perform other cleanup.

126.6.1 Service Proxies
The OSGi URL Context handles the complexities by hiding the dynamic nature of OSGi. The OS-
Gi URL Context must handle the dynamics by proxying the service objects. This proxy must imple-
ment the interface given in the URL. If the JNDI service name instead of a class name is used, then
all interfaces under which the service is registered must be implemented. If an interface is not com-
patible with the owning bundle's class space then it must not be implemented on the proxy, it must
then be ignored. If this results in no implemented interfaces then an Illegal Argument Exception
must be thrown.

Interfaces can always be proxied but classes are much harder. For this reason, an implementation is
free to throw an Illegal Argument Exception when a class is used in the URL or in one of the regis-
tration names.

Getting the actual service object can be delayed until the proxy is actually used to call a method. If
a method is called and the actual service has been unregistered, then the OSGi URL Context must
attempt to rebind it to another service that matches the criteria given in the URL the next time it is

Traditional Client Model JNDI Services Specification Version 1.0

Page 458 OSGi Enterprise Release 7

called. When no alternative service is available, a Service Exception with the UNREGISTERED type
code must be thrown. Services obtained with the osgi : URL scheme must therefore be stateless be-
cause the rebinding to alternative services is not visible to the caller; there are no listeners defined
for this rebinding, see Services and State on page 458.

If the reference was looked up using osgi :servicel ist then proxies must still be used, however, these
proxies must not rebind when their underlying service is unregistered. Instead, they must throw a
Service Exception with the UNREGISTERED type whenever the proxy is used and the proxied service
is no longer available.

126.6.2 Services and State
A service obtained through a URL Context lookup is proxied. During the usage of this service, the
JNDI Implementation can be forced to transparently rebind this service to another instance. The
JNDI specification is largely intended for portability. For this reason, it has no mechanism architect-
ed to receive notifications about this rebinding. The client code is therefore unable to handle the dy-
namics.

The consequence of this model is that stateful services require extra care because applications can-
not rely on the fact that they always communicate with the same service. Virtually all OSGi speci-
fied services have state.

126.7 Traditional Client Model
A JNDI Implementation must at startup register the In it ia lContextFactoryBui lder object and the
ObjectFactoryBui lder object with the NamingManager class. As described in JNDI Overview on page
448, the JNDI code in the JRE will then delegate all Context related requests to the JNDI Imple-
mentation. Setting these singletons allows code that is not aware of the OSGi framework to use
Context implementations from JNDI Providers registered with the OSGi service registry and that are
managed as bundles. The JNDI Implementation therefore acts as a broker to the service registry for
OSGi unaware code.

This brokering role can only be played when the JNDI Implementation can set the singletons as
specified in Naming Manager Singletons on page 449. If the JNDI Implementation cannot set these
singletons then it should log an error with the Log Service, if available. It can then not perform the
following sections.

126.7.1 New Initial Context
The client typically requests a Context using the following code:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
InitialContext ctx = new InitialContext(env);

The created In it ia lContext object is a facade for the real Context that is requested by the caller. It pro-
vides the bootstrapping mechanism for JNDI Provider plugability. In order to obtain the provider's
Context, the In it ia lContext class makes a call to the static getContext method on the NamingMan-
ager class. The JNDI code in the JRE then delegates any request for an initial Context object to the
JNDI Implementation through the registered In it ia lContextFactoryBui lder singleton. The JNDI
Implementation then determines the Bundle Context of the caller as described in Caller's Bundle
Context on page 459. If no such Bundle Context can be found, a No Initial Context Exception is
thrown to the caller. This Bundle Context must be from an ACTIVE bundle.

This Bundle Context is then used to get the JNDI Context Manager service. This service is then used
as described in Context Creation on page 451 to get an initial Context. This initial Context is then
used in the In it ia lContext object as the default initial context. In this specification this is normally

JNDI Services Specification Version 1.0 Traditional Client Model

OSGi Enterprise Release 7 Page 459

called the backing context. An In it ia lContext object constructed through an Initial Context Factory
Builder will not use the URL lookup mechanism, it must delegate all operations to the its backing
context. A Context obtained through the JNDI Context Manager provides the URL lookup behavior
instead.

126.7.2 Static Conversion
JNDI provides a general object conversion facility that is used by the URL Context and the process
of restoring an object from a Reference object, see Object and Reference Conversion on page 449. A
JNDI Implementation must take over this conversion by setting the static Object Factory Builder
singleton, see Naming Manager Singletons on page 449. Non-OSGi aware Context implementa-
tions will use the NamingManager static getObject Instance method for object conversion. This
method then delegates to the set singleton Object Factory Builder to obtain an ObjectFactory ob-
ject that understands how to convert the given description to an object. The JNDI Implementation
must return an Object Factory that understands the OSGi service registry. If the getObject Instance
method is called on this object it must use the same rules as defined for the JNDI Provider Admin
service getObject Instance(Object, javax.naming.Name,javax.naming.Context,Map) method, see
JNDI Provider Admin service on page 453. The Bundle Context that must be used with respect to
this service is the caller's Bundle Context, see Caller's Bundle Context on page 459. If the Bundle
Context is not found, the description object must be returned. The calling bundle must not be re-
quired to import the org.osgi .service. jndi package.

126.7.3 Caller's Bundle Context
The following mechanisms are used to determine the callers Bundle Context:

1. Look in the JNDI environment properties for a property called

osgi.service.jndi.bundleContext

If a value for this property exists then use it as the Bundle Context. If the Bundle Context has
been found stop.

2. Obtain the Thread Context Class Loader; if it, or an ancestor class loader, implements the
BundleReference interface, call its getBundle method to get the client's Bundle; then call get-
BundleContext on the Bundle object to get the client's Bundle Context. If the Bundle Context has
been found stop.

3. Walk the call stack until the invoker is found. The invoker can be the caller of the In it ia lContext
class constructor or the NamingManager or DirectoryManager getObject Instance methods.
• Get the class loader of the caller and see if it, or an ancestor, implements the BundleReference

interface.
• If a Class Loader implementing the BundleReference interface is found call the getBundle

method to get the clients Bundle; then call the getBundleContext method on the Bundle to
get the clients Bundle Context.

• If the Bundle Context has been found stop, else continue with the next stack frame.

126.7.4 Life Cycle Mismatch
The use of static access to the JNDI mechanisms, NamingManager and In it ia lContext class methods,
in the traditional client programming model produces several problems with regard to the OSGi life
cycle. The primary problem being that there is no dependency management in place when static
methods are used. These problems do not exist for the JNDI Context Manager service. Therefore, OS-
Gi applications are strongly encouraged to use the JNDI Context Manager service.

The traditional programming model approach relies on two JVM singletons in the Naming Manag-
er, see Naming Manager Singletons on page 449. The JNDI Implementation bundle must set both
singletons before it registers its JNDI Context Manager service and JNDI Provider Admin service.
However, in OSGi there is no defined start ordering, primarily because bundles can be updated at

Security JNDI Services Specification Version 1.0

Page 460 OSGi Enterprise Release 7

any moment in time and will at such time not be available to provide their function anyway. For
this reason, OSGi bundles express their dependencies with services.

The lack of start ordering means that a bundle could create an In it ia lContext object before the JNDI
Implementation has had the chance to set the static Initial Context Factory Builder singleton. This
means that the JNDI implementation inside the JRE will provide its default behavior and likely have
to throw an exception. A similar exception is thrown for the Object Factory Builder singleton.

There is a also a (small) possibility that a client will call new Init ia lContext() after the singletons
have been set, but before the JNDI Context Manager and JNDI Provider Admin services have been
registered. This specification requires that these services are set after the singletons are set. In this
race condition the JNDI Implementation should throw a No Initial Context Exception, explaining
that the JNDI services are not available yet.

126.8 Security

126.8.1 JNDI Implementation
A JNDI Implementation may wish to assert that the user of the provider has some relevant Java 2 se-
curity permission. Since the JNDI implementation is an intermediary between the JNDI client and
provider this means that the JNDI implementation needs to have any permissions required to access
any JNDI Provider. As a result the JNDI implementation needs All Permission. This will result in the
JNDI clients permissions being checked to see if it has the relevant permission to access the JNDI
Provider.

The JNDI Implementation must make any invocation to access these services in a doPriv i ledged
check. A JNDI client must therefore not be required to have the following permissions, which are
needed by a JNDI Implementation:

ServicePermission ..ObjectFactory REGISTER,GET
ServicePermission ..DirObjectFactory REGISTER,GET
ServicePermission ..ObjectFactoryBuilder REGISTER,GET
ServicePermission ..InitialContextFactory REGISTER,GET
ServicePermission ..InitialContextFactoryBuilder REGISTER,GET
ServicePermission ..JNDIProviderAdmin REGISTER,GET

The JNDI Implementation bundle must have the appropriate permissions to install the In it ia lCon-
textFactoryBui lder and ObjectFactoryBui lder instances using the appropriate methods on the Nam-
ingManager class. This requires the following permission:

RuntimePermission "setFactory"

126.8.2 JNDI Clients
A JNDI client using the JNDI Context Manager service must have the following permissions:

ServicePermission ..JNDIContextManager GET

Obtaining a reference to a JNDI Context Manager service should be considered a privileged opera-
tion and should be guarded by permissions.

126.8.3 OSGi URL namespace
A JNDI client must not be able to obtain services or a Bundle Context that the client bundle would
not be able to get via the core OSGi API. To allow a client to use the osgi namespace to get a service
the bundle must have the corresponding Service Permission. When using the osgi namespace to
obtain the Bundle Context the client bundle must have Admin Permission for the Bundle Context.

JNDI Services Specification Version 1.0 org.osgi.service.jndi

OSGi Enterprise Release 7 Page 461

These permissions must be enforced by the osgi URL namespace handler. If there is no proper per-
mission, the implementation must throw a Name Not Found Exception to prevent exposing the ex-
istence of such services.

126.9 org.osgi.service.jndi

JNDI Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jndi ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jndi ; vers ion="[1.0,1.1)"

126.9.1 Summary

• JNDIConstants - Constants for the JNDI implementation.
• JNDIContextManager - This interface defines the OSGi service interface for the JNDICon-

textManager.
• JNDIProviderAdmin - This interface defines the OSGi service interface for the JNDIProviderAd-

min service.

126.9.2 public class JNDIConstants
Constants for the JNDI implementation.

Concurrency Immutable

126.9.2.1 public static final String BUNDLE_CONTEXT = "osgi.service.jndi.bundleContext"

This JNDI environment property can be used by a JNDI client to indicate the caller's BundleContext.
This property can be set and passed to an InitialContext constructor. This property is only useful in
the "traditional" mode of JNDI.

126.9.2.2 public static final String JNDI_SERVICENAME = "osgi.jndi.service.name"

This service property is set on an OSGi service to provide a name that can be used to locate the ser-
vice other than the service interface name.

126.9.2.3 public static final String JNDI_URLSCHEME = "osgi.jndi.url.scheme"

This service property is set by JNDI Providers that publish URL Context Factories as OSGi Services.
The value of this property should be the URL scheme that is supported by the published service.

126.9.3 public interface JNDIContextManager
This interface defines the OSGi service interface for the JNDIContextManager. This service provides
the ability to create new JNDI Context instances without relying on the InitialContext constructor.

Concurrency Thread-safe

126.9.3.1 public Context newInitialContext() throws NamingException

□ Creates a new JNDI initial context with the default JNDI environment properties.

org.osgi.service.jndi JNDI Services Specification Version 1.0

Page 462 OSGi Enterprise Release 7

Returns an instance of javax.naming.Context

Throws NamingException– upon any error that occurs during context creation

126.9.3.2 public Context newInitialContext(Map<String, ?> environment) throws NamingException

environment JNDI environment properties specified by caller

□ Creates a new JNDI initial context with the specified JNDI environment properties.

Returns an instance of javax.naming.Context

Throws NamingException– upon any error that occurs during context creation

126.9.3.3 public DirContext newInitialDirContext() throws NamingException

□ Creates a new initial DirContext with the default JNDI environment properties.

Returns an instance of javax.naming.directory.DirContext

Throws NamingException– upon any error that occurs during context creation

126.9.3.4 public DirContext newInitialDirContext(Map<String, ?> environment) throws NamingException

environment JNDI environment properties specified by the caller

□ Creates a new initial DirContext with the specified JNDI environment properties.

Returns an instance of javax.naming.directory.DirContext

Throws NamingException– upon any error that occurs during context creation

126.9.4 public interface JNDIProviderAdmin
This interface defines the OSGi service interface for the JNDIProviderAdmin service. This service
provides the ability to resolve JNDI References in a dynamic fashion that does not require calls to
NamingManager.getObject Instance() . The methods of this service provide similar reference resolu-
tion, but rely on the OSGi Service Registry in order to find ObjectFactory instances that can convert
a Reference to an Object. This service will typically be used by OSGi-aware JNDI Service Providers.

Concurrency Thread-safe

126.9.4.1 public Object getObjectInstance(Object refInfo, Name name, Context context, Map<String, ?>
environment) throws Exception

refInfo Reference info

name the JNDI name associated with this reference

context the JNDI context associated with this reference

environment the JNDI environment associated with this JNDI context

□ Resolve the object from the given reference.

Returns an Object based on the reference passed in, or the original reference object if the reference could not
be resolved.

Throws Exception– in the event that an error occurs while attempting to resolve the JNDI reference.

126.9.4.2 public Object getObjectInstance(Object refInfo, Name name, Context context, Map<String, ?> environment,
Attributes attributes) throws Exception

refInfo Reference info

name the JNDI name associated with this reference

context the JNDI context associated with this reference

environment the JNDI environment associated with this JNDI context

JNDI Services Specification Version 1.0 References

OSGi Enterprise Release 7 Page 463

attributes the naming attributes to use when resolving this object

□ Resolve the object from the given reference.

Returns an Object based on the reference passed in, or the original reference object if the reference could not
be resolved.

Throws Exception– in the event that an error occurs while attempting to resolve the JNDI reference.

126.10 References

[1] Java Naming and Directory Interface
http://docs.oracle.com/javase/6/docs/technotes/guides/jndi/index.html

[2] Java Naming and Directory Interface Tutorial from Sun Microsystems
http://download.oracle.com/javase/6/docs/technotes/guides/jndi/index.html

[3] JNDI Standard Property Names
http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/Context.html

http://docs.oracle.com/javase/6/docs/technotes/guides/jndi/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jndi/index.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/Context.html

References JNDI Services Specification Version 1.0

Page 464 OSGi Enterprise Release 7

JPA Service Specification Version 1.1 Introduction

OSGi Enterprise Release 7 Page 465

127 JPA Service Specification

Version 1.1

127.1 Introduction
The Java Persistence API (JPA) is a specification that sets a standard for persistently storing objects in
enterprise and non-enterprise Java based environments. JPA provides an Object Relational Mapping
(ORM) model that is configured through persistence descriptors. This Java Persistence Service speci-
fication defines how persistence units can be published in an OSGi framework, how client bundles
can find these persistence units, how database drivers are found with the Data Service Specification for
JDBC™ Technology on page 437, as well as how JPA providers can be made available within an OSGi
framework.

Applications can be managed or they can be unmanaged. Managed applications run inside a Java EE
Container and unmanaged applications run in a Java SE environment. The managed case requires a
provider interface that can be used by the container, while in the unmanaged case the JPA provider
is responsible for supporting the client directly. This specification is about the unmanaged model
of JPA except in the areas where the managed model is explicitly mentioned. Additionally, multiple
concurrent providers for the unmanaged case are not supported.

127.1.1 Essentials

• Dependencies - There must be a way for persistence clients, if they so require, to manage their de-
pendencies on a compatible persistence unit.

• Compatibility - The Persistence Unit service must be able to function in non-managed mode ac-
cording to existing standards and interfaces outlined in the JPA specification.

• Modularity - Persistent classes and their accompanying configuration can exist in a separate bun-
dle from the client that is operating on them using the Persistence Unit service.

• JDBC - Leverage the Data Service Specification for JDBC™ Technology on page 437 for access to the
database.

127.1.2 Entities

• JPA - The Java Persistence API, [3] JPA 2.1.
• JPA Provider - An implementation of JPA, providing the Persistence Provider and JPA Services to

Java EE Containers and Client Bundles.
• Interface Bundle - A bundle containing the interfaces and classes in the javax.persistence name-

space (and its sub-namespaces) that are defined by the JPA specification.
• Persistence Bundle - A bundle that includes, a Meta-Persistence header, one or more Persistence De-

scriptor resources, and the entity classes specified by the Persistence Units in those resources.
• Client Bundle - The bundle that uses the Persistence Bundle to retrieve and store objects.
• Persistence Descriptor - A resource describing one or more Persistence Units.
• Persistence Unit - A named configuration for the object-relational mappings and database access as

defined in a Persistence Descriptor.
• Entity Manager - The interface that provides the control point of retrieving and persisting objects

in a relational database based on a single Persistence Unit for a single session.

Introduction JPA Service Specification Version 1.1

Page 466 OSGi Enterprise Release 7

• Entity Manager Factory - A service that can create Entity Managers based on a Persistence Unit for
different sessions.

• Entity Manager Factory Builder - A service that can build an Entity Manager Factory for a specific
Persistence Unit with extra configuration parameters.

• Managed Client - A Client Bundle that is managed by a Container
• Static Client - A Client that uses the static factory methods in the Persistence class instead of ser-

vices.
• Static Persistence - The actor that enables the use of the Persistence class static factory methods to

obtain an Entity Manager Factory.
• JDBC Provider - The bundle providing a Data Source Factory service.

Figure 127.1 JPA Service overview

JPA Provider Impl

Client Impl

Container Impl

Entity Classes
Impl

Persistence
Provider

Entity
Manager
Factory

Persistence
Descriptor

ManagedClient
Impl

unit
name

*

*

Static Persistence
Impl

Persistence

Static Client Impl

Data Source Factory

Entity
Manager
Factory
Builder

osgi.unit.name=...
osgi.unit.version=...
osgi.unit.provider=...

in
je

ct
s

127.1.3 Dependencies
This specification requires a minimum JPA version of 2.1. Implementations may choose to support
newer versions of JPA, for example version 2.2, but must offer the JavaJPA contract at version 2.1 as
well as any future versions that they support.

127.1.4 Synopsis
A JPA Provider tracks Persistence Bundles; a Persistence Bundle contains a Meta-Persistence mani-
fest header. This manifest header enumerates the Persistence Descriptor resources in the Persistence
Bundle. Each resource's XML schema is defined by the JPA specification. The JPA Provider reads the
resource accordingly and extracts the information for one or more Persistence Units. For each found
Persistence Unit, the JPA Provider registers an Entity Manager Factory Builder service. If the database

JPA Service Specification Version 1.1 JPA Overview

OSGi Enterprise Release 7 Page 467

is defined in the Persistence Unit, then the JPA Provider registers an Entity Manager Factory service
during the availability of the corresponding Data Source Factory.

The identification of these services is handled through a number of service properties. The Entity
Manager Factory service is named by the standard JPA interface, the Builder version is OSGi specific;
it is used when the Client Bundle needs to create an Entity Manager Factory based on configuration
properties.

A Client Bundle that wants to persist or retrieve its entity classes depends on an Entity Manager Fac-
tory (Builder) service that corresponds to a Persistence Unit that lists the entity classes. If such a ser-
vice is available, the client can use this service to get an Entity Manager, allowing the client to re-
trieve and persist objects as long as the originating Entity Manager Factory (Builder) service is regis-
tered.

In a non-OSGi environment, it is customary to get an Entity Manager Factory through the Persis-
tence class. This Persistence class provides a number of static methods that give access to any local-
ly available JPA providers. This approach is not recommended in an OSGi environment due to class
loading and start ordering issues. However, OSGi environments can support access through this sta-
tic factory with a Static Persistence bundle.

127.2 JPA Overview
Java Persistence API (JPA) is a specification that is part of [4] Java EE 5. This OSGi Specification is
based on [1] JPA 1.0, [2] JPA 2.0 and [3] JPA 2.1. This section provides an overview of JPA as specified in
the JCP. The purpose of this section is to introduce the concepts behind JPA and define the terminol-
ogy that will be used in the remainder of the chapter.

The purpose of JPA is to simplify access to relational databases for applications on the object-orient-
ed Java platform. JPA provides support for storing and retrieving objects in a relational database. The
JPA specification defines in detail how objects are mapped to tables and columns under the full con-
trol of the application. The core classes involved are depicted in Figure 127.2.

Figure 127.2 JPA Client View

Client CodeEntity Class
Entity Class

Entity Manager
Factory

Entity Manager Connection

Data SourcePersistence
Descriptor

persists
with

created by

mapped by

db

db

mappings for
Mapping
Descriptor

db

from

The JPA specifications define a number of concepts that are defined in this section for the purpose of
this OSGi specification. However, the full syntax and semantics are defined in the JPA specifications.

127.2.1 Persistence
Classes that are stored and retrieved through JPA are called the entity classes. In this specification, the
concept of entity classes includes the embeddable classes, which are classes that do not have any per-
sistent identity, and mapped super classes that allow mappings, but are not themselves persistent.
Entity classes are not required to implement any interface or extend a specific superclass, they are
Plain Old Java Objects (POJOs). It is the responsibility of the JPA Provider to connect to a database
and map the store and retrieve operations of the entity classes to their tables and columns. For per-

JPA Overview JPA Service Specification Version 1.1

Page 468 OSGi Enterprise Release 7

formance reasons, the entity classes are sometimes enhanced. This enhancement can take place dur-
ing build time, deploy time, or during class loading time. Some enhancements use byte code weav-
ing, some enhancements are based on sub-classing.

The JPA Provider cannot automatically perform its persistence tasks; it requires configuration infor-
mation. This configuration information is stored in the Persistence Descriptor. A Persistence Descrip-
tor is an XML file according of one of the two following namespaces:

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd

The JPA standard Persistence Descriptor must be stored in META-INF/persistence.xml . It is usually
in the same class path entry (like a JAR or directory) as the entity classes.

The JPA Provider parses the Persistence Descriptor and extracts one or more Persistence Units. A Per-
sistence Unit includes the following aspects:

• Name - Every Persistence Unit must have a name to identify it to clients. For example: Account-
ing .

• Provider Selection - Restriction to a specific JPA Provider, usually because there are dependencies in
the application code on provider specific functionality.

• JDBC Driver Selection - Selects the JDBC driver, the principal and the credentials for selecting and
accessing a relational database. See JDBC Access in JPA on page 470.

• Properties - Standard and JPA Provider specific properties.

The object-relational mappings are stored in special mapping resources or are specified in annota-
tions.

A Persistence Unit can be complete or incomplete. A complete Persistence Unit identifies the database
driver that is needed for the Persistence Unit, though it does not have to contain the credentials. An
incomplete Persistence Unit lacks this information.

The relations between the class path, its entries, the entity classes, the Persistence Descriptor and
the Persistence Unit is depicted in Figure 127.3 on page 468.

Figure 127.3 JPA Configuration

Class path entry
(JAR/directory)

Entity Classes

Persistence
Descriptor
persistence.xml

Persistence Unit

JDBC Driver

lists
1 * 1 0,1 1 *

contains contains

depends on
*

0,1

Class Path

persisted by
* *

*

JPA recognizes the concept of a persistence root. The persistence root is the root of the JAR (or directo-
ry) on the class path that contains the META-INF/persistence.xml resource.

127.2.2 JPA Provider
The JPA specifications provide support for multiple JPA Providers in the same application. An Ap-
plication selects a JPA Provider through the Persistence class, using static factory methods. One of
these methods accepts a map with configuration properties. Configuration properties can override in-
formation specified in a Persistence Unit or these properties add new information to the Persistence
Unit.

JPA Service Specification Version 1.1 JPA Overview

OSGi Enterprise Release 7 Page 469

The default implementation of the Persistence class discovers providers through the Java EE ser-
vices model, this model requires a text resource in the class path entry called:

 META-INF/services/ javax.persistence.PersistenceProvider

This text resource contains the name of the JPA Provider implementation class.

The Persistence class createEntityManagerFactory method provides the JPA Provider with the
name of a Persistence Unit. The JPA Provider must then scan the class path for any META-INF/
persistence.xml entries, these are the available Persistence Descriptors. It then extracts the Persis-
tence Units to find the requested Persistence Unit. If no such Persistence Unit can be found, or the
JPA Provider is restricted from servicing this Persistence Unit, then nul l is returned. The Persistence
class will then continue to try the next found or registered JPA Provider.

A Persistence Unit can restrict JPA Providers by specifying a JPA Provider class, this introduces a
provider dependency. The specified JPA Provider class must implement the PersistenceProvider inter-
face. This implementation class name must be available from the JPA Provider's documentation. JPA
Providers that do not own the specified JPA Provider class must ignore such a Persistence Unit.

Otherwise, if the Persistence Unit is not restricted, the JPA Provider is assigned to this Persistence
Unit; it must be ready to provide an EntityManagerFactory object when the application requests
one.

The JPA Provider uses the Persistence Unit, together with any additional configuration properties,
to construct an Entity Manager Factory. The application then uses this Entity Manager Factory to con-
struct an Entity Manager, optionally providing additional configuration properties. The Entity Man-
ager then provides the operations for the application to store and retrieve entity classes from the
database.

The additional configuration properties provided with the creation of the Entity Manager Factory or
the Entity Manager are often used to specify the database driver and the credentials. This allows the
Persistence Unit to be specified without committing to a specific database, leaving the choice to the
application at runtime.

The relations between the application, Entity Manager, Entity Manager Factory and the JPA Provider
are depicted in Figure 127.4 on page 469.

Figure 127.4 JPA Dynamic Model

Entity Manager Entity Manager
Factory

JPA Provider

Persistence Unit

uses
1 * * 1 * 1

implemented
by

Application

Data Source
Factory

created
by

provides db
connections

*

1 1

1

discovers

Persistence
Descriptor

1

*

0,1 *
specified

by

1

*

127.2.3 Managed and Unmanaged
The JPA specifications make a distinction between a managed and an unmanaged mode. In the man-
aged mode the presence of a Java EE Container is assumed. Such a container provides many services
for its contained applications like transaction handling, dependency injection, etc. One of these as-

Bundles with Persistence JPA Service Specification Version 1.1

Page 470 OSGi Enterprise Release 7

pects can be the interface to the relational database. The JPA specifications therefore have defined a
special method for Java EE Containers to manage the persistence aspects of their Managed Clients.
This method is the createContainerEntityManagerFactory method on the PersistenceProvider in-
terface. This method is purely intended for Java EE Containers and should not be used in other envi-
ronments.

The other method on the PersistenceProvider interface is intended to be used by the Persistence
class static factory methods. The Persistence class searches for an appropriate JPA Provider by asking
all available JPA Providers to create an Entity Manager Factory based on configuration properties.
The first JPA Provider that is capable of providing an Entity Manager Factory wins. The use of these
static factory methods is called the unmanaged mode. It requires a JPA Provider to scan the class path
to find the assigned Persistence Units.

127.2.4 JDBC Access in JPA
A Persistence Unit is configured to work with a relational database. JPA Providers communicate
with a relational database through compliant JDBC database drivers. The database and driver para-
meters are specified in the Persistence Unit or configured during Entity Manager Factory or Entity
Manager creation with the configuration properties. The configuration properties for selecting a
database in non-managed mode were proprietary in JPA 1.0 but have been standardized in version
2.0 of JPA:

• javax.persistence. jdbc.dr iver - Fully-qualified name of the driver class
• javax.persistence. jdbc.ur l - Driver-specific URL to indicate database information
• javax.persistence. jdbc.user - User name to use when obtaining connections
• javax.persistence. jdbc.password - Password to use when obtaining connections

127.3 Bundles with Persistence
The primary goal of this specification is to simplify the programming model for bundles that need
persistence. In this specification there are two application roles:

• Persistence Bundle - A Persistence Bundle contains the entity classes and one or more Persistence
Descriptors, each providing one or more Persistence Units.

• Client Bundle -A Client Bundle contains the code that manipulates the entity classes and uses an
Entity Manager to store and retrieve these entity classes with a relational database. The Client
Bundle obtains the required Entity Manager(s) via a service based model.

These roles can be combined in a single bundle.

127.3.1 Services
A JPA Provider uses Persistence Units to provide Client Bundles with a configured Entity Manager
Factory service and/or an Entity Manager Factory Builder service for each assigned Persistence Unit:

• Entity Manager Factory service - Provides an EntityManagerFactory object that depends on a com-
plete Persistence Unit. That is, it is associated with a registered Data Source Factory service.

• Entity Manager Factory Builder service - The Entity Manager Factory Builder service provides the
capability of creating an EntityManagerFactory object with additional configuration properties.
The Entity Manager Factory Builder service also provides information about the JPA Provider
that will be used to create the EntityManagerFactory object.

These services are collectively called the JPA Services. Entity Managers obtained from such JPA Ser-
vices can only be used to operate on entity classes associated with their corresponding Persistence
Unit.

JPA Service Specification Version 1.1 Bundles with Persistence

OSGi Enterprise Release 7 Page 471

127.3.2 Persistence Bundle
A Persistence Bundle is a bundle that specifies the Meta-Persistence header, see Meta Persistence Header
on page 473. This header refers to one or more Persistence Descriptors in the Persistence Bundle.
Commonly, this is the META-INF/persistence.xml resource. This location is the standard for non-
OSGi environments, however an OSGi bundle can also use other locations as well as multiple re-
sources.

For example, the contents of a simple Persistence Bundle with a single Person entity class could look
like:

META-INF/
META-INF/MANIFEST.MF
OSGI-INF/address.xml
com/acme/Person.class

The corresponding manifest would then look like:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Meta-Persistence: OSGI-INF/address.xml
Bundle-SymbolicName: com.acme.simple.persistence
Bundle-Version: 3.2.4.200912231004

A Persistence Bundle is a normal bundle; it must follow all the rules of OSGi and can use all OSGi
constructs like Bundle-ClassPath, fragment bundles, import packages, export packages, etc. Howev-
er, there is one limitation: any entity classes must originate in the bundle's JAR, it cannot come from
a fragment. This requirement is necessary to simplify enhancing entity classes.

127.3.3 Client Bundles
A Client Bundle uses the entity classes from a Persistence Bundle to provide its required functional-
ity. To store and retrieve these entity classes a Client Bundle requires an Entity Manager that is con-
figured for the corresponding Persistence Unit.

An Entity Manager is intended to be used by a single session, it is not thread safe. Therefore, a client
needs an Entity Manager Factory to create an Entity Manager. In an OSGi environment, there are
multiple routes to obtain an Entity Manager Factory.

A JPA Provider must register an Entity Manager Factory service for each assigned Persistence Unit
that is complete. Complete means that it is a configured Persistence Unit, including the reference to
the relational database. The Entity Manager Factory service is therefore bound to a Data Source Fac-
tory service and Client Bundles should not attempt to rebind the Data Source Factory with the con-
figuration properties of the createEntityManager(Map) method. See Rebinding on page 478 for the
consequences. If the Data Source Factory must be bound by the Client Bundle then the Client Bun-
dle should use the Custom Configured Entity Manager on page 472.

The Entity Manager Factory service must be registered with the service properties as defined in Ser-
vice Registrations on page 475. These are:

• osgi .unit .name - (Str ing) The name of the Persistence Unit
• osgi .unit .vers ion - (Str ing) The version of the associated Persistence Bundle
• osgi .unit .provider - (Str ing) The implementation class name of the JPA Provider

The life cycle of the Entity Manager Factory service is bound to the Persistence Bundle, the JPA
Provider, and the selected Data Source Factory service.

A Client Bundle that wants to use an Entity Manager Factory service should therefore use an appro-
priate filter to select the Entity Manager Factory service that corresponds to its required Persistence

Bundles with Persistence JPA Service Specification Version 1.1

Page 472 OSGi Enterprise Release 7

Unit. For example, the following snippet uses Declarative Services, see Declarative Services Specifica-
tion on page 205, to statically depend on such a service:

<reference name="accounting"
 target="(&(osgi.unit.name=Accounting)(osgi.unit.version=3.2.*))"
 interface="javax.persistence.EntityManagerFactory"/>

127.3.4 Custom Configured Entity Manager
If a Client Bundle needs to provide configuration properties for the creation of an Entity Manager
Factory it should use the Entity Manager Factory Builder service. This can for example be used to pro-
vide the database selection properties when the Persistence Unit is incomplete or if the database se-
lection needs to be overridden. The Entity Manager Factory Builder service also provides informa-
tion about the JPA Provider that will be used to create the Entity Manager Factory. This information
can be used by the Client Bundle when determining what (if any) JPA Provider implementation spe-
cific configuration that the Client Bundle will provide.

The Entity Manager Factory Builder service's life cycle must not depend on the availability of any
Data Source Factory, even if a JDBC driver class name is specified in the Persistence Descriptor. The
Entity Manager Factory Builder service is registered with the same service properties as the corre-
sponding Entity Factory service, see Service Registrations on page 475.

The following methods are defined on the EntityManagerFactoryBui lder interface:

• createEntityManagerFactory(Map) - Returns a custom configured EntityManagerFactory in-
stance for the Persistence Unit associated with the service. Accepts a map with the configura-
tion properties to be applied during Entity Manager Factory creation. The method must return a
proper Entity Manager Factory or throw an Exception.

• getPersistenceProviderName() - Returns the name of the PersistenceProvider implementation
class used in Entity Manager Factory creation. This name will be the same as the value of the
JPA_UNIT_PROVIDER service property.

• getPersistenceProviderBundle() - Returns the bundle JPA Provider implementation bundle
which provides the PersistenceProvider . If the Persistence Provider was provided as an OSGi
service then this method must return the bundle which registered the service. Otherwise this
method must return the bundle which loaded the PersistenceProvider implementation class.

The createEntityManagerFactory method allows standard and vendor-specific properties to be
passed in and applied to the Entity Manager Factory being created. However, some properties cannot
be honored by the aforementioned method. For example, the javax.persistence.provider JPA prop-
erty, as a means to specify a specific JPA Provider at runtime, cannot be supported because the JPA
Provider has already been decided; it is the JPA Provider that registered the Entity Manager Factory
Builder service. A JPA Provider should throw an Exception if it recognizes the property but it cannot
use the property when specified through the builder. Unrecognized properties must be ignored.

Once an Entity Manager Factory is created the specified Data Source becomes associated with the
Entity Manager Factory. It is therefore not possible to re-associate an Entity Manager Factory with
another Data Source by providing different properties. A JPA Provider must throw an Exception
when an attempt is made to re-specify the database properties. See Rebinding on page 478 for fur-
ther information.

As an example, a sample snippet of a client that wants to operate on a persistence unit named Ac-
counting and pass in the JDBC user name and password properties is:

ServiceReference[] refs = context.getServiceReferences(
 EntityManagerFactoryBuilder.class.getName(),
 "(osgi.unit.name=Accounting)");
if (refs != null) {
 EntityManagerFactoryBuilder emfBuilder =

JPA Service Specification Version 1.1 Extending a Persistence Bundle

OSGi Enterprise Release 7 Page 473

 (EntityManagerFactoryBuilder) context.getService(refs[0]);
 if (emfBuilder != null) {
 Map<String,Object> props = new HashMap<String,Object>();
 props.put("javax.persistence.jdbc.user", userString);
 props.put("javax.persistence.jdbc.password",passwordString);
 EntityManagerFactory emf = emfBuilder.createEntityManagerFactory(props);
 EntityManager em = emf.createEntityManager();
 ...
}

The example does not handle the dynamic dependencies on the associated Data Source Factory ser-
vice.

127.3.4.1 Supported configuration properties

The [3] JPA 2.1 specification adds a significant number of standard property names. These properties
are used both for runtime control, and also for configuring JPA persistence units as they are created.

The EntityManagerFactoryBuilder service must support the defined property names as per the JPA
specification. In most cases this will be accomplished by passing the values directly to the Persis-
tence Provider, but in some cases it may require further action from the JPA Service implementa-
tion.

127.4 Extending a Persistence Bundle
A Persistence Bundle is identified by its Meta-Persistence manifest header that references a number
of Persistence Descriptor resources. Persistence bundles must be detected by a JPA Provider. The JPA
Provider must parse any Persistence Descriptors in these bundles and detect the assigned Persistence
Units. For each assigned Persistence Unit, the JPA Provider must register an Entity Manager Factory
Builder service when the Persistence Bundle is ready, see Ready Phase on page 475.

For complete and assigned Persistence Units, the JPA Provider must find the required Data Source
Factory service based on the driver name. When the Persistence Bundle is ready and the selected Da-
ta Source Factory is available, the JPA Provider must have an Entity Manager Factory service regis-
tered that is linked to that Data Source Factory.

When the Persistence Bundle is stopped (or the JPA Provider stops), the JPA Provider must close all
connections and cleanup any resources associated with the Persistence Bundle.

This process is outlined in detail in the following sections.

127.4.1 Class Space Consistency
A JPA Provider must ignore Persistence Bundles that are in another class space for the
javax.persistence.* packages. Such a JPA Provider cannot create JPA Services that would be visible
and usable by the Client Bundles.

127.4.2 Meta Persistence Header
A Persistence Bundle is a bundle that contains the Meta-Persistence header. If this header is not
present, then this specification does not apply and a JPA Provider should ignore the corresponding
bundle.

The persistence root of a Persistence Unit is the root of the Persistence Bundle's JAR

The Meta-Persistence header has a syntax of:

Meta-Persistence ::= (jar-path (',' jar-path)*)?
jar-path ::= path ('!/' spath)?

Extending a Persistence Bundle JPA Service Specification Version 1.1

Page 474 OSGi Enterprise Release 7

spath ::= path // must not start with solidus ('/' \u002F)

The header may include zero or more comma-separated jar-paths , each a path to a Persistence De-
scriptor resource in the bundle. Paths may optionally be prefixed with the solidus (' / ' \u002F) char-
acter. The JPA Provider must always include the META-INF/persistence.xml first if it is not one of the
listed paths. Wildcards in directories are not supported. The META-INF/persistence.xml is therefore
the default location for an empty header.

For example:

Meta-Persistence: META-INF/jpa.xml, persistence/jpa.xml

The previous example will instruct the JPA Provider to process the META-INF/persistence.xml re-
source first, even though it is not explicitly listed. The JPA Provider must then subsequently process
META-INF/jpa.xml and the persistence/jpa.xml resources.

The paths in the Meta-Persistence header must be used with the Bundle.getEntry() method, or a
mechanism with similar semantics, to obtain the corresponding resource. The getEntry method
does not force the bundle to resolve when still unresolved; resolving might interfere with the effi-
ciency of any required entity class enhancements. However, the use of the getEntry method implies
that fragment bundles cannot be used to contain Persistence Descriptors nor entity classes.

Paths in the Meta-Persistence header can reference JAR files that are nested in the bundle by using
the ! / jar : URL syntax to separate the JAR file from the path within the JAR, for example:

Meta-Persistence: embedded.jar!/META-INF/persistence.xml

This example refers to a resource in the embedded. jar resource, located in the META-INF directory of
embedded. jar .

The ! / splits the jar-path in a prefix and a suffix:

• Prefix - The prefix is a path to a JAR resource in the bundle.
• Suffix - The suffix is a path to a resource in the JAR identified by the prefix.

For example:

embedded.jar!/META-INF/persistence.xml
prefix: embedded.jar
suffix: META-INF/persistence.xml

It is not required that all listed or implied resources are present in the bundle's JAR. For example,
it is valid that the default META-INF/persistence.xml resource is absent. However, if no Persistence
Units are found at all then the absence of any Persistence Unit is regarded as an error that should be
logged. In this case, the Persistence Bundle is further ignored.

127.4.3 Processing
A JPA Provider can detect a Persistence Bundle as early as its installation time. This early detection
allows the JPA Provider to validate the Persistence Bundle as well as prepare any mechanisms to en-
hance the classes for better performance. However, this process can also be delayed until the bundle
is started.

The JPA Provider must validate the Persistence Bundle. A valid Persistence Bundle must:

• Have no parsing errors of the Persistence Descriptors
• Validate all Persistence Descriptors against their schemas
• Have at least one assigned Persistence Unit
• Have all entity classes mentioned in the assigned Persistence Units on the Persistence Bundle's

JAR.

JPA Service Specification Version 1.1 Extending a Persistence Bundle

OSGi Enterprise Release 7 Page 475

A Persistence Bundle that uses multiple providers for its Persistence Units could become incompati-
ble with future versions of this specification.

If any validation fails, then this is an error and should be logged. Such a bundle is ignored complete-
ly even if it also contains valid assigned Persistence Units. Only a bundle update can recover from
this state.

Persistence Units can restrict JPA Providers by specifying a provider dependency. JPA Providers that
do not own this JPA Provider implementation class must ignore such a Persistence Unit completely.
Otherwise, if the JPA Provider can service a Persistence Unit, it assigns itself to this Persistence Unit.

If after the processing of all Persistence Descriptors, the JPA Provider has no assigned Persistence
Units, then the JPA Provider must further ignore the Persistence Bundle.

127.4.4 Ready Phase
A Persistence Bundle is ready when its state is ACTIVE or, when a lazy activation policy is used,
STARTING . A JPA Provider must track the ready state of Persistence Bundles that contain assigned
Persistence Units.

While a Persistence Bundle is ready, the JPA Provider must have, for each assigned Persistence Unit,
an Entity Manager Factory Builder service registered to allow Client Bundles to create new Entity-
ManagerFactory objects. The JPA Provider must also register an Entity Manager Factory for each as-
signed and complete Persistence Unit that has its corresponding Data Source available in the service
registry.

The service registration process is asynchronous with the Persistence Bundle start because a JPA
Provider could start after a Persistence Bundle became ready.

127.4.5 Service Registrations
The JPA Services must be registered through the Bundle Context of the corresponding Persistence
Bundle to ensure proper class space consistency checks by the OSGi Framework.

JPA Services are always related to an assigned Persistence Unit. To identify this Persistence Unit and
the assigned JPA Provider, each JPA Service must have the following service properties:

• osgi .unit .name - (Str ing) The name of the Persistence Unit. This property corresponds to the
name attribute of the persistence-unit element in the Persistence Descriptor. It is used by Client
Bundles as the primary filter criterion to obtain a JPA Service for a required Persistence Unit.
There can be multiple JPA Services registered under the same osgi .unit .name , each representing
a different version of the Persistence Unit.

• osgi .unit .vers ion - (Str ing) The version of the Persistence Bundle, as specified in Bundle-Version
header, that provides the corresponding Persistence Unit. Client Bundles can filter their required
JPA Services based on a particular Persistence Unit version.

• osgi .unit .provider - (Str ing) The JPA Provider implementation class name that registered the
service. The osgi .unit .provider property allows Client Bundles to know the JPA Provider that is
servicing the Persistence Unit. Client Bundles should be careful when filtering on this proper-
ty, however, since the JPA Provider that is assigned a Persistence Unit may not be known by the
Client Bundle ahead of time. If there is a JPA Provider dependency, it is better to specify this de-
pendency in the Persistence Unit because other JPA Providers are then not allowed to assign such
a Persistence Unit and will therefore not register a service.

127.4.6 Registering the Entity Manager Factory Builder Service
Once the Persistence Bundle is ready, a JPA Provider must register an Entity Manager Factory Builder
service for each assigned Persistence Unit from that Persistence Bundle.

The Entity Manager Factory Builder service must be registered with the service properties listed in
Service Registrations on page 475. The Entity Manager Factory Builder service is registered under

Extending a Persistence Bundle JPA Service Specification Version 1.1

Page 476 OSGi Enterprise Release 7

the org.osgi .service. jpa.EntityManagerFactoryBui lder name. This interface is using the JPA pack-
ages and is therefore bound to one of the two supported versions, see Dependencies on page 466.

The Entity Manager Factory Builder service enables the creation of a parameterized version of an
Entity Factory Manager by allowing the caller to specify configuration properties. This approach is
necessary if, for example, the Persistence Unit is not complete.

127.4.7 Registering the Entity Manager Factory
A complete Persistence Unit is configured with a specific relational database driver, see JDBC Ac-
cess in JPA on page 470. A JPA Provider must have an Entity Manager Factory service registered for
each assigned and complete Persistence Unit when:

• The originating Persistence Bundle is ready, and
• A matching Data Source Factory service is available. Matching a Data Source Factory service to a

Persistence Unit is discussed in Database Access on page 477.

A JPA Provider must track the life cycle of the matching Data Source Factory service; while this ser-
vice is unavailable the Entity Manager Factory service must also be unavailable. Any active Entity
Managers created by the Entity Manager Factory service become invalid to use at that time.

The Entity Manager Factory service must be registered with the same service properties as described
for the Entity Manager Factory Builder service, see Service Registrations on page 475. It should be
registered under the following name:

 javax.persistence.EntityManagerFactory

The EntityManagerFactory interface is from the JPA packages and is therefore bound to one of the
two supported versions, see Dependencies on page 466.

An Entity Manager Factory is bound to a Data Source Factory service because its assigned Persis-
tence Unit was complete. However, a Client Bundle could still provide JDBC configuration prop-
erties for the createEntityManager(Map) method. This not always possible, see Rebinding on page
478.

In the case of an incomplete Persistence Unit no Entity Manager Factory can be initially registered,
however once configured using an Entity Manager Factory Builder service the JPA Service must reg-
ister the created Entity Manager Factory as a service. The registered service must include any sup-
plied configuration properties that match the recommended OSGi service property types as service
properties. The javax.persistence. jdbc.password property must be omitted from these service prop-
erties.

If the Entity Manager Factory Builder service is later used to change the configuration being used by
the Entity Manager Factory Service then the registered Entity Manager Factory service must be un-
registered and closed. The newly created Entity Manager Factory object must then be registered as a
service.

127.4.8 Stopping
If a Persistence Bundle is being stopped, then the JPA Provider must ensure that any resources allo-
cated on behalf of the Persistence Bundle are cleaned up and all open connections are closed. This
cleanup must happen synchronously with the STOPPING event. Any Exceptions being thrown
while cleaning up should be logged but must not stop any further clean up.

If the JPA Provider is being stopped, the JPA Provider must unregister all JPA Services that it regis-
tered through the Persistence Bundles and clean up as if those bundles were stopped.

127.4.9 Entity Manager Factory Life Cycle
The Entity Manager Factory object has a close method. This method closes the EntityManagerFac-
tory and all associated Entity Manager instances. As an OSGi framework is a multi-tenant environ-

JPA Service Specification Version 1.1 JPA Provider

OSGi Enterprise Release 7 Page 477

ment it should not be possible for one user of an Entity Manager Factory service to break the valid
usage of another. Therefore calls to the close method of the EntityManagerFactory registered in the
service registry must not close the Entity Manager Factory.

When an Entity Manager Factory Builder service is used to create an Entity Manager Factory the
same rules apply to the resulting Entity Manager Factory service, however the object returned by
the Entity Manager Factory Builder behaves differently. This object has a working close method
which must unregister the Entity Manager Factory service and close the Entity Manager Factory.
This allows callers of the Entity Manager Factory Builder to invalidate the Entity Manager Factories
that they create if, for example, a configuration changes, or a Data Source becomes invalid.

127.5 JPA Provider
JPA Providers supply the implementation of the JPA Services and the Persistence Provider service. It
is the responsibility of a JPA Provider to store and retrieve the entity classes from a relational data-
base. It is the responsibility of the JPA Provider to register a Persistence Provider and start tracking
Persistence Bundles, see Extending a Persistence Bundle on page 473.

127.5.1 Managed Model
A JPA Provider that supports running in managed mode should register a specific service for the Ja-
va EE Containers: the Persistence Provider service. The interface is the standard JPA Persistence-
Provider interface. See Dependencies on page 466 for the issues around the multiple versions that
this specification supports.

The service must be registered with the following service property:

• javax.persistence.provider - The JPA Provider implementation class name, a documented name
for all JPA Providers.

The Persistence Provider service enables a Java EE Container to find a particular JPA Provider. This
service is intended for containers only, not for Client Bundles because there are implicit assump-
tions in the JPA Providers about the Java EE environment. A Java EE Container must obey the life
cycle of the Persistence Provider service. If this service is unregistered then it must close all connec-
tions and clean up the corresponding resources.

127.5.2 Database Access
A Persistence Unit is configured to work with a relational database. JPA Providers must commu-
nicate with a relational database through a compliant JDBC database driver. The database and dri-
ver parameters are specified with properties in the Persistence Unit or the configuration properties
when a Entity Manager Factory Builder is used to build an Entity Manager Factory. All JPA Providers,
regardless of version, in an OSGi environment must support the following properties for database
access:

• javax.persistence. jdbc.dr iver - Fully-qualified name of the driver class.
• javax.persistence. jdbc.ur l - Driver-specific URL to indicate database information
• javax.persistence. jdbc.user - User name to use when obtaining connections
• javax.persistence. jdbc.password - Password to use when obtaining connections

There are severe limitations in specifying these properties after the Entity Manager Factory is creat-
ed for the first time, see Rebinding on page 478.

127.5.3 Data Source Factory Service Matching
Providers must use the javax.persistence. jdbc.dr iver property, as defined in JDBC Access in JPA on
page 470, to obtain a Data Source Factory service. The Data Source Factory is specified in Data Ser-

JPA Provider JPA Service Specification Version 1.1

Page 478 OSGi Enterprise Release 7

vice Specification for JDBC™ Technology on page 437. The javax.persistence. jdbc.dr iver property must
be matched with the value of the Data Source Factory service property named osgi . jdbc.dr iver.c lass .

The Data Source Factory service is registered with the osgi . jdbc.dr iver.c lass service property that
holds the class name of the driver. This property must match the javax.persistence. jdbc.dr iver ser-
vice property of the Persistence Unit.

For example, if the Persistence Unit specifies the com.acme.db.Driver database driver in the
javax.persistence. jdbc.dr iver property (or in the Persistence Descriptor property element), then the
following filter would select an appropriate Data Source Factory:

(&(objectClass=org.osgi.service.jdbc.DataSourceFactory)
 (osgi . jdbc.dr iver.c lass=com.acme.db.Driver))

Once the Data Source Factory is obtained, the JPA Provider must obtain a DataSource object. This
Data Source object must then be used for all relational database access.

In [1] JPA 1.0 the JPA JDBC properties were not standardized. JPA Providers typically defined a set
of JDBC properties, similar to those defined in JPA 2.0, to configure JDBC driver access. JPA 1.0 JPA
Providers must look up the Data Source Factory service first using the JPA 2.0 JDBC properties. If
these properties are not defined then they should fall back to their proprietary driver properties.

127.5.4 Rebinding
In this specification, the Entity Manager Factory service is only registered when the Persistence Unit
is complete and a matching Data Source Factory service is available. However, the API of the Entity
Manager Factory Builder allows the creation of an Entity Manager Factory with configuration prop-
erties. Those configuration properties could contain the JDBC properties to bind to another Data
Source Factory service than it had already selected.

This case must not be supported by a JPA Provider, an Illegal Argument Exception must be thrown.
If such a case would be supported then the life cycle of the Entity Manager Factory service would
still be bound to the first Data Source Factory. There would be no way for the JPA Provider to sig-
nal to the Client Bundle that the returned Entity Manager Factory is no longer valid because the re-
bound Data Source Factory was unregistered.

Therefore, when an Entity Manager Factory is being created using the Entity Manager Factory
Builder, a JPA Provider must verify that the new properties are compatible with the properties of the
already created Entity Manager Factory. If no, then an Exception must be thrown. If they are com-
patible, then an instance of the previous Entity Manager Factory should be returned.

127.5.5 Enhancing Entity Classes
JPA Providers may choose to implement the JPA specifications using various implementation ap-
proaches and techniques. This promotes innovation in the area, but also opens the door to limita-
tions and constraints arising due to implementation choices. For example, there are JPA Providers
that perform byte code weaving during the entity class loading. Dynamic byte code weaving re-
quires that the entity classes are not loaded until the JPA Provider is first able to intercept the load-
ing of the entity class and be given an opportunity to do its weaving. It also implies that the Persis-
tence Bundle and any other bundles that import packages from that bundle must be refreshed if the
JPA Provider needs to be changed.

This is necessary because the JPA Services are registered against the Bundle Contexts of the Persis-
tence Bundles and not the Bundle Context of the JPA Providers. Client Bundles must then unget the
service to unbind themselves from the uninstalled JPA Provider. However, since most JPA Providers
perform some kind of weaving or class transformation on the entity classes, the Persistence Bundle
will likely need to be refreshed. This will cause the Client Bundles to be refreshed also because they
depend on the packages of the entity classes.

JPA Service Specification Version 1.1 Static Access

OSGi Enterprise Release 7 Page 479

127.5.6 Class Loading
JPA Providers cannot have package dependencies on entity classes in Persistence Bundles because
they cannot know at install time what Persistence Bundles they will be servicing. However, when a
JPA Provider is servicing a Persistence Bundle, it must be able to load classes and resources from that
Persistence Bundle according to the OSGi bundle rules. To do this class loading it must obtain a class
loader that has the same visibility as the Persistence Bundle's bundle class loader. This will also al-
low it to load and manage metadata for the entity classes and resources for that Persistence Bundle's
assigned Persistence Units. These resources and entity classes must reside directly in the Persistence
Bundle, they must be accessed using the getEntry method. Entity classes and resources must not re-
side in fragments.

127.5.7 Validation
There is not yet an OSGi service specification defined for validation providers. If validation is re-
quired, the validation implementation will need to be included with the JPA Provider bundle.

127.6 Static Access
Non-managed client usage of JPA has traditionally been achieved through the Persistence class. In-
voking a static method on the Persistence class is a dependency on the returned JPA Provider that
cannot be managed by the OSGi framework.

However, such an unmanaged dependency is supported in this specification by the Static Persis-
tence bundle. This bundle provides backwards compatibility for programs that use existing JPA ac-
cess patterns. However, usage of this static model requires that the deployer ensures that the actors
needed are in place at the appropriate times by controlling the life cycles of all participating bun-
dles. The normal OSGi safe-guards and dependency handling do not work in the case of static access.

A Static Persistence Bundle must provide static access from the Persistence class to the JPA Services.

127.6.1 Access
There are two methods on the Persistence class:

• createEntityManagerFactory(Str ing)
• createEntityManagerFactory(Str ing,Map)

Both methods take the name of a Persistence Unit. The last method also takes a map that contains
extra configuration properties. To support the usage of the static methods on the Persistence class,
the implementation of the Persistence.createEntityManagerFactory method family must do a
lookup of one of the JPA Services associated with the selected Persistence Unit.

If no configuration properties are specified, the Static Persistence Bundle must look for an Entity
Manager Factory service with the osgi .unit .name property set to the given name. The default ser-
vice should be used because no selector for a version is provided. If no such service is available, nul l
must be returned. Provisioning of multiple versioned Persistence Units is not supported. Deployers
should ensure only a single version of a Persistence Unit with the same name is present in an OSGi
framework at any moment in time.

Otherwise, if configuration properties are provided, the Static Access implementation must look
for an Entity Manager Factory Builder service with the osgi .unit .name property set to the given Per-
sistence Unit name. If no such service exists, nul l must be returned. Otherwise, the default service
must be used to create an Entity Manager Factory with the given configuration properties. The re-
sult must be returned to the caller.

For service lookups, the Static Persistence Bundle must use its own Bundle Context, it must not at-
tempt to use the Bundle Context of the caller. All exceptions should be passed to the caller.

Capabilities JPA Service Specification Version 1.1

Page 480 OSGi Enterprise Release 7

The class space of the Entity Manager Factory and the class space of the client cannot be enforced
to be consistent by the framework because it is the Persistence class that is doing the lookup of the
service, and not the actual calling Client Bundle that will be using the Entity Manager Factory. The
framework cannot make the connection and therefore cannot enforce that the class spaces corre-
spond. Deployers should therefore ensure that the involved class spaces are correctly wired.

127.7 Capabilities
The JPA Service Implementation must supply a number of capabilities for use by client bundles and
Deployers.

127.7.1 The Extender Capability
A JPA Service implementation must provide an extender which finds and extends persistence bun-
dles. The bundle providing this extender must provide a capability in the osgi .extender namespace
declaring an extender with the name JPA_CAPABILITY_NAME . This capability must also declare a us-
es constraint for the org.osgi .service. jpa and javax.persistence packages. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.jpa";
 version:Version="1.1";
 uses:="org.osgi.service.jpa,javax.persistence"

This capability must follow the rules defined for the osgi.extender Namespace on page 631.

All persistence bundles should require the osgi .extender capability from the JPA Service. This re-
quirement will wire the persistence bundle to the JPA Service implementation and ensure that the
JPA service is using the same API packages as the persistence bundle.

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.jpa)(version>=1.1)(!(version>=2.0)))"

This requirement can be easily generated using the RequireJPAExtender annotation.

The JPA extender must only process a persistence bundle's persistence units if the following is true:

• The bundle's wiring has a required wire for at least one osgi .extender capability with the name
osgi . jpa and the first of these required wires is wired to the JPA extender.

• The bundle's wiring has no required wire for an osgi .extender capability with the name osgi . jpa .

Otherwise, the JPA Service extender must not process the persistence bundle

127.7.2 The JPA Contract Capability
Previous versions of this specification recommended that the JPA API packages were versioned us-
ing the OSGi recommended semantic versioning policy. Whilst this would have been an excellent
way to ensure compatibility between JPA persistence bundles, client bundles, and JPA providers, in
practice few bundles followed this versioning policy. As a result the various actors in the JPA service
can easily be created with have clashing version ranges.

This problem is not isolated to JPA, and so a general solution was created called [5] Portable Java Con-
tract Definitions. These define a capability namespace called osgi .contract

In order to permit JPA clients to reliably work when paired with newer versions of JPA there needs
to be a defined contract upon which the clients and persistence units can rely, otherwise a JPA 1.0
compatible client cannot declare a dependency which also accepts the backward compatible JPA 2.0
API. For JPA the following three contracts exist:

JPA Service Specification Version 1.1 Security

OSGi Enterprise Release 7 Page 481

osgi.contract;osgi.contract=JavaJPA;version:Version=1;
 uses:="javax.persistence,javax.persistence.spi"

osgi.contract;osgi.contract=JavaJPA;version:Version=2;
 uses:="javax.persistence,javax.persistence.criteria,
 javax.persistence.metamodel,javax.persistence.spi"

osgi.contract;osgi.contract=JavaJPA;version:Version=2.1;
 uses:="javax.persistence,javax.persistence.criteria,
 javax.persistence.metamodel,javax.persistence.spi"

JPA API providers must declare the full set of API contract versions with which they are compatible.
As JPA API versions are backward compatible this will typically result in the provider exposing all
versions of a contract. Note that when a provider offers multiple versions of a contract then all of
the contract versions must be offered by a single capability. For example:

Export-Package: javax.persistence,javax.persistence.criteria,
 javax.persistence.metamodel,javax.persistence.spi
Provide-Capability: osgi.contract;osgi.contract=JavaJPA;
 version:List>Version<="2.1,2,1"; uses:="javax.persistence,
 javax.persistence.criteria,javax.persistence.metamodel,javax.persistence.spi"

The contract capability means that clients can safely import the API using the contract and no im-
port version. For example:

Import-Package: javax.persistence,javax.persistence.criteria
Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaJPA)(version=2.1))"

127.7.3 Service capabilities
The JPA Service implementation is responsible for registering both an EntityManagerFac-
toryBui lder service and a EntityManagerFactory service on behalf of the persistence bundle.
The persistence bundle should therefore provide two capabilities in the osgi .service name-
space, one representing the EntityManagerFactoryBui lder service, and another representing the
javax.persistence.EntityManagerFactory service. These capabilities must also declare uses con-
straints for the packages that they expose. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.jpa.EntityManagerFactoryBuilder";
 uses:="org.osgi.service.jpa",
 osgi.service;objectClass:List<String>=
 "javax.persistence.EntityManagerFactory";
 uses:="javax.persistence"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

127.8 Security
When Java permissions are enabled, the JPA service must perform the following security proce-
dures.

org.osgi.service.jpa JPA Service Specification Version 1.1

Page 482 OSGi Enterprise Release 7

127.8.1 Service Permissions
The JPA service is built upon the existing OSGi service infrastructure. This means that Service Per-
mission applies regarding the ability to publish services. A persistence bundle therefore must have
ServicePermission[<interface>, REGISTER] for both the EntityManagerFactory and EntityManager-
FactoryBui lder services.

If a persistence bundle specifies a complete persistence unit then the persistence bundle must either
have ServicePermission[<org.osgi .service. jdbc.DataSourceFactory>, GET] , or be able to directly
load the configured database driver.

Client bundles that wish to configure a persistence unit using the EntityManagerFactoryBui lder ser-
vice must have ServicePermission[<org.osgi .service. jpa.EntityManagerFactoryBui lder>, GET] . Fur-
thermore, if this service is used to configure an incomplete persistence unit with a database driver
name then it is the getter of the EntityManagerFactoryBui lder service whose permissions must be
checked when obtaining the DataSourceFactory service. If the caller of the EntityManagerFactory
Builder passes a ready constructed database Driver or DataSource then no permission check is re-
quired.

127.8.2 Required Admin Permission
The JPA service implementation requires AdminPermission[*,CONTEXT] because it needs access to
the bundle's Bundle Context object with the Bundle.getBundleContext() method.

127.9 org.osgi.service.jpa

JPA Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jpa; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jpa; vers ion="[1.1 ,1 .2)"

127.9.1 Summary

• EntityManagerFactoryBui lder - This service interface offers JPA clients the ability to create in-
stances of EntityManagerFactory for a given named persistence unit.

127.9.2 public interface EntityManagerFactoryBuilder
This service interface offers JPA clients the ability to create instances of EntityManagerFactory for
a given named persistence unit. A service instance will be created for each named persistence unit
and can be filtered by comparing the value of the osgi.unit.name property containing the persis-
tence unit name. This service is used specifically when the caller wants to pass in factory-scoped
properties as arguments. If no properties are being used in the creation of the EntityManagerFactory
then the basic EntityManagerFactory service should be used.

Provider Type Consumers of this API must not implement this type

127.9.2.1 public static final String JPA_CAPABILITY_NAME = "osgi.jpa"

The name of the JPA extender capability.

JPA Service Specification Version 1.1 org.osgi.service.jpa.annotations

OSGi Enterprise Release 7 Page 483

Since 1.1

127.9.2.2 public static final String JPA_SPECIFICATION_VERSION = "1.1"

The version of the extender capability for the JPA Service specification

Since 1.1

127.9.2.3 public static final String JPA_UNIT_NAME = "osgi.unit.name"

The name of the persistence unit.

127.9.2.4 public static final String JPA_UNIT_PROVIDER = "osgi.unit.provider"

The class name of the provider that registered the service and implements the JPA
javax.persistence.PersistenceProvider interface.

127.9.2.5 public static final String JPA_UNIT_VERSION = "osgi.unit.version"

The version of the persistence unit bundle.

127.9.2.6 public EntityManagerFactory createEntityManagerFactory(Map<String, Object> props)

props Properties to be used, in addition to those in the persistence descriptor, for configuring the Entity-
ManagerFactory for the persistence unit.

□ Return an EntityManagerFactory instance configured according to the properties defined in the cor-
responding persistence descriptor, as well as the properties passed into the method.

Returns An EntityManagerFactory for the persistence unit associated with this service. Must not be null.

127.9.2.7 public Bundle getPersistenceProviderBundle()

□ This method returns the Bundle which provides the PersistenceProvider implementation that is
used by this EntityManagerFactoryBuilder.

If the PersistenceProvider is provided as an OSGi service then this method must return the bundle
which registered the service. Otherwise this method must return the bundle which loaded the Per-
sistenceProvider implementation class.

Returns The Bundle which provides the PersistenceProvider implementation used by this EntityManager-
FactoryBuilder.

Since 1.1

127.9.2.8 public String getPersistenceProviderName()

□ This method returns the name of the PersistenceProvider implementation that is used by
this EntityManagerFactoryBuilder. The returned value will be the same as the value of the
JPA_UNIT_PROVIDER service property.

Returns the name of the PersistenceProvider implementation

Since 1.1

127.10 org.osgi.service.jpa.annotations

JPA Service Annotations Package Version 1.1.

This package contains annotations that can be used to require the JPA Service implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

References JPA Service Specification Version 1.1

Page 484 OSGi Enterprise Release 7

127.10.1 Summary

• RequireJPAExtender - This annotation can be used to require the JPA extender.

127.10.2 @RequireJPAExtender
This annotation can be used to require the JPA extender. It can be used directly, or as a meta-annota-
tion.

Retention CLASS

Target TYPE , PACKAGE

127.11 References

[1] JPA 1.0
http://jcp.org/en/jsr/summary?id=220

[2] JPA 2.0
http://jcp.org/en/jsr/summary?id=317

[3] JPA 2.1
http://jcp.org/en/jsr/summary?id=317

[4] Java EE 5
http://www.oracle.com/technetwork/java/javaee/tech/index.html

[5] Portable Java Contract Definitions
http://www.osgi.org/Specifications/ReferenceContract

127.12 Changes
• Added support for [3] JPA 2.1 in the API.
• Added support for standard [3] JPA 2.1 configuration properties when using the EntityManager-

FactoryBui lder . See Supported configuration properties on page 473
• Added methods to the EntityManagerFactoryBui lder so that users can query which JPA Provider

bundle is being used to create the EntityManagerFactory . See Custom Configured Entity Manager
on page 472

• Required that configuration overrides passed to the EntityManagerFactoryBui lder result in ser-
vice property updates to any related EntityManagerFactory service. See Registering the Entity Man-
ager Factory on page 476

• A number of Capabilities on page 480 have been defined to make it simpler to assemble and de-
ploy JPA applications.

http://jcp.org/en/jsr/summary?id=220
http://jcp.org/en/jsr/summary?id=317
http://jcp.org/en/jsr/summary?id=317
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.osgi.org/Specifications/ReferenceContract

Web Applications Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 485

128 Web Applications Specification

Version 1.0

128.1 Introduction
The Java EE Servlet model has provided the backbone of web based applications written in Java. Giv-
en the popularity of the Servlet model, it is desirable to provide a seamless experience for deploying
existing and new web applications to Servlet containers operating on the OSGi framework. Previ-
ously, the Http Service in the catalog of OSGi compendium services was the only model specified in
OSGi to support the Servlet programming model. However, the Http Service, as defined in that spec-
ification, is focused on the run time, as well as manual construction of the servlet context, and thus
does not actually support the standard Servlet packaging and deployment model based on the Web
Application Archive, or WAR format.

This specification defines the Web Application Bundle, which is a bundle that performs the same
role as the WAR in Java EE. A WAB uses the OSGi life cycle and class/resource loading rules instead
of the standard Java EE environment. WABs are normal bundles and can leverage the full set of fea-
tures of the OSGi framework.

Web applications can also be installed as traditional WARs through a manifest rewriting process.
During the install, a WAR is transformed into a WAB. This specification was based on ideas devel-
oped in [5] PAX Web Extender.

This Web Application Specification provides support for web applications written to the Servlet 2.5
specification, or later. Given that Java Server Pages, or JSPs, are an integral part of the Java EE web ap-
plication framework, this specification also supports the JSP 2.1 specification or greater if present.
This specification details how a web application packaged as a WAR may be installed into an OSGi
framework, as well as how this application may interact with, and obtain, OSGi services.

128.1.1 Essentials

• Extender - Enable the configuration of components inside a bundle based on configuration data
provided by the bundle developer.

• Services - Enable the use of OSGi services within a Web Application.
• Deployment - Define a mechanism to deploy Web Applications, both OSGi aware and non OSGi

aware, in the OSGi environment.
• WAR File Support - Transparently enhance the contents of a WAR's manifest during installation

to add any headers necessary to deploy a WAR as an OSGi bundle.

128.1.2 Entities

• Web Container - The implementation of this specification. Consists of a Web Extender, a Web URL
Handler and a Servlet and Java Server Pages Web Runtime environment.

• Web Application - A program that has web accessible content. A Web Application is defined by [2]
Java EE Web Applications.

• Web Application Archive (WAR) - The Java EE standard resource format layout of a JAR file that
contains a deployable Web Application.

• Web Application Bundle - A Web Application deployed as an OSGi bundle, also called a WAB.
• WAB - The acronym for a Web Application Bundle.

Introduction Web Applications Specification Version 1.0

Page 486 OSGi Enterprise Release 7

• Web Extender - An extender bundle that deploys the Web Application Bundle to the Web Run-
time based on the Web Application Bundle's state.

• Web URL Handler - A URL handler which transforms a Web Application Archive (WAR) to con-
form to the OSGi specifications during installation by installing the WAR through a special URL
so that it becomes a Web Application Bundle.

• Web Runtime - A Java Server Pages and Servlet environment, receiving the web requests and trans-
lating them to servlet calls, either from Web Application servlets or other classes.

• Web Component - A Servlet or Java Server Page (JSP).
• Servlet - An object implementing the Servlet interface; this is for the request handler model in the

Servlet Specification.
• Servlet Context - The model representing the Web Application in the Servlet Specification.
• Java Server Page (JSP) - A declarative, template based model for generating content through

Servlets that is optionally supported by the Web Runtime.
• Context Path - The URI path prefix of any content accessible in a Web Application.

Figure 128.1 Web Container Entities

Web URL Handler
Impl

Web Application

URL Stream
Handler Service
url.handler.protocol=webbundle

Web Extender
Impl

Web Runtime
Impl

Web ARchive

Event Admin

Web Container

invoke
servlets

install bundle

Servlet Context

web.xml

Web
Server

transformer

0,1

 g
et

 co
nt

en
t

co
nf

ig
ur

ed
 b

y

re
w

rit
es

m
an

ife
st

128.1.3 Dependencies
The package dependencies for the clients of this specification are listed in the following table.

Table 128.1 Dependency versions

Packages Export Version Client Import Range
javax.servlet 2.5 [2.5,3.0)
javax.servlet .http 2.5 [2.5,3.0)
javax.servlet . jsp.el 2.1 [2.1,3.0)
javax.servlet . jsp. jst l .core 1.2 [1.2,2.0)
javax.servlet . jsp. jst l .fmt 1.2 [1.2,2.0)
javax.servlet . jsp. jst l .sql 1 .2 [1.2,2.0)
javax.servlet . jsp. jst l .t lv 1.2 [1.2,2.0)
javax.servlet . jsp.resources 2.1 [2.1,3.0)

Web Applications Specification Version 1.0 Web Container

OSGi Enterprise Release 7 Page 487

Packages Export Version Client Import Range
javax.servlet . jsp.tagext 2.1 [2.1,3.0)
javax.servlet . jsp 2.1 [2.1,3.0)

JSP is optional for the Web Runtime.

128.1.4 Synopsis
The Web Application Specification is composed of a number of cooperating parts, which are imple-
mented by a Web Container. A Web Container consists of:

• Web Extender - Responsible for deploying Web Application Bundles (WAB) to a Web Runtime,
• Web Runtime - Provides support for Servlet and optionally for JSPs, and
• Web URL Handler - Provides on-the-fly enhancements of non-OSGi aware Web ARchives (WAR)

so that they can be installed as a WAB.

WABs are standard OSGi bundles with additional headers in the manifest that serve as deployment
instructions to the Web Extender. WABs can also contain the Java EE defined web.xml descriptor in
the WEB-INF/ directory. When the Web Extender detects that a WAB is ready the Web Extender de-
ploys the WAB to the Web Runtime using information contained in the web.xml descriptor and the
appropriate manifest headers. The Bundle Context of the WAB is made available as a Servlet Con-
text attribute. From that point, the Web Runtime will use the information in the WAB to serve con-
tent to any requests. Both dynamic as well as static content can be provided.

The Web URL Handler allows the deployment of an unmodified WAR as a WAB into the OSGi
framework. This Web URL Handler provides a URL stream handler with the webbundle: scheme. In-
stalling a WAR with this scheme allows the Web URL Handler to interpose itself as a filter on the in-
put stream of the contents of the WAR, transforming the contents of the WAR into a WAB. The Web
URL Handler rewrites the manifest by adding necessary headers to turn the WAR into a valid WAB.
Additional headers can be added to the manifest that serve as instructions to the Web Extender.

After a WAB has been deployed to the Web Runtime, the Web Application can interact with the OS-
Gi framework via the provided Bundle Context. The Servlet Context associated with this WAB fol-
lows the same life cycle as the WAB. That is, when the underlying Web Application Bundle is start-
ed, the Web Application is deployed to the Web Runtime. When the underlying Web Application
Bundle is stopped because of a failure or other reason, the Web Application is undeployed from the
Web Run-time.

128.2 Web Container
A Web Container is the implementation of this specification. It consists of the following parts:

• Web Extender - Detects Web Application Bundles (WAB) and tracks their life cycle. Ready WABs
are deployed to the Web Runtime.

• Web Runtime - A runtime environment for a Web Application that supports the [3] Servlet 2.5 spec-
ification and [4] JSP 2.1 specification or later. The Web Runtime receives web requests and calls the
appropriate methods on servlets. Servlets can be implemented by classes or Java Server Pages.

• Web URL Handler - A URL stream handler providing the webbundle: scheme. This scheme can be
used to install WARs in an OSGi framework. The Web URL Handler will then automatically add
the required OSGi manifest headers.

The extender, runtime, and handler can all be implemented in the same or different bundles and
use unspecified mechanisms to communicate. This specification uses the defined names of the sub-
parts as the actor; the term Web Container is the general name for this collection of actors.

Web Application Bundle Web Applications Specification Version 1.0

Page 488 OSGi Enterprise Release 7

128.3 Web Application Bundle
Bundles are the deployment and management entities under OSGi. A Web Application Bundle (WAB)
is deployed as an OSGi bundle in an OSGi framework, where each WAB provides a single Web Ap-
plication. A Web Application can make use of the [3] Servlet 2.5 specification and [4] JSP 2.1 specification
programming models, or later, to provide content for the web.

A WAB is defined as a normal OSGi bundle that contains web accessible content, both static and dy-
namic. There are no restrictions on bundles. A Web Application can be packaged as a WAB during
application development, or it can be transparently created at bundle install time from a standard
Web Application aRchive (WAR) via transformation by the Web URL Handler, see Web URL Handler
on page 492.

A WAB is a valid OSGi bundle and as such must fully describe its dependencies and exports (if any).
As Web Applications are modularized further into multiple bundles (and not deployed as WAR files
only) it is possible that a WAB can have dependencies on other bundles.

A WAB may be installed into the framework using the BundleContext. instal lBundle methods. Once
installed, a WAB's life cycle is managed just like any other bundle in the framework. This life cy-
cle is tracked by the Web Extender who will then deploy the Web Application to the Web Runtime
when the WAB is ready and will undeploy it when the WAB is no longer ready. This state is depicted
in Figure 128.2.

Figure 128.2 State diagram Web Application

DEPLOYING

init

collision resolved

DEPLOYED UNDEPLOYING

UNDEPLOYEDFAILED

Web Application
deployed to runtime

WAB or Web
Extender stopped

Web Application
no longer available

WAB started

failure

128.3.1 WAB Definition
A WAB is differentiated from non Web Application bundles through the specification of the addi-
tional manifest header:

Web-ContextPath ::= path

The Web-ContextPath header specifies the value of the Context Path of the Web Application. All
web accessible content of the Web Application is available on the web server relative to this Con-
text Path. For example, if the context path is /sales , then the URL would be something like: http://
www.acme.com/sales. The Context Path must always begin with a solidus (' / ' \u002F).

The Web Extender must not recognize a bundle as a Web Application unless the Web-ContextPath
header is present in its manifest and the header value is a valid path for the bundle.

A WAB can optionally contain a web.xml resource to specify additional configuration. This web.xml
must be found with the Bundle f indEntr ies method at the path:

Web Applications Specification Version 1.0 Web Application Bundle

OSGi Enterprise Release 7 Page 489

 WEB-INF/web.xml

The f indEntr ies method includes fragments, allowing the web.xml to be provided by a fragment. The
Web Extender must fully support a web.xml descriptor that specifies Servlets, Filters, or Listeners
whose classes are required by the WAB.

128.3.2 Starting the Web Application Bundle
A WAB's Web Application must be deployed while the WAB is ready. Deployed means that the Web
Application is available for web requests. Once deployed, a WAB can serve its web content on the
given Context Path. Ready is when the WAB:

• Is in the ACTIVE state, or
• Has a lazy activation policy and is in the STARTING state.

The Web Extender should ensure that serving static content from the WAB does not activate the
WAB when it has a lazy activation policy.

To deploy the WAB, the Web Extender must initiate the deploying of the Web Application into a
Web Runtime. This is outlined in the following steps:

1. Wait for the WAB to become ready. The following steps can take place asynchronously with the
starting of the WAB.

2. Post an org/osgi/service/web/DEPLOYING event. See Events on page 495.
3. Validate that the Web-ContextPath manifest header does not match the Context Path of any oth-

er currently deployed web application. If the Context Path value is already in use by another
Web Application, then the Web Application must not be deployed, and the deployment fails, see
Failure on page 490. The Web Extender should log the collision. If the prior Web Application
with the same Context Path is undeployed later, this Web Application should be considered as a
candidate, see Stopping the Web Application Bundle on page 491.

4. The Web Runtime processes deployment information by processing the web.xml descriptor, if
present. The Web Container must perform the necessary initialization of Web Components in
the WAB as described in the [3] Servlet 2.5 specification. This involves the following sub-steps in
the given order:
• Create a Servlet Context for the Web Application.
• Instantiate configured Servlet event listeners.
• Instantiate configured application filter instances etc.

The Web Runtime is required to complete instantiation of listeners prior to the start of execu-
tion of the first request into the Web Application by the Web Runtime. Attribute changes to the
Servlet Context and Http Session objects can occur concurrently. The Servlet Container is not
required to synchronize the resulting notifications to attribute listener classes. Listener classes
that maintain state are responsible for the integrity of the data and should handle this case ex-
plicitly.

If event listeners or filters are used in the web.xml , then the Web Runtime will load the corre-
sponding classes from the bundle activating the bundle if it was lazily started. Such a configura-
tion will therefore not act lazily.

5. Publish the Servlet Context as a service with identifying service properties, see Publishing the
Servlet Context on page 490.

6. Post an org/osgi/service/web/DEPLOYED event to indicate that the web application is now avail-
able. See Events on page 495.

If at any moment before the org/osgi/service/web/DEPLOYED event is published the deployment of
the WAB fails, then the WAB deployment fails, see Failure on page 490.

Web Application Bundle Web Applications Specification Version 1.0

Page 490 OSGi Enterprise Release 7

128.3.3 Failure
Any validation failures must prevent the Web Application from being accessible via HTTP, and
must result in a org/osgi/service/web/FAILED event being posted. See Events on page 495. The sit-
uation after the failure must be as if the WAB was never deployed.

128.3.4 Publishing the Servlet Context
To help management agents with tracking the state of Web Applications, the Web Extender must
register the Servlet Context of the WAB as a service, using the Bundle Context of the WAB. The
Servlet Context service must be registered with the service properties listed in the following table.

Table 128.2 Servlet Context Service Properties

Property Name Type Description
osgi .web.symbol icname Str ing The symbolic name for the Web Application

Bundle
osgi .web.version Str ing The version of the Web Application Bundle. If no

Bundle-Version is specified in the manifest then
this property must not be set.

osgi .web.contextpath Str ing The Context Path from which the WAB's content
will be served.

128.3.5 Static Content
A deployed WAB provides content on requests from the web. For certain access paths, this can serve
content from the resources of the web application: this is called static content. A Web Runtime must
use the Servlet Context resource access methods to service static content, the resource loading strat-
egy for these methods is based on the f indEntr ies method, see Resource Lookup on page 496. For
confidentiality reasons, a Web Runtime must not return any static content for paths that start with
one of the following prefixes:

WEB-INF/
OSGI-INF/
META-INF/
OSGI-OPT/

These protected directories are intended to shield code content used for dynamic content generation
from accidentally being served over the web, which is a potential attack route. In the servlet speci-
fication, the WEB-INF/ directory in the WAR is protected in such a way. However, this protection is
not complete. A dependent JAR can actually be placed outside the WEB-INF directory that can then
be served as static content. The same is true for a WAB. Though the protected directories must nev-
er be served over the web, there are no other checks required to verify that no content can be served
that is also available from the Bundle class path.

It is the responsibility of the author of the WAB to ensure that confidential information remains
confidential by placing it in one of the protected directories. WAB bundles should be constructed in
such a way that they do not accidentally expose code or confidential information. The simplest way
to achieve this is to follow the WAR model where code is placed in the WEB-INF/classes directory
and this directory is placed on the Bundle's class path as the first entry. For example:

Bundle-ClassPath: WEB-INF/classes, WEB-INF/lib/acme.jar

128.3.6 Dynamic Content
Dynamic content is content that uses code to generate the content, for example a servlet. This code
must be loaded from the bundle with the Bundle loadClass method, following all the Bundle class
path rules.

Web Applications Specification Version 1.0 Web Application Bundle

OSGi Enterprise Release 7 Page 491

Unlike a WAR, a WAB is not constrained to package classes and code resources in the WEB-INF/
classes directory or dependent JARs in WEB-INF/l ib/ only. These entries can be packaged in any way
that's valid for an OSGi bundle as long as such directories and JARs are part of bundle class path as
set with the Bundle-ClassPath header and any attached fragments. JARs that are specified in the Bun-
dle-ClassPath header are treated like JARs in the WEB-INF/l ib/ directory of the Servlet specification.
Similarly, any directory that is part of the Bundle-ClassPath header is treated like WEB-INF/classes
directory of the Servlet specification.

Like WARs, code content that is placed outside the protected directories can be served up to clients
as static content.

128.3.7 Content Serving Example
This example consists of a WAB with the following contents:

acme.jar:
 Bundle-ClassPath: WEB-INF/classes, LIB/bar.jar
 Web-ContextPath: /acme

 WEB-INF/lib/foo.jar
 LIB/bar.jar
 index.html
 favicon.ico

The content of the embedded JARs foo. jar and bar. jar is:

foo.jar: bar.jar:
 META-INF/foo.tld META-INF/bar.tld
 foo/FooTag.class bar/BarTag.class

Assuming there are no special rules in place then the following lists specifies the result of a number
of web requests for static content:

/acme/index.html acme.wab:index.html
/acme/favicon.ico acme.wab:favicon.ico
/acme/WEB-INF/lib/foo.jar not found because protecteddirectory
/acme/LIB/bar.jar acme.wab:LIB/bar.jar (code, but not protected)

In this example, the tag classes in bar. jar must be found (if JSP is supported) but the tag classes in
foo. jar must not because foo. jar is not part of the bundle class path.

128.3.8 Stopping the Web Application Bundle
A web application is stopped by stopping the corresponding WAB. In response to a WAB STOPPING
event, the Web Extender must undeploy the corresponding Web Application from the Servlet Con-
tainer and clean up any resources. This undeploying must occur synchronously with the WAB's
stopping event. This will involve the following steps:

1. An org/osgi/service/web/UNDEPLOYING event is posted to signal that a Web Application will
be removed. See Events on page 495.

2. Unregister the corresponding Servlet Context service
3. The Web Runtime must stop serving content from the Web Application.
4. The Web Runtime must clean up any Web Application specific resources as per servlet 2.5 speci-

fication.
5. Emit an org/osgi/service/web/UNDEPLOYED event. See Events on page 495.
6. It is possible that there are one or more colliding WABs because they had the same Context Path

as this stopped WAB. If such colliding WABs exists then the Web Extender must attempt to de-
ploy the colliding WAB with the lowest bundle id.

Web URL Handler Web Applications Specification Version 1.0

Page 492 OSGi Enterprise Release 7

Any failure during undeploying should be logged but must not stop the cleaning up of resources
and notification of (other) listeners as well as handling any collisions.

128.3.9 Uninstalling the Web Application Bundle
A web application can be uninstalled by uninstalling the corresponding WAB. The WAB will be
uninstalled from the OSGi framework.

128.3.10 Stopping of the Web Extender
When the Web Extender is stopped all deployed WABs are undeployed as described in Stopping the
Web Application Bundle on page 491. Although the WAB is undeployed it remains in the ACTIVE
state. When the Web Extender leaves the STOPPING state all WABs will have been undeployed.

128.4 Web URL Handler
The Web URL Handler acts as a filter on the Input Stream of an install operation. It receives the
WAB or WAR and it then generates a JAR that conforms to the WAB specification by rewriting the
manifest resource. This process is depicted in Figure 128.3.

Figure 128.3 Web URL Handler

Web URL Handler
Impl

URL Stream
Handler Service
url.handler.protocol=webbundle

Web ARchive
or

WAB

install bundle

= transformer

WAB

en
ha

nc
es

m
an

ife
st

When the Web Container bundle is installed it must provide the webbundle: scheme to the URL
class. The Web URL Handler has two primary responsibilities:

• WAB - If the source is already a bundle then only the Web-ContextPath can be set or overwritten.
• WAR - If the source is a WAR (that is, it must not contain any OSGi defined headers) then convert

the WAR into a WAB.

The Web URL Handler can take parameters from the query arguments of the install URL, see URL
Parameters on page 493.

The URL handler must validate query parameters, and ensure that the manifest rewriting results in
valid OSGi headers. Any validation failures must result in Bundle Exception being thrown and the
bundle install must fail.

Once a WAB is generated and installed, its life cycle is managed just like any other bundle in the
framework.

Web Applications Specification Version 1.0 Web URL Handler

OSGi Enterprise Release 7 Page 493

128.4.1 URL Scheme
The Web URL Handler's scheme is defined to be:

scheme ::= 'webbundle:' embedded '?' web-params
embedded ::= <embedded URL according to RFC 1738>
web-params ::= (web-param ('&' web-param)*)?
web-param ::= <key> '=' <value>

The web-param <key> and <value> as well as the <embedded ur l> must follow [6] Uniform Resource
Locators, RFC 1738 for their escaping and character set rules.A Web URL must further follow all the
rules of a URL. Whitespaces are not allowed between terms.

An example for a webbundle: URL:

webbundle:http://www.acme.com:8021/sales.war?Web-ContextPath=/sales

Any URL scheme understood by the framework can be embedded, such as an http: , or f i le : URL.
Some forms of embedded URL also contain URL query parameters and this must be supported. The
embedded URL most be encoded as a standard URL. That is, the control characters like colon (' : '
\u003A), solidus (' / ' \u002F), percent ('%' \u0025), and ampersand ('& ' \u0026) must not be encod-
ed. Thus the value returned from the getPath method may contain a query part. Any implementa-
tion must take care to preserve both the query parameters for the embedded URL, and for the com-
plete webbundle: URL. A question mark must always follow the embedded URL to simplify this pro-
cessing. The following example shows an HTTP URL with some query parameters:

webbundle:http://www.acme.com/sales?id=123?Bundle-SymbolicName=com.example&
 Web-ContextPath=/

128.4.2 URL Parsing
The URL object for a webbundle: URL must return the following values for the given methods:

• getProtocol - webbundle
• getPath - The complete embedded URL
• getQuery - The parameters for processing of the manifest.

For the following example:

webbundle:http://acme.com/repo?war=example.war?Web-ContextPath=/sales

The aforementioned methods must return:

• getProtocol - webbundle
• getPath - http://acme.com/repo?war=example.war
• getQuery - Web-ContextPath=/sales

128.4.3 URL Parameters
All the parameters in the webbundle: URL are optional except for the Web-ContextPath parameter.
The parameter names are case insensitive, but their values must be treated as case sensitive. Table
128.3 describes the parameters that must be supported by any webbundle: URL Stream handler. A
Web URL Handler is allowed to support additional parameters.

Table 128.3 Web bundle URL Parameters

Parameter Name Description
Bundle-Symbol icName The desired symbolic name for the resulting WAB.

Web URL Handler Web Applications Specification Version 1.0

Page 494 OSGi Enterprise Release 7

Parameter Name Description
Bundle-Version The version of the resulting WAB. The value of this parameter must

follow the OSGi versioning syntax.
Bundle-ManifestVersion The desired bundle manifest version. Currently, the only valid value

for this parameter is 2 .
Import-Package A list of packages that the war file depends on.
Web-ContextPath The Context Path from which the Servlet Container should serve con-

tent from the resulting WAB. This is the only valid parameter when
the input JAR is already a bundle. This parameter must be specified.

128.4.4 WAB Modification
The Web URL Handler can set or modify the Web-ContextPath of a WAB if the input source is al-
ready a bundle. It must be considered as a bundle when any of the OSGi defined headers listed in Ta-
ble 128.3 is present in the bundle.

For WAB Modification, the Web URL Handler must only support the Web-ContextPath parameter
and it must not modify any existing headers other than the Web-ContextPath. Any other parameter
given must result in a Bundle Exception.

128.4.5 WAR Manifest Processing
The Web URL Handler is designed to support the transparent deployment of Java EE Web ARchives
(WAR). Such WARs are ignorant of the requirements of the underlying OSGi framework that hosts
the Web Runtime. These WARs are not proper OSGi bundles because they do not contain the neces-
sary metadata in the manifest. For example, a WAR without a Bundle-ManifestVersion, Import-Pack-
age, and other headers cannot operate in an OSGi framework.

The Web URL Handler implementation copies the contents of the embedded URL to the output and
rewrites the manifest headers based on the given parameters. The result must be a WAB.

Any parameters specified must be treated as manifest headers for the web. The following manifest
headers must be set to the following values if not specified:

• Bundle-ManifestVersion - Must be set to 2.
• Bundle-Symbol icName - Generated in an implementation specific way.
• Bundle-ClassPath - Must consist of:

• WEB-INF/classes
• All JARs from the WEB-INF/l ib directory in the WAR. The order of these embedded JARs is un-

specified.
• If these JARs declare dependencies in their manifest on other JARs in the bundle, then these

jars must also be appended to the Bundle-ClassPath header. The process of detecting JAR de-
pendencies must be performed recursively as indicated in the Servlet Specification.

• Web-ContextPath - The Web-ContextPath must be specified as a parameter. This Context Path
should start with a leading solidus (' / ' \u002F). The Web URL handler must add the preceding
solidus it if it is not present.

The Web URL Handler is responsible for managing the import dependencies of the WAR. Imple-
mentations are free to handle the import dependencies in an implementation defined way. They can
augment the Import-Package header with byte-code analysis information, add a fixed set of clauses,
and/or use the DynamicImport-Package header as last resort.

Any other manifest headers defined as a parameter or WAR manifest header not described in this
section must be copied to the WAB manifest by the Web URL Handler. Such an header must not be
modified.

Web Applications Specification Version 1.0 Events

OSGi Enterprise Release 7 Page 495

128.4.6 Signed WAR files
When a signed WAR file is installed using the Web URL Handler, then the manifest rewriting
process invalidates the signatures in the bundle. The OSGi specification requires fully signed bun-
dles for security reasons, security resources in partially signed bundles are ignored.

If the use of the signing metadata is required, the WAR must be converted to a WAB during devel-
opment and then signed. In this case, the Web URL Handler cannot be used. If the Web URL Han-
dler is presented with a signed WAR, the manifest name sections that contain the resource's check
sums must be stripped out by the URL stream handler. Any signer files (*.SF and their correspond-
ing DSA/RSA signature files) must also be removed.

128.5 Events
The Web Extender must track all WABs in the OSGi framework in which the Web Extender is in-
stalled. The Web Extender must post Event Admin events, which is asynchronous, at crucial points
in its processing. The topic of the event must be one of the following values:

• org/osgi/service/web/DEPLOYING - The Web Extender has accepted a WAB and started the
process of deploying a Web Application.

• org/osgi/service/web/DEPLOYED - The Web Extender has finished deploying a Web Application,
and the Web Application is now available for web requests on its Context Path.

• org/osgi/service/web/UNDEPLOYING - The web extender started undeploying the Web Applica-
tion in response to its corresponding WAB being stopped or the Web Extender is stopped.

• org/osgi/service/web/UNDEPLOYED - The Web Extender has undeployed the Web Application.
The application is no longer available for web requests.

• org/osgi/service/web/FAILED - The Web Extender has failed to deploy the Web Application, this
event can be fired after the DEPLOYING event has fired and indicates that no DEPLOYED event
will be fired.

For each event topic above, the following properties must be published:

• bundle.symbol icName - (Str ing) The bundle symbolic name of the WAB.
• bundle. id - (Long) The bundle id of the WAB.
• bundle - (Bundle) The Bundle object of the WAB.
• bundle.version - (Version) The version of the WAB.
• context.path - (Str ing) The Context Path of the Web Application.
• t imestamp - (Long) The time when the event occurred
• extender.bundle - (Bundle) The Bundle object of the Web Extender Bundle
• extender.bundle. id - (Long) The id of the Web Extender Bundle.
• extender.bundle.symbol icName - (Str ing) The symbolic name of the Web Extender Bundle.
• extender.bundle.version - (Version) The version of the Web Extender Bundle.

In addition, the org/osgi/service/web/FAILED event must also have the following property:

• exception - (Throwable) If an exception caused the failure, an exception detailing the error that
occurred during the deployment of the WAB.

• col l is ion - (Str ing) If a name collision occurred, the Web-ContextPath that had a collision
• col l is ion.bundles - (Collect ion<Long>) If a name collision occurred, a collection of bundle ids

that all have the same value for the Web-ContextPath manifest header.

Interacting with the OSGi Environment Web Applications Specification Version 1.0

Page 496 OSGi Enterprise Release 7

128.6 Interacting with the OSGi Environment

128.6.1 Bundle Context Access
In order to properly integrate in an OSGi environment, a Web Application can access the OSGi ser-
vice registry for publishing its services, accessing services provided by other bundles, and listening
to bundle and service events to track the life cycle of these artifacts. This requires access to the Bun-
dle Context of the WAB.

The Web Extender must make the Bundle Context of the corresponding WAB available to the Web
Application via the Servlet Context osgi-bundlecontext attribute. A Servlet can obtain a Bundle
Context as follows:

BundleContext ctxt = (BundleContext)
 servletContext.getAttribute("osgi-bundlecontext");

128.6.2 Other Component Models
Web Applications sometimes need to inter-operate with services provided by other component
models, such as a Declarative Services or Blueprint. Per the Servlet specification, the Servlet Con-
tainer owns the life cycle of a Servlet; the life cycle of the Servlet must be subordinate to the life cy-
cle of the Servlet Context, which is only dependent on the life cycle of the WAB. Interactions be-
tween different bundles are facilitated by the OSGi service registry. This interaction can be managed
in several ways:

• A Servlet can obtain a Bundle Context from the Servlet Context for performing service registry
operations.

• Via the JNDI Specification and the osgi :service JNDI namespace. The OSGi JNDI specification
describes how OSGi services can be made available via the JNDI URL Context. It defines an
osgi :service namespace and leverages URL Context factories to facilitate JNDI integration with
the OSGi service registry.

Per this specification, it is not possible to make the Servlet life cycle dependent on the availability of
specific services. Any synchronization and service dependency management must therefore be done
by the Web Application itself.

128.6.3 Resource Lookup
The getResource and getResourceAsStream methods of the ServletContext interface are used
to access resources in the web application. For a WAB, these resources must be found accord-
ing to the f indEntr ies method, this method includes fragments. For the getResource and getRe-
sourceAsStream method, if multiple resources are found, then the first one must be used.

Since the getResource and getResourceAsStream methods do not support wildcards while the f ind-
Entr ies method does it is necessary to escape the wildcard asterisk ('* ' \u002A) with prefixing it
with a reverse solidus (' \ ' \u005C). This implies that a reverse solidus must be escaped with an extra
reverse solidus. For example, the path foo\bar* must be escaped to foo\\bar* .

The getResourcePaths method must map to the Bundle getEntryPaths method, its return type is a
Set and can not handle multiples. However, the paths from the getEntryPaths method are relative
while the methods of the getResourcePaths must be absolute.

For example, assume the following manifest for a bundle:

Bundle-ClassPath: localized, WEB-INF
...

This WAB has an attached fragment acme-de. jar with the following content:

Web Applications Specification Version 1.0 Security

OSGi Enterprise Release 7 Page 497

META-INF/MANIFEST.MF
localized/logo.png

The getResource method for local ized/logo.png uses the f indEntr ies method to find a resource in
the directory / local ized and the resource logo.png . Assuming the host bundle has no local ized/ di-
rectory, the Web Runtime must serve the logo.png resource from the acme-de. jar .

128.6.4 Resource Injection and Annotations
The Web Application web.xml descriptor can specify the metadata-complete attribute on the web-
app element. This attribute defines whether the web.xml descriptor is complete, or whether the class-
es in the bundle should be examined for deployment annotations. If the metadata-complete at-
tribute is set to true , the Web Runtime must ignore any servlet annotations present in the class files
of the Web Application. Otherwise, if the metadata-complete attribute is not specified, or is set to
fa lse , the container should process the class files of the Web Application for annotations, if support-
ed.

A WAB can make use of the annotations defined by [7] JSR 250 Common Annotations for the Java Plat-
form if supported by the Web Extender. Such a WAB must import the packages the annotations are
contained in. A Web Extender that does not support the use of JSR 250 annotations must not process
a WAB that imports the annotations package.

128.6.5 Java Server Pages Support
Java Server Pages (JSP) is a rendering technology for template based web page construction. This
specification supports [4] JSP 2.1 specification if available with the Web Runtime. The servlet element
in a web.xml descriptor is used to describe both types of Web Components. JSP components are de-
fined implicitly in the web.xml descriptor through the use of an implicit . jsp extension mapping, or
explicitly through the use of a jsp-group element.

128.6.6 Compilation
A Web Runtime compiles a JSP page into a Servlet, either during the deployment phase, or at the
time of request processing, and dispatches the request to an instance of such a dynamically created
class. Often times, the compilation task is delegated to a separate JSP compiler that will be respon-
sible for identifying the necessary tag libraries, and generating the corresponding Servlet. The con-
tainer then proceeds to load the dynamically generated class, creates an instance and dispatches the
servlet request to that instance.

Supporting in-line compilation of a JSP inside a bundle will require that the Web Runtime main-
tains a private area where it can store such compiled classes. The Web Runtime can leverage its pri-
vate bundle storage area. The Web Runtime can construct a special class loader to load generated JSP
classes such that classes from the bundle class path are visible to newly compiled JSP classes.

The JSP specification does not describe how JSP pages are dynamically compiled or reloaded. Vari-
ous Web Runtime implementations handle the aspects in proprietary ways. This specification does
not bring forward any explicit requirements for supporting dynamic aspects of JSP pages.

128.7 Security
The security aspects of this specification are defined by the [3] Servlet 2.5 specification.

128.8 References

[1] Java Enterprise Edition Release 5

References Web Applications Specification Version 1.0

Page 498 OSGi Enterprise Release 7

Java 1.5.0 Packages http://www.oracle.com/technetwork/java/javaee/tech/javaee5-jsp-135162.html

[2] Java EE Web Applications
http://www.oracle.com/technetwork/java/javaee/tech/webapps-138511.html

[3] Servlet 2.5 specification
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html

[4] JSP 2.1 specification
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html

[5] PAX Web Extender
http://team.ops4j.org/wiki/display/paxweb/Pax+Web

[6] Uniform Resource Locators, RFC 1738
http://www.ietf.org/rfc/rfc1738.txt

[7] JSR 250 Common Annotations for the Java Platform
http://jcp.org/aboutJava/communityprocess/pfd/jsr250/index.html

http://www.oracle.com/technetwork/java/javaee/tech/javaee5-jsp-135162.html
http://www.oracle.com/technetwork/java/javaee/tech/webapps-138511.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://team.ops4j.org/wiki/display/paxweb/Pax+Web
http://www.ietf.org/rfc/rfc1738.txt
http://jcp.org/aboutJava/communityprocess/pfd/jsr250/index.html

Coordinator Service Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 499

130 Coordinator Service Specification

Version 1.0

130.1 Introduction
The OSGi programming model is based on the collaboration of standard and custom components.
In such a model there is no central authority that has global knowledge of the complete application.
Though this lack of authority can significantly increase reusability (and robustness) there are times
when the activities of the collaborators must be coordinated. For example, a service that is repeated-
ly called in a task could optimize performance by caching intermediate results until it knew the task
was ended.

To know when a task involving multiple collaborators has ended is the primary purpose of the Co-
ordinator service specification. The Coordinator service provides a rendezvous for an initiator to
create a Coordination where collaborators can decide to participate. When the Coordination has
ended, all participants are informed.

This Coordinator service provides an explicit Coordination model, the Coordination is explicitly
passed as a parameter, and an implicit model where the Coordination is associated with the current
thread. Implicit Coordinations can be nested.

Coordinators share the coordination aspects of the resource model of transactions. However, the
model is much lighter-weight because it does not support any of the ACID properties.

130.1.1 Essentials

• Coordination - Provide a solution to allow multiple collaborators to coordinate the outcome of a
task initiated by an initiator.

• Initiator - An initiator must be able to initiate a coordination and control the final outcome.
• Participants - Participants in the task must be informed when the coordination has ended or failed

as well as being able to terminate the Coordination.
• Time-out - A Coordination should fail after a given time-out.
• Blocking - Provide support for blocking and serializing access to Participants.
• Nesting - It must be possible to nest Coordinations.
• Per Thread Model - Provide a per-thread current Coordination model.
• Variables - Provide a variable space per Coordination

130.1.2 Entities

• Coordinator - A service that can create and enumerate Coordinations.
• Coordination - Represents the ongoing Coordination.
• Initiator - The party that initiates a Coordination.
• Participant - A party that wants to be informed of the outcome of a Coordination.
• Collaborator - Either a participant or initiator.

Usage Coordinator Service Specification Version 1.0

Page 500 OSGi Enterprise Release 7

Figure 130.1 Class and Service overview

Participant ImplInitiator

Coordinator Impl

Coordinator

<<interface>>
Coordination

130.2 Usage
This section is an introduction in the usage of the Coordinator service. It is not the formal specifica-
tion, the normative part starts at Coordinator Service on page 509. This section leaves out some of
the details for clarity.

130.2.1 Synopsis
The Coordinator service provides a mechanism for multiple parties to collaborate on a common task
without a priori knowledge of who will collaborate in that task. A collaborator can participate by
adding a Participant to the Coordination. The Coordination will notify the Participants when the co-
ordination is ended or when it is failed.

Each Coordination has an initiator that creates the Coordination object through the Coordinator ser-
vice. The initiator can then push this object on a thread-local stack to make it an implicit Coordi-
nation or it can pass this object around as a parameter for explicit Coordinations. Collaborators can
then use the current Coordination on the stack or get it from a parameter. Whenever a bundle wants
to participate in the Coordination it adds itself to the Coordination as a participant. If necessary, a
collaborator can initiate a new Coordination, which could be a nested Coordination for implicit Co-
ordinations.

A Coordination must be terminated. Termination is either a normal end when the initiator calls the
end method or it is failed when the fa i l method is called. A Coordination can be failed by any of the
collaborators. A Coordination can also fail independently due to a time-out or when the initiator re-
leases its Coordinator service. All participants in the Coordination are informed in reverse participa-
tion order about the outcome in a callback for ended or failed Coordinations.

A typical action diagram with a successful outcome is depicted in Figure 130.2.

Coordinator Service Specification Version 1.0 Usage

OSGi Enterprise Release 7 Page 501

Figure 130.2 Action Diagram Implicit Coordination

initiator Coordinator Coordination Collaborator Participant
begin()

new()

work()

addParticpant()

new()

end()
ended()

addParticpant()

130.2.2 Explicit Coordination
The general pattern for an initiator is to create a Coordination through the Coordinator service, per-
form the work in a try block, catch any exceptions and fail the Coordination in the catch block, and
then ensure ending the Coordination in the finally block. The finally block can cause an exception.
This is demonstrated in the following example:

Coordination c = coordinator.create("com.example.work",0);
try {
 doWork(c);
} catch(Exception e) {
 c.fail(e);
} finally {
 c.end();
}

This deceptively small template is quite robust:

• If the doWork method throws an Exception then the template fails with a Coordination Excep-
tion because it is failed in the try block.

• Any exceptions thrown in the try block are automatically causing the Coordination to fail.
• The Coordination is always terminated and removed from the stack due to the finally block.
• All failure paths, Coordinations that are failed by any of the collaborators, time-outs, or oth-

er problems are handled by the end method in the finally block. It will throw a FAILED or
PARTIALLY_ENDED Coordination Exception for any of the failures.

The different failure paths and their handling is pictured in Figure 130.3.

Usage Coordinator Service Specification Version 1.0

Page 502 OSGi Enterprise Release 7

Figure 130.3 Flow through the Coordination template

create(...)

end(...)

method body

try

finally

asynchronous failurecatch

fail(...)

fail(...)

fail(...)

finally

The example shows an explicit Coordination because the create method is used, implicit Coordina-
tions are used in Implicit Coordinations on page 503. The parameters of the create method are the
name of the Coordination and its time-out. The name is used for informational purposes as well as
security. For security reasons, the name must follow the same syntax as the Bundle Symbolic Name.
In a secure environment the name can be used to limit Coordinations to a limited set of bundles. For
example, a set of bundles signed by a specific signer can use names like com.acme.* that are denied
to all other bundles.

The zero time-out specifies that the Coordination will not have a time-out. Otherwise it must be a
positive long, indicating the number of milliseconds the Coordination may take. However, imple-
mentations should have a configurable time-out to ensure that the system remains alive.

In the doWork method the real work is done in conjunction with the collaborators. Explicit Coordi-
nations can be passed to other threads if needed. Collaborators can decide to add participants when-
ever they require a notification when the Coordination has been terminated. For example, the fol-
lowing code could be called from the doWork method:

void foo(Coordination c) {
 doPrepare();
 c.addParticipant(this);
}

This method does the preparation work but does not finalize it so that next time it can use some in-
termediate results. For example, the prepare method could cache a connection to a database that
should be reused during the Coordination. The collaborator can assume that it will be called back
on either the fa i led or ended method. These methods could look like:

public void ended(Coordination c) { doFinish(); }
public void failed(Coordination c) { doFailed(); }

Coordinator Service Specification Version 1.0 Usage

OSGi Enterprise Release 7 Page 503

The Coordinator provides the guarantee that this code will always call the doFinish method when
the Coordination succeeds and doFai led method when it failed.

The Participant must be aware that the ended(Coordination) and fa i led(Coordination) methods can
be called on any thread.

If the doWork method throws an exception it will end up in the catch block of the initiator. The
catch block will then fail the Coordination by calling the fa i l method with the given exception.
If the Coordination was already terminated because something else already had failed it then the
method call is ignored, only the first fail is used, later fails are ignored.

In all cases, the finally block is executed last. The finally block ends the Coordination. If this coor-
dination was failed then it will throw a Coordination Exception detailing the reason of the failure.
Otherwise it will terminate it and notify all the participants.

The Coordination Exception is a Runtime Exception making it unnecessary to declare it.

130.2.3 Multi Threading
Explicit Coordinations allow the Coordination objects to be passed to many different collabora-
tors who can perform the work on different threads. Each collaborator can fail the Coordination
at any moment in time or the time-out can occur on yet another thread. Participants must there-
fore be aware that the callbacks ended and fa i led can happen on any thread. The following exam-
ple shows a typical case where a task is parallelized. If any thread fails the Coordination, all other
threads could be notified before they're finished.

Executor executor = ...
final CountDownLatch latch = new CountdownLatch(10);
final Coordination c = coordinator.create("parallel", 0);
for (int i=0; i<10; i++) {
 executor.execute(
 new Runnable() {
 public void run() { baz(c); latch.countDown(); }
 });
 }
 latch.await();
 c.end();

The Coordination object is thread safe so it can be freely passed around.

130.2.4 Implicit Coordinations
An explicit Coordination requires that the Coordination is passed as a parameter to the doWork
method. The Coordinator also supports implicit Coordinations. With implicit Coordinations the Co-
ordinator maintains a thread local stack of Coordinations where the top of this stack is the current
Coordination for that thread. The usage of the implicit Coordination is almost identical to the ex-
plicit Coordinations except that all the work occurs on a single thread. The control flow is almost
identical to explicit Coordinations:

Coordination c = coordinator.begin("com.example.work",0);
try {
 doWork();
} catch(Exception e) {
 c.fail(e);
} finally {
 c.end();
}

Usage Coordinator Service Specification Version 1.0

Page 504 OSGi Enterprise Release 7

See also Figure 130.3. However, in this case the finally block with the call to the end method is even
more important. With an implicit Coordination the Coordination is put on a thread local stack in
the begin method and must therefore be popped when the Coordination is finished. The finally
block ensures therefore the proper cleanup of this thread local stack.

The difference between implicit and explicit Coordinations is that the implicit Coordination is not
passed as a parameter, instead, collaborators use the current Coordination. With implicit Coordina-
tions all method invocations in a thread can always access the current Coordination, even if they
have many intermediates on the stack. The implicit model allows a collaborator many levels down
the stack to detect a current Coordination and register itself without the need to modify all interme-
diate methods to contain a Coordination parameter. The explicit model has the advantage of explic-
itness but requires all APIs to be modified to hold the parameter. This model does not support pass-
ing the parameter through layers that are not aware of the Coordination. For example, OSGi services
in general do not have a Coordination parameter in their methods making the use of explicit Coor-
dinations impossible.

Collaborators can act differently in the presence of a current Coordination. For example, a collabora-
tor can optimize its work flow depending on the presence of a current Coordination.

Coordinator coordinator = ...
void foo() {
 doPrepare();
 if (!coordinator.addParticipant(this))
 doFinish();
}

The Coordinator service has an addPart ic ipant method that makes working with the current Coor-
dination simple. If there is a current Coordination then the Coordinator service will add the partic-
ipant and return true , otherwise it returns fa lse . It is therefore easy to react differently in the pres-
ence of a current Coordination. In the previous example, the doFinish method will be called imme-
diately if there was no current Coordination, otherwise it is delayed until the Coordination fails or
succeeds. The participant callbacks look the same as in the previous section:

public void ended(Coordination c) { doFinish(); }
public void failed(Coordination c) { doFailed(); }

Though the code looks very similar for the implicit and explicit Coordinations there are some addi-
tional rules for implicit Coordinations.

The end method must be called on the same thread as the begin method, trying to end it on another
thread results in a WRONG_THREAD Coordination Exception being thrown.

Even though the end method must be called on the initiating thread, the callbacks to the Partici-
pants can be done on any thread as the specification allows the Coordinator to use multiple threads
for all callbacks.

130.2.5 Partial Ending
The Coordination is a best effort mechanism to coordinate, not a transaction model with integrity
guarantees. This means that users of the Coordinator service must understand that there are cases
where a Coordination ends in limbo. This happens when one of the Participants throws an Excep-
tion in the ended callback. This is similar to a transactional resource manager failing to commit in
a 2-phase commit after it has voted yes in the prepare phase; a problem that is the cause of much of
the complexity of a transaction manager. The Coordinator is limited to use cases that do not require
full ACID properties and can therefore be much simpler. However, users of the Coordinator service
must be aware of this limitation.

If a Participant throws an exception in the ended method, the end method that terminated the Co-
ordination must throw a PARTIALLY_ENDED Coordination Exception. It is then up to the initiator to

Coordinator Service Specification Version 1.0 Usage

OSGi Enterprise Release 7 Page 505

correct the situations. In most cases, this means allowing the exception to be re-thrown and handle
the failure at the top level. Handling in those cases usually implies logging and continuing.

The following code shows how the PARTIALLY_ENDED case can be handled more explicitly.

Coordination c = coordinator.begin("work",0);
try {
 doWork();
} catch(Excption e) {
 c.fail(e);
} finally {
 try {
 c.end();
 } catch(CoordinationException e) {
 if (e.getType() == CoordinationException.PARTIALLY_ENDED) {
 // limbo!
 ...
 }
 }
}

130.2.6 Locking
To participate in a Coordination and receive callbacks a collaborator must add a Part ic ipant object to
the Coordination. The addPart ic ipant(Part ic ipant) method blocks if the given Part ic ipant object is
already used in another Coordination. This blocking facility can be used to implement a number of
simple locking schemes that can simplify maintaining state in a concurrent environment.

Using the Part ic ipant object as the key for the lock makes it simple to do course grained locking. For
example, a service implementation could use the service object as a lock, effectively serializing ac-
cess to this service when it is used in a Coordination. Coarse grained locking allows all the state to
be maintained in the coarse object and not having to worry about multiplexing simultaneous re-
quests. The following code uses the coarse locking pattern because the collaborator implements the
Part ic ipant interface itself:

public class Collaborator implements Participant{
 public void doWork(Coordination coordination) {
 ...
 coordination.addParticipant(this);
 }

 public void ended(Coordination c) { ... }
 public void failed(Coordination c) { ... }
}

The simplicity of the coarse grained locking is at the expense of lower performance because tasks
are serialized even if it would have no contention. Locks can therefore also be made more fine
grained, allowing more concurrency. In the extreme case, creating a new object for each participa-
tion makes it possible to never lock. For example, the following code never locks because it always
creates a new object for the Participant:

 public void doWork(Coordination coordination){
 final State state = ...
 coordination.addParticipant(
 new Participant() {
 public void ended(Coordination c) { state ... }
 public void failed(Coordination c) { state ...}

Usage Coordinator Service Specification Version 1.0

Page 506 OSGi Enterprise Release 7

 }); }

130.2.7 Failing
Any collaborator can fail an ongoing Coordination by calling the fa i l (Throwable) method, the
Throwable parameter must not be nul l . When the Coordination has already terminated then this
is a no-op. The Coordinator service has a convenience method that fails the current Coordination if
present. The fa i l methods return a boolean that is true when the method call causes the termination
of the Coordination, in all other cases it is fa lse .

Failing a Coordination will immediately perform the callbacks and reject any addition-
al Participants by throwing an ALREADY_ENDED Coordination Exception. The asynchro-
nous nature of the fail method implies that it is possible to have been called even before the
addPart ic ipant(Part ic ipant) method has returned. Anybody that has the Coordination object can
check the failed state with the getFai lure() method.

In general, the best and most robust strategy to handle failures is to throw an Exception from the
collaborator, allowing the initiator to catch the exception and properly fail the Coordination.

130.2.8 Time-out
The time-out is specified in the Coordinator create(Str ing, long) or begin(Str ing, long) methods. A
time-out of zero is indefinite, otherwise the time-out specifies the number of milliseconds the Co-
ordination can take to terminate. A given time-out can be extended with the extendTimeout(long)
method. This method will add an additional time-out to the existing deadline if a prior deadline was
set. For example, the following code extends the time-out with 5 seconds whenever a message must
be sent to a remote address:

Object sendMessage(Message m) {
 Coordination c = coordinator.peek();
 Address a = m.getDestination();
 if (c != null && a.isRemote()) {
 c.extendTimeout(5000);
 }
 return sendMessage0(m);
}

Applications should not rely on the exact time-out of the Coordination and only use it as a safety
function against deadlocks and hanging collaborators.

130.2.9 Joining
When a Coordination is terminated it is not yet completely finished, the callback to the Participants
happens after the atomic termination. In certain cases it is necessary to ensure that a method does
not progress until all the participants have been notified. It is therefore possible to wait for the Coor-
dination to completely finish with the jo in(long) method. This method can have a time-out. For ex-
ample:

void collaborate(final Coordination c) {
 doWork();
 Thread t = new Thread() {
 public void run(){
 try {
 c.join(0);
 ... // really terminated here, all participantscalled back
 } catch(Exception e) { ... }
 }
 };

Coordinator Service Specification Version 1.0 Usage

OSGi Enterprise Release 7 Page 507

 t.start();
}

130.2.10 Variables
A Participant is likely to have to maintain state that is particular for the collaboration. This state is
usually needed in the ended method to properly finalize the work. In general, the best place to store
this state is in the Part ic ipant object itself, inner classes and final variables are a good technique for
storing the state. However, the state can also be stored in a Coordination variable. Each Coordina-
tion has a private set of variables that can be obtained with the getVariables() method. The resulting
map takes a class as the key and returns an Object. The map is not synchronized, any changes to the
map must be synchronized on the returned Map object to ensure the visibility of the changes to oth-
er threads. The class used for the key is not related to the returned type, it is a Class object to provide
a convenient namespace.

The following example shows how the state can be stored with variables.

public void doWork(Coordination coordination){
 Map<Class<?>,Object> map = coordination.getVariables();
 synchronized(map) {
 State state = (State) map.get(SharedWorker.class);
 if (state == null) {
 state = new State(this);
 map.put(state);
 ... do initial work
 }
 }
 ... do other work
 coordination.addParticipant(this);
}
public void ended(Coordination c) {
 Map<Class<?>,Object> map = coordination.getVariables();
 synchronized(map) {
 State state = (State) map.get(SharedWorker.class);
 .. finalize
 }
}
public void failed(Coordination c) {
 Map<Class<?>,Object> map = coordination.getVariables();
 synchronized(map) {
 State state = (State) map.get(SharedWorker.class);
 .. finalize
 }
}

130.2.11 Optimizing Example
For example, a web based system has a charge service:

public interface Charge {
 void charge(String reason, int amount);
}

This service is used throughout the system for charging the tasks the system performs. Each servlet
request can actually create multiple Charge Data Records (CDR). For this reason, a Coordination is
started before the page is constructed. Each part of the page that has an associated cost must create a
CDR. There are the following issues at stake:

Usage Coordinator Service Specification Version 1.0

Page 508 OSGi Enterprise Release 7

• Charging should not take place when failing, and
• Performance can be optimized to only persist the CDRs once, and
• The user must be passed to the Charge service.

To begin with the request code:

public void doGet(HttpServletRequest rq, HttpServletResponsersp) {
 Coordination c = coordinator.begin("com.acme.request", 30000);
 try {
 Principal p = rq.getUserPrincipal();
 Map<Class<?>,Object> map = c.getVariables();
 map.put(Principal.class, p);
 buildPage(rq,rsp);
 } catch(Exception e) { c.fail(e); }
 finally { c.end(); }
}

Each method that has a charge will call the Charge service. The following code shows an implemen-
tation of this Charge service.

public class ChargeImpl implements Charge,Participant {
 final List<CDR> records = new ArrayList<CDR>();

 public void charge(String reason, int amount) {
 Coordination c = coordinator.peek();
 if (c == null) {
 save(Arrays.asList(new CDR(null, reason, amount)));
 } else {
 Principal p = getPrincipal(c);
 records.add(new CDR(p, reason, amount));
 c.addParticipant(this);
 }
 }

 Principal getPrincipal(Coordination c) {
 if (c == null)
 return null;

 Map<Class<?>,Object> map = c.getVariables();
 synchronized(map) {
 Principal p = (Principal) map.get(Principal.class);
 return p != null ? p : getPrincipal(c.getEnclosingCoordination());
 }
 }

 public void ended(Coordination c) {
 save(records);
 records.clear();
 }
 public void failed(Coordination c) {
 records.clear();
 }

 void save(List<CDR> records) { ... }
}

Coordinator Service Specification Version 1.0 Coordinator Service

OSGi Enterprise Release 7 Page 509

130.2.12 Security Example
The Coordination Permission is a filter based permission that is asserted for many of the methods in
the API, the bundle that is checked is always the bundle that created the corresponding Coordina-
tion. For example:

ALLOW {
 [BundleSignerCondition "cn=ACME"]
 (CoordinationPermission "(signer=cn=ACME)" "*")
}

This example allows bundles signed by ACME to perform all Coordination actions on Coordina-
tions created by bundles signed by ACME.

The filter can also assert the name of the Coordination:

coordination.name

It is therefore possible to create a name based protection scheme. By denying all bundles except a se-
lect group through the use of a name prefix, the use of Coordinations can be restricted to this select
group:

DENY {
 [BundleSignerCondition "cn=ACME" "!"]
 (CoordinationPermission "(coordination.name=com.acme.*)""*")
}
ALLOW {
 (CoordinationPermission "(coordination.name=*)" "*")
}

If a bundle is not signed by ACME it will be denied the use of Coordination names starting with
com.acme. though it will be allowed to use any other name. This effectively enables only bundles
signed by ACME to create Coordinations with this name prefix.

130.3 Coordinator Service
The Coordinator service is the entry point for the Coordination. It provides the following functions:

• Coordination creation
• Life cycle management of a Coordination
• Thread based Coordinations
• Introspection

130.3.1 Coordination Creation
A Coordination object is created by an initiator. An initiator can create a Coordination object with
the Coordinator create(Str ing, long) or begin(Str ing, long) method. Each Coordination when creat-
ed gets a positive long identity that is available with getId() . Ids are a unique identifier for a specif-
ic Coordinator service. The id is always increasing, that is, a Coordination with a higher id is created
later.

The create methods specify the name of the Coordination. This name is a security concept, see Secu-
rity on page 514, as well as used for debugging. The coordination name must therefore conform
to the same syntax as a bundle symbolic name:

coordination-name ::= symbolic-name // see OSGi Core Release 7

Coordinator Service Coordinator Service Specification Version 1.0

Page 510 OSGi Enterprise Release 7

Passing a name that does not conform to this syntax must throw an Illegal Argument Exception.
There are no constraints on duplicates, multiple different Coordinations can use the same name.
The name of the Coordination is available with the getName() method.

130.3.2 Adding Participants
The Coordination object can be passed to collaborators as a parameter in a method call. Some of these
collaborators might be interested in participating in the given Coordination, they can achieve this by
adding a Part ic ipant object to the Coordination.

A Participant is a collaborator that requires a callback after the Coordination has been terminat-
ed, either when it ended or when it failed. To participate, it must add a Part ic ipant object to a Coor-
dination with the addPart ic ipant(Part ic ipant) method on Coordination. This method throws an
ALREADY_ENDED or FAILED Coordination Exception when the Coordination has been terminated.

When a Participant is:

• Not in any Coordination - Add it to the given Coordination and return.
• In target Coordination - Ignore, participant is already present. A Participant can participate in the

same Coordination multiple times by calling addPart ic ipant(Part ic ipant) but will only be called
back once when the Coordination is terminated. Its order must be defined by the first addition.

• In another Coordination - Lock until after the other Coordination has notified all the Participants.
Implementations can detect deadlocks in certain cases and throw a Coordination Exception if a
dead lock exist, otherwise the deadlock is solved when the Coordination times out.

Verifying if a Participant object is already in another Coordination must use identity and not equali-
ty.

130.3.3 Active
A Coordination is active until it is terminated. A Coordination can terminate because it is ended, or it
is failed. The following methods cause a termination:

• end() - A normal end. All participants that were added before the end call are called back on their
ended(Coordination) method.

• fa i l (Throwable) - The Coordination has failed, this will call back the fa i led(Coordination)
method on the participants. This method can be called by the Coordinator, the initiator, or any of
the collaborators. There are a number of failures that are built in to the Coordinator. These fail-
ures use singleton Exception instances defined in the Coordination interface:
• TIMEOUT - If the Coordination times out the Coordination is failed with the TIMEOUT excep-

tion instance in Coordination.
• RELEASED - If the Coordinator that created the Coordination was unget, all Coordinations cre-

ated by it will fail with the RELEASED exception.

The state diagram for the Coordination is pictured in Figure 130.4.

Figure 130.4 Coordination state diagram

ACTIVE

END FAIL

fail(Throwable)end()

automatic
transition
explicit
transition

Coordinator Service Specification Version 1.0 Coordinator Service

OSGi Enterprise Release 7 Page 511

130.3.4 Explicit and Implicit Models
The Coordinator supports two very different models of usage: explicit and implicit. The explicit model
is when a Coordination is created and passed around as a parameter. The second model is the implic-
it model where the Coordinator maintains a thread local stack of Coordinations. Any collaborator
can then decide to use the top of the stack as the current Coordination. The peek() method provides
access to the current Coordination.

The begin(Str ing, long) method creates a new Coordination and pushes this on the stack, beginning
an implicit Coordination. This is identical to:

coordinator.create("work",0).push();

Once a Coordination is pushed on a stack it is from that moment on associated with the current
thread. A Coordination can only be pushed once, the ALREADY_PUSHED Coordination Exception
must be thrown when the Coordination is already associated with one of the thread local stacks
maintained by the Coordinator service.

The Coordination is removed from the stack in the end() method. The end() method must not only
terminate itself but it must also terminate all nested Coordinations.

The current Coordination can also be explicitly removed with the Coordinator pop() method.

A Coordination that is pushed on a thread local stack returns the associated thread on the get-
Thread() method. This method returns nul l for Coordinations not on any stack, that is, explicit Coor-
dinations.

130.3.5 Termination
Both the end() and fa i l (Throwable) methods terminate the Coordination if it was not already ter-
minated. Termination is atomic, only the end or the fa i l method can terminate the Coordination.
Though this happens on different threads, a Coordination can never both end and fail from any per-
spective. That is, if a fail races with end then only one of them can win and the other provides the
feedback that the Coordination was already terminated.

Terminating a Coordination has the following effects:

• It is atomic, it can only happen once in a Coordination
• It freezes the set of participants, no more participants can be added

130.3.6 Ending
The end() method should always be called at the end of a Coordination to ensure proper termina-
tion, notification, and cleanup. The end method throws a FAILED or PARTIALLY_ENDED Coordina-
tion Exception if the Coordination was failed before.

If the Coordination had already been ended before then this is a programming error and an
ALREADY_ENDED Configuration Exception is thrown. The end() method should never be called
twice on the same Coordination.

If the termination succeeds then the participants must be notified by calling the
ended(Coordination) method on each Participant that had been successfully added to the Coordina-
tion. This callback can take place on any thread but must be in reverse order of adding. That is, the
last added Participant is called back first.

Participants must never make any assumptions about the current Coordination in the callback. The
Coordination it was added to is therefore given as an explicit parameter in the ended(Coordination)
method.

If a Participant throws an Exception then this must not prevent the calling of the remaining par-
ticipants. The Exception should be logged. If a Participant has thrown an Exception then the end()

Coordinator Service Coordinator Service Specification Version 1.0

Page 512 OSGi Enterprise Release 7

method must throw a PARTIALLY_ENDED Coordination Exception after the last Participant has re-
turned from its callback, otherwise the method returns normally. Participants should normally not
throw Exceptions in their callbacks.

If the Coordination is implicit (it is pushed on a stack) then the Coordination must be removed
from its stack after the participants have been called back. This requires that the ending thread is
the same as the thread of the Coordination. The end thread is the thread of the end() method call. If
the Coordination's thread is not the same as the ending thread then a WRONG_THREAD Coordina-
tion Exception is thrown.

If the ending Coordination is on the stack but it is not the current Coordination then each nested
Coordination must be ended before the current Coordination, see Nesting Implicit Coordinations on
page 512 for more information.

The fa i l (Throwable) method must not remove the current Coordination, it must remain on the
stack. The initiator must always call the end() method. Always calling end() in a f inal ly block is
therefore paramount.

130.3.7 Failing, TIMEOUT, ORPHANED, and RELEASED
Failing can happen asynchronously during the time a Coordination is active. A Coordination is
failed by calling fa i l (Throwable) . The Throwable argument must not be nul l , it is the cause of the
failure.

Failing a Coordination must first terminate it. If the Coordination was already terminated the
fa i l (Throwable) method has no effect. Otherwise, it must callback all its added Participants on the
fa i led(Coordination) callback method. Exceptions thrown from this method should be logged and
further ignored. The callback can occur on any thread, including the caller's.

Implicit Coordinations must not be popped from its stack in a fail nor is it necessary to call the fa i l
method from any particular thread. The removal of the Coordination from the stack must happen
in the end method.

There are two asynchronous events that can also fail the Coordination. If the Coordination times
out, it will be treated as a fa i l (TIMEOUT) and if the Coordinator is ungotten with active Coordina-
tions then each of those Coordinations must fail as if fa i l (RELEASED) is called.

A Coordination can also be orphaned. An orphaned Coordination has no longer any outside refer-
ences. This means that the Coordination can no longer be ended or failed. Such Coordinations must
fail with an ORPHANED Exception.

130.3.8 Nesting Implicit Coordinations
Implicit Coordinations can be nested. For this reason, the Coordinator maintains a thread local
stack of Coordinations where the top, accessible with the peek() method, is the current Coordina-
tion. Each time a new Coordination is begun with the begin(Str ing, long) method, the current Co-
ordination is replaced with the newly created Coordination. When that Coordination is ended, the
previous current Coordination is restored. Nesting is always on the same thread, implicit Coordina-
tions are always associated with a single thread, available through its getThread() method. The end
method must be called on the same thread as the begin(Str ing, long) or last push() method.

Using the standard model for implicit Coordinations, where the initiator always ends the Coordi-
nation on the same thread as it begun, ensures that nesting is properly handled. However, in cer-
tain cases it is necessary to manipulate the stack or make implicit Coordinations explicit or vice ver-
sa. For this reason, it is possible to pop Coordinations from the stack with the pop() method. This
method disassociates the Coordination from the current thread and restores the previous (if any)
Coordination as the current Thread. A Coordination can then be made the current Coordination for
a thread by calling the push() method. However, a Coordination can be pushed on the stack at most
once. If a Coordination is pushed a second time, in any thread, the ALREADY_PUSHED Coordination
Exception must be thrown.

Coordinator Service Specification Version 1.0 Coordinator Service

OSGi Enterprise Release 7 Page 513

The Coordination is removed from its stack when the end() method is called. It is therefore highly
recommended to always end a Coordination in the nesting order. However, it is possible that a Co-
ordination is ended that is not the current Coordination, it has nested Coordinations that were not
properly ended. In that case all nested Coordinations must be ended in reverse creation order, that
is, the current Coordination first, by calling the end method on it.

If any Coordination fails to end properly (including PARTIALLY_ENDED) then the remaining Coordi-
nations on the stack must fail and chain the exceptions. In pseudo code:

while (coordinator.peek() != this) {
 try {
 coordinator.peek().end();
 } catch (CoordinationException e) {
 coordinator.peek().fail(e);
 }
}

130.3.9 Time-outs
When a Coordination is created it will receive a time-out. A time-out is a positive value or zero. A ze-
ro value indicates that the Coordination should have no time-out. This does not imply that a Coordi-
nation will never time-out, implementations are allowed to be configured with a limit to the maxi-
mum active time for a Coordination.

Collaborators can extend the time out with the extendTimeout(long) method. If no time-out was
set (0), this method will be ignored. Otherwise the given amount (which must be positive) is added
to the existing deadline. A Coordinator implementation can fail the Coordination earlier, however,
when configured to do so.

If a Coordination is timed out, the Coordination is failed with a fa i l (TIMEOUT) method call from an
unspecified thread, see Failing, TIMEOUT, ORPHANED, and RELEASED on page 512.

130.3.10 Released
The Coordination's life cycle is bound to the Coordinator service that created it. If the initiator's
bundle ungets this service then the Coordinator must fail all the Coordinations created by this Co-
ordinator by calling the fa i l (RELEASED) method.

Participants from bundles that are stopped are not taken into account. This means that it is possible
that a participant is called while its bundle is stopped. Stopped Participants should fail any Coordi-
nations that they participate in.

130.3.11 Coordinator Convenience Methods
The Coordinator contains a number of convenience methods that can be used by collaborators to in-
teract with the current Coordination.

• begin(Str ing, long) - Is logically the same as create(Str ing, long) . push() .
• addPart ic ipant(Part ic ipant) - This method makes it easy to react differently to the presence of a

current implicit Coordination. If a current Coordination exists, the participant is added and true
is returned (or an exception thrown if the Coordination is already terminated), otherwise fa lse is
returned.

• fa i l (Throwable) - If there is no current Coordination, this method returns false. Otherwise it re-
turns the result of calling fa i l (Throwable) on the current Coordination. This method therefore
only returns true when a current Coordination was actually terminated due to this call.

130.3.12 Administrative Access
The Coordination objects provide a number of methods that are used for administrating the Coordi-
nations and the Coordinator.

Security Coordinator Service Specification Version 1.0

Page 514 OSGi Enterprise Release 7

• getBundle() - Provide the bundle that created the Coordination. This bundle is the bundle be-
longing to the Bundle Context used to get the Coordinator service.

• getFai lure() - The Exception that caused this Coordination to fail or nul l . There are two fixed ex-
ception instances for a time out (TIMEOUT), when the Coordination is orphaned (ORPHANED),
and when the Coordinator service is released (RELEASED).

• getId() - The Coordination's id.
• getName() - The name of the Coordination.
• getPart ic ipants() - The current list of participants. This is a mutable snapshot of the added partic-

ipants. Changing the snapshot has no effect on the Coordination.
• getThread() - Answer the thread associated with an implicit Coordination. If the Coordination is

not implicit then the answer is nul l .
• getEnclosingCoordination() - Return the enclosing Coordination.

And for the Coordinator:

• getCoordination(long) - Retrieve a Coordination by its id.
• getCoordinations() - Get a list of active Coordinations

130.3.13 Summary
A Coordination can exist in three different states ACTIVE, END, and FAIL. During its life it will tran-
sition from ACTIVE to either END or FAIL. The entry (when the state is entered) and exit (when the
state is left) actions when this transition takes place and the effect on the different methods are sum-
marized in the following table.

Table 130.1 States and transitions

State/Method ACTIVE END FAIL
entry action Notify all the participants by call-

ing the ended(Coordination)
method.

Notify all the participants by
calling the fa i led(Coordination)
method.

exit action Terminate
end() -> END .

Can throw
PARTIALLY_ENDED

throws ALREADY_ENDED throws FAILED

fai l (Throwable) -> FAIL , return true . return fa lse . return fa lse .

130.4 Security
This specification provides a Coordination Permission. This permission can enforce the name of the
coordination as well as assert the properties of the initiating bundle, like for example the signer or
bundle symbolic name. The permission therefore uses a filter as name, as defined in the filter based
permissions section in OSGi Core Release 7, see OSGi Core Release 7. There is one additional parame-
ter for the filter:

coordination.name

The value is the given name of the Coordination. Restricting the name of a Coordination allows the
deployer to limit the use of this name to a restricted set of bundles.

The following actions are defined:

• INITIATE - Required to initiate and control a Coordination.
• PARTICIPATE - Required to participate in a Coordination.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Enterprise Release 7 Page 515

• ADMIN - Required to administrate a Coordinator.

The target bundle of the Coordination Permission is the initiator's bundle. This is the bundle that
got the Coordinator service to create the Coordination. An initiator must therefore have permission
to create Coordinations for itself.

There are two constructors available:

• CoordinationPermission(Str ing,Str ing) - The constructor for the granted permission. It is given a
filter expression and the actions that the permission applies to.

• CoordinationPermission(Str ing,Bundle,Str ing) - The constructor for the requested permission.
It is given the name of the permission, the bundle that created the corresponding coordination,
and the requested actions.

130.5 org.osgi.service.coordinator

Coordinator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.coordinator; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.coordinator; vers ion="[1.0,1.1)"

130.5.1 Summary

• Coordination - A Coordination object is used to coordinate a number of independent Partici-
pants.

• CoordinationException - Unchecked exception which may be thrown by a Coordinator imple-
mentation.

• CoordinationPermission - A bundle's authority to create or use a Coordination.
• Coordinator - A Coordinator service coordinates activities between different parties.
• Part ic ipant - A Participant participates in a Coordination.

130.5.2 public interface Coordination
A Coordination object is used to coordinate a number of independent Participants.

Once a Coordination is created, it can be used to add Participant objects. When the Coordination is
ended, the participants are notified. A Coordination can also fail for various reasons. When this oc-
curs, the participants are notified of the failure.

A Coordination must be in one of two states, either ACTIVE or TERMINATED. The transition be-
tween ACTIVE and TERMINATED must be atomic, ensuring that a Participant can be guaranteed of
either receiving an exception when adding itself to a Coordination or of receiving notification the
Coordination has terminated.

A Coordination object is thread safe and can be passed as a parameter to other parties regardless of
the threads these parties use.

The following example code shows how a Coordination should be used.

 void foo() {

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 516 OSGi Enterprise Release 7

 Coordination c = coordinator.create("work", 0);
 try {
 doWork(c);
 }
 catch (Exception e) {
 c.fail(e);
 }
 finally {
 c.end();
 }
 }

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

130.5.2.1 public static final Exception ORPHANED

A singleton exception that will be the failure cause when a Coordination has been orphaned.

130.5.2.2 public static final Exception RELEASED

A singleton exception that will be the failure cause when the Coordinations created by a bundle are
terminated because the bundle released the Coordinator service.

130.5.2.3 public static final Exception TIMEOUT

A singleton exception that will be the failure cause when a Coordination times out.

130.5.2.4 public void addParticipant(Participant participant)

participant The Participant to register with this Coordination. The participant must not be nul l .

□ Register a Participant with this Coordination.

Once a Participant is registered with this Coordination, it is guaranteed to receive a notification for
either normal or failure termination when this Coordination is terminated.

Participants are registered using their object identity. Once a Participant is registered with this Coor-
dination, subsequent attempts to register the Participant again with this Coordination are ignored
and the Participant is only notified once when this Coordination is terminated.

A Participant can only be registered with a single active Coordination at a time. If a Participant is al-
ready registered with an active Coordination, attempts to register the Participation with another ac-
tive Coordination will block until the Coordination the Participant is registered with terminates.
Notice that in edge cases the notification to the Participant that this Coordination has terminated
can happen before this method returns.

Attempting to register a Participant with a terminated Coordination will result in a CoordinationEx-
ception being thrown.

The ordering of notifying Participants must follow the reverse order in which the Participants were
registered.

Throws CoordinationException– If the Participant could not be registered with this Coordination. This ex-
ception should normally not be caught by the caller but allowed to be caught by the initiator of this
Coordination.

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

130.5.2.5 public void end()

□ Terminate this Coordination normally.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Enterprise Release 7 Page 517

If this Coordination has been pushed on the thread local Coordination stack of anoth-
er thread, this method does nothing except throw a CoordinationException of type
CoordinationException.WRONG_THREAD.

If this Coordination has been pushed on the thread local Coordination stack of this thread but is not
the current Coordination, then the Coordinations on the thread local Coordination stack above this
Coordination must be terminated and removed from the thread local Coordination stack before this
Coordination is terminated. Each of these Coordinations, starting with the current Coordination,
will be terminated normally . If the termination throws a CoordinationException, then the next Co-
ordination on the thread local Coordination stack will be terminated as a failure with a failure cause
of the thrown CoordinationException. At the end of this process, this Coordination will be the cur-
rent Coordination and will have been terminated as a failure if any of the terminated Coordinations
threw a CoordinationException

If this Coordination is the current Coordination, then it will be removed from the thread local Coor-
dination stack.

If this Coordination is already terminated, a CoordinationException is thrown. If this Coordination
was terminated as a failure, the failure cause will be the cause of the thrown CoordinationExcep-
tion.

Otherwise, this Coordination is terminated normally and then all registered Participants are noti-
fied. Participants should finalize any work associated with this Coordination. The successful return
of this method indicates that the Coordination has terminated normally and all registered Partici-
pants have been notified of the normal termination.

It is possible that one of the Participants throws an exception during notification. If this happens,
this Coordination is considered to have partially failed and this method must throw a Coordina-
tionException of type CoordinationException.PARTIALLY_ENDED after all the registered Partici-
pants have been notified.

Throws CoordinationException– If this Coordination has failed, including timed out, or partially failed or
this Coordination is on the thread local Coordination stack of another thread.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

130.5.2.6 public long extendTimeout(long timeMillis)

timeMillis The time in milliseconds to extend the current timeout. If the initial timeout was specified as 0, no
extension must take place. A zero must have no effect.

□ Extend the time out of this Coordination.

Participants can call this method to extend the timeout of this Coordination with at least the speci-
fied time. This can be done by Participants when they know a task will take more than normal time.

This method will return the new deadline if an extension took place or the current deadline if, for
whatever reason, no extension takes place. Note that if a maximum timeout is in effect, the deadline
may not be extended by as much as was requested, if at all. If there is no deadline, zero is returned.
Specifying a timeout extension of 0 will return the existing deadline.

Returns The new deadline in milliseconds. If the specified time is 0, the existing deadline is returned. If this
Coordination was created with an initial timeout of 0, no timeout is set and 0 is returned.

Throws CoordinationException– If this Coordination is terminated.

I l legalArgumentException– If the specified time is negative.

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 518 OSGi Enterprise Release 7

130.5.2.7 public boolean fail(Throwable cause)

cause The failure cause. The failure cause must not be nul l .

□ Terminate this Coordination as a failure with the specified failure cause.

If this Coordination is already terminated, this method does nothing and returns fa lse .

Otherwise, this Coordination is terminated as a failure with the specified failure cause and then all
registered Participants are notified. Participants should discard any work associated with this Coor-
dination. This method will return true .

If this Coordination has been pushed onto a thread local Coordination stack, this Coordination is
not removed from the stack. The creator of this Coordination must still call end() on this Coordina-
tion to cause it to be removed from the thread local Coordination stack.

Returns true if this Coordination was active and was terminated by this method, otherwise fa lse .

Throws SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

130.5.2.8 public Bundle getBundle()

□ Returns the bundle that created this Coordination. This is the bundle that obtained the Coordinator
service that was used to create this Coordination.

Returns The bundle that created this Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[ADMIN] for this Coordina-
tion.

130.5.2.9 public Coordination getEnclosingCoordination()

□ Returns the Coordination enclosing this Coordination if this Coordination is on the thread local Co-
ordination stack.

When a Coordination is pushed onto the thread local Coordination stack, the former current Coor-
dination, if any, is the enclosing Coordination of this Coordination. When this Coordination is re-
moved from the thread local Coordination stack, this Coordination no longer has an enclosing Co-
ordination.

Returns The Coordination enclosing this Coordination if this Coordination is on the thread local Coordina-
tion stack or nul l if this Coordination is not on the thread local Coordination stack or has no enclos-
ing Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[ADMIN] for this Coordina-
tion.

130.5.2.10 public Throwable getFailure()

□ Returns the failure cause of this Coordination.

If this Coordination has failed, then this method will return the failure cause.

If this Coordination timed out, this method will return TIMEOUT as the failure cause. If this Coordi-
nation was active when the bundle that created it released the Coordinator service, this method will
return RELEASED as the failure cause. If the Coordination was orphaned, this method will return
ORPHANED as the failure cause.

Returns The failure cause of this Coordination or nul l if this Coordination has not terminated as a failure.

Throws SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Enterprise Release 7 Page 519

130.5.2.11 public long getId()

□ Returns the id assigned to this Coordination. The id is assigned by the Coordinator service which
created this Coordination and is unique among all the Coordinations created by the Coordinator
service and must not be reused as long as the Coordinator service remains registered. The id must be
positive and monotonically increases for each Coordination created by the Coordinator service.

Returns The id assigned to this Coordination.

130.5.2.12 public String getName()

□ Returns the name of this Coordination. The name is specified when this Coordination was created.

Returns The name of this Coordination.

130.5.2.13 public List<Participant> getParticipants()

□ Returns a snapshot of the Participants registered with this Coordination.

Returns A snapshot of the Participants registered with this Coordination. If no Participants are registered
with this Coordination, the returned list will be empty. The list is ordered in the order the Partic-
ipants were registered. The returned list is the property of the caller and can be modified by the
caller.

Throws SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

130.5.2.14 public Thread getThread()

□ Returns the thread in whose thread local Coordination stack this Coordination has been pushed.

Returns The thread in whose thread local Coordination stack this Coordination has been pushed or nul l if
this Coordination is not in any thread local Coordination stack.

Throws SecurityException– If the caller does not have CoordinationPermission[ADMIN] for this Coordina-
tion.

130.5.2.15 public Map<Class<?>, Object> getVariables()

□ Returns the variable map associated with this Coordination. Each Coordination has a map that can
be used for communicating between different Participants. The key of the map is a class, allowing
for private data to be stored in the map by using implementation classes or shared data by using
shared interfaces. The returned map is not synchronized. Users of the map must synchronize on the
Map object while making changes.

Returns The variable map associated with this Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[PARTICIPANT] for this Coor-
dination.

130.5.2.16 public boolean isTerminated()

□ Returns whether this Coordination is terminated.

Returns true if this Coordination is terminated, otherwise fa lse if this Coordination is active.

130.5.2.17 public void join(long timeMillis) throws InterruptedException

timeMillis Maximum time in milliseconds to wait. Specifying a time of 0 will wait until this Coordination is
terminated.

□ Wait until this Coordination is terminated and all registered Participants have been notified.

Throws InterruptedException– If the wait is interrupted.

I l legalArgumentException– If the specified time is negative.

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 520 OSGi Enterprise Release 7

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

130.5.2.18 public Coordination push()

□ Push this Coordination object onto the thread local Coordination stack to make it the current Coor-
dination.

Returns This Coordination.

Throws CoordinationException– If this Coordination is already on the any thread's thread local Coordina-
tion stack or this Coordination is terminated.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

130.5.3 public class CoordinationException
extends RuntimeException
Unchecked exception which may be thrown by a Coordinator implementation.

130.5.3.1 public static final int ALREADY_ENDED = 4

The Coordination has already terminated normally.

130.5.3.2 public static final int ALREADY_PUSHED = 5

The Coordination was already on a thread's thread local Coordination stack.

130.5.3.3 public static final int DEADLOCK_DETECTED = 1

Registering a Participant with a Coordination would have resulted in a deadlock.

130.5.3.4 public static final int FAILED = 2

The Coordination has terminated as a failure with Coordination.fail(Throwable). When this excep-
tion type is used, the getCause() method must return a non-null value.

130.5.3.5 public static final int LOCK_INTERRUPTED = 6

The current thread was interrupted while waiting to register a Participant with a Coordination.

130.5.3.6 public static final int PARTIALLY_ENDED = 3

The Coordination has partially ended.

130.5.3.7 public static final int UNKNOWN = 0

Unknown reason for this exception.

130.5.3.8 public static final int WRONG_THREAD = 7

The Coordination cannot be ended by the calling thread since the Coordination is on the thread lo-
cal Coordination stack of another thread.

130.5.3.9 public CoordinationException(String message, Coordination coordination, int type, Throwable cause)

message The detail message for this exception.

coordination The Coordination associated with this exception.

cause The cause associated with this exception.

type The type of this exception.

□ Create a new Coordination Exception with a cause.

Throws I l legalArgumentException– If the specified type is FAILED and the specified cause is nul l .

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Enterprise Release 7 Page 521

130.5.3.10 public CoordinationException(String message, Coordination coordination, int type)

message The detail message for this exception.

coordination The Coordination associated with this exception.

type The type of this exception.

□ Create a new Coordination Exception.

Throws I l legalArgumentException– If the specified type is FAILED .

130.5.3.11 public long getId()

□ Returns the id of the Coordination associated with this exception.

Returns The id of the Coordination associated with this exception or -1 if no Coordination is associated with
this exception.

130.5.3.12 public String getName()

□ Returns the name of the Coordination associated with this exception.

Returns The name of the Coordination associated with this exception or "<>" if no Coordination is associated
with this exception.

130.5.3.13 public int getType()

□ Returns the type for this exception.

Returns The type of this exception.

130.5.4 public final class CoordinationPermission
extends BasicPermission
A bundle's authority to create or use a Coordination.

CoordinationPermission has three actions: in it iate , part ic ipate and admin .

Concurrency Thread-safe

130.5.4.1 public static final String ADMIN = "admin"

The action string admin .

130.5.4.2 public static final String INITIATE = "initiate"

The action string in it iate .

130.5.4.3 public static final String PARTICIPATE = "participate"

The action string part ic ipate .

130.5.4.4 public CoordinationPermission(String filter, String actions)

filter A filter expression. Filter attribute names are processed in a case sensitive manner. A special value of
"*" can be used to match all coordinations.

actions admin , in it iate or part ic ipate (canonical order).

□ Creates a new granted CoordinationPermission object. This constructor must only be used to create
a permission that is going to be checked.

Examples:

 (coordination.name=com.acme.*)
 (&(signer=*,o=ACME,c=US)(coordination.name=com.acme.*))
 (signer=*,o=ACME,c=US)

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 522 OSGi Enterprise Release 7

When a signer key is used within the filter expression the signer value must escape the special filter
chars ('*', '(', ')').

The name is specified as a filter expression. The filter gives access to the following attributes:

• signer - A Distinguished Name chain used to sign the exporting bundle. Wildcards in a DN are
not matched according to the filter string rules, but according to the rules defined for a DN chain.

• location - The location of the exporting bundle.
• id - The bundle ID of the exporting bundle.
• name - The symbolic name of the exporting bundle.
• coordination.name - The name of the requested coordination.

Filter attribute names are processed in a case sensitive manner.

Throws I l legalArgumentException– If the filter has an invalid syntax.

130.5.4.5 public CoordinationPermission(String coordinationName, Bundle coordinationBundle, String actions)

coordinationName The name of the requested Coordination.

coordinationBun-
dle

The bundle which created the requested Coordination.

actions admin , in it iate or part ic ipate (canonical order).

□ Creates a new requested CoordinationPermission object to be used by the code that must perform
checkPermission . CoordinationPermission objects created with this constructor cannot be added to
an CoordinationPermission permission collection.

130.5.4.6 public boolean equals(Object obj)

obj The object to test for equality with this CoordinationPermission object.

□ Determines the equality of two CoordinationPermission objects. This method checks that specified
permission has the same name and CoordinationPermission actions as this CoordinationPermission
object.

Returns true if obj is a CoordinationPermission , and has the same name and actions as this CoordinationPer-
mission object; fa lse otherwise.

130.5.4.7 public String getActions()

□ Returns the canonical string representation of the CoordinationPermission actions.

Always returns present CoordinationPermission actions in the following order: admin , in it iate , par-
t ic ipate .

Returns Canonical string representation of the CoordinationPermission actions.

130.5.4.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

130.5.4.9 public boolean implies(Permission p)

p The requested permission.

□ Determines if the specified permission is implied by this object.

This method checks that the filter of the target is implied by the coordination name of this object.
The list of CoordinationPermission actions must either match or allow for the list of the target ob-
ject to imply the target CoordinationPermission action.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Enterprise Release 7 Page 523

Returns true if the specified permission is implied by this object; fa lse otherwise.

130.5.4.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing CoordinationPermission objects.

Returns A new PermissionCol lect ion object.

130.5.5 public interface Coordinator
A Coordinator service coordinates activities between different parties.

A bundle can use the Coordinator service to create Coordination objects. Once a Coordination ob-
ject is created, it can be pushed on the thread local Coordination stack to be an implicit parameter as
the current Coordination for calls to other parties, or it can be passed directly to other parties as an
argument. The current Coordination, which is on the top of the current thread's thread local Coordi-
nation stack, can be obtained with peek().

Any active Coordinations created by a bundle must be terminated when the bundle releases the Co-
ordinator service. The Coordinator service must fail these Coordinations with the RELEASED excep-
tion.

A Participant can register to participate in a Coordination and receive notification of the termina-
tion of the Coordination.

The following example code shows a example usage of the Coordinator service.

 void foo() {
 Coordination c = coordinator.begin("work", 0);
 try {
 doWork();
 } catch (Exception e) {
 c.fail(e);
 } finally {
 c.end();
 }
 }

In the doWork method, code can be called that requires notification of the termination of the Coor-
dination. The doWork method can then register a Participant with the Coordination.

 void doWork() {
 if (coordinator.addParticipant(this)) {
 beginWork();
 } else {
 beginWork();
 finishWork();
 }
 }

 void ended(Coordination c) {
 finishWork();
 }

 void failed(Coordination c) {
 undoWork();
 }

Concurrency Thread-safe

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 524 OSGi Enterprise Release 7

Provider Type Consumers of this API must not implement this type

130.5.5.1 public boolean addParticipant(Participant participant)

participant The Participant to register with the current Coordination. The participant must not be nul l .

□ Register a Participant with the current Coordination.

If there is no current Coordination, this method does nothing and returns fa lse .

Otherwise, this method calls Coordination.addParticipant(Participant) with the specified Partici-
pant on the current Coordination and returns true .

Returns fa lse if there was no current Coordination, otherwise returns true .

Throws CoordinationException– If the Participant could not be registered with the current Coordination.
This exception should normally not be caught by the caller but allowed to be caught by the initiator
of this Coordination.

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for the cur-
rent Coordination.

See Also Coordination.addParticipant(Participant)

130.5.5.2 public Coordination begin(String name, long timeMillis)

name The name of this coordination. The name does not have to be unique but must follow the symbol-
ic-name syntax from the Core specification.

timeMillis Timeout in milliseconds. A value of 0 means no timeout is required. If the Coordination is not ter-
minated within the timeout, the Coordinator service will fail the Coordination with a TIMEOUT ex-
ception.

□ Create a new Coordination and make it the current Coordination.

This method does that same thing as calling create(name, timeMillis).push()

Returns A new Coordination object

Throws I l legalArgumentException– If the specified name does not follow the symbol ic-name syntax or the
specified time is negative.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for the specified
name and creating bundle.

130.5.5.3 public Coordination create(String name, long timeMillis)

name The name of this coordination. The name does not have to be unique but must follow the symbol-
ic-name syntax from the Core specification.

timeMillis Timeout in milliseconds. A value of 0 means no timeout is required. If the Coordination is not ter-
minated within the timeout, the Coordinator service will fail the Coordination with a TIMEOUT ex-
ception.

□ Create a new Coordination.

Returns The new Coordination object.

Throws I l legalArgumentException– If the specified name does not follow the symbol ic-name syntax or the
specified time is negative.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for the specified
name and creating bundle.

130.5.5.4 public boolean fail(Throwable cause)

cause The failure cause. The failure cause must not be nul l .

□ Terminate the current Coordination as a failure with the specified failure cause.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Enterprise Release 7 Page 525

If there is no current Coordination, this method does nothing and returns fa lse .

Otherwise, this method returns the result from calling Coordination.fail(Throwable) with the speci-
fied failure cause on the current Coordination.

Returns fa lse if there was no current Coordination, otherwise returns the result from calling
Coordination.fail(Throwable) on the current Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for the cur-
rent Coordination.

See Also Coordination.fail(Throwable)

130.5.5.5 public Coordination getCoordination(long id)

id The id of the requested Coordination.

□ Returns the Coordination with the specified id.

Returns A Coordination having with specified id or nul l if no Coordination with the specified id
exists, the Coordination with the specified id is terminated or the caller does not have
CoordinationPermission[ADMIN] for the Coordination with the specified id.

130.5.5.6 public Collection<Coordination> getCoordinations()

□ Returns a snapshot of all active Coordinations.

Since Coordinations can be terminated at any time, Coordinations in the returned collection can be
terminated before the caller examines the returned collection.

The returned collection must only contain the Coordinations for which the caller has
CoordinationPermission[ADMIN] .

Returns A snapshot of all active Coordinations. If there are no active Coordinations, the returned list will be
empty. The returned collection is the property of the caller and can be modified by the caller.

130.5.5.7 public Coordination peek()

□ Returns the current Coordination.

The current Coordination is the Coordination at the top of the thread local Coordination stack. If
the thread local Coordination stack is empty, there is no current Coordination. Each Coordinator
service maintains thread local Coordination stacks.

This method does not alter the thread local Coordination stack.

Returns The current Coordination or nul l if the thread local Coordination stack is empty.

130.5.5.8 public Coordination pop()

□ Remove the current Coordination from the thread local Coordination stack.

The current Coordination is the Coordination at the top of the thread local Coordination stack. If
the thread local Coordination stack is empty, there is no current Coordination. Each Coordinator
service maintains its own thread local Coordination stacks.

This method alters the thread local Coordination stack, if it is not empty, by removing the Coordina-
tion at the top of the thread local Coordination stack.

Returns The Coordination that was the current Coordination or nul l if the thread local Coordination stack is
empty.

Throws SecurityException– If the caller does not have CoordinationPermission[INITIATE] for the current
Coordination.

130.5.6 public interface Participant
A Participant participates in a Coordination.

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 526 OSGi Enterprise Release 7

A Participant can participate in a Coordination by registering itself with the Coordination. After
successfully registering itself, the Participant is notified when the Coordination is terminated.

If a Coordination terminates normally, then all registered Participants are notified on their
ended(Coordination) method. If the Coordination terminates as a failure, then all registered Partici-
pants are notified on their failed(Coordination) method.

Participants are required to be thread safe as notification can be made on any thread.

A Participant can only be registered with a single active Coordination at a time. If a Participant is al-
ready registered with an active Coordination, attempts to register the Participation with another ac-
tive Coordination will block until the Coordination the Participant is registered with terminates.
Notice that in edge cases the notification to the Participant that the Coordination has terminated
can happen before the registration method returns.

Concurrency Thread-safe

130.5.6.1 public void ended(Coordination coordination) throws Exception

coordination The Coordination that has terminated normally.

□ Notification that a Coordination has terminated normally.

This Participant should finalize any work associated with the specified Coordination.

Throws Exception– If this Participant throws an exception, the Coordinator service should log the excep-
tion. The Coordination.end() method which is notifying this Participant must continue notifica-
tion of other registered Participants. When this is completed, the Coordination.end() method must
throw a CoordinationException of type CoordinationException.PARTIALLY_ENDED.

130.5.6.2 public void failed(Coordination coordination) throws Exception

coordination The Coordination that has terminated as a failure.

□ Notification that a Coordination has terminated as a failure.

This Participant should discard any work associated with the specified Coordination.

Throws Exception– If this Participant throws an exception, the Coordinator service should log the excep-
tion. The Coordination.fail(Throwable) method which is notifying this Participant must continue
notification of other registered Participants.

Repository Service Specification Version 1.1 Introduction

OSGi Enterprise Release 7 Page 527

132 Repository Service Specification

Version 1.1

132.1 Introduction
The guiding force behind the OSGi Specifications is a reusable component model. The OSGi Core Re-
lease 7 provides a solid foundation for such a component model by providing a component collab-
oration framework with a comprehensive management model. The service specifications provide
the abstract APIs to allow many different collaborations between components. This Repository Ser-
vice Specification provides the capability to manage the external access to components and other re-
sources.

Though the Repository service can be used as a standalone service to search and retrieve general bi-
nary artifacts, called resources, it is intended to be used in conjunction with the [6] Resolver Service
Specification.

The model of the Repository is based on the generic Requirement-Capability model defined in [3] Re-
source API Specification, this chapter relies on the definitions of the generic model.

132.1.1 Essentials

• External - Provide access to external components and resources.
• Resolve - The Repository API must be closely aligned with the Resolver API since they are intend-

ed to be used in conjunction.
• Searching - Support general queries.
• Metadata - Allow resources to provide content information.
• Retrieval - Allow the retrieval of Resources from remote locations.
• Batching - Repositories must be able to batch queries.
• Distribution - Allow Repositories to be defined with a simple storage scheme such that Reposito-

ries can be distributed on a removable media like a CD/DVD.
• Mirroring - Repositories must be able to support selecting a remote site based on the local situa-

tion.

132.1.2 Entities

• Repository - A facade to a (remote) set of resources described by capabilities.
• Resource - An artifact that has requirements that must be satisfied before it is available but pro-

vides capabilities when it becomes available.
• Requirement - An expression that asserts a capability.
• Capability - Describes a feature of the resource so that it can be required by a requirement.
• Resource Content - Provides access to the underlying bytes of the resource in the default format.

Using a Repository Repository Service Specification Version 1.1

Page 528 OSGi Enterprise Release 7

Figure 132.1 Class and Service overview

Repository Impl

Repository

Management
Agent

Resolver

<<interface>>
Resource
Content

<<interface>>
Requirement

<<interface>>
Capability

<<interface>>
Resource

Resource ImplRepository
XML

metadata

repository
medium

132.1.3 Synopsis
There are many different repositories available on the Internet or on fixed media. A repository can
be made available to bundles by providing a Repository service. If such a bundle, for example a Man-
agement Agent performing a provisioning operation, finds that it has an unmatched requirement
then it can query the repository services to find matching capabilities. The Repository service can
implement the query in many different ways. It can ship the requirement to a remote side to be
processed or it can process the query locally.

This specification also provides an XML schema that can be used to describe a Repository. Instances
of this schema can be downloaded from a remote repository for local indexing or they can be stored
for example on a DVD together with the resources.

132.2 Using a Repository
The Repository service provides an abstraction to a, potentially remote, set of resources. In the
generic Capability-Requirement model, resources are modeled to declare capabilities and require-
ments. The primary purpose of a Repository is to enable a management agent that uses the Resolver
API to leverage a wide array of repositories. This Repository service specification allows different
Repository providers to be installed as bundles, and each bundle can register multiple Repository
services. The Repository is sufficiently abstract to allow many different implementations.

Repository services are identified by a number of service properties:

• service.pid - A mandatory unique identity for this Repository service.
• service.descr ipt ion - An optional human readable name for this Repository.
• repository.ur l - Optional URLs to landing pages of the repository, if they exist.

In general, the users of the Repository service should aggregate all services in the service registry.
This strategy allows the deployer to control the available Repositories. The following example, us-
ing Declarative Service annotations to show the dependencies on the service registry, shows how to
aggregate the different Repository services.

List<Repository> repos = new CopyOnWriteArrayList<Repository>();

Repository Service Specification Version 1.1 Using a Repository

OSGi Enterprise Release 7 Page 529

@Reference(
cardinality = ReferenceCardinality.MULTIPLE,
policy = ReferencePolicy.DYNAMIC)
void addRepository(Repository repo) { repos.add(repo); }
void removeRepository(Repository repo) { repos.remove(repo); }

To access a resource in a Repository service it is necessary to construct a requirement, pass this to
the Repository service, and then use the returned capabilities to satisfy the resolver or to get the re-
source from the capability. The Repository then returns all matching capabilities. The requirement
matches the capability if their namespaces match and the requirement's filter is absent or matches
the attributes.

The f indProviders(Col lect ion) method takes a Collection of requirements. The reason for this col-
lection is that it allows the caller to specify multiple requirements simultaneously so that Reposito-
ries can batch requests, the requirements in this collection are further unrelated. That is, they do not
form an expression in any way. Multiple requirements as the parameter means that the result must
be a map so that the caller can find out what requirement matched what capabilities. For example:

List<Capability> find(Requirement r){
 List<Capability> result = new ArrayList<Capability>();

 for (Repository repo : repos) {
 Map<Requirement,Collection<Capability>> answer =
 repo.findProviders(Collections.singleton(r));
 result.addAll(answer.get(r));
 }
 return result;
}

Access to resources is indirect since the Repository returns capabilities. Each capability is declared
in a resource and the getResource() method provides access to the underlying resource. Since each
resource declares an osgi . identity capability it is possible to retrieve a resource from a repository if
the identity name, type, and version are known. For example, to get a bundle resource:

Resource getResource(String type, String name, Version version) {
 String filter = String.format(
 "(&(type=%s)(osgi.identity=%s)(version=%s))",
 type,
 name,
 version);

 RequirementBuilder builder = repo.newRequirementBuilder("osgi.identity");
 builder.addDirective("filter", filter);
 Requirement r = builder.build();

 List<Capability> capabilities = find(r);
 if (capabilities.isEmpty())
 return null;
 return capabilities.get(0).getResource();
}

Resources that originate from Repository services must implement the RepositoryContent interface,
this interface provides stream access to the default storage format. It is therefore possible to get the
content with the following code.

InputStream getContent(String type, String name, Version version) {

Using a Repository Repository Service Specification Version 1.1

Page 530 OSGi Enterprise Release 7

 Resource r = getResource(type, name, version);
 if (r == null)
 return null;
 return ((RepositoryContent)r).getContent();
}

The getContent() method returns an Input Stream in the default format for that resource type. Re-
sources from a Repository should also have one or more osgi .content capabilities that advertise the
same resource in the same or different formats. The osgi .content capability has a number of attrib-
utes that provide information about the resource's download format:

• osgi .content - A unique SHA-256 for the content as read from the URL.
• url - A URL to the content.
• mime - An IANA MIME type for the content.
• size - Size in bytes of the content.

It is therefore possible to search for a specific MIME type and download that format. For example:

String getURL(String type, String name, Version version, String mime)
 throws Exception {
 Resource r = getResource(type, name, version);
 for (Capability cap : r.getCapabilities("osgi.content")) {
 Map<String,Object> attrs = cap.getAttributes();
 String actual = (String) attrs.get("mime");
 if (actual!=null && mime.equalsIgnoreCase(actual)) {
 String url = (String) attrs.get("url");
 if (url != null)
 return url;
 }
 }
 return null;
}

Since the osgi .content capability contains the SHA-256 digest as the osgi .content attribute it is pos-
sible to verify the download that it was correct.

Every resource has an osgi . identity capability. This namespace defines, in [2] Framework Namespaces,
the possibility to add related resources, for example javadoc or sources. A resource then has informa-
tional requirements to osgi . identity capabilities; these requirements are marked with a classi f ier di-
rective that holds the type of relation. The following example shows how it would be possible to find
such a related resource:

InputStream getRelated(Resource resource,String classifier)
 throws Exception {
 for (Requirement r : resource.getRequirements("osgi.identity")) {
 if (classifier.equals(r.getDirectives().get("classifier"))) {
 Collection<Capability> capabilities =
 repository.findProviders(Collections.singleton(r)).get(r);

 if (capabilities.isEmpty())
 continue;

 Capability c = capabilities.iterator().next();
 Resource related = c.getResource();
 return ((RepositoryContent)related).getContent();
 }

Repository Service Specification Version 1.1 Using a Repository

OSGi Enterprise Release 7 Page 531

 }
 return null;
}

132.2.1 Combining Requirements
In some cases it may be useful to find resources in the repository that satisfy criteria across multiple
namespaces.

A simple Requirement object can contain a filter that makes assertions about capability attrib-
utes within a single namespace. So for example, a single requirement can state that a package
org.example.mypkg must be exported in a version between 3.1 inclusive and 4.0 exclusive:

 RequirementBuilder rb = repo.newRequirementBuilder("osgi.wiring.package");
 String rf = "(&(osgi.wiring.package=org.example.mypkg)"
 + "(version>=3.1)(!(version>=4.0)))";
 rb.addDirective("filter", rf);
 Requirement r = rb.build();

This requirement contains three conditions on the osgi .wir ing.package capability.

In some situations it may be needed to specify requirements that cover multiple namespaces.
For example a bundle might be needed that exports the above package, but the bundle must also
have the Apache License, Version 2.0 license. A resource's license is available as an attribute on the
osgi . identity namespace. Constructing a constraint that combines requirements from multiple
namespaces can be done by using an Expression Combiner, which can be obtained from the Reposi-
tory service. The Repository service provides a f indProviders(RequirementExpression) overload that
can take a requirement expression and returns a Promise to a collection of matching resources.

 RequirementBuilder lb = repo.newRequirementBuilder("osgi.identity");
 String lf = "(license=http://opensource.org/licenses/Apache-2.0)";
 lb.addDirective("filter", lf);

 RequirementExpression expr = repo.getExpressionCombiner().and(
 lb.buildExpression(), rb.buildExpression());

 Promise<Collection<Resource>> p = repo.findProviders(expr);

 // Let findProviders() do its work async and update a ui component
 // once the result is available
 p.then(new Success<Collection<Resource>, Void>() {
 public Promise<Void> call(Promise<Collection<Resource>> resolved)
 throws Exception {
 ui.update(resolved.getValue());
 return null;
 }
 });

 // Instead of the async chain above its also possiblye to
 // wait for the promise value synchronously:
 // Collection<Resource> resources = p.getValue();

For more details on OSGi Promises, see the Promises Specification on page 929.

Repository Repository Service Specification Version 1.1

Page 532 OSGi Enterprise Release 7

132.3 Repository
A Repository service provides access to capabilities that satisfy a given requirement. A Repository
can be the facade of a remote server containing a large amount of resources, a repository on remov-
able media, or even a collection of bundles inside a ZIP file. A Repository communicates in terms
of requirements and capabilities as defined in [3] Resource API Specification. This model is closely
aligned with the [6] Resolver Service Specification.

A Repository service must be registered with the service properties given in the following table.

Table 132.1 Repository Service Properties

Attribute Opt Type Description
service.pid mandatory Str ing A globally unique identifier for this Repository.
service.descr ipt ion optional Str ing The Repository Name
repository.ur l optional Str ing+ URLs related to this Repository.

The Repository implements the following methods:

• f indProviders(Col lect ion) - For each requirement find all the capabilities that match that require-
ment and return them as a Map<Requirement,Col lect ion<Capabi l i ty>> .

• f indProviders(RequirementExpression) - Find all resources that match the requirement expres-
sion. The requirement expression is used to combine multiple requirements using the and , or
and not operators.

• getExpressionCombiner() - Obtain an expression combiner. This expression combiner is used to
produce requirement expressions from simple requirements or other requirement expressions.

• newRequirementBui lder(Str ing) - Obtain a convenience builder for Requirement objects.

A Repository must not perform any namespace specific actions or matching. The Repository must
therefore match a requirement to a capability with the following rules:

• The namespace must be identical, and
• The requirement's filter is absent or it must match the capability's attributes.

Resources originating from a Repository service must additionally:

• Implement the RepositoryContent interfaces, see Repository Content on page 532.
• Provide at least one osgi .content Capability, see osgi.content Namespace on page 532.

132.3.1 Repository Content
Resources originating from a Repository must implement the RepositoryContent interface. The pur-
pose of this interface is to allow users of the Repositories access to an Input Stream that provides ac-
cess to the resource.

The RepositoryContent interface provides a single method:

• getContent() - Return an Input Stream for the resource, if more than one osgi .content capability
is present the content associated with the first capability is returned.

132.4 osgi.content Namespace
A resource is a logical concept, to install a resource in an environment it is necessary to get access to
its contents. A resource can be formatted in different ways. It is possible to deliver a bundle as a JAR
file, a Pack200 file, or some other format. In general, the RepositoryContent interface provides ac-
cess to the default format.

Repository Service Specification Version 1.1 XML Repository Format

OSGi Enterprise Release 7 Page 533

The Repository can advertise the different formats with osgi .content capabilities. Each of those ca-
pabilities is identified with a unique SHA-256 checksum and has a URL for the resource in the spec-
ified format. The size and mime attributes provide information the download format, this can be
used for selection. If more than one osgi .content capability is associated with a resource, the first ca-
pability must represent the default format. If the resource has a standard or widely used format (e.g.,
JAR for bundles and ESA for subsystems), and that format is provided as part of the repository, then
that format should be the default format.

The osgi .content Namespace supports the attributes defined in the following table and Content-
Namespace .

Table 132.2 osgi.content definition

Name Kind M/O Type Syntax Description
osgi .content CA M String [0-9a-fA-F]{64} The SHA-256 hex encoded digest for this re-

source
url CA M String <url> The URL to the bytes. This must be an ab-

solute URL.
size CA M Long [0-9]+ The size of the resource in bytes as it will be

read from the URL.
mime CA M String <mime type> An IANA defined MIME type for the format

of this content.

132.5 XML Repository Format
This is an optional part of the specification since the Repository interface does not provide access
how the Repository obtains its information. However, the purpose of this part of the specification is
to provide a commonly recognized format for interchanging Repository metadata.

This section therefore describes an XML schema to represent Repository content. It is expected that
Internet based Repositories can provide such an XML file to clients. A Repository XML file can be
used as a common interchange format between multiple Repository implementations.

The Repository XML describes a number of resources with their capabilities and requirements. Addi-
tionally the XML can refer to other Repository XML files. The XML Schema can be found at its XML
namespace, see XML Repository Schema on page 537. The XML structure, which closely follows the
Requirement-Capability model, is depicted in Figure 132.2.

Figure 132.2 XML Structure

<repository>

<referral> <resource>

<requirement> <capability>

<attribute> <directive> <attribute> <directive>

XML Repository Format Repository Service Specification Version 1.1

Page 534 OSGi Enterprise Release 7

The different elements are discussed in the following sections. All types are derived from the XML
Schema types, see [4] XML Schema Part 2: Data types Second Edition. Any relative URIs in a Repository
XML file must be resolved as specified in [5] XML Base (Second Edition), Resolving Relative URIs.

132.5.1 Repository Element
The repository element is the root of the document. The repository element has the following child
elements:

• referral* - Referrals to other repositories for a federated model, see Referral Element on page
534.

• resource* - Resource definitions, see Resource Element on page 534.

The repository element has the attributes defined in the following table.

Table 132.3 repository element attributes

Attribute Type Description
name NCName The name of this Repository. For informational purposes.
increment long Counter which increments every time the repository is

changed. Can be used by clients to check for changes. The
counter is not required to increase monotonically.

132.5.2 Referral Element
The purpose of the referral element is to allow a Repository to refer to other Repositories, allowing
for federated Repositories. Referrals are applied recursively. However, this is not always desired. It is
therefore possible to limit the depth of referrals. If the depth attribute is >= 1, the referred reposito-
ry must be included but it must not follow any referrals from the referred repository. If the depth at-
tribute is more than one, referrals must be included up to the given depth. Depths of referred repos-
itories must also be obeyed, where referred repositories may reduce the effective depth but not in-
crease it. For example if a top repository specifies a depth of 5 and a level 3 repository has a depth of
1 then the repository on level 5 must not be used. If not specified then there is no limit to the depth.
Referrals that have cycles must be ignored, a resource of a given Repository must only occur once in
a Repository.

The referral element has the attributes defined in the following table.

Table 132.4 referral element attributes

Attribute Type Description
depth int The max depth of referrals
url anyURI A URL to where the referred repository XML can be found.

The URL can be absolute or relative to the URI of the current
XML resource.

132.5.3 Resource Element
The resource element defines a Resource. The resource element has the following child elements:

• requirement* - The requirements of this resource, see Requirement Element on page 535.
• capabi l i ty* - The capabilities of this resource, see Capability Element on page 534.

The Resource element has no attributes.

132.5.4 Capability Element
The capabi l i ty element maps to a capability, it holds the attributes and directives. The capabi l i ty ele-
ment has the following child elements:

Repository Service Specification Version 1.1 XML Repository Format

OSGi Enterprise Release 7 Page 535

• direct ive* - The directives for the capability, see Directive Element on page 536.
• attr ibute* - The attributes for the capability, see Attribute Element on page 535.

The capabi l i ty element has the attributes defined in the following table.

Table 132.5 capability element attributes

Attribute Type Description
namespace token The namespace of this capability

132.5.5 Requirement Element
The requirement element maps to a requirement, it holds the attributes and directives. The require-
ment element has the following child elements:

• direct ive* - The directives for the requirement, see Directive Element on page 536.
• attr ibute* - The attributes for the requirement, see Attribute Element on page 535.

The requirement element has the attributes defined in the following table.

Table 132.6 requirement element attributes

Attribute Type Description
namespace token The namespace of this requirement

132.5.6 Attribute Element
An attr ibute element describes an attribute of a capability or requirement. Attributes are used to
convey information about the Capability-Requirement. Attributes for the capability are used for
matching the requirement's filter. The meaning of attributes is described with the documentation of
the namespace in which they reside.

Attributes are optionally typed according to the [1] Framework Module Layer specification. The de-
fault type is Str ing , the value of the value attribute. However, if a type attribute is specified and it is
not Str ing then the value attribute must be converted according to the type attribute specifier. The
syntax of the type attribute is as follows:

type ::= list | scalar
list ::= 'List<' scalar '>' // no spaces between terminals
scalar ::= 'String' | 'Version' | 'Long' | 'Double'

A list conversion requires the value to be broken in tokens separated by comma (',' \u002C). White-
space around the list and around commas must be trimmed for non-String types. Each token must
then be converted to the given type according to the scalar type specifier. The exact rules for the
comma separated lists are defined in [1] Framework Module Layer, see Bundle Capability Attributes.

The conversion of value s , when scalar , must take place with the following methods:

• Str ing - No conversion, use s
• Version - Version.parseVersion(s)
• Long - After trimming whitespace, Long.parseLong(s)
• Double - After trimming whitespace, Double.parseDouble(s)

The attr ibute element has the attributes defined in the following table.

Table 132.7 attribute element attributes

Attribute Type Description
name token The name of the attribute

XML Repository Format Repository Service Specification Version 1.1

Page 536 OSGi Enterprise Release 7

Attribute Type Description
value str ing The value of the attribute.
type The type of the attribute, the syntax is outlined in the previ-

ous paragraphs.

132.5.7 Directive Element
A direct ive element describes a directive of a capability or a requirement. Directives are used to con-
vey information about the Capability-Requirement. The meaning of directives is described with the
documentation of the namespace in which they reside.

The direct ive element has the attributes defined in the following table.

Table 132.8 directive element attributes

Attribute Type Description
name token The name of the attribute
value str ing The value of the attribute.

132.5.8 Sample XML File
The following example shows a very small XML file. The file contains one resource.

<repository name='OSGiRepository'
 increment='13582741'
 xmlns='http://www.osgi.org/xmlns/repository/v1.0.0'>
 <resource>

 <requirement namespace='osgi.wiring.package'>
 <directive name='filter' value=
 '(&(osgi.wiring.package=org.apache.commons.pool)(version>=1.5.6))'/>
 </requirement>

 <requirement namespace='osgi.identity'>
 <directive name='effective' value='meta'/>
 <directive name='resolution' value='optional'/>
 <directive name='filter' value=
 '(&(version=1.5.6)(osgi.identity=org.acme.pool-src))'
 <directive name='classifier' value='sources'/>
 </requirement>

 <capability namespace='osgi.identity'>
 <attribute name='osgi.identity' value='org.acme.pool'/>
 <attribute name='version'type='Version' value='1.5.6'/>
 <attribute name='type' value='osgi.bundle'/>
 </capability>

 <capability namespace='osgi.content'>
 <attribute name='osgi.content' value='e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'
 <attribute name='url' value='http://www.acme.com/repository/org/acme/pool/org.acme.pool-1.5.6.jar'/>
 <attribute name='size' type='Long' value='4405'/>
 <attribute name='mime' value='application/vnd.osgi.bundle'/>
 </capability>

 <capability namespace='osgi.wiring.bundle'>
 <attribute name='osgi.wiring.bundle' value='org.acme.pool'/>
 <attribute name='bundle-version' type='Version' value='1.5.6'/>
 </capability>

 <capability namespace='osgi.wiring.package'>
 <attribute name='osgi.wiring.package' value='org.acme.pool'/>
 <attribute name='version' type='Version' value='1.1.2'/>
 <attribute name='bundle-version' type='Version' value='1.5.6'/>
 <attribute name='bundle-symbolic-name' value='org.acme.pool'/>
 <directive name='uses' value='org.acme.pool,org.acme.util'/>
 </capability>

 </resource>
</repository>

Repository Service Specification Version 1.1 XML Repository Schema

OSGi Enterprise Release 7 Page 537

132.6 XML Repository Schema
The namespace of this schema is:

http://www.osgi.org/xmlns/repository/v1.0.0

The schema for this namespace can be found at the location implied in its name. The recommended
prefix for this namespace is repo .

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:repo="http://www.osgi.org/xmlns/repository/v1.0.0"
 targetNamespace="http://www.osgi.org/xmlns/repository/v1.0.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.0.1">

 <element name="repository" type="repo:Trepository" />
 <complexType name="Trepository">
 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="resource" type="repo:Tresource" />
 <element name="referral" type="repo:Treferral" />
 </choice>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string">
 <annotation>
 <documentation xml:lang="en">
 The name of the repository. The name may contain
 spaces and punctuation.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="increment" type="long">
 <annotation>
 <documentation xml:lang="en">
 An indication of when the repository was last changed. Client's can
 check if a
 repository has been updated by checking this increment value.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tresource">
 <annotation>
 <documentation xml:lang="en">
 Describes a general resource with
 requirements and capabilities.
 </documentation>
 </annotation>
 <sequence>
 <element name="requirement" type="repo:Trequirement" minOccurs="0" maxOccurs="unbounded"/>
 <element name="capability" type="repo:Tcapability" minOccurs="1" maxOccurs="unbounded"/>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Treferral">
 <annotation>
 <documentation xml:lang="en">
 A referral points to another repository XML file. The

XML Repository Schema Repository Service Specification Version 1.1

Page 538 OSGi Enterprise Release 7

 purpose of this element is to create a federation of
 repositories that can be accessed as a single
 repository.
 </documentation>
 </annotation>
 <attribute name="depth" type="int" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The depth of referrals this repository acknowledges.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="url" type="anyURI" use="required">
 <annotation>
 <documentation xml:lang="en">
 The URL to the referred repository. The URL can be
 absolute or relative from the given repository's
 URL.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tcapability">
 <annotation>
 <documentation xml:lang="en">
 A named set of type attributes and directives. A capability can be
 used to resolve a requirement if the resource is included.
 </documentation>
 </annotation>
 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="directive" type="repo:Tdirective" />
 <element name="attribute" type="repo:Tattribute" />
 </choice>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="namespace" type="string">
 <annotation>
 <documentation xml:lang="en">
 Name space of the capability. Only requirements with the
 same name space must be able to match this capability.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Trequirement">
 <annotation>
 <documentation xml:lang="en">
 A filter on a named set of capability attributes.
 </documentation>
 </annotation>
 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="directive" type="repo:Tdirective" />
 <element name="attribute" type="repo:Tattribute" />
 </choice>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="namespace" type="string">
 <annotation>
 <documentation xml:lang="en">
 Name space of the requirement. Only capabilities within the
 same name space must be able to match this requirement.

Repository Service Specification Version 1.1 XML Repository Schema

OSGi Enterprise Release 7 Page 539

 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tattribute">
 <annotation>
 <documentation xml:lang="en">
 A named value with an optional type that decorates
 a requirement or capability.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string">
 <annotation>
 <documentation xml:lang="en">
 The name of the attribute.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="value" type="string">
 <annotation>
 <documentation xml:lang="en">
 The value of the attribute.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="type" type="repo:TpropertyType" default="String">
 <annotation>
 <documentation xml:lang="en">
 The type of the attribute.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tdirective">
 <annotation>
 <documentation xml:lang="en">
 A named value of type string that instructs a resolver
 how to process a requirement or capability.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string">
 <annotation>
 <documentation xml:lang="en">
 The name of the directive.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="value" type="string">
 <annotation>
 <documentation xml:lang="en">
 The value of the directive.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <simpleType name="TpropertyType">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Version" />
 <enumeration value="Long" />
 <enumeration value="Double" />

Capabilities Repository Service Specification Version 1.1

Page 540 OSGi Enterprise Release 7

 <enumeration value="List<String>" />
 <enumeration value="List<Version>" />
 <enumeration value="List<Long>" />
 <enumeration value="List<Double>" />
 </restriction>
 </simpleType>
 <attribute name="must-understand" type="boolean" default="false">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents to require that
 the document consumer understand the extension. This attribute must be
 qualified when used.
 </documentation>
 </annotation>
 </attribute>
</schema>

132.7 Capabilities
Implementations of the Repository Service specification must provide the capabilities listed in this
section.

132.7.1 osgi.implementation Capability
The Repository Service implementation bundle must provide the osgi . implementation capability
with name osgi . repository . This capability can be used by provisioning tools and during resolution
to ensure that a Repository Service implementation is present. The capability must also declare a us-
es constraint for the org.osgi .service.repository package and provide the version of this specifica-
tion:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.repository";
 uses:="org.osgi.service.repository";
 version:Version="1.1"

This capability must follow the rules defined for the osgi.implementation Namespace on page 635.

132.7.2 osgi.service Capability
The Repository Service implementation must provide a capability in the osgi .service namespace
representing the Repository service. This capability must also declare a uses constraint for the
org.osgi .service.repository package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.repository.Repository";
 uses:="org.osgi.service.repository"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

132.8 Security

132.8.1 External Access
Repositories in general will get their metadata and artifacts from an external source, which makes
them an attack vector for a malevolent Bundle that needs unauthorized external access. Since a Bun-
dle using a Repository has no knowledge of what sources the Repository will access it will be neces-
sary for the Repository to implement the external access in a doPriv i leged block. Implementations
must ensure that callers cannot influence/modify the metadata in such a way that the getContent()
method could provide access to arbitrary Internet resources. This could for example happen if:

Repository Service Specification Version 1.1 org.osgi.service.repository

OSGi Enterprise Release 7 Page 541

• The implementation relies on the osgi .content namespace to hold the URL
• The attributes Map from the osgi .content Capability is modifiable

If the malevolent Bundle could change the osgi.content attribute it could change it to arbitrary
URLs. This example should make it clear that Repository implementations must be very careful.

132.8.2 Permissions
Implementations of this specification will need the following minimum permissions.

ServicePermission[...Repository, REGISTER]
SocketPermission[... carefully restrict external access...]

Users of this specification will need the following minimum permissions.

ServicePermission[...Repository, GET]

132.9 org.osgi.service.repository

Repository Service Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.repository; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.repository; vers ion="[1.1 ,1 .2)"

132.9.1 Summary

• AndExpression - A RequirementExpression representing the and of a number of requirement ex-
pressions.

• ContentNamespace - Content Capability and Requirement Namespace.
• ExpressionCombiner - An ExpressionCombiner can be used to combine requirement expres-

sions into a single complex requirement expression using the and , or and not operators.
• IdentityExpression - A RequirementExpression representing a requirement.
• NotExpression - A RequirementExpression representing the not (negation) of a requirement ex-

pression.
• OrExpression - A RequirementExpression representing the or of a number of requirement ex-

pressions.
• Repository - A repository service that contains resources.
• RepositoryContent - An accessor for the content of a resource.
• RequirementBui lder - A builder for requirements.
• RequirementExpression - The super interface for all requirement expressions.

132.9.2 public interface AndExpression
extends RequirementExpression
A RequirementExpression representing the and of a number of requirement expressions.

Since 1.1

org.osgi.service.repository Repository Service Specification Version 1.1

Page 542 OSGi Enterprise Release 7

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.2.1 public List<RequirementExpression> getRequirementExpressions()

□ Return the requirement expressions that are combined by this AndExpression .

Returns An unmodifiable list of requirement expressions that are combined by this AndExpression . The list
contains the requirement expressions in the order they were specified when this requirement ex-
pression was created.

132.9.3 public final class ContentNamespace
extends Namespace
Content Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

132.9.3.1 public static final String CAPABILITY_MIME_ATTRIBUTE = "mime"

The capability attribute that defines the IANA MIME Type/Format for this content.

132.9.3.2 public static final String CAPABILITY_SIZE_ATTRIBUTE = "size"

The capability attribute that contains the size, in bytes, of the content. The value of this attribute
must be of type Long .

132.9.3.3 public static final String CAPABILITY_URL_ATTRIBUTE = "url"

The capability attribute that contains the URL to the content.

132.9.3.4 public static final String CONTENT_NAMESPACE = "osgi.content"

Namespace name for content capabilities and requirements.

Also, the capability attribute used to specify the unique identifier of the content. This identifier is
the SHA-256 hash of the content.

132.9.4 public interface ExpressionCombiner
An ExpressionCombiner can be used to combine requirement expressions into a single complex re-
quirement expression using the and , or and not operators.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.4.1 public AndExpression and(RequirementExpression expr1, RequirementExpression expr2)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

□ Combine two RequirementExpressions into a requirement expression using the and operator.

Returns An AndExpression representing an and of the specified requirement expressions.

Repository Service Specification Version 1.1 org.osgi.service.repository

OSGi Enterprise Release 7 Page 543

132.9.4.2 public AndExpression and(RequirementExpression expr1, RequirementExpression expr2,
RequirementExpression... moreExprs)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

moreExprs Optional, additional requirement expressions to combine into the returned requirement expression.

□ Combine multiple RequirementExpressions into a requirement expression using the and operator.

Returns An AndExpression representing an and of the specified requirement expressions.

132.9.4.3 public IdentityExpression identity(Requirement req)

req The requirement to wrap in a requirement expression.

□ Wrap a Requirement in an IdentityExpression. This can be useful when working with a combina-
tion of Requirements and RequirementExpresions.

Returns An IdentityExpression representing the specified requirement.

132.9.4.4 public NotExpression not(RequirementExpression expr)

expr The requirement expression to negate.

□ Return the negation of a RequirementExpression.

Returns A NotExpression representing the not of the specified requirement expression.

132.9.4.5 public OrExpression or(RequirementExpression expr1, RequirementExpression expr2)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

□ Combine two RequirementExpressions into a requirement expression using the or operator.

Returns An OrExpression representing an or of the specified requirement expressions.

132.9.4.6 public OrExpression or(RequirementExpression expr1, RequirementExpression expr2,
RequirementExpression... moreExprs)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

moreExprs Optional, additional requirement expressions to combine into the returned requirement expression.

□ Combine multiple RequirementExpressions into a requirement expression using the or operator.

Returns An OrExpression representing an or of the specified requirement expressions.

132.9.5 public interface IdentityExpression
extends RequirementExpression
A RequirementExpression representing a requirement.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.5.1 public Requirement getRequirement()

□ Return the Requirement contained in this IdentityExpression .

Returns The requirement contained in this IdentityExpression .

org.osgi.service.repository Repository Service Specification Version 1.1

Page 544 OSGi Enterprise Release 7

132.9.6 public interface NotExpression
extends RequirementExpression
A RequirementExpression representing the not (negation) of a requirement expression.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.6.1 public RequirementExpression getRequirementExpression()

□ Return the requirement expression that is negated by this NotExpression .

Returns The requirement expression that is negated by this NotExpression .

132.9.7 public interface OrExpression
extends RequirementExpression
A RequirementExpression representing the or of a number of requirement expressions.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.7.1 public List<RequirementExpression> getRequirementExpressions()

□ Return the requirement expressions that are combined by this OrExpression .

Returns An unmodifiable list of requirement expressions that are combined by this OrExpression . The list
contains the requirement expressions in the order they were specified when this requirement ex-
pression was created.

132.9.8 public interface Repository
A repository service that contains resources.

Repositories may be registered as services and may be used as by a resolve context during resolver
operations.

Repositories registered as services may be filtered using standard service properties.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.8.1 public static final String URL = "repository.url"

Service property to provide URLs related to this repository.

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

132.9.8.2 public Map<Requirement, Collection<Capability>> findProviders(Collection<? extends Requirement>
requirements)

requirements The requirements for which matching capabilities should be returned. Must not be nul l .

□ Find the capabilities that match the specified requirements.

Returns A map of matching capabilities for the specified requirements. Each specified requirement must ap-
pear as a key in the map. If there are no matching capabilities for a specified requirement, then the
value in the map for the specified requirement must be an empty collection. The returned map is
the property of the caller and can be modified by the caller. The returned map may be lazily populat-
ed, so calling size() may result in a long running operation.

Repository Service Specification Version 1.1 org.osgi.service.repository

OSGi Enterprise Release 7 Page 545

132.9.8.3 public Promise<Collection<Resource>> findProviders(RequirementExpression expression)

expression The RequirementExpression for which matching capabilities should be returned. Must not be nul l .

□ Find the resources that match the specified requirement expression.

Returns A promise to a collection of matching Resources. If there are no matching resources, an empty col-
lection is returned. The returned collection is the property of the caller and can be modified by the
caller. The returned collection may be lazily populated, so calling size() may result in a long run-
ning operation.

Since 1.1

132.9.8.4 public ExpressionCombiner getExpressionCombiner()

□ Return an expression combiner. An expression combiner can be used to combine multiple require-
ment expressions into more complex requirement expressions using and, or and not operators.

Returns An ExpressionCombiner .

Since 1.1

132.9.8.5 public RequirementBuilder newRequirementBuilder(String namespace)

namespace The namespace for the requirement to be created.

□ Return a new RequirementBui lder which provides a convenient way to create a requirement.

For example:

 Requirement myReq = repository.newRequirementBuilder("org.foo.ns1").
 addDirective("filter", "(org.foo.ns1=val1)").
 addDirective("cardinality", "multiple").build();

Returns A new requirement builder for a requirement in the specified namespace.

Since 1.1

132.9.9 public interface RepositoryContent
An accessor for the content of a resource. All Resource objects which represent resources in a Repos-
itory must implement this interface. A user of the resource can then cast the Resource object to this
type and then obtain an InputStream to the content of the resource.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.9.1 public InputStream getContent()

□ Returns a new input stream to the content of this resource. The content is represented on the re-
source through the osgi .content capability. If more than one such capability is associated with the
resource, the first such capability is returned.

Returns A new input stream for associated content.

132.9.10 public interface RequirementBuilder
A builder for requirements.

Since 1.1

Provider Type Consumers of this API must not implement this type

132.9.10.1 public RequirementBuilder addAttribute(String name, Object value)

name The attribute name.

org.osgi.service.repository Repository Service Specification Version 1.1

Page 546 OSGi Enterprise Release 7

value The attribute value.

□ Add an attribute to the set of attributes.

Returns This requirement builder.

132.9.10.2 public RequirementBuilder addDirective(String name, String value)

name The directive name.

value The directive value.

□ Add a directive to the set of directives.

Returns This requirement builder.

132.9.10.3 public Requirement build()

□ Create a requirement based upon the values set in this requirement builder.

Returns A requirement created based upon the values set in this requirement builder.

132.9.10.4 public IdentityExpression buildExpression()

□ Create a requirement expression for a requirement based upon the values set in this requirement
builder.

Returns A requirement expression created for a requirement based upon the values set in this requirement
builder.

132.9.10.5 public RequirementBuilder setAttributes(Map<String, Object> attributes)

attributes The map of attributes.

□ Replace all attributes with the attributes in the specified map.

Returns This requirement builder.

132.9.10.6 public RequirementBuilder setDirectives(Map<String, String> directives)

directives The map of directives.

□ Replace all directives with the directives in the specified map.

Returns This requirement builder.

132.9.10.7 public RequirementBuilder setResource(Resource resource)

resource The resource.

□ Set the Resource .

A resource is optional. This method will replace any previously set resource.

Returns This requirement builder.

132.9.11 public interface RequirementExpression
The super interface for all requirement expressions. All requirement expressions must extend this
interface.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

Repository Service Specification Version 1.1 References

OSGi Enterprise Release 7 Page 547

132.10 References

[1] Framework Module Layer
OSGi Core, Chapter 3 Module Layer

[2] Framework Namespaces
OSGi Core, Chapter 8, osgi.identity Namespace

[3] Resource API Specification
OSGi Core, Chapter 6 Resource API Specification

[4] XML Schema Part 2: Data types Second Edition
http://www.w3.org/TR/xmlschema-2/

[5] XML Base (Second Edition), Resolving Relative URIs
https://www.w3.org/TR/xmlbase/#resolution

[6] Resolver Service Specification
OSGi Core, Chapter 58 Resolver Service Specification

132.11 Changes
• Clarified that any relative URIs in a Repository XML file must be resolved as specified in [5] XML

Base (Second Edition), Resolving Relative URIs.

http://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlbase/#resolution

Changes Repository Service Specification Version 1.1

Page 548 OSGi Enterprise Release 7

Service Loader Mediator Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 549

133 Service Loader Mediator
Specification

Version 1.0

133.1 Introduction
Java SE 6 introduced the Service Loader, a simple service-provider loading facility, that attempted to
unify the different ad-hoc mechanisms used by Java's many factories and builders. The design al-
lows a JAR to advertise the name of one or more embedded classes that implement a given interface
and consumers to obtain instances of these implementation classes through the Service Loader API.

Though the Service Loader is about extensibility, its own design is closed and therefore not extend-
able. It does not support a provider model that would allow different ways of finding interface im-
plementations; its classes are final and its policy is fixed. Unfortunately, the Service Loader's fixed
design uses a non-modular class loading policy; it defines its visibility scope with a class loader,
which in general requires full visibility of the application's class path. The Service Loader can there-
fore in OSGi not find implementations from other bundles. Additionally, the Service Loader also
does not enforce a life cycle; objects are handed out forever.

Since the Service Loader is the only standardized plugin mechanism in the JRE it is necessary that
the mechanism is supported in OSGi with as few changes as possible from the consumer's authors.
This specification therefore defines a mediator that ensures that the Service Loader is useful in an
OSGi Framework, allowing programs that leverage the Service Loader to be used in OSGi frame-
works almost as-is.

133.1.1 Essentials

• Compatibility - Allow JARs that run in a classic Java SE environment that leverage the Service
Loader to run in OSGi with only manifest modifications.

• Services - Register services for Service Provider bundles that opt-in.
• Security - Enforce service permissions for the Service Loader objects.
• Life Cycle - Manage the life cycle mismatch between OSGi bundles and the Service Loader's create

only model.

133.1.2 Entities

• Service Loader - An API in Java SE that allows a Consumer to find an implementation of a Service
Type from a Service Provider by searching a class loader for Service Providers.

• Service Type - The interface or class that the Service Provider must implement/extend.
• Provider Configuration File - A resource in the META-INF/services directory that has the fully

qualified name of the Service Type and contains one ore more fully qualified names of Service
Providers.

• Service Provider - An implementation class that implements or extends the Service Type.
• Consumer - A class that uses the Java SE Service Loader inside an OSGi framework.
• Mediator - An extender that mediates between Consumer bundles, the Service Loader API, and

Service Provider bundles in an OSGi environment. It consists of a Processor and a Registrar.

Introduction Service Loader Mediator Specification Version 1.0

Page 550 OSGi Enterprise Release 7

• Processor - Modifies a bundle that uses the Service Loader API so that it works in an OSGi environ-
ment.

• Registrar - Registers services on behalf of a bundle that contains Service Providers.

Figure 133.1 Entities

Consumer

Service
Provider

Registrar

Service
Loader

Provider
Configuration
File

instantiates

osgi.extender=
osgi.serviceloader.registrar

manages
life cycle

advertised by

Service
TypeProcessor

Any OSGi Ser-
vice user

osgi.extender=
osgi.serviceloader.processor

processes

Mediator

osgi.serviceloader
(publishing)

decorates

osgi.serviceloader
(decorating)

133.1.3 Synopsis
This specification defines two different functions that are provided by a Mediator extender:

• Register OSGi services for each Service Provider.
• Allow Consumers that uses the Service Loader API to access Service Providers from other bun-

dles that would normally not be visible from a bundle.

A Service Provider bundle can provide access to all its Service Providers through OSGi services by
declaring a requirement on the osgi .serviceloader.registrar extender. This requirement activates
a Mediator to inspect the osgi .serviceloader capabilities. If no register directive is used then all
Service Providers for the given Service Type must be registered. Otherwise, each capability can
select one Service Provider with the register directive. The fully qualified name selects a specific
Service Provider, allowing different Service Providers to be registered with different service prop-
erties. The Mediator will then register an OSGi service factory for each selected capability. The
osgi .serviceloader capability's attributes are used to decorate the OSGi service registration with ser-
vice properties. The service factory returns a new instance for each service get.

Consumers are classes that use the Service Loader API to find Service Provider instances. Since the
Service Loader API requires full visibility the Service API fails to work inside an OSGi bundle. A
osgi .serviceloader.processor extender, which is the Mediator, processes bundles that require this ca-
pability by modifying calls to the Service Loader API to ensures that the Service Loader has visibility
to published Service Providers.

A Consumer's bundle by default receives visibility to all published Service Providers. Service
Providers are published when a bundle declares one or more osgi .serviceloader capabilities for a
Service Type. If the Consumer has an osgi .serviceloader requirement for the given Service Type
then the Mediator must only expose the bundles that are wired to those requirements and for each
bundle provide all its Service Providers.

Service Loader Mediator Specification Version 1.0 Java Service Loader API

OSGi Enterprise Release 7 Page 551

133.2 Java Service Loader API
Java is quite unique with its focus on separation of specification and implementation. Virtually all Java
Specification Requests (JSR) provide a specification that can be implemented independently by dif-
ferent parties. Though this is one of the industry's best practices it raises a new problem: how to find
the implementation available in a Java environment from only the Service Type. A Service Type is
usually an interface but a base class can also be used.

Finding a Service Provider (the implementation class) from a Service Type is the so called instance
coupling problem. The use of Service Types removed the type coupling between the Consumer of the
contract and the Service Provider of the contract (the implementation) but to make things work there
is a need of at least one place where the Service Provider is instantiated. The very large number of
factories in Java reflects that this is a very common problem.

The general pattern for factories to find Service Providers was to search the class loaders for classes
with constant names, varying the package names, often using System properties to extend the dif-
ferent areas to be sought. Though a general pattern based on class loading tricks emerged in the Ja-
va VM and application programs, all these patterns differed in details and places where they looked.
This became harder and harder to maintain and often caused unexpected instances to be found.

The java.ut i l .ServiceLoader class was therefore first introduced in Java SE 6 to provide a generic so-
lution to this problem, see [1] Java Service Loader API. With this API Service Providers of a specifica-
tion can now advertise their availability by creating a Provider Configuration File in their JAR in the
META-INF/services directory. The name of this resource is the fully qualified name of the Service
Type, the Service Provider provides when instantiated.

The Provider Configuration File contains a number of lines with comments or a class name that im-
plements/extends the Service Type. For example:

org.example.Foo

A Service Provider must then advertise itself like:

META-INF/services/org.example.Foo:
 # Foo implementation
 org.acme.impl.FooImplementation

The Service Loader API finds all advertisers by constructing the name of the Provider Configuration
File from the Service Type and then calling the getResources method on the provided class loader.
This returns an enumeration of URLs to the advertisements. It then parses the contents of the re-
sources; that will provide it with a list of Service Providers for the sought Service Type without du-
plicates. The API will return an iterator that will instantiate an object for the next available Service
Provider.

To find the Configuration files for a given Service Type, the Service Loader uses a class loader. The
Consumer can select the following class loaders:

• A given class loader as an argument in the call to the constructor
• The Thread Context Class Loader (TCCL)
• The system loader (when nul l is passed or no TCCL is set)

The class loader restricts the visibility of the Service Loader to only the resources to which the class
loader has visibility. If the Service Loader has no access to the advertisement of a Service Provider
then it cannot detect it and it will thus not be found.

The Service Provider is loaded from the given class loader, however, the Class.forName method is
used, which stores it in the cache of the initiating class loader. This means that Service Providers are

Consumers Service Loader Mediator Specification Version 1.0

Page 552 OSGi Enterprise Release 7

not garbage collected as long as there is a resolved bundle that used the Service Loader to get that
Service Provider.

In the Service Loader API, the class does not have to originate from the same JAR file as the adver-
tisement. In OSGi this is more restricted, the advertisement must come from the same bundle or
must be explicitly imported.

For example, to load a Foo instance the following code could be used:

ServiceLoader<Foo> sl =
 ServiceLoader.load(Foo.class);
Iterator<Foo> it = sl.iterator();
if (it.hasNext()) {
 Foo foo = it.next();
 ...
}

Though the Service Loader API is about extensibility and contract based programming it is in itself
not extendable nor replaceable. The ServiceLoader class is f inal , it comes from a sealed JAR, and is in
a java package. It also does not provide an API to provide alternate means to find implementations
for a Service Type.

133.3 Consumers
Consumers are classes that are not OSGi aware and directly use the Service Loader API. The Service
Loader has a non-modular design and Consumers therefore run into many issues when running in
an OSGi framework. Consumers should therefore in general be converted to use the OSGi service
layer since this solves the visibility issues, life cycle impedance mismatch, and other problems. The
Consumer part of this specification is therefore a last resort to use when existing code uses the Ser-
vice Loader API and cannot be modified to leverage the OSGi service layer.

133.3.1 Processing
The Service Loader Mediator can process the Consumer by modifying calls to the Service Loader
API. This specification does not detail how the Mediator ensures that the Consumer has visibility
to other Service Providers. However, a Mediator could for example set an appropriate Thread Con-
text Class Loader during the call to the Service Loader's constructor by weaving the Consumer's byte
codes.

133.3.2 Opting In
Processing is an opt-in process, the Consumer bundle must declare that it is willing to be processed.
The opt-in is handled by a requirement to the osgi .serviceloader.processor extender. This require-
ment must have a single cardinality (the default) since the Mediator uses the wiring to select the
Consumer to process when multiple Mediators are present.

For example, the following requirement in a manifest enables a bundle to be processed:

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.processor)
 (version>=1.0)(!(version>=2.0)))"

If the extender osgi .serviceloader.processor requirement is satisfied then the wired Mediator must
process the Consumer.

The Mediator must give visibility to all bundles with published Service Providers unless the Con-
sumer restricts the visibility by having osgi .serviceloader requirements. Bundles publish a Service

Service Loader Mediator Specification Version 1.0 Consumers

OSGi Enterprise Release 7 Page 553

Type, meaning all their Service Providers for that type, by having at least one osgi .serviceloader ca-
pability for that Service Type.

133.3.3 Restricting Visibility
A Consumer's bundle can restrict its visibility to certain bundles by declaring an osgi .serviceloader
requirement for each Service Type it wants to use. Only bundles wired from those requirement pro-
vide their advertised Service Providers. If no such requirements are declared then all bundles with
the published Service Type become available.

The cardinality can be used to select a single Service Provider's bundle or multiple bundles if it
needs to see all Service Provider bundles. The requirement can be made optional if the Consumer's
bundle can work also when no Service Provider bundle is available. See osgi.serviceloader Namespace
on page 559 for more details.

For example, a requirement that restricts visibility to the org.example.Foo Service Providers could
look like:

Require-Capability:
 osgi.serviceloader;
 filter:="(osgi.serviceloader=org.example.Foo)";
 cardinality:=multiple

In this example, any bundle that publishes the org.example.Foo Service Type will contribute its Ser-
vice Providers.

Visibility can also be restricted to bundles that publish with capability's attributes. Any bundle that
has at least one matching capability will then be able to contribute all its Service Providers. For ex-
ample, the following example selects only bundles that have the classi f ied property set:

osgi.serviceloader; filter:="(classified=*)"

With Service Registrations, see Registering Services on page 556, the capability can discriminate be-
tween multiple Service Providers in the same bundle. The Service Loader API does not have this fea-
ture: any wired requirement has visibility to all Service Providers in the wired bundle, regardless of
the registered directive.

133.3.4 Life Cycle Impedance Mismatch
A Consumer can only see Service Provider instances of bundles that are active during the time the
next instance is created. That is, the Mediator must treat the life cycle of the Service Provider as if
it was a service. However, the Service Loader implementations perform extensive class loader tech-
niques and cache results. The exact life cycle of the Service Provider bundle with respect to the Con-
sumer is therefore impossible to enforce.

The Service Loader API does not have a life cycle, objects are assumed to stay alive during the du-
ration of the VM's process and due to the use of Class.forName in the Service Loader implementa-
tions. Therefore a Mediator should refresh a Consumer bundle when it is using a Service Provider
and that Service Provider's bundle becomes stopped otherwise long running applications can run
out of memory when bundles are regularly updated.

133.3.5 Consumer Example
A legacy JAR for which there is no more source code uses the Service Loader API to get access to
com.example.Codec instances through the Service Loader API.

It is wrapped in a bundle that then has the following manifest:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2

Service Provider Bundles Service Loader Mediator Specification Version 1.0

Page 554 OSGi Enterprise Release 7

Bundle-SymbolicName: com.example.impl
Bundle-Version: 23.98.1.v199101232310.02011
Import-Package: com.example; version=3.45
Bundle-ClassPath: legacy.jar

The manifest must then declare that the bundle must be processed, this is triggered by requiring the
osgi .serviceloader.processor extender:

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.processor)
 (version>=1.0)(!(version>=2.0)))"

With this manifest, the Consumer bundle has full visibility to all Service Provider bundles that are
published. The following lines can be added to restrict the visibility to codecs that have support for
WAVE formats (although all Service Providers in that bundle will be visible to the consumer).

,
 osgi.serviceloader;
 filter:="(&(format=WAVE)(osgi.serviceloader=com.example.Codec))"

133.4 Service Provider Bundles
A Service Provider bundle is a bundle that contains one or more Service Providers that are usable by
the Service Loader API. This section shows how Service Provider bundles should be constructed and
what options they have.

133.4.1 Advertising
Service Providers are implementation classes that are advertised under a Service Type according to the
rules in the Service Loader API. A Service Provider is advertised with a Provider Configuration File in
a JAR. In an OSGi environment the Service Provider must reside in the same bundle as the advertise-
ment or be imported. A single Provider Configuration File can contain multiple Service Providers.
See Java Service Loader API on page 551.

133.4.2 Publishing the Service Providers
Service Providers can be used in two different scenarios:

• A Service Provider can be used by a processed Consumer as a Service Type, or
• It can be registered as a service.

A Service Type must be published to allow its use it in these scenarios. Publishing a Service Type con-
sists of providing one or more osgi .serviceloader capabilities for an advertised Service Type, see
osgi.serviceloader Namespace on page 559. These osgi .serviceloader capabilities must specify a ful-
ly qualified class name of the Service Type, there is no wildcarding allowed. Therefore, publishing a
service implicitly makes all corresponding Service Providers available to Consumers.

If a bundle does not provide osgi .serviceloader capabilities then it does not publish any Service
Providers and its Service Providers can therefore not be used by Consumers. They can then also not
be registered as OSGi services, see OSGi Services on page 555. Tools can use the advertisement of
the Service Provider in the JAR to automatically generate the osgi .serviceloader capabilities in the
manifest.

For example, the following capability publishes all the Service Providers in its bundle that advertise
the com.example.Codec interface:

Service Loader Mediator Specification Version 1.0 Service Provider Bundles

OSGi Enterprise Release 7 Page 555

Provide-Capability:
 osgi.serviceloader;
 osgi.serviceloader=com.example.Codec;
 uses:="com.example"

A Service Provider bundle must not require the osgi .serviceloader.processor extender unless it
needs to be processed; publishing a Service Type is sufficient to allow Consumers to use the pub-
lished Service Types.

133.4.3 OSGi Services
The Service Provider can have its osgi .serviceloader capabilities be registered as services that pro-
vide instances from the Service Providers. For this, the Service Provider bundle must require the
osgi .serviceloader.registrar extender, which is the Mediator. For example:

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.registrar)
 (version>=1.0)(!(version>=2.0)))"

The registrar must then inspect each osgi .serviceloader capability and register an associated OSGi
Service for each Service Provider selected by that capability. A Service Provider is selected when:

• The capability has no register directive, or
• The register directive matches the fully qualified name of the Service Provider.

A register directive selects a Service Provider if it contains the fully qualified name of the Service
Provider, that is, the implementation class. Selection only works for services, Consumer will always
see all Service Providers regardless of the register directive due to limitations in the Service Loader
API.

For example, the following manifest selects all Service Providers of the com.example.Foo Service
Type since no register directive is present:

Provide-Capability:
 osgi.serviceloader;
 uses:="com.example";
 osgi.serviceloader=com.example.Foo

Selected Service Providers must be registered as defined in Registering Services on page 556, with
the capability's attributes as decorating service properties. Private service properties (attributes that
start with a full stop ('.' \u002E) and the defined capability attributes in the osgi .serviceloader
namespace are not registered as service properties.

The following example would register the format service property but not the .h int service property
for the com.acme.impl .WaveFoo Service Provider.

 osgi.serviceloader;
 osgi.serviceloader=com.example.Foo;
 uses:="com.example";
 format=WAVE;
 .hint=E5437Qy7;
 register:="com.acme.impl.WaveFoo"

The Mediator must only register OSGi services for selected Service Providers; the Service Provider
bundle can therefore decide not to register certain Service Providers and register them with another
mechanism, for example Declarative Services or in a bundle activator.

Service Loader Mediator Service Loader Mediator Specification Version 1.0

Page 556 OSGi Enterprise Release 7

Since the Mediator must use the bundle context of the Service Provider to register the OSGi service
the Service Provider bundle must have the proper Service Permission REGISTER for the Service Type.

133.4.4 Service Provider Example
A Foo Codecs JAR needs to be ported to OSGi, it provides a Service Provider for the
org.example.Codec Service Type. In this example the JAR is given a new manifest:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.example.foo.codecs
Import-Package: com.example; version=3.45

To ensure that the bundle opts in to registering its services it must require the
osgi .serviceloader.registrar extender.

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.registrar)
 (version>=1.0)(!(version>=2.0)))"

To publish two Service Providers for the same type, two capabilities must be declared:

Provide-Capability:
 osgi.serviceloader;
 osgi.serviceloader="com.example.Codec";
 format:List<String>="WAVE,WMF";
 register:="com.acme.impl.FooWaveCodec";
 uses:="com.example,org.apache.common.codecs",
 osgi.serviceloader;
 osgi.serviceloader="com.example.Codec";
 format:List<String>=SINUS;
 register:="com.acme.impl.sinus.FooSinusCodec";
 uses:="com.example"

This example implicitly publishes the Service Type com.example.Codec multiple times with dif-
ferent attributes. Consumers that match any of these capabilities will however have visibility to
all Service Providers since the Service Loader API cannot discriminate between different Service
Providers from the same bundle.

133.5 Service Loader Mediator
A Mediator is the osgi .serviceloader.processor and osgi .serviceloader.registrar extender bundle
that has the following responsibilities:

• It registers selected Service Providers as OSGi services.
• It processes any Consumers so that Service Loader API calls have proper visibility to published

Service Provider bundles.

133.5.1 Registering Services
The Mediator must track bundles that are wired to its osgi .extender=osgi .serviceloader.registrar
capability. These are called the managed bundles. For all managed bundles the Mediator must enu-
merate all osgi .serviceloader capabilities and register selected Service Providers as OSGi services. A
Service Provider is selected by an osgi .serviceloader capability when:

Service Loader Mediator Specification Version 1.0 Service Loader Mediator

OSGi Enterprise Release 7 Page 557

• The advertised Service Type matches the corresponding osgi .serviceloader capability's Service
Type, and

• The register directive is absent, or
• The register directive contains the fully qualified name of the Service Provider.

An osgi .serviceloader capability that selects a Service Provider is said to decorate that Service
Provider. A capability can decorate multiple Service Providers of the same Service Type and the
same Service Provider can be decorated by different capabilities. Figure 133.2 depicts the resulting
relations and their cardinalities since the relations are non-trivial.

Figure 133.2 Cardinality Service Type

Service Type osgi.
serviceloader
Capability

Service
Provider

advertised
by

decorated
by (qualified by the register directive)

published by

1

0..n

0..n

0..n1

1..n

The OSGi service for each selected Service Provider must be registered under the advertised Service
Type of the Service Provider, which must match the Service Type specified in the capability.

133.5.2 OSGi Service Factory
The Mediator must register an OSGi service factory with the bundle context of the Service Provider's
bundle. The OSGi service factory must be implemented such that it creates a new instance for
each bundle that gets the service. This behavior is similar, though not quite identical, to the
ServiceLoader. load() method that gives each consumer a separate instance of the service. The differ-
ence is that different users inside a bundle will share the same instance.

Each service registration is controlled by a decorating osgi .serviceloader capability. The attributes
on this capability must be registered with the OSGi service as service properties, except for:

• Private - Private properties, property names that start with a full stop ('.' \u002E) must not be reg-
istered.

The following service property must be registered, overriding any identical named properties in the
decorating capability:

• serviceloader.mediator - (Long) The bundle id of the mediator.

The Mediator should not verify class space consistency since the OSGi framework already enforces
this as long as the publishing capability specifies the uses directive.

Any services registered in the OSGi Service Registry must be unregistered when the Service
Provider's bundle is stopped or the Mediator is stopped.

133.5.3 Service Loader and Modularity
The Service Loader API causes issues in a modular environment because it requires a class loader
that has wide visibility. In a modular environment like OSGi the Consumer, the Service Type, and
the Service Provider can, and should, all reside in different modules because they represent different
concerns. Best practice requires that only the Service Type is shared between these actors. However,

Service Loader Mediator Service Loader Mediator Specification Version 1.0

Page 558 OSGi Enterprise Release 7

for the Service Loader to work as it was designed the Consumer must provide a class loader that has
visibility of the Service Provider. The Service Provider is an implementation class, exporting such
classes is the anathema of modularity. However, since the standard JRE provides application wide
visibility this was never a major concern.

The simplest solution is to make the Service Loader aware of OSGi, its API clear is mappable to the
OSGi service layer. However, the Service Loader is not extensible. The result is that using the Service
Loader in OSGi fails in general because the Service Loader is unable to find the Service Providers.
The issues are:

• The use of the Thread Context Class Loader (TCCL) is not defined in an OSGi environment. It
should be set by the caller and this cannot be enforced. The multi threaded nature of OSGi makes
it hard to predict what thread a Consumer will use, making it impossible to set an appropriate
TCCL outside the Consumer.

• A bundle cannot import META-INF/services since the name is not a package name. Even if it
could, the OSGi framework can only bind a single exporter to an importer for a given package.
The Service Loader API requires access to all these pseudo-packages via the Class Loader's getRe-
sources method, the technique used to find Service Providers.

• Instantiating a Service Provider requires access to internal implementation classes, by exporting
these classes, an implementing bundle would break its encapsulation.

• If a Service Provider was exported then importing this class in a Consumer bundle would couple
it to a specific implementation package; this also violates the principle of loose coupling.

• The Service Loader API does assume an eternal life cycle, there is no way to signal that a Service
Provider is no longer available. This is at odds with the dynamic bundle life cycle.

133.5.4 Processing Consumers
Consumers are not written for OSGi and require help to successfully use the Service Loader API. It is
the Mediator's responsibility to ensure that bundles that are wired to published Service Types have
access to these Service Provider's instances through the Service Loader API.

This specification does not define how this is done. There are a number of possibilities and it is up to
the Mediator to provide the guarantee to the Consumer that it has been properly processed.

A Mediator must only process Consumer's bundles that are wired to the osgi .extender capability for
the osgi .serviceloader.processor extender. Since Consumers must require this extender capability
with the default cardinality of 1 there can at most be one extender wired to a Consumer.

133.5.5 Visibility
The Mediator must process the Consumer bundle in such a way that when the Consumer uses the
Service Loader API it receives all the Service Providers of bundles that:

• Provide one or more osgi .serviceloader capabilities for the requested Service Type, and
• Are not type space incompatible with the requester for the given Service Type, and
• Either the Consumer has no osgi .serviceloader requirements or one of its requirements is wired

to one of the osgi .serviceloader capabilities.

The Mediator must verify that the Consumer has Service Permission GET for the given Service Type
since the Consumer uses the Service Type as a service. This specification therefore reuses the Service
Permission for this purpose. The check must be done with the ServicePermission(Str ing,Str ing)
constructor using the bundle's Access Control Context or the bundle's hasPermission method.

133.5.6 Life Cycle
There is a life cycle mismatch between the Service Loader API and the dynamic OSGi world. A Ser-
vice Loader provides a Consumer with an object that could come from a bundle that is later stopped

Service Loader Mediator Specification Version 1.0 osgi.serviceloader Namespace

OSGi Enterprise Release 7 Page 559

and/or refreshed. Such an object becomes stale. Mediators should attempt to refresh bundles that
have access to these stale objects.

133.6 osgi.serviceloader Namespace
The osgi .serviceloader Namespace:

• Allows the Consumer's bundle to require the presence of a Service Provider for the required Ser-
vice Type.

• Provides the service properties for the service registration.
• Indicates which Service Providers should be registered as an OSGi service.

The namespace is defined in the following table and ServiceLoaderNamespace , see Common Name-
spaces Specification on page 631 for the legend of this table.

Table 133.1 osgi.serviceloader namespace definition

Name Kind M/O Type Syntax Description
osgi .serviceloader CA M String qname The Service Type's fully qualified name.
* CA O * * Additional matching attributes are per-

mitted. These attributes will be registered
as custom service properties unless they
are private (start with a full stop).

register CD O String qname Use this capability to register a different
Service Factory under the Service Type
for each selected Service Provider.

A Service Provider is selected if the Ser-
vice Type is the advertising Service Type
and the Service Provider's fully qualified
name matches the given name. If no reg-
ister directive is present all advertised
Service Providers must be registered. To
register no Service Providers, because the
capability must only be used to publish,
provide an empty string.

133.7 Use of the osgi.extender Namespace
This section specifies the extender names for Mediators. They are used by both by Consumer and
Service Provider bundles to ensure that a Mediator is present. Both names are defined for the general
osgi .extender namespace in osgi.extender Namespace in OSGi Core Release 7.

The osgi .extender namespace requires the use of an extender name, the name of the Mediator exten-
ders is:

osgi.serviceloader.processor
osgi.serviceloader.registrar

The version is for this specification is in both cases:

1.0.0

Security Service Loader Mediator Specification Version 1.0

Page 560 OSGi Enterprise Release 7

133.8 Security

133.8.1 Mediator
The Mediator will require significant permissions to perform its tasks. First, it will require access to
the Bundle Context of the Service Provider bundle, which means it must have Admin Permission:

AdminPermission[<Service Provider Bundles>,CONTEXT|METADATA|CLASS]

Since it will have to register on behalf of the Service Provider bundle it must have complete liberty
to register services:

ServicePermission[<Service Type>,REGISTER]

Depending on the way the Consumers are processed additional requirements may be necessary.

The Mediator connects two parties; it must ensure that neither party will receive additional permis-
sions.

133.8.2 Consumers
Consumers must have:

ServicePermission[<Service Type>,GET]
PackagePermission[<Service Type's package>,IMPORT]
CapabilityPermission["osgi.extender", REQUIRE]
CapabilityPermission["osgi.serviceloader", REQUIRE]

The Mediator must ensure that the Consumer has the ServicePermission before it provides the in-
stance. It must use the Bundle Context hasPermission method or the bundle's Access Control Con-
text to verify this.

133.8.3 Service Providers
Service Providers must have:

ServicePermission[<Service Type>,REGISTER]
PackagePermission[<Service Type's package>,IMPORT]
CapabilityPermission["osgi.extender", REQUIRE]
CapabilityPermission["osgi.serviceloader", PROVIDE]

The Mediator must ensure that the Service Provider has the ServicePermission before it provides the
instance. It must use the Bundle Context hasPermission method or the bundle's Access Control Con-
text to verify this.

133.9 org.osgi.service.serviceloader

Service Loader Mediator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.serviceloader; vers ion="[1.0,2.0)"

Service Loader Mediator Specification Version 1.0 References

OSGi Enterprise Release 7 Page 561

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.serviceloader; vers ion="[1.0,1.1)"

133.9.1 Summary

• ServiceLoaderNamespace - Service Loader Capability and Requirement Namespace.

133.9.2 public final class ServiceLoaderNamespace
extends Namespace
Service Loader Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

All unspecified capability attributes are of one of the following types:

• Str ing
• Version
• Long
• Double
• List<Str ing>
• List<Version>
• List<Long>
• List<Double>

and are used as arbitrary matching attributes for the capability. The values associated with the speci-
fied directive and attribute keys are of type Str ing , unless otherwise indicated.

All unspecified capability attributes, unless the attribute name starts with full stop ('.' \u002E), are
also used as service properties when registering a Service Provider as a service.

Concurrency Immutable

133.9.2.1 public static final String CAPABILITY_REGISTER_DIRECTIVE = "register"

The capability directive used to specify the implementation classes of the service. The value of this
attribute must be of type List<Str ing> .

If this directive is not specified, then all advertised Service Providers that match the service type
name must be registered. If this directive is specified, then only Service Providers that match the ser-
vice type name whose implementation class is contained in the value of this attribute must be regis-
tered. To not register a service for this capability use an empty string.

133.9.2.2 public static final String SERVICELOADER_NAMESPACE = "osgi.serviceloader"

Namespace name for service loader capabilities and requirements.

Also, the capability attribute used to specify the fully qualified name of the service type.

133.10 References

[1] Java Service Loader API
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

References Service Loader Mediator Specification Version 1.0

Page 562 OSGi Enterprise Release 7

Subsystem Service Specification Version 1.1 Introduction

OSGi Enterprise Release 7 Page 563

134 Subsystem Service Specification

Version 1.1

134.1 Introduction
The OSGi Core Release 7 specifies a life-cycle model where bundles can be installed, resolved, and
started in order to provide their own classes and services as well as use those provided by other bun-
dles in the system. In the core framework, the bundle is the coarsest deployment unit that a manage-
ment agent is able to work with; however, oftentimes it is necessary to work with collections of bun-
dles and other types of resources, such as subsystems and implementation specific resources. For ex-
ample, a collection of bundles may correspond to a particular feature of a middleware product, such
as a Web container. The applications deployed to that container may also be developed as a collec-
tion of bundles that an administrator is required to manage as a consistent whole. The Subsystems
specification provides a declarative model for defining resource collections, including bundles, and
an API for installing and managing those collections of resources.

Many use cases only require unscoped resource collections where all provided capabilities are freely
exported to and all required capabilities are freely imported from the system. However, in some cas-
es, it is important to allow the exporting of provided capabilities to be scoped such that they can on-
ly be used by a subset of resources in the system. It may also be necessary to restrict the importing
of required capabilities from outside the collection to ensure its internal capabilities are always pre-
ferred over capabilities outside the collection. For example, applications running on a Web appli-
cation server or in a cloud environment may be deployed to the same server instance. The side-ef-
fects of co-locating applications on the same server must be minimized, and scoping is used to en-
sure each application does not use the classes and services of the others.

The framework provides hooks for influencing resolution, and access to bundles and services. These
framework hooks may be used to implement scoping for a collection of bundles. The Subsystems
specification provides a higher-level declarative model for defining scoping for collections of re-
sources, including bundles.

When deploying a collection of bundles in an OSGi framework, gaps can exist between the require-
ments of the bundles and the capabilities provided by the target runtime. Management agents are
responsible for ensuring additional bundles are installed to plug these gaps such that the collection
of bundles will resolve and run. The [10] Resolver Service Specification and Repository Service Specifica-
tion on page 527 help management agents address these needs but do not cover how deployment
works for resource collections, especially when those collections are scoped. Scoping affects require-
ment and capability resolution and therefore affects the choice of resources. The Subsystems speci-
fication defines resolution and provisioning rules to help management agents consistently deploy
collections of resources. The specification also defines a format for developers and testers to provide
predetermined deployment resolutions to help ensure consistency between test and production en-
vironments.

134.1.1 Essentials

• Collections - Allow the management of a collection of resources as a whole.
• Scoping - Provide support for isolating resources in the collection such that a subset of their capa-

bilities (for example packages and services) are available to satisfy requirements outside the Sub-

Introduction Subsystem Service Specification Version 1.1

Page 564 OSGi Enterprise Release 7

system and a subset of their requirements are able to resolve to capabilities provided outside the
Subsystem.

• Sharing - Allow Scoped Subsystems to share their resources with others and share resources from
others.

• Dynamic - Provide life cycle information to users of Subsystems and be able to react to changes in
the state of the environment in which a Subsystem is deployed.

• Flexible - Enable a flexible definition with subsequent resolution to determine the resources to be
used.

• Deterministic - Enable the choice of resources deployed for a Subsystem to be determined ahead of
deployment.

• Life-cycle - Define a life cycle for a Subsystem describing how it affects the Subsystem's resources
and allow the life cycle to be observed.

• Reflective - Allow discovery of runtime structural and state information.
• Resolution - Allow the resolution of a flexible definition during installation to determine the re-

sources to be used.
• Recursive - Allow Subsystems to be defined in terms of other Subsystems.

134.1.2 Entities

• Subsystem - A collection of resources, such as bundles, or other Subsystems, administered as a
whole through a Subsystem service.

• Subsystem Manifest - A manifest used to provide a Subsystem definition.
• Deployment Manifest - A manifest used to provide a deployment definition for a Subsystem. The

definition identifies the exact resources to be deployed for the Subsystem.
• Subsystem Archive - A zip file with an .esa extension that describes a Subsystem definition. It may

include the Subsystem Manifest, Deployment Manifest, or resource files that constitute the Sub-
system.

• Resource - An element which may be used in the composition of a Subsystem, such as a bundle or
another Subsystem.

• Repository - A service that is used to discover a Subsystem's content and dependencies. The reposi-
tory service is described in the Repository Service Specification on page 527.

• Resolver - A service used to resolve requirements against capabilities to determine the resources
required by a Subsystem. The resolver service is described in the [10] Resolver Service Specification.

• Constituent - A resource that belongs to one or more Subsystems.

Subsystem Service Specification Version 1.1 Introduction

OSGi Enterprise Release 7 Page 565

Figure 134.1 Entities org.osgi.service.subsystem

Resolver

Subsystem
Impl

Management
Agent Impl

Repository

Subsystem

<<interface>>
Subsystem

Subsystem
Archive

children

0..n

0..n

1

1

1..n

1

no
cycles

parents

134.1.3 Synopsis
The OSGi framework does not provide any support for managing collections of resources. Manage-
ment of collections of resources is enabled by a Subsystems implementation. When a Subsystems
implementation is installed into the framework, it registers a Subsystem service. This service rep-
resents the framework as the Root Subsystem, which is a Subsystem that provides the capability to
install and manage other child Subsystems, and is the parent of those Subsystems, but does not itself
have a parent.

A Subsystem Archive provides a definition of a Subsystem that is read by the Subsystem implemen-
tation as part of installation. The Subsystem is packaged in a Subsystem Archive (.esa) file which
is the Subsystem equivalent of a bundle . jar file. The Subsystem definition can be described using
a Subsystem Manifest or defaulted based on the name and contents of the Subsystem Archive. In-
stalling a new Subsystem results in another Subsystem service being registered to represent that
Subsystem in the runtime. Each Subsystem service enables management and reflection of the Sub-
system it represents.

A Subsystem Manifest allows flexibility in the identification of the Subsystem's content resources
through version ranges and optionality. The exact versions to be deployed and any required depen-
dencies (resources required to satisfy unresolved requirements of the Subsystem's content resources)
can be identified in an optional Deployment Manifest. The corresponding resource binaries can be
packaged in the Subsystem Archive, or found in a repository. Depending on the type of Subsystem
the Subsystem Manifest may describe a sharing policy for the Subsystem, such as the packages or ser-
vices the Subsystem exports or imports. The Deployment Manifest also describes the sharing policy
details for the Subsystem and is defined by the type of Subsystem and the sharing policy described in
the Subsystem Manifest.

A Subsystem that does not have a Deployment Manifest has its deployment details calculated dur-
ing installation. This may be done using the [10] Resolver Service Specification, if available. The start-
ing set of requirements to be resolved are those identifying the Subsystem content (that is, require-
ments for content resources). The Subsystems implementation provides a resolve context that im-
plements the policy for the Subsystem and consults the configured Repository services to find can-
didates to satisfy requirements.

This resolve context can also represent the target deployment environment, which might be a live
framework, or a static definition of a target runtime. The resulting resolution is used to determine
the exact resources to provision, equivalent to those identified in the deployment manifest. If any

Subsystems Subsystem Service Specification Version 1.1

Page 566 OSGi Enterprise Release 7

of the Repository or Resolver services are unavailable, then a Subsystem implementation can use its
own means to determine the deployment, or fail the installation.

A Subsystem definition includes sharing policy configuration to scope requirements and capabili-
ties visibility into and out of a Subsystem. The Subsystems specification defines the concept of Sub-
system types to help simplify the configuration of sharing policies. Each type has its own default
sharing policy, for example, to forbid the sharing of capabilities out, or to share all capabilities in.
Three Subsystem types are defined in the Subsystems specification: application, composite and feature.

An Application Subsystem is a Scoped Subsystem with a sharing policy associated with what is of-
ten considered to be an application. An application does not share (export) any capabilities. Any re-
quirements that are not satisfied by the application's contents are automatically imported from out-
side the application.

A Composite Subsystem is a Scoped Subsystem with a fully explicit sharing policy. Capabilities may
be explicitly imported into, or exported out of, the Composite Subsystem.

A Feature Subsystem is an Unscoped Subsystem and so all its requirements and capabilities are
shared.

This specification allows for other types to be defined, including ones outside this specification.

134.2 Subsystems
This specification defines a unit of installation called a Subsystem. A Subsystem is comprised of re-
sources, including OSGi bundles and other Subsystems, which together can provide functions to
end users.

A Subsystem is deployed as a Subsystem Archive (.esa) file. Subsystem Archives are used to store
Subsystems and optionally their resources in a standard ZIP-based file format. This format is defined
in [4] Zip File Format. Subsystems normally use the Subsystem Archive extension of .esa but are not
required to. However there is a special MIME type reserved for OSGi Subsystems that can be used to
distinguish Subsystems from normal ZIP files. This MIME type is:

application/vnd.osgi.subsystem

The type is defined in [5] IANA application/vnd.osgi.subsystem. A Subsystem is a ZIP file that:

• Contains zero or more resources. These resources may be OSGi bundles or other Subsystems.
Subsystems may be nested or included to any depth.

• Contains an optional Subsystem Manifest named OSGI-INF/SUBSYSTEM.MF . The Subsystem
Manifest describes the contents of the Subsystem Archive and provides information about the
Subsystem. The Subsystem Archive uses headers to specify information that the Subsystems im-
plementation needs to install, resolve and start the Subsystem correctly. For example, it can state
the list of content resources that comprise the Subsystem and the Subsystem's type.

• Contains an optional Deployment Manifest file named OSGI-INF/DEPLOYMENT.MF . The Deploy-
ment Manifest describes the content resources, dependencies, and sharing policy that need to be
provisioned to satisfy the Subsystem definition and ultimately allow it to resolve at runtime.

The Subsystem and Deployment Manifest follow the JAR manifest format (version 1.0), but with the
following relaxed rules:

• No limit on the line length. Lines are allowed to exceed the JAR manifest maximum of 72 bytes.
• The last line is not required to be a carriage-return new-line combination.
• There is only one section in the manifest (the main section). A Subsystems implementation is

free to ignore other sections of the manifest.

Subsystem Service Specification Version 1.1 Subsystems

OSGi Enterprise Release 7 Page 567

Once a Subsystem is started, its functionality is provided. Depending on the type of Subsystem it
may expose capabilities, such as packages and services, to other resources installed in the OSGi
framework.

134.2.1 Subsystem Manifest Headers
A Subsystem can carry descriptive information about itself in the Subsystem manifest file contained
in its Subsystem Archive under the name OSGI-INF/SUBSYSTEM.MF . This specification defines Sub-
system manifest headers, such as Subsystem-SymbolicName and Subsystem-Version, which Subsys-
tem developers use to supply descriptive information about a Subsystem. A Subsystems implemen-
tation must:

• Process the main section of the manifest. Any other sections of the manifest can be ignored.
• Ignore unknown manifest headers. The Subsystem developer can define additional manifest

headers as needed.
• Ignore unknown attributes and directives.

All specified manifest headers are listed in the following sections. All headers are optional. Example
values are provided to help explain each header (e.g. Export-Package: org.acme.logging; version=1.0).

134.2.1.1 Export-Package: org.acme.logging; version=1.0

The Export-Package header declares the exported packages for a Scoped Subsystem. See Export-Pack-
age on page 604.

134.2.1.2 Import-Package: org.osgi.util.tracker; version="[1.4, 2.0)"

The Import-Package header declares the imported packages for a Scoped Subsystem. See Import-Pack-
age on page 604.

134.2.1.3 Preferred-Provider: com.acme.logging

The Preferred-Provider header declares a list bundles and Subsystems which are the providers
of capabilities that are preferred when wiring the requirements of a Scoped Subsystem. See Pre-
ferred-Provider Header on page 579.

134.2.1.4 Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2

The Provide-Capability header declares the capabilities exported for a Scoped Subsystem. See [3] Re-
source and Wiring.

134.2.1.5 Require-Bundle: com.acme.chess; bundle-version="[1.0,2.0)"

The Require-Bundle header declares the required bundles for a Scoped Subsystem. See Require-Bundle
on page 605.

134.2.1.6 Require-Capability: osgi.ee; filter:="(osgi.ee=*)"

The Require-Capability header declares the required capabilities for a Scoped Subsystem. See [3] Re-
source and Wiring.

134.2.1.7 Subsystem-Category: osgi, test, nursery

The Subsystem-Category header identifies the categories of the subsystem as a comma-delimited
list.

134.2.1.8 Subsystem-ContactAddress: 2400 Oswego Road, Austin, TX 74563

The Subsystem-ContactAddress header identifies the contact address where problems with the sub-
system may be reported; for example, an email address.

Subsystems Subsystem Service Specification Version 1.1

Page 568 OSGi Enterprise Release 7

134.2.1.9 Subsystem-Content: com.acme.logging

The Subsystem-Content header lists requirements for resources that are considered to be the con-
tents of this Subsystem. See Subsystem-Content Header on page 577.

134.2.1.10 Subsystem-Copyright: OSGi (c) 2014

The Subsystem-Copyright header identifies the subsystem's copyright information.

134.2.1.11 Subsystem-Description: The ACME Account Admin Application

The Subsystem-Description header defines a human-readable description for this Subsystem, which
can potentially be localized.

134.2.1.12 Subsystem-DocURL: http://www.example.com/Firewall/doc

The Subsystem-DocURL header identifies the subsystem's documentation URL, from which further
information about the subsystem may be obtained.

134.2.1.13 Subsystem-ExportService: org.acme.billing.Account; filter:="(user=bob)"

The Subsystem-ExportService header specifies the exported services for a Scoped Subsystem. See
Subsystem-ExportService on page 605.

134.2.1.14 Subsystem-Icon: /icons/acme-logo.png; size=64

The optional Subsystem-Icon header provides a list of URLs to icons representing this subsystem in
different sizes. The following attribute is permitted:

• size - (integer) Specifies the size of the icon in pixels horizontal. It is recommended to always in-
clude a 64x64 icon.

The URLs are interpreted as relative to the subsystem archive. That is, if a URL with a scheme is pro-
vided, then this is taken as an absolute URL. Otherwise, the path points to an entry in the subsystem
archive file.

134.2.1.15 Subsystem-ImportService: org.acme.billing.Account; filter:="(type=premium)"

The Subsystem-ImportService header specifies the imported services for a Scoped Subsystem. See
Subsystem-ImportService on page 605.

134.2.1.16 Subsystem-License: http://www.opensource.org/licenses/jabberpl.php

The Subsystem-License header provides an optional machine readable form of license information.
The purpose of this header is to automate some of the license processing required by many organi-
zations like for example license acceptance before a subsystem is used. The header is structured to
provide the use of unique license naming to merge acceptance requests, as well as links to human
readable information about the included licenses. This header is purely informational for manage-
ment agents and must not be processed by the Subsystems implementation.

The syntax for this header is as follows:

Subsystem-License ::= '<<EXTERNAL>>' |
 (license (',' license) *)
license ::= name (';' license-attr) *
license-attr ::= description | link
description ::= 'description' '=' string
link ::= 'link' '=' <url>

This header has the following attributes:

• name - Provides a globally unique name for this license, preferably world wide, but it should at
least be unique with respect to the other clauses. The magic name <<EXTERNAL>> is used to indi-

Subsystem Service Specification Version 1.1 Subsystems

OSGi Enterprise Release 7 Page 569

cate that this artifact does not contain any license information but that licensing information is
provided in some other way. This is also the default contents of this header.

Clients of this subsystem can assume that licenses with the same name refer to the same license.
This can for example be used to minimize the click through licenses. This name should be the
canonical URL of the license, it must not be localized by the translator. This URL does not have to
exist but must not be used for later versions of the license. It is recommended to use URLs from
[9] Open Source initiative. Other licenses should use the following structure, but this is not man-
dated:

 http://<domain-name>/licenses/
 <license-name>-<version>.<extension>

• descr ipt ion - (optional) Provide the description of the license. This is a short description that is
usable in a list box on a UI to select more information about the license.

• l ink - (optional) Provide a URL to a page that defines or explains the license. If this link is absent,
the name field is used for this purpose. The URL is relative to the root of the bundle. That is, it is
possible to refer to a file inside the bundle.

If the Subsystem-License statement is absent, then this does not mean that the subsystem is not li-
censed. Licensing could be handled outside the subsystem and the <<EXTERNAL>> form should be as-
sumed. This header is informational and may not have any legal bearing. Consult a lawyer before
using this header to automate licensing processing.

134.2.1.17 Subsystem-Localization: OSGI-INF/l10n/subsystem

The Subsystem-Localization header identifies the default base name of the localization proper-
ties files contained in the subsystem archive. The default value is OSGI-INF/l10n/subsystem .
Translations are therefore, by default, OSGI-INF/l10n/subsystem_de.propert ies , OSGI-INF/l10n/
subsystem_nl .propert ies, and so on. The location is relative to the root of the subsystem archive.
See Subsystem-Localization Header on page 572

134.2.1.18 Subsystem-ManifestVersion: 1

The Subsystem-ManifestVersion header defines that the Subsystem follows the rules of a Subsys-
tems Specification. It is 1 (the default) for this version of the specification. Future versions of the
Subsystems Specification can define higher numbers for this header.

134.2.1.19 Subsystem-Name: Account Application

The Subsystem-Name header defines a short, human-readable name for this Subsystem which may
be localized. This should be a short, human-readable name that can contain spaces.

134.2.1.20 Subsystem-SymbolicName: com.acme.subsystem.logging

The Subsystem-SymbolicName header specifies a non-localizable name for this Subsystem. The Sub-
system symbolic name together with a version identify a Subsystem Definition though a Subsystem
can be installed multiple times in a framework. The Subsystem symbolic name should be based on
the reverse domain name convention. See Subsystem-SymbolicName Header on page 570.

134.2.1.21 Subsystem-Type: osgi.subsystem.application

The Subsystem-Type header specifies the type for this Subsystem. Three types of Subsystems must
be supported: osgi .subsystem.appl icat ion , osgi .subsystem.composite and osgi .subsystem.feature .
See Subsystem Identifiers and Type on page 570 for details about the three different types of Subsys-
tems. See Subsystem-Type Header on page 570 for more information about the values for the Sub-
system-Type header.

134.2.1.22 Subsystem-Vendor: OSGi Alliance

The Subsystem-Vendor header contains a human-readable description of the subsystem vendor.

Subsystems Subsystem Service Specification Version 1.1

Page 570 OSGi Enterprise Release 7

134.2.1.23 Subsystem-Version: 1.0

The Subsystem-Version header specifies the version of this Subsystem. See Subsystem-Version Header
on page 570.

134.2.2 Subsystem Identifiers and Type
A Subsystem is identified by a number of names that vary in their Scope:

• Subsystem identifier - A long that is a Subsystems implementation assigned unique identifier for
the full lifetime of an installed Subsystem, even if the framework or the Subsystem's implemen-
tation is restarted. Its purpose is to distinguish Subsystems installed in a framework. Subsystem
identifiers are assigned in ascending order to Subsystems when they are installed. The getSub-
systemId() method returns a Subsystem's identifier.

• Subsystem location - A name assigned by a management agent to a Subsystem during the instal-
lation. This string is normally interpreted as a URL to the Subsystem Archive but this is not
mandatory. Within a particular framework, a Subsystem location must be unique. A location
string uniquely identifies a Subsystem. The getLocation() method returns a Subsystem's loca-
tion.

• Subsystem Symbolic Name and Subsystem Version - A name and version assigned by the developer.
The combination of a Subsystem symbolic name and Subsystem version is intended to provide
a globally unique identifier for a Subsystem Archive or Subsystem definition. The getSymbol ic-
Name() method returns the assigned Subsystem name. The getVersion() method returns the as-
signed version. Though this pair is intended to be unique, it is developer assigned and there is no
verification at runtime that the pair uniquely identifies a Subsystem Archive. It is possible to in-
stall a Subsystem multiple times as long as the multiple Subsystem symbolic name and version
pairs are isolated from each other by Subsystem sharing policies.

134.2.3 Subsystem-SymbolicName Header
The Subsystem-SymbolicName header specifies the symbolic name of the Subsystem. The Subsys-
tem-SymbolicName header may also specify arbitrary matching attributes. Subsystem-Symbolic-
Name is an optional header; the default value is derived as described in Deriving the Subsystem Identi-
ty on page 571.

The Subsystem-SymbolicName header must conform to the following syntax:

Subsystem-SymbolicName ::= symbolic-name(';' parameter)*

No directives are defined by this specification for the Subsystem-SymbolicName header. The header
allows the use of arbitrary attributes that can be required by the Subsystem-Content header.

134.2.4 Subsystem-Version Header
The Subsystem-Version header is optional and must conform to the following syntax:

Subsystem-Version ::= version

If the Subsystem-Version header is not specified then the default value is derived as described in De-
riving the Subsystem Identity on page 571.

134.2.5 Subsystem-Type Header
The Subsystem-Type header specifies the type of the Subsystem. Three types of Subsystems are de-
fined by this specification:

• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

Subsystem Service Specification Version 1.1 Subsystems

OSGi Enterprise Release 7 Page 571

See Subsystem Types on page 606 for details about the three different types of Subsystems. Subsys-
tem-Type is an optional header; the default value is osgi .subsystem.appl icat ion .

The following directive must be recognized for the Subsystem-Type header:

• provis ion-pol icy - (rejectDependencies|acceptDependencies) Directive used to declare if the
Subsystem is willing to accept dependencies as constituents. A constituent is the term used to refer
to a resource that belongs to one or more Subsystems. It can belong to a Subsystem as a result of
being listed as content or, as described here, can have been provisioned into the Subsystem as a
dependency. The default policy is rejectDependencies . See Accepting Dependencies on page 583
for installing and tracking dependencies. The value acceptDependencies must not be used for
Feature Subsystems. If a Feature Subsystem attempts to use the acceptDependencies policy then
the Subsystem installation must fail. If the provis ion-pol icy directive is declared and has any oth-
er value besides acceptDependencies or rejectDependencies then the Subsystem installation
must fail.

134.2.6 Deriving the Subsystem Identity
If the Subsystem-SymbolicName and Subsystem-Version are not specified, then the following rules
are defined for deriving the values of the Subsystem's symbolic name and version. If not otherwise
specified, the default value of the version is 0.0.0 .

When installing a Subsystem, the following URI syntax must be used as the location string in order
to specify default values.

subsystem-uri ::= 'subsystem://' url? '?' params?
params ::= param ('&' param)*
param ::= key '=' value
key ::= unreserved | escaped
value ::= unreserved | escaped
url ::= <see [6] RFC 1738 Uniform Resource Locators>
escaped ::= <see [7] Uniform Resource Identifiers (URI): Generic Syntax>
unreserved ::= <see [7] Uniform Resource Identifiers (URI): Generic Syntax>

The query parameters represent Subsystem Manifest header names and values. Implementations
must support the Subsystem-SymbolicName and Subsystem-Version parameters. Implementations
can support additional parameters but must fail the installation if any unsupported parameters are
included.

As an example, the following Subsystem URI has an embedded URL of:

http://www.foo.com/sub#system.esa

It includes a default symbolic name of com.acme.foo and default version of 1.0.0 .

subsystem://http%3A%2F%2Fwww.foo.com%2Fsub%2523system.esa? «
 Subsystem-SymbolicName=com.acme.foo&Subsystem-Version=1.0.0

When installing a Subsystem containing other Subsystem Archives with no symbolic name or ver-
sion, values will be derived from the Subsystem Archive file or resource name. The syntax is as fol-
lows:

subsystem-archive ::= symbolic-name ('@'version) '.esa'

If the symbolic name is not provided in the manifest and cannot be computed by any other means
then the Subsystem must fail to install.

134.2.7 Subsystem Identity Capability
The Subsystem's symbolic name, version, type and the arbitrary matching attributes specified on
the Subsystem-SymbolicName header compose the osgi . identity capability for a Subsystem re-

Subsystems Subsystem Service Specification Version 1.1

Page 572 OSGi Enterprise Release 7

source. The osgi . identity capability is provided by a Subsystem resource when contained within a
Repository service, see Repository Service Specification on page 527. For example:

Subsystem-SymbolicName: org.acme.billing;category=banking
Subsystem-Version: 1.0.0
Subsystem-Type: osgi.subsystem.composite

The above headers are used to declare a Subsystem of type osgi .subsystem.composite with the sym-
bolic name of org.acme.bi l l ing , version of 1.0.0 and arbitrary matching attribute category of bank-
ing . This information will also be reflected in the osgi . identity capability of the Subsystem's Re-
source (org.osgi . resource.Resource). The following osgi . identity capability would be generated for
a Subsystem resource from the above headers using the Provide-Capability header syntax. For exam-
ple:

osgi.identity;
osgi.identity=org.acme.billing;
 version:Version=1.0.0;
 type=osgi.subsystem.composite;
 category=banking

This allows for requirements to be used to search a repository for Subsystems. The following re-
quirement could be used to search for all Subsystems of type osgi .subsystem.composite using the
Require-Capability header syntax. For example:

osgi.identity; filter:="(type=osgi.subsystem.composite)"

134.2.8 Subsystem-Localization Header
For consistency and ease of comprehension, the design for localizing subsystem manifest headers
follows the approach used by bundles.

134.2.8.1 Localization Properties

A localization entry contains key/value entries for localized information. All headers in a
subsystem's manifest can be localized. However, the subsystems implementation must always use
the non-localized versions of headers that have subsystem semantics. Note that the use of localiza-
tion on certain such headers, such as Subsystem-SymbolicName, may cause errors as a value with a
% sign will not be valid.

A localization key can be specified as the value of a subsystem's manifest header using the following
syntax:

header-value ::= ’%’text
text ::= < any value which is both a valid manifest header value and a valid
 property key name >

For example, consider the following subsystem manifest entries:

Subsystem-Name: %acme subsystem
Subsystem-Description: %acme description
Subsystem-SymbolicName: acme.Subsystem
Acme-Defined-Header: %acme special header

User-defined headers can also be localized. Spaces in the localization keys are explicitly allowed.

The previous example manifest entries could be localized by the following entries in the manifest
localization entry OSGI-INF/l10n/subsystem.propert ies .

subsystem.properties
acme\ subsystem=The ACME Subsystem
acme\ description=The ACME Subsystem provides all of the ACME \ services

Subsystem Service Specification Version 1.1 Subsystem Region

OSGi Enterprise Release 7 Page 573

acme\ special\ header=user-defined Acme Data

The above manifest entries could also have French localizations in the manifest localization entry:

OSGI-INF/l10n/subsystem_fr_FR.properties.

134.2.8.2 Locating Localization Entries

The Subsystems implementation must search for localization entries by appending suffixes to the
localization base name according to a specified locale and finally appending the .properties suffix. If
a translation is not found, the locale must be made more generic by first removing the variant, then
the country and finally the language until an entry is found that contains a valid translation. For ex-
ample, looking up a translation for the locale en_GB_welsh will search in the following order:

OSGI-INF/l10n/subsystem_en_GB_welsh.properties
OSGI-INF/l10n/subsystem_en_GB.properties
OSGI-INF/l10n/subsystem_en.properties
OSGI-INF/l10n/subsystem.properties

134.3 Subsystem Region
A Region provides isolation for a group of one or more Subsystems. Each Subsystem installed must
be a member of one and only one Region. A Region consists of one and only one Scoped Subsystem
and optionally a set of Unscoped Subsystems. Every Region has one and only one Parent Region,
with the exception of the Root Region which has no Parent Region. The Region parent → child con-
nections form the Region Tree, which by definition contains no cycles.

Each Region, except the Root Region, has a sharing policy associated with it which is defined by a
Scoped Subsystem. A sharing policy consists of two parts:

• Export Policy - Defines the set of capabilities provided by the constituents contained in the Region
that are made available to the parent Region.

• Import Policy - Defines the set of capabilities which are available in the parent Region that are
made available to the child Region.

Figure 134.2 illustrates a set of Regions that contain capabilities and requirements for a capability.
For the purposes of this illustration the Subsystems and resources have been omitted.

Figure 134.2 Regions and Import/Export

RootRegion

S1Region S2Region

imports
X

Region

capability

requirement

parent→child

Wire

X

exports
X

X

In this example some constituent of Region S1Region provide a capability S1→X . The S1Region 's
sharing policy exports the capability S1→X to its parent RootRegion . The RootRegion contains a con-
stituent which has a requirement Root→X . The export sharing policy of S1Region allows visibility
to the capability S1→X from the RootRegion which allows requirement Root→X to be satisfied by
the capability S1→X . The S2Region also contains a constituent which has a requirement on S2→X .

Subsystem Relationships Subsystem Service Specification Version 1.1

Page 574 OSGi Enterprise Release 7

The sharing policy of S2Region imports the capability X from its parent Region RootRegion . Since
RootRegion has visibility to the capability S1→X this allows S2Region to also have visibility to capa-
bility S1→X through its import sharing policy which allows requirement S2→X to be satisfied by the
capability S1→X .

Sharing policies of the Regions allow for a capability to be shared across an arbitrary number of Re-
gions. For those familiar with the Region digraph, see [8] Equinox Region Digraph, the connections be-
tween Subsystem Regions is more restrictive than what the full Region digraph specification allows.
A visibility path is the path over the sharing policies of the Region tree from a requirement to a capa-
bility that allows a requirement to get wired to a capability. Since all (non-Root) Regions have one
and only one Parent Region the visibility paths over the sharing policies between a requirement and a
capability is limited to 0 or 1. Figure 134.3 is another figure that illustrates a capability being shared
across many different Regions.

Figure 134.3 Regions and Sharing Capabilities

Root Region

S2RegionS1Region

exports
X

imports
X

imports X
S3Region

S5Region

S4RegionX

exports
X

imports
X

In this example the capability S3→X is exported by the S3Region sharing policy to its parent
S1Region . S1Region also exports X to its parent RootRegion . Then S2Region imports X from its par-
ent RootRegion and finally S4Region imports X from its parent S2Region . The visibility path from
requirement S4→X to capability S3→X is the following: S4 → S2 → Root → S1 → S3 .

Notice that in this example the S5Region also has a sharing policy that imports X from its parent
S3Region . Child Regions are allowed to import any capability to which the Parent Region has visi-
bility. This is true even if the Parent Region does not export the capability. Regions can selectively
choose what capabilities they want to expose (or export) to their Parent Region. Child Regions also
can selectively choose what capabilities they want to be exposed to (or import) from their Parent Re-
gion. A Parent Region has no control over what capabilities its children have visibility. Similarly a
Parent Region has no control over what capabilities a Child Region is allowed to export to the Parent
Region. In other words, a Parent Region must give a Child Region everything the Child Region asks
for (if the Parent Region has access to it) and a Parent Region must accept everything a Child Region
offers to the Parent Region.

134.4 Subsystem Relationships
Subsystems installed into a framework become part of the Subsystem graph. The Subsystem graph
may be thought of as is directed acyclic graph with one and only one source vertex, which is the
Root Subsystem. The edges have the child as the head and parent as the tail (parent→child). This is
depicted in Figure 134.4.

Subsystem Service Specification Version 1.1 Subsystem Relationships

OSGi Enterprise Release 7 Page 575

Figure 134.4 Parent Child Relationship

 Root subsystem

S2

S3 S4

S1

A Subsystem installed into or included within one or more Subsystems is called a child Subsystem.
A Subsystem which has one or more child Subsystem(s) installed or included in it is called a parent
Subsystem. Note that a Subsystem may be both a parent and child Subsystem. The Subsystem graph
has the following rules:

• There is one and only one source vertex (i.e. a Subsystem with no parents), which is the Root Sub-
system.

• The Root Subsystem is considered a Scoped Subsystem of type appl icat ion with a provis ion-pol i-
cy of acceptDependencies .

• The Root Subsystem has a symbolic name of org.osgi .service.subsystem.root , version 1.1, Sub-
system identifier of 0, and a location of

subsystem://?Subsystem-SymbolicName=org.osgi.service.subsystem.root& «
 Subsystem-Version=1.1

• The Root Subsystem always exists when a Subsystems implementation is active, even if no other
Subsystems are installed and all initial bundles installed into the framework along with the Sub-
systems implementation are considered content resources of the Root Subsystem.

• All other (non-root) Subsystems must have one or more parent Subsystems. This implies that
there are no orphan Subsystems (except the Root Subsystem) and the Subsystem graph is fully
connected.

• All parents of a Subsystem belong to the same Region.
• An Unscoped Subsystem must belong to the same Region to which its parents belong.
• A Scoped Subsystem (other than the Root Subsystem) must belong to a child Region of the Re-

gion to which the Subsystem's parents belong.

When a Subsystem is installed using a Subsystem service instal l (Str ing) or
instal l (Str ing, InputStream) method the Subsystem resource becomes a constituent of the Subsystem
which the instal l method was called on. The Subsystem resource is the Subsystem Archive and may
be retrieved by calling the Subsystem service getConstituents() method. Figure 134.4 illustrates the
Root Subsystem with initial bundles A , B , SI (Subsystems implementation, may be multiple bun-
dles), and the system bundle (identifier 0).

Figure 134.5 Subsystem resources

00

R
bundle resource

Subsystem service

RootSSII AA BB

In Figure 134.5 Bundles A , B and SI are considered constituents of the Root Subsystem. The system
bundle is also considered to be a constituent of the Root Subsystem (bundle zero). A Subsystem ser-

Subsystem Relationships Subsystem Service Specification Version 1.1

Page 576 OSGi Enterprise Release 7

vice R is registered that represents the Root Subsystem. When Subsystems are installed using the
Root Subsystem then these Subsystem resources become constituents of the Root Subsystem and
the Subsystems become child Subsystems of the Root Subsystem. For example, Figure 134.6 illus-
trates the Root Subsystem with Scoped Subsystem S1 with constituent bundles C and D and Scoped
Subsystem S2 with constituent bundles E and F :

Figure 134.6 Subsystems

S1 EE FF S2

R,S1,S2

Root00 SSII AA BB

CC DD

The two Subsystems S1 and S2 have the same parent and Subsystems S1 and S2 are children of the
Root Subsystem. Figure 134.7 shows a more complicated tree that has both Scoped and Unscoped
Subsystems installed. This figure omits the constituent resources and Subsystem services:

Figure 134.7 Parent Child Relationship with Unscoped Subsystems

S1 S2Root

U1 U2

U3 U4

U6 U7

134.4.1 Prevent Cycles and Recursion
It is possible to end up with cycles in the parent → child relationships between Subsystems con-
tained in the same Region. Figure 134.8 illustrates this.

Figure 134.8 Subsystems and cycles

S1

U1 U2

Root

In this example Subsystem S1 has been installed. The Scoped Subsystem S1 has included in its con-
stituents the Unscoped Subsystems U1 and U2 . Furthermore U1 has included the Unscoped Subsys-
tem U2 as a constituent and U2 has included the Unscoped Subsystem U1 as a constituent. This caus-
es Unscoped Subsystem U1 to have parents S1 and U2 and Unscoped Subsystem U2 to have parents
S1 and U1 . There is now a cycle between the Subsystems U1 and U2 . Subsystems implementations
must detect this cycle and fail the installation of such a degenerative Subsystem. The top level Sub-
system being installed must fail the install operation by throwing a Subsystem Exception. In this
case the install operation of the S1 Subsystem must fail with a Subsystem Exception being thrown.

Subsystem Service Specification Version 1.1 Determining Content

OSGi Enterprise Release 7 Page 577

Cycles may also exist in the definition of Scoped Subsystems which includes other child Subsys-
tems. Figure 134.9 illustrates this.

Figure 134.9 Scoped Subsystems and cycles

Root S2S1

In this example the Scoped Subsystem S1 includes as a child the Scoped Subsystem S2 . The S2 Sub-
system also includes as a child the Scoped Subsystem S1 . Subsystems implementations must detect
this and fail the installation of such a degenerative Subsystem. The top level Subsystem being in-
stalled must fail the install operation by throwing a Subsystem Exception. In this case the install op-
eration of the first S1 Subsystem must fail by throwing a Subsystem Exception.

134.5 Determining Content
A Subsystem definition may declare different types of content resources. A Subsystems implementa-
tion may support additional types, but the following types must be supported:

• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.feature
• osgi .subsystem.composite

A Subsystems implementation is free to support additional content types as value-add, but an im-
plementation is required to fail the installation of a Subsystem which declares content resource
types which are not recognized by the implementation.

The individual content resources may be specified in the following ways:

• The Subsystem-Content header, or
• The entries of the Subsystem Local Repository, see Resource Repositories on page 580.

134.5.1 Subsystem-Content Header
The Subsystem-Content header contains a list of symbolic names, with optional attribute and direc-
tive assertions. Each element specifies a single resource that is to be a content resource of the Sub-
system. See also Discovering Content Resources on page 581. The Subsystem-Content header must
conform to the following syntax:

Subsystem-Content ::= resource (','resource)*
resource ::= symbolic-name (';' parameter)*

The Subsystem-Content header may specify the following directives:

• resolut ion - (mandatory | optional) A mandatory content resource prevents the Subsystem from
successfully installing when the constituent cannot be found (or satisfied); an optional content
resource allows a Subsystem to successfully install even if the content cannot be found (or satis-
fied). The default value is mandatory .

• start-order - (Integer >= 1) Specifies the start order of the content resource in relation to other
content resources of the Subsystem. See Start Order on page 591.

The Subsystem-Content header may specify the following architected matching attributes as well as
any arbitrary matching attributes:

Determining Content Subsystem Service Specification Version 1.1

Page 578 OSGi Enterprise Release 7

• version - (Version) A version range used to select the version of the resource to use. This follows
the OSGi version range scheme, including the default value of 0.0.0.

• type - Indicates the type of the content. It is recommended that a reverse domain name conven-
tion is used unless those types and their processing is standardized by the OSGi Alliance, for ex-
ample bundles. The default type is osgi .bundle . A Subsystems implementation may support ad-
ditional types, but the following types must be supported:
• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

For example, the following header specifies three Subsystem constituents:

Subsystem-Content:
 org.acme.billing.impl;
 type=osgi.bundle;
 version=1.0,
 org.acme.billing.frag;
 type=osgi.fragment;
 version=1.0,
 org.acme.billing.credit.subsystem;
 type=osgi.subsystem.composite;
 version=1.0

The above header specifies three content resources of a Subsystem:

• A bundle resource with the symbolic name org.acme.bi l l ing. impl at version 1.0 or greater
• A fragment resource with the symbolic name org.acme.bi l l ing.frag at version 1.0 or greater
• A child composite Subsystem resource with the symbolic name

org.acme.bi l l ing.credit .subsystem at version 1.0 or greater

134.5.2 Subsystem-Content Requirements
Each element of the Subsystem-Content header is used to locate a resource that is to be used as con-
tent of the Subsystem. One way of describing the elements of the Subsystem-Content header is in
terms of a Requirement using the osgi . identity namespace. The Requirement is defined in [3] Re-
source and Wiring. To illustrate, a single Subsystem-Content element:

org.acme.billing.impl;
 type=osgi.bundle;
 version=1.0

This Subsystem-Content header can be converted into the following osgi . identity Requirement with
the Require-Capability syntax for illustration:

osgi.identity;
 filter:="(&
 (osgi.identity=org.acme.billing.impl)
 (type=osgi.bundle)
 (version>=1.0)
)"

All directives specified on the Subsystem-Content header, except start-order , should be includ-
ed in the Requirement. All attributes should be included in the f i l ter directive of the Require-
ment. Notice that the version attribute is a range and must be converted into a proper filter. The

Subsystem Service Specification Version 1.1 Determining Content

OSGi Enterprise Release 7 Page 579

VersionRange.toFi l ter method can be used to do this conversion. All other matching attributes are
treated as type String and use an equality operation in the filter. Here is an example of a more com-
plex transformation to Requirement:

org.acme.billing.credit.subsystem;
 type=osgi.subsystem.composite;
 version="[1.0, 1.1)";
 category=banking;
 resolution:=optional;
 start-order:=1

The above Subsystem-Content element converts into the following osgi . identity Requirement:

osgi.identity;
 filter:="(&
 (osgi.identity=org.acme.billing.impl)
 (type=osgi.subsystem.composite)
 (&(version>=1.0)(!(version>=1.1))
 (category=banking)
)"
 resolution:=optional

134.5.3 Preferred-Provider Header
The Preferred-Provider header contains a list of symbolic names, with optional attributes assertions.
Each element specifies a single bundle or Subsystem resource that is to be preferred when resolving
the requirements of the Subsystem content resources. The Preferred-Provider header must conform
to the following syntax:

Preferred-Provider ::= resource (',' resource)*
resource ::= symbolic-name (';' attribute)*

The Preferred-Provider header may specify the following architected matching attributes:

• version - (Version) A version range used to select the version of the bundle or Subsystem to use.
This follows the OSGi version range scheme, including the default value of 0.0.0.

• type - (String) Indicates the type of the provider. Valid types are:
• osgi .bundle
• osgi .subsystem.composite
• osgi .subsystem.feature

The default type is osgi .subsystem.composite . Specifying an unsupported type results in an in-
stallation failure.

Each element of the Preferred-Provider header is used to locate a resource that is to be used as a pre-
ferred provider of the Subsystem. The Preferred-Provider header elements are converted to Require-
ments using the osgi . identity namespace just like the Subsystem-Content header except the default
type is osgi .subsystem.composite . See Subsystem-Content Requirements on page 578.

Because this header influences resolution, it is only valid for it to be used on a Scoped Subsystem. If
a Subsystems implementation encounters this header on an Unscoped Subsystem, it must fail the
installation of the Subsystem.

The Preferred-Provider header has the effect of influencing the import policy into the Region repre-
senting the Scoped Subsystem that specified the header. If there are multiple candidate capabilities
for a requirement and one or more of those capabilities is from a bundle or Subsystem identified in
the Preferred-Provider header, then the Region import policy must prefer the capabilities from the
preferred bundle or Subsystem.

Determining Content Subsystem Service Specification Version 1.1

Page 580 OSGi Enterprise Release 7

A resource may be considered as a preferred provider only if it is a constituent of either the Scoped
Subsystem's or any ancestor's Region.

134.5.4 Resource Repositories
When a Subsystem is installed the Subsystems implementation is responsible for provisioning re-
sources that are associated with the Subsystem. For example, the Subsystem's content resources as
well as any resources that are needed to satisfy dependencies of a Subsystem's content resources.
During the Subsystem install process the Subsystems implementation uses a defined set of reposito-
ries to find the required resources needed to install a Subsystem. This set of repositories includes the
following:

• Local Repository - Contains the resources included in the Subsystem Archive, see Local Repository
on page 580.

• System Repository - Contains the resources currently installed, see System Repository on page
580

• Repository Services - The set of repositories registered as OSGi services, see Repository Services on
page 580.

• Content Repository - The set of resources that comprise the Subsystem content, see Content Reposito-
ry on page 580

• Preferred Repository - The set of resources that are considered preferred providers, see Preferred
Repository on page 581.

134.5.4.1 Local Repository

The Root of the Subsystem Archive contains 0 or more resources. The Subsystems implementation
must read all entries (except directory entries) in the Root of the Subsystem Archive and treat each
entry as a potential resource. One way of describing the resource entries contained in the Root of the
Subsystem Archive is in the terms of an Repository implementation. For the purpose of this spec-
ification these resources are referred to as the Subsystem's Local Repository. The Local Repositories
must not be registered as an OSGi Repository service. Also, it is not required that the Subsystem im-
plementation actually implement a Local Repository as a concrete implementation of the Reposito-
ry service interface.

134.5.4.2 System Repository

The term System Repository is used to describe the set of resources that are constituents of one or
more of the currently installed Subsystems. The System Repository must not be registered as an OS-
Gi service. Also it is not required that System Repository be implemented as a concrete implemen-
tation of the Repository service. There is a single System Repository representing the resources in-
stalled in the OSGi framework.

134.5.4.3 Repository Services

The repositories which are registered as Repository services, see Repository Service Specification on
page 527. These Repositories are used to discover Subsystem content resources and dependencies. A
Subsystems implementation searches registered Repository services by service ranking order.

134.5.4.4 Content Repository

The set of content resources for a Subsystem is referred to as the Subsystem's Content Repository.
Similar to the Local and System Repositories, the Content Repositories must not be registered as an
OSGi service and it is not required that the Subsystems implementation actually implement a Con-
tent Repository as a concrete implementation of the Repository service. There are two types of re-
sources that can exist in a Subsystem's Content Repository:

• Installable Content - A content resource which must be installed and result in a distinct resource at
runtime. That is, a distinct bundle or Subsystem installation.

Subsystem Service Specification Version 1.1 Determining Content

OSGi Enterprise Release 7 Page 581

• Shared Content - A content resource which is already installed and is a constituent of one or more
already installed Subsystems that belong to the same Region as the Subsystem that the Subsys-
tem content repository is for. This resource must be reused, the Subsystems implementation
must not install another instance of the resource.

Details on how the content resources are discovered for the Content Repository are discussed in Dis-
covering Content Resources on page 581.

134.5.4.5 Preferred Repository

The set of resources which are considered preferred providers of capabilities required by a Subsys-
tem is referred to as the Preferred Provider Repository for the Subsystem. The Preferred Provider
Repository for a Subsystem must not be registered as an OSGi service and it is not required that the
Subsystems implementation actually implement the Preferred Provider Repository as a concrete im-
plementation of the Repository service.

The following steps must be followed to discover the resources of the preferred provider repository
for a Subsystem:

1. The Preferred-Provider header is parsed into a list of elements where each element specifies a
single osgi . identity requirement, see Preferred-Provider Header on page 579.

2. For each osgi . identity requirement a Requirement object is created and used to search Reposito-
ries for preferred provider resources.

3. The System Repository is searched. For each capability found in the System Repository; if the
resource providing the osgi . identity capability is a constituent contained in the parent Region
of the Scoped Subsystem's Region then the providing Resource of the Capability is considered a
preferred provider and the search stops; otherwise continue to the next step.

4. The Subsystem's Local Repository is searched. If a capability is found then the providing re-
source is used as a preferred provider and the search stops; otherwise continue to the next step.

5. The registered Repository services are searched. If a repository service finds a capability then the
providing resource is used as a preferred provider and the search stops; otherwise the preferred
provider is not found.

134.5.5 Discovering Content Resources
When a Subsystem is installed the Subsystems implementation must determine the set of resources
that compose the content of the Subsystem. The content resources of a Subsystem may be specified
in the following ways:

• The values of the Subsystem-Content header must be used if it is present. See Subsystem-Content
Header on page 577.

• The content of the Subsystem's Local Repository, if the Subsystem-Content header is not present.

When a Deployment Manifest is not present, Pre-Calculated Deployment on page 601, the Subsys-
tems implementation must use this information to discover the content resources for a Subsystem
as described in the following sections.

134.5.5.1 Declared Subsystem-Content

If the Subsystem-Content manifest header is declared then the following steps must be followed to
discover the Subsystem's contents:

• The Subsystem-Content header is parsed into a list of elements where each element specifies a
single osgi . identity requirement. For each osgi . identity requirement element a Requirement is
created and used to search Repositories for content resources.
• If the Subsystem is a Scoped Subsystem then continue to the next step; otherwise if the Sub-

system is an Unscoped Subsystem then the System Repository must be searched in order to

Determining Dependencies Subsystem Service Specification Version 1.1

Page 582 OSGi Enterprise Release 7

discover any currently installed resources that match the content Requirement. For each
matching capability found it must be determined if the capability provider Resource is a con-
stituent of a Subsystem which is in the same Region as the installing Subsystem; if so then the
provider Resource must be used as an shared content resource. If no shared content resource is
found then continue to the next step; otherwise the search stops.

• The Subsystem's Local Repository is searched to find a matching Capability for the content
Requirement. If a Capability is found then the providing Resource of the Capability is used as
an installable content resource of the Subsystem. If no installable content resource is found then
continue to the next step, otherwise the search stops.

• The registered Repository services are searched to find a matching capability for the content
Requirement. If a Repository finds a provider for the content requirement then the provider
Resource of the capability is used as an installable content resource of the Subsystem. If no
matching provider is found then the discovery of the content resource has failed.

134.5.5.2 Use Subsystem Local Repository

If the Subsystem-Content header is not declared then the list of content resources is defined as all
the Resources within the Subsystem's Local Repository which provide an osgi . identity capability
with the type attribute of:

• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature
• Any other type that is supported by the implementation.

If a resource is found to be an unsupported type then installation of the Subsystem must fail.

For Scoped Subsystems this list is used as is and each Resource is considered an installable content
resource. For Unscoped Subsystems the System Repository must be searched in order to determine
if there are any already installed contents resources which may be used as a shared content resources.
If no shared content resource can be found then the resource is considered an installable content re-
source.

134.6 Determining Dependencies
When a Subsystem is installed the Subsystems implementation determines the set of resources that
compose the content of the Subsystem. Content resources may have requirements on capabilities
that are not provided by any of the content resources for the Subsystem. When a Subsystem is in-
stalled the Subsystems implementation must determine the set of additional resources that are re-
quired in order to allow the Subsystem's content resources to resolve. These additional resources are
called dependencies. When a Subsystem is installed the set of dependencies contains two types of re-
sources:

• Installable Dependency - A resource which must be installed and result in a distinct resource at
runtime. That is, a distinct bundle or Subsystem installation.

• Preinstalled Dependency - A resource which is already installed and is a constituent of one or more
already installed Subsystems and the required capabilities provided by the resource are accessi-
ble according to the sharing policies of the Subsystems. This resource must be reused, the Sub-
systems implementation must not install another instance of the resource.

When a Deployment Manifest is not present, see Pre-Calculated Deployment on page 601, the Sub-
systems implementation must determine the set of dependencies for the Subsystem. To determine

Subsystem Service Specification Version 1.1 Accepting Dependencies

OSGi Enterprise Release 7 Page 583

the set of dependencies the Subsystems implementation should attempt to resolve the Subsystem
content resources before installing the content resources. One possible way of resolving the content
resources, before installing them, is to use a Resolver service, see [10] Resolver Service Specification.
This specification illustrates the behavior of dependency resource discovery using terms defined by
the Resolver service. A Subsystems implementation is not required to use the Resolver service to ac-
complish dependency resource discovery. Other mechanisms may be used to accomplish the same
goal as long as the resolution results in a valid class space. Subsystems implementations need not
guarantee to find a solution to every resolution problem, but if a valid solution is not found, then
discovery of the dependencies must fail, resulting in an installation failure.

In order to use the Resolver service the Subsystems implementation has to provide a ResolveCon-
text object that represents the currently installed Subsystems and their constituent resources. This
resolve context must search Repositories in the following order when searching for capabilities to
satisfy content dependencies within the ResolveContext.f indProviders method. The Content Repos-
itory, Preferred Provider Repository, System Repository and Local Repository must all be searched
and all the results presented to the Resolver with a corresponding preference. If a result was found
in these repositories, searching the registered Repository services is optional, but if no result was
found yet, the registered Repository services must be searched. The order of matching capabilities
presented to the Resolver must coincide with the Repository search order.

1. The Content Repository.
2. The Preferred Provider Repository.
3. The System Repository. For each matching capability found in the System Repository the Subsys-

tems implementation must determine if the capability is accessible to the content resources of
the installing Subsystem according to the sharing policy of the Subsystem. See Sharing Capabili-
ties on page 585 for more details on Subsystem types and their sharing policies.

4. The Local Repository. This allows a Subsystem Archive to optionally include dependencies.
5. The registered Repository services.

Any matching capabilities found in the steps after step 1 above are considered to be provided by po-
tential dependencies for the Subsystem. The capabilities found in the System Repository are provid-
ed by already installed resources, referred to as potential pre-installed dependencies. The capabilities
found which are provided by other potential dependencies must be installed in order to resolve the
Subsystem content resources, referred to as installable dependencies.

The Resolver's job is to select one of the potential capabilities returned by the f indProviders method
as the capability to satisfy a Requirement. At the end of a resolve operation a result (Map<Resource,
L ist<Wire>) is returned which contains the Resources that got resolved and a list containing the
Wires for the resolved Resource. The Subsystems implementation uses this resolution result in or-
der to determine which resolved Resources are content resources, pre-installed dependencies, or in-
stallable dependencies. The installable dependencies must be installed as described in Accepting De-
pendencies on page 583. The pre-installed dependencies must have their reference count incre-
mented as described in Reference Count on page 590.

134.7 Accepting Dependencies
When a Subsystem is installed the Subsystems implementation must determine the set of instal-
lable dependencies as described in Determining Dependencies on page 582. The Subsystems imple-
mentation must also determine what Subsystem is willing to accept the installable dependency as a
constituent, referred to as an accepted dependency constituent. A Subsystem declares that it is willing to
accept dependencies as constituents by specifying the provis ion-pol icy directive with the acceptDe-
pendencies value on the Subsystem-Type header, see Subsystem-Type Header on page 570.

The acceptDependencies provision policy is useful for creating isolation layers that do not pollute
parent Regions with dependencies. For example, an application container may be implemented as

Accepting Dependencies Subsystem Service Specification Version 1.1

Page 584 OSGi Enterprise Release 7

a Subsystem. Such a container Subsystem could be installed into something called a kernel Subsys-
tem. Applications are installed as Subsystems into the container Subsystem. In this case the con-
tainer Subsystem would likely use the acceptDependencies provision policy so that any applica-
tions installed into the container Subsystem do not end up polluting the kernel Subsystem with the
application's dependencies.

A dependency becomes an accepted dependency constituent of the Subsystem with a provision pol-
icy of acceptDependencies and that lies on the longest path between the Root Subsystem and the
Subsystem being installed, inclusively. Note that a Subsystem that has acceptDependencies provi-
sion policy will accept its own installable dependencies as constituents since it lies on the longest
path between the Root Subsystem and itself, inclusively.

The following figure illustrates a simple example of accepting dependency constituents. A Scoped
Subsystem S2 is being installed into another Scoped Subsystem S1 and S1 has a provis ion-pol icy of
acceptDependencies . When S2 is being installed the Subsystems implementation discovers con-
tent resources A and B and installable dependencies C and D . This is depicted in Figure 134.10.

Figure 134.10 Provision Policy

provision-policy:=
acceptDependencies

S1Root S2

provision-policy:=
acceptDependencies

CC DD AA BB

In the previous example the Subsystem with a provis ion-pol icy of acceptDependencies and that
lies on the longest path between the Root Subsystem and the Subsystem being installed is S1 . There-
fore the installable dependencies C and D become accepted dependency constituents of S1 .

Figure 134.11 illustrates the same example but with S2 also having a provis ion-pol icy of acceptDe-
pendencies

Figure 134.11 Provision Policy

provision-policy:=
acceptDependencies

Root
S2

S1

provision-policy:=
acceptDependencies

provision-policy:=
acceptDependencies

AA BB

CC DD

In this example the Subsystem with a provis ion-pol icy of acceptDependencies and that lies on the
longest path between the Root Subsystem and the Subsystem being installed is S2 itself. Therefore
the installable dependencies C and D become accepted dependency constituents of S2 .

Figure 134.12 illustrates the same example but with S1 and S2 not defining the provis ion-pol icy (de-
fault is rejectDependencies). The Root Subsystem always has a provis ion-pol icy of acceptDepen-
dencies :

Figure 134.12 Subsystems and acceptDependencies

Root
S2S1 AA BB

CC DD

00 SSII

Subsystem Service Specification Version 1.1 Sharing Capabilities

OSGi Enterprise Release 7 Page 585

In this example the Subsystem with a provision policy of acceptDependencies and that lies on the
longest path between the Root Subsystem and the Subsystem being installed is the Root Subsystem.
Therefore the installable dependencies C and D become accepted dependency constituents of the
Root Subsystem.

134.8 Sharing Capabilities
Scoped Subsystems define a sharing policy for the Region they are contained in. A sharing policy
controls access to capabilities between parent → child Region boundaries. For Subsystems, a sharing
policy is composed of two parts: an import policy and an export policy:

• Export Policy - Defines the set of capabilities provided by the constituents contained in the Region
that are made available to the parent Region.

• Import Policy - Defines the set of capabilities which are available in the parent Region that are
made available to the child Region.

The import sharing policies of a Subsystem's ancestor parent chain may prevent a Subsystem from
accessing the required capabilities provided by a dependency. Figure 134.13 illustrates this.

Figure 134.13 Sharing Capabilities

s1Root

Allow

Allow

S2

BB

AA

Allow

Deny

DD

CC

provision-policy:=
acceptDependencies

00

SSII

In this example the C and D provide capabilities that are required by A and B respectively. The import
sharing policy of S2 allows the capabilities to be imported into S2 , but the import sharing policy for
S1 denies the import of one of the capabilities and allows the other. In order for A or B to access capa-
bilities provided by C or D they must traverse both the import sharing policy of S2 and S1 . Ultimate-
ly S1 sharing policy prevents the necessary access to the dependencies necessary to resolve S2 . Such
a situation must be detected during the discovery of the installable dependencies and result in a fail-
ure to install the dependencies. This must result in the failure to install the Subsystem that requires
the dependency, in this case S2 .

134.8.1 Preferred Provider
The sharing policy for a Scoped Subsystem may specify a set of preferred providers. If a capability is
provided by a preferred provider then that capability must be used to resolve a Scoped Subsystem's
import policy. Figure 134.13 illustrates this.

Figure 134.14 Preferred Provider

s2
rootBB

s1 import X
prefers S2

exports
X

CCAA

XX

Root

00 SSII

Region Context Bundle Subsystem Service Specification Version 1.1

Page 586 OSGi Enterprise Release 7

In this example constituent B of the Root Region provides the capability X (called Root→X). Also con-
stituent C of S2Region provides the capability S2→X . The export sharing policy of S2 policy exports
the capability S2→X to its parent Region, the RootRegion . The S1Region contains a constituent A
that has a requirement on S1→X . The two capabilities, Root→X and S2→X , are available to satisfy the
requirement S1→X . The S1Region 's import sharing policy imports capability X and has a preferred
provider of S2 . This means that the capability S2→X must be used to satisfy the requirement S1→X .

134.8.2 System Capabilities
The osgi .ee and osgi .nat ive namespaces are used by the System Bundle to describe capabilities for
the Java execution environment and the native environment. These capabilities must only be pro-
vided by the System Bundle. A Subsystems implementation must allow access to the osgi .ee and
osgi .nat ive capabilities provided by the System Bundle to every Subsystem installed. This includes
scoped subsystems which may or may not already have an import sharing policy configured to im-
port these namespaces from the System Bundle.

134.9 Region Context Bundle
The Region context bundle provides a perspective from a constituent of a Subsystem contained in
the Region. When a Scoped Subsystem is installed the Subsystems implementation must generate
the Region context bundle and install it as a constituent bundle of the Subsystem. The Region con-
text bundle has the following characteristics:

• Has a symbolic name of org.osgi .service.subsystem.region.context.<subsystem id>
• Version 1.0.0
• Has a location string of <subsystem location>/<subsystem id>
• Must always be allowed to resolve and start (i.e. has no requirements, imports or bundle activa-

tor).
• Has a start-level of 1 and is persistently started.
• Is installed and started before the Subsystem service is registered.

This bundle is installed and must remain active as long as the Subsystem is installed. If the Region
context bundle is stopped, updated or uninstalled then the Subsystem runtime should log an error
and may ensure the context bundle is installed and restarted.

When the Subsystems implementation is active it must establish the Root Subsystem, see Subsystem
Service on page 593. In establishing the Root Subsystem the Subsystems implementation must en-
sure that there is a Region context bundle available for the Root Region. This Root Region context
bundle will have a symbolic name of org.osgi .service.subsystem.region.context.0 .

Typically the Region's context bundle would be used to obtain a bundle context with the getBundle-
Context() method, which has a perspective as a constituent of the Region. This is useful in the fol-
lowing ways:

• Implementing Subsystem aware extenders. Such extenders need to be able to register listeners
and monitor the inside of a Region in order to react to the constituent bundles of a Region.

• Monitoring of internal events.

134.10 Explicit and Implicit Resources
Depending on how a resource is installed the Subsystems implementation considers the resource
to be either an explicit resource or implicit resource. An explicit resource is a resource whose installa-
tion was initiated by an agent outside of the Subsystems implementation. An implicit resource is a re-

Subsystem Service Specification Version 1.1 Explicit and Implicit Resources

OSGi Enterprise Release 7 Page 587

source whose installation was initiated by the Subsystems implementation during the explicit in-
stallation of a Subsystem, including the content and dependencies of the explicitly installed Subsys-
tem.

134.10.1 Explicit Resources
An explicit resource is a resource that was installed programmatically, by an agent outside of the
Subsystems implementation, using some resource specific API. This specification defines two types
of resources that can be installed explicitly:

• Subsystem resource - A Subsystem resource may be installed explicitly by using the Subsystem ser-
vice. Note that content and dependencies of an explicitly installed Subsystem are not considered
to be explicit resources themselves since they were implicitly installed by the Subsystems imple-
mentation.

• Bundle resource - A bundle resource may be installed explicitly by using a bundle context. This in-
cludes fragments.

134.10.1.1 Explicit Bundle Resources

When a bundle is installed explicitly with a bundle context, the Subsystems implementation must
determine the Subsystem of which a bundle becomes a constituent. The following rules are fol-
lowed when a bundle is installed explicitly with a bundle context:

1. Determine the bundle performing the install. This is the bundle whose Bundle Context is per-
forming the install operation.

2. Determine the target Region. This is the Region to which the bundle performing the install oper-
ation belongs.

3. If a bundle with the same symbolic name and version already exists in the target Region then
the bundle installation must fail unless the same location string is used. If the same location is
used then the existing bundle is returned. This may be accomplished by the use of a bundle col-
lision hook.

4. Determine the Subsystem(s) of which the bundle performing the install is a constituent. The
bundle performing the install may be a shared resource. In that case the bundle performing the
install is a constituent of two or more Subsystems.

5. The newly installed bundle must become a constituent of all the Subsystems of which the bun-
dle performing the install is a constituent.

134.10.1.2 Explicit Subsystem Resources

When a Subsystem is installed explicitly with a Subsystem service, the Subsystems implementa-
tion must determine what Subsystem(s) the Subsystem resource and its children will become a con-
stituent of. The following rules are followed when a Subsystem is installed:

1. Determine the target Subsystem. This is the Subsystem service which is performing the install
operation or the Subsystem which includes another Subsystem as part of its content, see Deter-
mining Content on page 577.

2. Determine the target Region. This is the Region to which the target Subsystem belongs.
3. If no Subsystem resource with the same location exists then continue to the next step; otherwise

do the following:
• If the existing Subsystem is not a part of the target Region then fail the install operation by

throwing a Subsystem Exception; otherwise continue to the next step.
• If the existing Subsystem symbolic name, version and type is not the same as the Subsystem

being installed then fail the install operation by throwing a Subsystem Exception; otherwise
continue to the next step.

• If the existing Subsystem is already a constituent of the target Subsystem then return the
existing Subsystem from the install method; otherwise the existing Subsystem resource be-

Explicit and Implicit Resources Subsystem Service Specification Version 1.1

Page 588 OSGi Enterprise Release 7

comes a shared resource by increasing the reference count of the existing Subsystem by one,
see Reference Count on page 590, and the existing Subsystem becomes a constituent of the
target Subsystem; finally, the existing Subsystem is returned from the install method.

4. If no Subsystem resource with the same symbolic-name and version already exists in the target
Region then the Subsystem resource being installed becomes a constituent of the Subsystem tar-
get; otherwise do the following:
• If the existing Subsystem type is not the same as the type of the Subsystem being installed

then fail the install operation by throwing a Subsystem Exception; otherwise continue to the
next sub-step.

• If the existing Subsystem is already a constituent of the target Subsystem then return the
existing Subsystem from the install method; otherwise the existing Subsystem resource be-
comes a shared resource by increasing the reference count of the existing Subsystem by one
and the existing Subsystem becomes a constituent of the target Subsystem; finally, the exist-
ing Subsystem is returned from the install method.

134.10.2 Explicit Resource Example
A scenario is used to illustrate the rules for determining which Subsystem an explicitly installed re-
source is a constituent. Figure 134.15 illustrates the Root Subsystem with initial content bundles A ,
SI (Subsystems implementation) and the system bundle (id = 0) installed.

Figure 134.15 Explicit Resource Example

Root

R

00 SSII AA

If bundle A uses its own Bundle Context to explicitly install bundle B then bundle B becomes a con-
stituent of the Root Subsystem. If bundle A uses Subsystem R to install Scoped Subsystem S1 then the
S1 resource becomes a constituent of the Root Subsystem and S1 Subsystem becomes a child of the
Root Subsystem. S1 contains constituent bundles C and D . Also, if bundle B uses Subsystem R to in-
stall Scoped Subsystem S2 then the S2 resource becomes a constituent of the Root Subsystem and
the S2 Subsystem becomes a child of the Root Subsystem. S2 contains constituent bundles E and F .
Figure 134.16 illustrates this.

Figure 134.16 Subsystems and Resources

S1
Root

R,S1,S2

S2S2S1 EECC

DD

00 SSII AA

BB FF

Then if bundle C uses its own Bundle Context to install bundle F (using a different location string
from constituent bundle S2→F) then the bundle becomes a constituent of S1 . If bundle E uses Sub-

Subsystem Service Specification Version 1.1 Explicit and Implicit Resources

OSGi Enterprise Release 7 Page 589

system service S2 to install Unscoped Subsystem U1 (with constituents G and H) and installs Un-
scoped Subsystem U2 (with constituents H and J) then both Subsystem bundles U1 and U2 become
constituents of S2 . The S2 Subsystem also becomes the parent Subsystem for both U1 and U2 Subsys-
tems, see Figure 134.17.

Figure 134.17 Subsystems and Resources

Root

R,S1,S2,U1,U2

S1

S1 S2

U1

U2

S2,U1,U2

00

SSII

AA BB

DD

CC

FF

FF

EE

GG HH

HH JJ

sa
m

e
bu

nd
le

In this scenario bundle H is a shared constituent of both U1 and U2 Subsystems. If bundle H installs
a bundle K with its bundle context then bundle K becomes a shared constituent of both U1 and U2
Subsystems. Also, if Subsystem service U1 is used to install Scoped Subsystem S3 and Subsystem ser-
vice U2 is also used to install Subsystem S3 then S3 resource becomes a shared constituent of both
Unscoped Subsystems U1 and U2. The following illustrates this:

Figure 134.18 Subsystems and Resources

Root

R,S2,S3,U1,U2

S2

U1

U2

S2,U1U2,S3 S3

S3

AA

BB

SSII

00

EE

FF

GG HH KK

HH KK JJ

CC

sa
m

e
bu

nd
le

s

Since the S3 Subsystem resource is a shared constituent of both Subsystems U1 and U2 the S3 Sub-
system has two parents: U1 and U2. In this case S3 Subsystem has two parent Subsystems but the
S3Region still must only have one parent of S2Region. This is enforced by the rule that requires
all of the parents of a Subsystem to belong to the same Region. For Scoped Subsystems the Region
which contains all of the Subsystem's parents is parent Region.

So far the examples have illustrated cases where the Root Subsystem has Scoped Subsystem chil-
dren. It is also acceptable for an Unscoped Subsystem to be installed into the Root Region as the fol-
lowing figure illustrates:

Resource References Subsystem Service Specification Version 1.1

Page 590 OSGi Enterprise Release 7

Figure 134.19 Subsystems and Resources

Root

U1

U2

R,U1,U2,S1 S1

S1

00

SSII

AA CC DD

CC BB EE

sa
m

e
bu

nd
le

134.11 Resource References
A Subsystems implementation must track the resources which are installed and determine which
Subsystems reference a resource. The reference count indicates the number of installed Subsystems
which reference an installed resource. The resource references and reference counts are used by the
Subsystems implementation to determine if an installed resource is eligible for garbage collection
and also plays a role in determining when a resource should be started and stopped, see Starting and
Stopping Resources on page 591 ; the term reference count is only used to illustrate these concepts.
The reference count of a resource is not exposed in the API of Subsystems. The following types of re-
sources are referenced by a Subsystem:

• Content Resources - These are the content resources which were installed when the Subsystem
was installed, that is the resources declared in the Subsystem-Content header or from the Local
Repository when the Subsystem-Content header is not specified, see Determining Content on page
577. Content Resources are considered to be implicit resources.

• Explicit Resources - These are constituent resources which are installed explicitly, see Explicit Re-
sources on page 587.

• Dependencies - These resources provide capabilities required to satisfy requirements for a
Subsystem's content resources, see Determining Dependencies on page 582. Dependencies are
considered to be implicit resources.

Accepted dependency constituents are not defined as being referenced by the Subsystem of which
they are a constituent unless constituent resource is a dependency for that Subsystem. Parent Sub-
systems are also not defined as being referenced by a child Subsystem.

134.11.1 Reference Count
When a Subsystem is being installed the Subsystems implementation must determine what re-
sources are referenced by the Subsystem being installed. Each resource that is referenced by the Sub-
system being installed will have its reference count incremented by 1. A top-level Subsystem being
installed may contain child Subsystems. Each resource that is referenced by the child Subsystem be-
ing installed will have its reference count incremented by 1.

When a Subsystem is being uninstalled the Subsystems implementation must determine what re-
sources are referenced by the Subsystem being uninstalled. Each resource that is referenced by the
Subsystem being uninstalled will have its reference count decremented by 1. A top-level Subsystem
being uninstalled may contain child Subsystems. Each resource that is referenced by each child Sub-
system being uninstalled will have its reference count decremented by 1.

Subsystem Service Specification Version 1.1 Starting and Stopping Resources

OSGi Enterprise Release 7 Page 591

When a reference count gets set to zero then the resource is eligible for garbage collection and will
be uninstalled. A Subsystems implementation may perform the garbage collection immediately or
postpone the garbage collection for later. If garbage collection is postponed then the Subsystems im-
plementation must prevent any additional usage of capabilities provided by the resource which is to
be uninstalled. The garbage collection must occur in a reasonable period of time.

Bundle resources (including fragments) and Subsystem resources may be uninstalled explicitly. For
example, uninstalling a Subsystem resource through the Subsystem service, or by other means out-
side of the Subsystems API such as uninstalling a bundle using a Bundle object. Each of the follow-
ing must occur when a resource is explicitly uninstalled:

• If the resource being explicitly uninstalled was not itself installed explicitly then an error must
be logged indicating that the explicitly uninstalled resource still has one or more Subsystems ref-
erencing it.

• If the resource being explicitly uninstalled was itself installed explicitly and the reference count
is greater than 1 then an error must be logged indicating that the explicitly uninstalled resource
still has one or more Subsystems referencing it.

• The resource being explicitly uninstalled has its reference count set to 0 and finally the resource
is uninstalled.

134.12 Starting and Stopping Resources
A Subsystem can be started by calling the Subsystem start method or the Subsystems implementa-
tion can automatically start the Subsystem if the Subsystem is ready and the autostart setting of the
Subsystem indicates that it must be started.

A Subsystem is ready if the Subsystem's parent is in the process of starting or is active. A started
Subsystem may need to be automatically started again by the Subsystems implementation after a
restart. The Subsystems implementation therefore maintains a persistent autostart setting for each
Subsystem. This autostart setting can have the following values:

• Stopped - The Subsystem should not be started.
• Started - The Subsystem must be started once it is ready.

Subsystem resources which are installed as content resources, see Discovering Content Resources on
page 581, of one or more Subsystems must have their autostart setting set to started.

When a Subsystem is started and stopped then the resources the Subsystem references may be start-
ed and stopped. See for details Starting on page 599 and Stopping on page 599.

The Subsystems implementation must track the resources which are installed and be able to de-
termine when a resource must be started and stopped. To describe this behavior the term active use
count is used. A active use count indicates the number of active Subsystems which reference a re-
source. The active use count is used by the Subsystems implementation in order to determine when
a resource is started and stopped. The term active use count is only used to illustrate the starting and
stopping of resources. The active use count of a resource is not exposed in the API of Subsystems.

Resource starting and stopping only applies to resources for which it is valid to start and stop. For
example, it is not valid to start or stop resources of type osgi .f ragment and a Subsystems implemen-
tation must not attempt to start or stop such resources.

134.12.1 Start Order
A Subsystem's Subsystem-Content header, see Subsystem-Content Header on page 577, can use the
optional start-order directive for each content resource it declares. The start-order directive speci-
fies the start order of the content resource in relation to other content resources of the Subsystem.
Content resources are started in ascending order and stopped in descending order according to the

Starting and Stopping Resources Subsystem Service Specification Version 1.1

Page 592 OSGi Enterprise Release 7

start-order directive values. Content resources with the same start-order value may be started and
stopped in any order in relation to each other. There is no default value for start-order . If the start-
order is not specified then a Subsystem implementation is free to start the resource in any order. For
example, the following header specifies four Subsystem content resources:

Subsystem-SymbolicName: S1
Subsystem-Type: osgi.subsystem.composite
Subsystem-Content:
 A;
 type=osgi .bundle;
 version=1.0;
 start-order:=3,
 B;
 type=osgi.bundle;
 version=1.0;
 start-order:=2,
 C;
 type=osgi.bundle;
 version=1.0;
 start-order:=1,
 D;
 type=osgi.bundle;
 version=1.0;
 start-order:=2

The above headers specify a Subsystem S1 with four content resources: A , B , C and D . The start-order
directive is used to sort the content resources to determine the order to start or stop them when the
Subsystem is started or stopped. The content resources are sorted from lowest to highest start-order.
Content resources that have the same start-order value may be started and stopped in any order in
relation to each other. In this example the content resources are sorted into the list [C] , [B, D] , [A] .
C has the lowest start-order, therefore it is the first in the list. B and D have the same start-order and
therefore can be started in any order in relation to each other. Finally A is last in the list because it
has the highest start-order.

When the Subsystem S1 is started the content resource C must be started first, followed by the start-
ing of B and D in any order, finally resource A is started last. When the Subsystem S1 is stopped the
content resource A must be stopped first, followed by the stopping of B and D in any order, finally re-
source C is stopped last.

Resources that do not specify a start-order can be started and stopped in any order.

134.12.2 Active Use Count
When a Subsystem is being started the Subsystems implementation must increment the active use
count of every resource which is referenced by the Subsystem being started, see Resource References
on page 590. After incrementing the active use counts of the resources referenced by a Subsys-
tem, the Subsystems implementation must determine which referenced resources need to be start-
ed. For each resource referenced by the Subsystem which is valid to be started; if the active use count
is greater than zero and the resource is not currently active then the resource must be started. The
collection of dependencies are started before the Subsystem's content resources. The start order for
the individual resources contained in the collection of dependencies is not specified. See Start Order
on page 591.

When a Subsystem is being stopped the Subsystems implementation must decrement the active
use count of every resource which is referenced by the Subsystem being stopped. After decrement-
ing the active use counts of the resources referenced by a Subsystem, the Subsystems implementa-
tion must determine which referenced resources need to be stopped. For each resource referenced
by the Subsystem which is valid to be started; if the active use count equals zero and the resource is

Subsystem Service Specification Version 1.1 Subsystem Service

OSGi Enterprise Release 7 Page 593

currently active then the resource must be stopped. The Subsystem content resources are stopped
before the collection of dependencies. Start Order on page 591 describes the stop order of the
Subsystem's content resources. The stop order of the individual resources contained in the collec-
tion of dependencies is not specified.

When starting the resource types supported by this specification the following rules apply:

• osgi .bundle - The bundle must be transiently started using the activation policy of the bundle,
that is with the Bundle.START_ACTIVATION_POLICY .

• osgi .f ragment - fragments cannot be started, this is a no-op.
• osgi .subsystem.appl icat ion , osgi .subsystem.composite , osgi .subsystem.feature - The Subsys-

tem must be transiently started if its autostart setting is set to started.

When stopping the resource types supported by this specification the following rules apply:

• osgi .bundle - The bundle must be persistently stopped.
• osgi .f ragment - Fragments cannot be stopped, this is a no-op.
• osgi .subsystem.appl icat ion , osgi .subsystem.composite , osgi .subsystem.feature - The Subsys-

tem must be transiently stopped. Its autostart setting must not be changed.

Note that for resources referenced by a stopped Subsystem; bundle resources are persistently
stopped and Subsystem resources are transiently stopped. This is a safeguard to handle cases where
a constituent bundle is eagerly started by some other agent outside of the Subsystems implementa-
tion. Persistently started bundles will get auto started by the framework according to the start-lev-
el of the bundle. This can cause a constituent bundle to be stopped even though the Subsystem it is
a constituent of is not active. To avoid this situation the Subsystems implementation always clears
the persistent autostart setting of the bundle resources.

Subsystem resources which are referenced by a Subsystem are started or stopped transiently. There
is no API to transiently start or stop a Subsystem. The Subsystems implementation must perform
the starting or stopping of a referenced Subsystem normally except the starting or stopping process
does not change the autostart setting for the referenced Subsystem.

134.13 Subsystem Service
The Subsystem service represents an Subsystem Archive resource that is installed in an OSGi Frame-
work. The installation of a Subsystem can only be performed by using the Subsystem service API or
through implementation specific means. The Subsystem interface's methods and service properties
can be divided into the following categories:

• Information - Access to information about the Subsystem itself as well as other Subsystems that
are installed.

• Life Cycle - The possibility to install other Subsystems and start, stop, and uninstall Subsystems.

For each Subsystem installed, the Subsystems implementation must register an associated Subsys-
tem object as a service. The Subsystem service is used for monitoring the state of the Subsystem, for
controlling the life cycle of the installed Subsystem and for installing child Subsystems.

134.13.1 Root Subsystem
A Subsystems implementation must register the Root Subsystem service. When a Subsystems im-
plementation is started for the first time it must establish the Root Subsystem. The following steps
are required to establish the Root Subsystem.

1. The Root Subsystem has a symbolic name org.osgi .service.subsystem.root , version 1.1 (the ver-
sion of the Subsystems specification), a Subsystem id of 0 and a location of

Subsystem Service Subsystem Service Specification Version 1.1

Page 594 OSGi Enterprise Release 7

subsystem://?Subsystem-SymbolicName=org.osgi.service.subsystem.root& «
 Subsystem-Version=1.1

2. The Root Subsystem has no parent Subsystem. More specifically the Root Subsystem is the only
source vertex in the Subsystem graph.

3. The Root Subsystem is considered a Scoped Subsystem of type appl icat ion , with provis ion-pol i-
cy of acceptDependencies . Since the Root Subsystem has no parent it does not import or export
any capabilities.

4. The Subsystem content is the set of bundles installed in the framework that do not belong to
any other Subsystem.

5. The root subsystem has a region context bundle as described in Region Context Bundle on page
586.

The Root Subsystem always exists when a Subsystems implementation is present and active, even
if no other Subsystems are installed The Root Subsystem is used as the starting point for installing
Subsystems as child Subsystems. The Root Subsystem cannot be stopped or uninstalled by calling
the Subsystem service stop or uninstall methods. Any attempt to do so must result in a Subsystem
Exception.

134.13.2 Subsystem Service Properties
The primary means of discovering and monitoring a Subsystem is the Subsystem service. A Subsys-
tems implementation must register one Subsystem service for each Subsystem installed. The Sub-
system service is used for monitoring and controlling the life-cycle of the installed Subsystem. Ser-
vice properties on the Subsystem service carry most of the information required to monitor Subsys-
tem life cycle operations and the current state of a Subsystem. The following table describes the ser-
vice properties of a Subsystem:

Table 134.1 Subsystem Mandatory Service Properties

Key Name Type Description
subsystem.id Long The Subsystem id of the Subsystem
subsystem.symbol icName Str ing The symbolic name of the Subsystem
subsystem.version Version The version of the Subsystem
subsystem.type Str ing The type of Subsystem.
subsystem.state Subsystem.State Contains the current state of the Subsystem

134.13.3 Subsystem States
The Subsystem service property subsystem.state contains the current state of the Subsystem (this is
referred to as the subsystem state). All Subsystem states are defined by the Subsystem.State enum , for
example, INSTALLED . The possible values of a subsystem.state are shown in the table below:

Table 134.2 Subsystem States

subsystem.state Description
INSTALLING When a Subsystem is first installed the Subsystems implementation must register a Subsys-

tem service with the initial subsystem.state of INSTALLING . The subsystem.state must re-
main in the INSTALLING state until all of the Subsystem constituents are installed successfully.

INSTALLED When all contents of a Subsystem has been successfully provisioned then the subsystem.state
is set to INSTALLED .

INSTALL_FAILED Indicates that some failure occurred while attempting to install the Subsystem's contents.

Subsystem Service Specification Version 1.1 Subsystem Service

OSGi Enterprise Release 7 Page 595

subsystem.state Description
RESOLVING Starting a Subsystem triggers the resolution of a Subsystem if the subsystem.state is INS-

TALLED . A RESOLVING state indicates that a resolve process is occurring in an attempt to re-
solve all of the subsystem's content resources.

RESOLVED Indicates that the Subsystem is resolved. A Subsystem is resolved if all of its content resources
are resolved.

STARTING Indicates that the Subsystem is in the process of being started. During this state the resources
the Subsystem references which are eligible for starting are started, see Starting and Stop-
ping Resources on page 591. Once all the eligible resources are successfully started then the
subsystem.state is set to ACTIVE .

ACTIVE The ACTIVE state indicates that all eligible resources referenced by the Subsystem were suc-
cessfully started during the starting process.

STOPPING Indicates that the Subsystem is in the process of being stopped. During this state the resources
referenced by the Subsystem are stopped if appropriate.

UNINSTALLING Indicates that the Subsystem is in the process of being uninstalled. During this state the re-
sources referenced by the Subsystem are marked for garbage collection if they are eligible, see
Resource References on page 590.

UNINSTALLED When all of the resources referenced by the Subsystem which are eligible for garbage collec-
tion have been uninstalled then the subsystem.state is set to UNINSTALLED .

134.13.4 Subsystem Service Registrations
The Subsystems implementation must register one Subsystem service for each Subsystem installed.
The Subsystems implementation must provide access to every Subsystem service from the Root Re-
gion. Every other Region must have access to the following Subsystem Services:

• Subsystem service representing the Scoped Subsystem of the Region.
• All Unscoped Subsystem services contained in the Region.
• All Subsystems which are children of a Subsystem contained in the Region.

A Region is granted access to the Subsystem services listed above automatically by the Subsystems
implementation regardless of the sharing policy defined by the Scoped Subsystem of that Region.
Additional Subsystem services may be imported into a Region from its parent Region by the sharing
policy defined by the Scoped Subsystem of that Region.

For example, a Root Subsystem and Root Region that has two Scoped Subsystem children, S1 and S2 .
All Subsystem services are registered by the Subsystems implementation and are visible in the Root
Region. The S1 Subsystem service is also implicitly visible in the S1 Region because it represents the
Scoped Subsystem S1 contained in that Region. Similarly the S2 Subsystem service is also implicitly
visible from the S2 Region. This example is depicted in Figure 134.20.

Figure 134.20 Root, attached to Scoped Subsystems S1, S2

S1
Root

R,S1,S2

S2S2S1 DD

CC

00 SSII EE

FF

Figure 134.21 defines a more complicated scenario where Subsystems and multiple children are in-
volved.

Subsystem Life Cycle Subsystem Service Specification Version 1.1

Page 596 OSGi Enterprise Release 7

Figure 134.21 Complex example Subsystem scoping

Root

R,S1.U1,U2,S2,U3,U4,S3,U5

C

S1

U1

E

F

S2

U2

S1,U1,U2

B U3

U4

S2,U3,U4,S3

U5

S3

G

SI0

S3,U5

All Subsystem services are visible in the Root Region. The S1 Subsystem service is also implicitly vis-
ible in the S1 Region because it represents the Scoped Subsystem S1 contained in that Region. The S1
Region also has visibility to the U1 and U2 Subsystem services because these Unscoped Subsystems
are contained in the S1 Region. Similarly the S2 Subsystem service is also implicitly visible from the
S2 Region. The S2 Region also has visibility to the U3 and U4 Subsystem services because these Un-
scoped Subsystems are contained in the S2 Region. The S2 Region also has visibility to the S3 Subsys-
tem service because the S3 Subsystem is a child of a Subsystem contained in the S2 Region. Finally,
the S3 Region has implicit visibility to the S3 Subsystem service and it has visibility to the U5 Sub-
system service because the Unscoped Subsystem is contained in the S3 Region.

Note that a Scoped Subsystem's import sharing policy may grant its Region visibility to additional
Subsystem services.

134.13.5 Subsystem Manifest Headers
The Subsystem service interface has the getSubsystemHeaders(Locale) method which returns
the values of the Subsystem's manifest headers. The headers returned by this method includes
the values specified in the Subsystem manifest file and the values derived by the Subsystems im-
plementation. Certain manifest headers may be derived at install time by the Subsystems imple-
mentation if they were not specified in the Subsystem manifest file. When a Subsystem manifest
value is derived then the derived value must be included in the headers returned by the method
getSubsystemHeaders(Locale) . The following Subsystem manifest headers may be derived by the
Subsystems implementation:

• Subsystem-SymbolicName
• Subsystem-Version
• Subsystem-Content

134.14 Subsystem Life Cycle
The Subsystems specification provides an API to control the life cycle operations of a Subsystem. For
each Subsystem installed there is an associated Subsystem object (also registered as a Subsystem ser-
vice). A Subsystem's life-cycle is controlled by operations performed on the Subsystem object. Op-
erations performed on the Subsystem may also cause equivalent operations on the resources refer-
enced by the Subsystem. For example starting a Subsystem will cause all of its content resources to
start if appropriate.

Subsystem Service Specification Version 1.1 Subsystem Life Cycle

OSGi Enterprise Release 7 Page 597

For Scoped Subsystems the export and import sharing policies are initially disabled at runtime and
get enabled at runtime by the Subsystems implementation depending on the state of the Scoped
Subsystem which defines the sharing policy. When an import sharing policy is disabled at runtime,
none of the installed resources contained in the Region associated with the Scoped Subsystem have
visibility to capabilities available in the parent Region. Once an import policy is enabled at runtime
the installed resources contained in the Region have visibility to capabilities available in the parent
Region according to what the import sharing policy specifies. When an export sharing policy is dis-
abled at runtime, none of the capabilities provided by installed resources contained in the Region
associated with the Scoped Subsystem are visible in the parent Region. Once an export policy is en-
abled at runtime the capabilities provided by installed resources contained in the Region are visible
in the parent Region according to what the export sharing policy specifies.

The subsystem.state is a reflection of the last action performed on the Subsystem through the Sub-
system service. The use of any other API to change the state of a resource referenced by a Subsystem
directly does not result in a change of the subsystem.state (i.e. calling stop on a bundle). For exam-
ple, uninstalling a Subsystem content resource which is a bundle does not cause the Subsystem to
be uninstalled, but it does result in an error being logged.

All references to changing the state of this Subsystem include both changing the state of the Sub-
system object as well as the state property of the Subsystem service.

The following figure illustrates the life cycle of a Subsystem:

Figure 134.22 State diagram Subsystems

INSTALLING

failed

INSTALLED

RESOLVING

INSTALL_FAILED

UNINSTALLING UNINSTALLED

RESOLVED

STARTING STOPPING

ACTIVE

start

failed

success

uninstall

failed

uninstall

install

start

success stop
uninstall

134.14.1 Installing
A Subsystem's install process is initiated using one of the Subsystem service's install methods. The
Subsystems implementation must assign a unique Subsystem identifier that is higher than any pre-
vious installed Subsystem identifier. Previously installed Subsystem identifiers include Subsystems
which were uninstalled in a previous session of the framework. The installation of a Subsystem
must be:

Subsystem Life Cycle Subsystem Service Specification Version 1.1

Page 598 OSGi Enterprise Release 7

• Persistent - The Subsystem must remain installed across framework and Java VM invocations un-
til the Subsystem is explicitly uninstalled.

• Atomic - The install method must completely install the Subsystem or, if installation fails, the
Subsystems implementation must leave the framework in the same state as it was before the
method was called.

Once a Subsystem has been installed, a Subsystem object is created and all remaining life cycle oper-
ations for the installed Subsystem must be performed upon this object. The returned Subsystem ob-
ject can be used to start, stop, and uninstall the Subsystem as well as install child Subsystems.

When a Subsystem is being installed the Subsystems implementation must perform the following
operations synchronously before returning from the install method:

1. Determine the symbolic name, version, and type for the Subsystem being installed as defined
in Subsystems on page 566. If the Subsystem name, version or type are invalid then the install
fails and a Subsystem Exception is thrown.

2. Determine the Subsystems for which the Subsystem being installed will become a constituent
of by following the steps in Explicit and Implicit Resources on page 586.

3. Determine the Subsystem identifier. Subsystem identifiers are unique and assigned by the Sub-
systems implementation.

4. If the Subsystem is a Scoped Subsystem then create the new Region for the Subsystem and in-
stall and start the Region context bundle. See Region Context Bundle on page 586 for the Region
context bundle.

5. Register a Subsystem service with the initial subsystem.state service property set to INSTAL-
LING . This Subsystem service represents the Subsystem resource. See Subsystem Service Properties
on page 594 and Subsystem Service Registrations on page 595 for more details.

6. Determine the Subsystem content resources. See Determining Content on page 577 for details
on how the Subsystem contents are determined. If the contents cannot be discovered successful-
ly and the content is not optional then an installation failure occurs and a Subsystem Exception
is thrown. Otherwise continue to the next step.

7. Determine the Subsystem dependencies. See Determining Dependencies on page 582 for details
on determining the Subsystem's dependencies. If the dependencies cannot be determined suc-
cessfully then an installation failure occurs and a Subsystem Exception is thrown. Otherwise
continue to the next step.

8. Install the dependencies. The Subsystems implementation must prevent resolution of depen-
dency wires to the capabilities provided by the installed dependencies until the Subsystem has
successfully entered INSTALLED state. See Explicit and Implicit Resources on page 586 for details
on where dependencies are installed and see Resource References on page 590 for how they are
tracked. If any dependency fails to install then an installation failure occurs and a Subsystem Ex-
ception is thrown. Otherwise continue to the next step.

9. Install content resources. The content resources must be disabled from resolving until the Sub-
system has successfully entered INSTALLED state. If any content resource fails to install then and
installation failure occurs and a Subsystem Exception is thrown. Otherwise continue to the next
step.

10. If the Subsystem is scoped, enable the import sharing policy for the Region. See Sharing Capabili-
ties on page 585.

11. Enable resolution for all of the Subsystem content and any dependencies installed. Set the
subsystem.state to INSTALLED and return the installed Subsystem object.

The state INSTALL_FAILED is used to inform about an installation failure. All installation failures use
the following steps:

1. When a Subsystem fails to install it enters the INSTALL_FAILED state.
2. Immediately transition the Subsystem to the UNINSTALLING state.

Subsystem Service Specification Version 1.1 Subsystem Life Cycle

OSGi Enterprise Release 7 Page 599

3. All content and dependencies which may have been installed by the Subsystem installing
process must be uninstalled.

4. Transition the Subsystem to the UNINSTALLED state.
5. Unregister the Subsystem service.
6. If the Subsystem is scoped then, uninstall the Region context bundle.
7. Throw a Subsystem Exception indicating an install failure.

134.14.2 Resolving
A Subsystem's resolve process is initiated by performing a start operation on a Subsystem whose
subsystem.state is currently set to INSTALLED . There is no explicit operation for initiating the re-
solve process of a Subsystem. The Subsystems implementation is free to initiate the resolve process
for a Subsystem for any reason. For example, the Subsystems implementation may choose to try to
resolve all currently installed Subsystems when the start operation is performed on a single Subsys-
tem.

134.14.3 Starting
A Subsystem can be started by calling the Subsystem start() method or the Subsystems implemen-
tation can automatically start the Subsystem if the Subsystem is ready and the autostart setting of
the Subsystem indicates that it must be started. When a Subsystem is being started the Subsystems
implementation must perform the following operations synchronously before returning from the
start() method:

1. If the subsystem.state is INSTALL_FAILED , UNINSTALLED , or UNINSTALLING , then an Illegal
State Exception is thrown.

2. Set the Subsystems autostart setting to started.
3. If the subsystem.state is ACTIVE then the start method returns immediately.
4. If the Subsystem is not ready to be started then the start method returns immediately.
5. If this subsystem.state is RESOLVING , STARTING or STOPPING , then the start method must wait

for starting or stopping to complete before continuing. If this does not occur in a reasonable
time, a Subsystem Exception is thrown to indicate the Subsystem was unable to be started.

6. If the subsystem.state is RESOLVED then continue to the next step; otherwise if the
subsystem.state is INSTALLED then the subsystem.state is set to RESOLVING and an attempt is
made to resolve all of the Subsystem's content resources. If all contents are resolved then set the
subsystem.state to RESOLVED , enable the export sharing policy and continue to the next step;
otherwise a starting failure occurs and a Subsystem Exception is thrown.

7. Set the subsystem.state to STARTING .
8. Start all resources referenced by the Subsystem according to Starting and Stopping Resources on

page 591. If all of the resources start successfully then continue to the next step; otherwise a
start failure occurs.

9. Set the subsystem.state to ACTIVE and return.

All start failures use the following steps:

1. If the subsystem state is STARTING then change the state to STOPPING .
2. Stop all resources that were started as part of this operation.
3. Change the state to INSTALLED or RESOLVED depending on if the Subsystem was resolved.
4. Throw a Subsystem Exception indicating the cause of the start failure.

134.14.4 Stopping
A Subsystem's stop process is initiated using the Subsystem service's stop() method. When a Subsys-
tem is being stopped the Subsystems implementation must perform the following operations syn-
chronously before returning from the stop() method:

Subsystem Life Cycle Subsystem Service Specification Version 1.1

Page 600 OSGi Enterprise Release 7

1. If the subsystem.state is UNINSTALLED , INSTALL_FAILED , or UNINSTALLING , then an Illegal
State Exception is thrown.

2. Set the Subsystems autostart setting to stopped.
3. If the subsystem.state is RESOLVED or INSTALLED then the stop() method returns immediately.
4. If this subsystem.state is STARTING or STOPPING , then the stop method must wait for starting

or stopping to complete before continuing. If this does not occur in a reasonable time, a Subsys-
tem Exception is thrown to indicate the Subsystem was unable to be stopped.

5. Set the subsystem.state to STOPPING .
6. Stop all resources referenced by the Subsystem according to Starting and Stopping Resources on

page 591. If any error occurs while stopping a resource the Subsystems implementation must
continue to stop the remaining resources that are eligible to stop.

7. Set the subsystem.state to RESOLVED .

With regard to error handling while stopping resources referenced by the Subsystem, errors sub-
sequent to the first should be logged. Once the stop process has completed, a Subsystem Exception
must be thrown with the initial error as the specified cause.

134.14.5 Uninstalling
A Subsystem's uninstall process is initiated using the Subsystem service's uninstal l () method. To
whatever extent possible, the Subsystems implementation must determine the resources referenced
by the Subsystem which are eligible for garbage collection, Reference Count on page 590. This
method must always uninstall the Subsystem from the persistent storage of the Subsystems imple-
mentation.

Once this method returns, the state of the platform must be the same as if the Subsystem had never
been installed, unless some bundle resource which was uninstalled has exported package which are
being used by other bundles still installed in the platform. All old exports must remain available for
existing bundles and future resolves until the uninstalled bundle is refreshed or the framework is
restarted.

When a Subsystem is being uninstalled the Subsystems implementation must perform the follow-
ing operations before returning from the uninstal l () method:

1. If the subsystem.state is UNINSTALLED then this method returns immediately.
2. If the subsystem.state is STARTING , STOPPING or ACTIVE then the Subsystem is stopped accord-

ing to Stopping on page 599. Otherwise continue to the next step.
3. If the subsystem.state is INSTALLING and the installing process is interruptible, fail the install

process; otherwise, wait until the installation is complete.
4. If the subsystem.state is in the INSTALL_FAILED state then skip to step 6.
5. Set the subsystem.state to INSTALLED .
6. Set the subsystem.state to UNINSTALLING .
7. Determine the resources referenced by the Subsystem which are eligible for garbage collection

according to Reference Count on page 590. If a Subsystems implementation does garbage col-
lection synchronously and any error occurs while uninstalling a resource the Subsystems imple-
mentation must continue to uninstall the remaining resources that are eligible to garbage col-
lect.

8. Set the subsystem.state to UNINSTALLED .
9. Unregister the Subsystem service.
10. If the Subsystem is a Scoped Subsystem then uninstall the Region context bundle. At this point

the Region no longer exists.

With regard to error handling while synchronously uninstalling resources eligible for garbage col-
lection, errors subsequent to the first should be logged. Once the uninstall process has completed, a
Subsystem Exception must be thrown with the initial error as the specified cause.

Subsystem Service Specification Version 1.1 Pre-Calculated Deployment

OSGi Enterprise Release 7 Page 601

134.15 Pre-Calculated Deployment
A pre-calculated deployment in the form of a deployment manifest can be included as part of a Sub-
system Archive or provided by a deployer at installation time. Manifests provided at install time
override those included within an archive, and those within an archive override calculated ones.
The deployment manifest defines the precise deployment of the Subsystem. Providing a deploy-
ment manifest means a Subsystem can be deployed and the exact resources that are installed are
known ahead of time. This allows test teams to test specific deployments and these same deploy-
ments can then be used in production. The deployment manifest is a locking down of the variability
in a Subsystem manifest (or the equivalent if the Subsystem definition is calculated during deploy-
ment based on the Subsystem Archive). The deployment manifest follows the same syntax rules as
the Subsystem manifest but uses different headers for deployment-specific information. A deploy-
ment manifest describes the following:

• The exact versions for content resources
• Any dependencies required to resolve the Subsystem's content that are not satisfied by the target

runtime
• Sharing policy for requirements and capabilities shared into or out of the Subsystem.

Because a Deployment Manifest's dependencies bridge between the requirements of the Subsystem
and the capabilities of the target runtime, it is not guaranteed to be portable. If available, the Subsys-
tem service implementation must first attempt to use the Deployment Manifest to deploy the Sub-
system. If the Deployment Manifest is found not to work, for example, the chosen resources do not
resolve for the target runtime, then the Subsystem's implementation must fail the installation of the
Subsystem.

134.15.1 Deployment Headers
A Subsystem can carry descriptive information about its deployment in the Deployment Manifest
file contained in its Subsystem Archive under the name OSGI-INF/DEPLOYMENT.MF . This specifi-
cation defines Deployment Manifest headers such as Deployed-Content, which Subsystem deploy-
ers (typically tools) use to supply deployment information about a Subsystem. A Subsystems imple-
mentation must:

• Process the main section of the manifest. Individual section of the manifest are ignored.
• Ignore unknown manifest headers. The Subsystem deployer can define additional manifest head-

ers as needed.
• Ignore unknown attributes and directives.

All specified manifest headers are listed in the following sections, and include example values. All
headers are optional, unless specifically indicated.

134.15.1.1 Deployment-ManifestVersion: 1

The Deployment-ManifestVersion header defines that the deployment manifest follows the rules of
a Subsystems Specification. It is 1 (the default) for this version of the specification. Future versions
of the Subsystems Specification can define higher numbers for this header.

134.15.1.2 Subsystem-SymbolicName: com.acme.subsystem.logging

The Subsystem-SymbolicName header specifies a non-localizable name for the Subsystem that the
deployment manifest is for. The Subsystem symbolic name together with a version must identify a
unique Subsystem though it can be installed multiple times in a framework. See Validating Subsys-
tem Identity on page 602.

Pre-Calculated Deployment Subsystem Service Specification Version 1.1

Page 602 OSGi Enterprise Release 7

134.15.1.3 Subsystem-Version: 1.0

The Subsystem-Version header specifies the version of this Subsystem that the deployment manifest
is for. See Validating Subsystem Identity on page 602.

134.15.1.4 Deployed-Content: com.acme.logging;type=osgi.bundle;deployed-version=1.0.0

The Deployed-Content header lists requirements for the exact resources that are considered to be
the contents of this Subsystem. This header identifies the exact versions of the resources listed in
the Subsystem-Content header. See Deployed-Content on page 603.

134.15.1.5 Provision-Resource: com.acme.logging;type=osgi.bundle;deployed-version=1.0.0

The Provision-Resource header lists requirements for the exact resources to be installed in order to
satisfy requirements from the Deployed-Content resources that are not satisfied by the capabilities
of the target runtime. See Provision-Resource on page 603.

134.15.1.6 Import-Package: com.acme.api;version="[1.0,1.1)"

The Import-Package header lists package requirements for capabilities that are to be imported into a
Scoped Subsystem. See Import-Package on page 604.

134.15.1.7 Export-Package: com.acme.api;version=1.0.1

The Export-Package header lists package capabilities that are to be exported out of a Scoped Subsys-
tem. See Export-Package on page 604.

134.15.1.8 Require-Bundle: com.acme.logging; bundle-version="[1.0,1.1)"

The Require-Bundle header lists bundle requirements for bundle capabilities that are to be imported
into a Scoped Subsystem. See Require-Bundle on page 605.

134.15.1.9 Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2

The Provide-Capability header declares the capabilities exported for a Scoped Subsystem. See [3] Re-
source and Wiring.

134.15.1.10 Require-Capability: osgi.ee; filter:="(osgi.ee=*)"

The Require-Capability header declares the required capabilities for a Scoped Subsystem. See [3] Re-
source and Wiring.

134.15.1.11 Subsystem-ImportService: com.acme.service.Logging

The Subsystem-ImportService header lists service requirements for service capabilities that are to be
imported into a Scoped Subsystem. See Services on page 605.

134.15.1.12 Subsystem-ExportService: com.acme.service.Logging

The Subsystem-ExportService header lists service requirements that are matched against service ca-
pabilities provided by the Deployed-Content resources. Any matching capabilities are exported out
of the Scoped Subsystem.

134.15.2 Validating Subsystem Identity
The Subsystem to which the deployment manifest applies is identified by the Subsystem's symbolic
name and version headers. These headers are identical to those specific in the Subsystem manifest.
A Subsystem runtime must validate that the headers specified in the deployment manifest match
those of the Subsystem manifest, taking into account Subsystem manifest defaulting rules. This al-
lows the two manifests to be managed by teams separately during development or testing whilst en-
suring no mistakes have been made when they are brought together for deployment. If the headers
do not match, then the runtime must not use the deployment manifest and must fail the installa-
tion.

Subsystem Service Specification Version 1.1 Pre-Calculated Deployment

OSGi Enterprise Release 7 Page 603

134.15.3 Deployed-Content
The Deployed-Content header lists the exact constituents to be installed for the Subsystem. For each
mandatory entry in the Subsystem-Content header, there must be a corresponding Deployed-Con-
tent entry. If a content resources is identified as optional and there is a corresponding entry in the
deployment manifest, then it must be deployed. If there is no corresponding entry in the deploy-
ment manifest then no resource must be deployed for it. The Deployed-Content entry identifies the
exact version of the constituent whereas the Subsystem-Content entry may specify a version range.
Each Deployed-Content entry is identified by symbolic name, version and type (an osgi identity).

Deployed-Content:
 com.acme.logging;
 deployed-version=1.0,
 com.acme.persistence;
 deployed-version=1.1;
 type=osgi.subsystem.composite

Each entry must uniquely identify the resource to be provisioned as a constituent of the Subsystem.

The following mandatory matching attributes must be applied to each entry:

• deployed-version - The exact version of the resource to be deployed. Deployed version is a specif-
ic version, not a version range, hence the use of a new attribute name. There is no default value
for this attribute.

The following architected matching attribute as well as any arbitrary matching attributes can be ap-
plied to each entry:

type - The type of the constituent. It is recommended that a reverse domain name convention is
used unless those types and their processing is standardized by the OSGi Alliance (e.g. bundles). The
default value is osgi .bundle . A Subsystems implementation may support additional types, but the
following types must be supported:

• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

The value of this directive must match the type directive for the corresponding entry in the Subsys-
tem-Content header, including taking into account defaulting. If the type does not match, then the
installation must fail.

The following directive can be applied to each entry:

• start-order - The precedence the constituent should have during the start sequence. Resources
with lower start-order values are started before resources with higher values. Resources with the
same start-order value may be started sequentially or in parallel. The value of this directive must
match the start-order directive for the corresponding entry in the Subsystem-Content header, in-
cluding taking into account defaulting.

134.15.4 Provision-Resource
The Provision-Resource header lists the resources to be provisioned in support of the Subsystem's
dependencies. The exact location in the Subsystem hierarchy where the resources are installed is de-
termined by the provis ion-pol icy of the Subsystem or its parents.

Pre-Calculated Deployment Subsystem Service Specification Version 1.1

Page 604 OSGi Enterprise Release 7

The Provision-Resource header must result in a transitively complete deployment. For example, if
a resource added to Provision-Resource brings in additional unsatisfied requirements, further re-
sources must be added to satisfy these, until there are no unresolved requirements remaining.

Provision resource has one required matching attribute:

• deployed-version - The exact version of the resource to be deployed. Deployed version is a specif-
ic version, not a version range, hence the use of a new attribute name. There is no default value
for this attribute.

The following architected matching attributes as well as any arbitrary matching attributes can be
applied to each entry:

type - The type of the resource. It is recommended that a reverse domain name convention is used
unless those types and their processing is standardized by the OSGi Alliance (e.g. bundles). The de-
fault type is osgi .bundle . A Subsystems implementation may support additional types, but the fol-
lowing types must be supported:

• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

The list of the Provision-Resource entries is determined by resolving the Subsystem's requirements.
The way in which the Subsystem's requirements are resolved is dependent on the Subsystem's shar-
ing policy.

For a Scoped Subsystem the provision resources header must identify a set of resources necessary
to satisfy the requirements into the Subsystem that are not satisfied by the target deployment en-
vironment. These requirements may be for packages, services, or other types of requirements, and
are those identified in the deployment manifest using headers such as Import-Package and Subsys-
tem-ImportService.

For an Unscoped Subsystem any mandatory requirements that are not satisfied by capabilities pro-
vided by the target environment may be satisfied by other constituents or a resource added to the
Provision-Resource header. The resolution process for Unscoped Subsystems has no propensity to
resolve to capabilities provided by the Subsystem's constituents and so a resource listed in Provi-
sion-Resource may provide capabilities that are also provided by a constituent resource.

134.15.5 Import-Package
Scoped Subsystems describe the exact packages they import in their Deployment Manifests. They
do this using the bundle Import-Package header. Any packages that match the Import-Package state-
ment must be allowed into the Scoped Subsystem by its associated Region's sharing policy.

Unscoped Subsystems have a sharing policy that shares all packages and therefore their deploy-
ment manifests do not use this header to describe the sharing of individual packages. If this header
is present and the Subsystem is unscoped, then the runtime must fail the installation of the Subsys-
tem.

134.15.6 Export-Package
Scoped Subsystems describe the exact packages they export in their deployment manifests. They
do this using the bundle Export-Package header. Any packages that match the Export-Package state-
ment must be made available outside the Subsystem by its associated Region's sharing policy.

Unscoped Subsystems have a sharing policy that shares all packages and therefore their deploy-
ment manifests do not use this header to describe the sharing of individual packages. If this header

Subsystem Service Specification Version 1.1 Pre-Calculated Deployment

OSGi Enterprise Release 7 Page 605

is present and the Subsystem is unscoped, then the runtime must fail the installation of the Subsys-
tem.

134.15.7 Require-Bundle
Scoped Subsystems can have Require-Bundle requirements satisfied by bundles outside the Subsys-
tem. These bundle requirements are described using the bundle Require-Bundle header. Any bun-
dles that match the Require-Bundle statement must be allowed into the Scoped Subsystem by its
associated Region's sharing policy. If a bundle matches the Require-Bundle requirement then it be-
comes available as a candidate for wiring any Require-Bundle requirements inside the Subsystem.
However, any packages the matching bundle provides are not made available to satisfy Import-Pack-
age requirements by the Region's sharing policy. If the packages are also required then they must be
listed in the deployment manifest's Import-Package header.

Unscoped Subsystems have a sharing policy that shares all bundles and therefore their deployment
manifests do not use this header to describe the sharing of specific bundles. If this header is present
and the Subsystem is unscoped, then the runtime must fail the installation of the Subsystem.

134.15.8 Services
Scoped Subsystems can import and export services using the Subsystem-ImportService and Subsys-
tem-ExportService headers respectively. These two headers must conform to the following syntax:

Subsystem-ImportService ::= service(',' service)*
Subsystem-ExportService ::= service (',' service)*
service ::= qname (';' parameter)*

Both headers support the following directive:

• f i l ter - A filter expression that is used to match against the service properties of services regis-
tered using the specified qname of the service's object class. The f i l ter directive is optional. If no
f i l ter directive is defined then all services registered using the specified qname match the service
statement.

134.15.9 Subsystem-ImportService
Scoped Subsystems describe the services they import in their deployment manifests. They do this
using the Subsystem-ImportService header. Subsystem-ImportService header defines a list of OSGi
service filters that are matched against the services visible inside the Scoped Subsystem's parent Re-
gion. Each service visible in the Subsystem's parent Region that matches one or more Subsystem-Im-
portService statements must be allowed into the Scoped Subsystem by its associated Region's shar-
ing policy. The following example imports services registered under the com.acme.logging.Log in-
terface with a service property threshold=error .

Subsystem-ImportService: com.acme.logging.Log;filter:="(threshold=error)"

Unscoped Subsystems have a sharing policy that shares all services and therefore their deployment
manifests do not use this header to describe the sharing of specific services. If this header is present
and the Subsystem is unscoped, then the runtime must fail the installation of the Subsystem.

134.15.10 Subsystem-ExportService
Scoped Subsystems describe the services they export in their deployment manifests. They do this
using the Subsystem-ExportService header. The Subsystem-ExportService header defines a list of
OSGi service filters that are matched against the services visible inside the Scoped Subsystem's
Region. Each service visible in the Scoped Subsystem's Region that matches one or more Subsys-
tem-ExportService statements must be allowed by its associated Region's sharing policy into the

Subsystem Types Subsystem Service Specification Version 1.1

Page 606 OSGi Enterprise Release 7

Scoped Subsystem's parent Region. The following example exports services registered under the
com.acme.logging.Log interface with a service property threshold=error .

Subsystem-ExportService: com.acme.logging.Log;filter:="(threshold=error)"

Unscoped Subsystems have a sharing policy that shares all services and therefore their Deployment
Manifests do not use this header to describe the sharing of specific services. If this header is present
and the Subsystem is unscoped, then the runtime must fail the installation of the Subsystem.

134.16 Subsystem Types
Subsystem types simplify the configuration of sharing policies. The type of Subsystem is specified
using the Subsystem-Type header. Each type has its own default sharing policy, for example, to for-
bid the sharing of capabilities out, or to share all capabilities in. This specification defines three Sub-
system types:

• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

Other, non-standard, types are permitted. The specifics of each standard type are describe below.

134.16.1 Application
An application is a Scoped Subsystem with a sharing policy associated with what is often consid-
ered to be an application. An application does not share (export) any capabilities to other bundles
or Subsystems. It also does not explicitly import any capabilities. Any required capabilities that are
not satisfied by the application's constituents are automatically shared in (imported) from the par-
ent Subsystem.

A Subsystem is identified as an application by specifying a Subsystem type value of
osgi .subsystem.appl icat ion in the Subsystem manifest.

Subsystem-Type: osgi.subsystem.application

134.16.2 Application Deployment
Application Subsystems are not configured using additional requirement or capability headers,
such as Import-Package. Applications do not export any capabilities. If an application Subsystem
contains any capability exports then the Subsystem runtime should log an error and must fail.

Any imported capabilities are derived from the application Subsystem content. An application Sub-
system implicitly imports any capabilities required to satisfy requirements from the Subsystem con-
tents that are not satisfied by the capabilities of the Subsystem content.

Unsatisfied mandatory requirements result in a subsystem installation failure. Unsatisfied option-
al requirements do not. However, implementations must ensure any unsatisfied optional require-
ments are added to the sharing policy.

134.16.2.1 Package Imports

Application resolution is required to prefer packages provided by content bundles over those pro-
vided outside the application. For this reason, the application Subsystem sharing policy only im-
ports packages corresponding to Import-Package statements from the content bundles that are not
satisfied when resolving the application contents in isolation. This is equivalent to first resolving
the Subsystem-Content requirements to determine the Deployed-Content and then based on this set
of resources, determining which Import-Package requirements remain unsatisfied.

Subsystem Service Specification Version 1.1 Subsystem Types

OSGi Enterprise Release 7 Page 607

A deployment manifest for an application Subsystem would list these package imports using the
Import-Package header.

134.16.2.2 Service Imports

Application resolution is required to prefer services provided by content bundles over those pro-
vided outside the application. For this reason, the application Subsystem sharing policy only im-
ports services required by the Subsystem's content bundles that are not also provided by the content
bundles. This specification provides a means of declaratively identifying the services a bundle pro-
vides or requires using the Provide-Capabi l i ty and Require-Capabi l i ty headers with the osgi .service
namespace. See osgi.service Namespace on page 635

An example of a bundle providing the service and declaring it using the Provide-Capabi l i ty header
is as follows:

Provide-Capability: osgi.service;
 objectClass:List<String>="com.foo.MyService";
 uses:="com.foo"

Note that declaring a provided service in this manner only affects resolution. It does not affect ser-
vice visibility at runtime. In other words, a subsystem that imports service com.acme.Foo will see
all of the corresponding service registrations that its parent sees regardless of whether or not the
provider declared this service in the Provide-Capabi l i ty header.

An example of a bundle requiring a service and declaring the requirement using the Require-Capa-
bi l i ty header is as follows:

Require-Capability: osgi.service;
 filter:="(objectClass=com.foo.MyService)";
 effective:="active"

These headers can be hand-written (e.g., to declare programmatic use of an OSGi service) or generat-
ed by a tool (e.g., BND) based on a declarative component model configuration (e.g., Declarative Ser-
vices or Blueprint). A Subsystems implementation must assume these headers, if present, declare all
of the service dependencies. Implementations must therefore not search the bundle for additional
dependencies from other sources.

A deployment manifest for an application Subsystem would list these service imports using the
Subsystem-ImportService header.

134.16.2.3 Bundle Requirements

Application resolution is required to prefer bundle capabilities provided by content bundles over
those provided outside the application. For this reason, the application Subsystem sharing policy
only requires bundle capabilities corresponding to Require-Bundle statements from the content
bundles that are not satisfied when resolving the application contents in isolation. This is equiva-
lent to first resolving the Subsystem-Content requirements to determine the Deployed-Content and
then based on this set of resources, determining which Require-Bundle requirements remain unsat-
isfied.

A Deployment Manifest for an application Subsystem would list these bundle requirements using
the Require-Bundle header.

134.16.2.4 Generic Requirements

Application resolution is required to prefer generic capabilities provided by content bundles over
those provided outside the application. For this reason, the application Subsystem sharing policy
only generic requirements corresponding to Require-Capability statements from the content bun-
dles that are not satisfied by Provide-Capability statements of the content bundles when resolving
the application contents in isolation. This is equivalent to first resolving the Subsystem-Content re-

Subsystem Types Subsystem Service Specification Version 1.1

Page 608 OSGi Enterprise Release 7

quirements to determine the Deployed-Content and then based on this set of resources, determining
which Require-Capability statements remain unsatisfied.

An deployment manifest for an application Subsystem would list these generic requirements using
the Require-Capability header.

134.16.2.5 Dependencies

Application Subsystems' implicit requirements are determined as described in the Application De-
ployment section in Determining Dependencies on page 582. Any mandatory requirements from
constituents that are not satisfied by capabilities provided by the target environment or other con-
stituents must be satisfied by additional dependencies. The Subsystem runtime is responsible for
provisioning these based on the Subsystem's provision policy or those of its scoped parents. If the
application Subsystem has an associated deployment manifest, then these resources are described in
the Provision-Resource header.

134.16.3 Composite
A composite is a Scoped Subsystem with a sharing policy that by default does not share anything
with its parent and therefore all sharing is fully explicit. Capabilities, such as packages and services,
may be explicitly imported into or exported out of the composite.

A Subsystem is identified as an composite by specifying a Subsystem type value of
osgi .subsystem.composite in the Subsystem manifest.

Subsystem-Type: osgi.subsystem.composite

134.16.3.1 Subsystem Content

The Subsystem-Content header allows version ranges for content resources. For compos-
ite Subsystems, this value must be a fixed version range (e.g. [1.0, 1 .0]) for resources of type
osgi .bundle , osgi .f ragment , osgi .subsystem.appl icat ion , osgi .subsystem.composite , and
osgi .subsystem.feature . This is due to the fact that there is an inextricable link between the ver-
sions on the explicit import and export statements made on a composite and the chosen versions of
the content bundles. Allowing variability in the content versions for these types of resources risks
introducing incompatibilities with sharing policy for the composite. If a composite Subsystem does
not use strict version ranges then the composite Subsystem must fail to install.

134.16.3.2 Package Imports

A composite Subsystem explicitly states the packages it imports using the Import-Package head-
er. If the composite includes a deployment manifest then the Import-Package header is used to de-
scribe these and they must be identical (logically, not syntactically) to the Import-Package headers
in the composite's Subsystem manifest. If the imports are not the same then the Subsystem runtime
should log an error and must fail the installation.

134.16.3.3 Package Exports

A composite Subsystem explicitly states the packages it exports using the Export-Package head-
er. If the composite includes a deployment manifest then the Export-Package header is used to de-
scribe these and they must be identical (logically, not syntactically) to the Export-Package headers
in the composite's Subsystem manifest. If the exports are not the same then the Subsystem runtime
should log an error and must fail the installation.

134.16.3.4 Service Imports

A composite Subsystem explicitly states the services it imports using the Subsystem-ImportService
header (see Subsystem-ImportService on page 605). For example:

Subsystem-ImportService: com.acme.logging.Log

Subsystem Service Specification Version 1.1 Subsystem Types

OSGi Enterprise Release 7 Page 609

If the composite includes a deployment manifest then the Subsystem-ImportService header is
used to describe these and they must be identical (logically, not syntactically) to the Subsystem-Im-
portService headers in the composite's Subsystem manifest. If the imports are not the same then the
Subsystem runtime should log an error and must fail the installation.

134.16.3.5 Service Exports

A composite Subsystem explicitly states the services it exports using the Subsystem-ExportService
header (see Subsystem-ExportService on page 605). For example:

Subsystem-ServiceExport: com.acme.logging.Log

If the composite includes a deployment manifest then the Subsystem-ExportService header is
used to describe these and they must be identical (logically, not syntactically) to the Subsystem-Ex-
portService headers in the composite's Subsystem manifest. If the exports are not the same then the
Subsystem runtime should log an error and must fail the installation.

134.16.3.6 Bundle Requirements

A composite Subsystem explicitly states the bundles it requires using the Require-Bundle header.

If the composite includes a deployment manifest then the Require-Bundle header is used to describe
these and the requirements must be identical (logically, not syntactically) to the Require-Bundle re-
quirements in the composite's Subsystem manifest. If the requirements are not the same then the
Subsystem runtime should log an error and must fail the installation.

134.16.3.7 Generic Requirements

A composite Subsystem explicitly states the generic capabilities it requires using the Require-Capa-
bility header.

If the composite includes a deployment manifest then the Require-Capability header is used to de-
scribe these and they must be identical (logically, not syntactically) to the Require-Capability head-
ers in the composite's Subsystem manifest. If the capability requirements are not the same then the
Subsystem runtime should log an error and must fail the installation.

134.16.3.8 Generic Capabilities

A composite Subsystem explicitly states the generic capabilities it provides using the Provide-Capa-
bility header.

If the composite includes a deployment manifest then the Provide-Capability header is used to de-
scribe these and they must be identical (logically, not syntactically) to the Provide-Capability head-
ers in the composite's Subsystem manifest. If the capabilities are not the same then the Subsystem
runtime should log an error and must fail the installation.

134.16.3.9 Dependencies

A composite Subsystem's explicit requirements are stated in the Subsystem manifest. Any manda-
tory requirements that are not satisfied by capabilities provided by the target environment must be
satisfied by additional dependencies. The Subsystem runtime is responsible for provisioning these
based on the Subsystem's provision policy or the provision policy of its scoped parents. If the com-
posite Subsystem has an associated deployment manifest, then these resources are described in the
Provision-Resource header.

134.16.4 Feature
A feature is an Unscoped Subsystem and therefore provides no isolation of its own. A feature does
however always exist in the context of one and only one Region which can restrict the capabilities a
feature can see and the extent to which a feature's capabilities are shared.

Weaving Hooks Subsystem Service Specification Version 1.1

Page 610 OSGi Enterprise Release 7

A Subsystem is identified as a feature by specifying a Subsystem type value of
osgi .subsystem.feature in the Subsystem manifest.

Subsystem-Type: osgi.subsystem.feature

134.16.4.1 Explicit Requirements and Capabilities

A feature Subsystem implicitly imports and exports all requirements and capabilities. If the fea-
ture Subsystem include any headers designed to modify the sharing policy of a Subsystem, such as
Import-Package or Subsystem-ImportService, then the Subsystem runtime should log an error and
must fail the installation of the Subsystem.

134.16.4.2 Dependencies

Feature Subsystems implicitly import all capabilities. A Subsystem runtime is responsible for provi-
sioning any dependencies necessary for the Subsystem's constituents to resolve. The calculation of
the dependencies can also take into account capabilities provided by the target runtime. The depen-
dencies can include resources that provide capabilities equivalent to those provided by one or more
of the constituent resources where the dependency's capability is a considered a better match in the
context of some resolution. The Subsystem runtime is responsible for provisioning the dependen-
cies based on the Subsystem's provision policy or the provision policy of its scoped parents. If the
feature Subsystem has an associated deployment manifest, then these dependencies are described in
the Provision-Resource header.

134.17 Weaving Hooks
Subsystems implementations must ensure that dynamic package imports added by weaving hooks
are available to subsystems whose classes have been woven by updating the sharing policies.

Dynamic package imports added by weaving hooks are observed by registering a WovenClassListen-
er service and receiving notifications via the WovenClassListener.modified(WovenClass) method.
The sharing policy must be updated while the woven class is in the TRANSFORMED state so that it
takes effect before the bundle wiring is updated during the transition to DEFINED ; otherwise, the
class would fail to load.

The bundle containing the woven class can be obtained by calling the
WovenClass.getBundleWir ing() .getBundle() method. A bundle might be a constituent of multiple
subsystems, but never more than one scoped subsystem. The rest are features, which have no shar-
ing policies to update. It's possible the bundle will not be a constituent of a scoped subsystem. The
scoped subsystem, if any, containing the bundle as a constituent is retrieved.

It's possible for a class load request to occur on a bundle in an unresolved subsystem because the
framework is free to resolve bundles whenever it desires. A resolved bundle can potentially receive
a class load request. For example, a BundleEventListener registered with the system bundle context
could receive the RESOLVED event and, for whatever reason, load a class. Also, a resolved bundle in
an unresolved feature might get wired to another bundle. If this is the case, the subsystem must be
resolved in order to guarantee the dynamic imports will not effect the resolution and, therefore, po-
tentially create a wiring inconsistent with the deployment manifest. Just as the framework is free
to resolve bundles at anytime and for whatever reason, Subsystems implementations are free to re-
solve subsystems.

The sharing policy is only updated if the dynamic import cannot be completely satisfied from with-
in the subsystem. Note that all dynamic imports with a wildcard must always be added to the shar-
ing policy.

Subsystem Service Specification Version 1.1 Stopping and Uninstalling Subsystems Implementation

OSGi Enterprise Release 7 Page 611

134.18 Stopping and Uninstalling Subsystems
Implementation
When the Subsystems implementation is stopped all of the installed Subsystems must be persis-
tently stored and present when the Subsystems implementation becomes active again. This in-
cludes any bundles that got installed as part of a Subsystem installation. The Subsystems implemen-
tation is not required to do any additional cleanup when the Subsystems implementation is stopped
or uninstalled. All bundles that got installed as a result of installing a Subsystem may still be in-
stalled after stopping or uninstalling the Subsystems implementation bundle. If it is important to
clean up the bundles associated with a Subsystem installation then the Subsystem should be unin-
stalled before uninstalling the Subsystems implementation.

134.19 Capabilities
Implementations of the Subsystem Service specification must provide the following capabilities.

• A capability in the osgi . implementation namespace declaring the implemented specifi-
cation to be osgi .subsystem . This capability must also declare a uses constraint for the
org.osgi .service.subsystem package. For example:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.subsystem";
 version:Version="1.1";
 uses:="org.osgi.service.subsystem"

This capability must follow the rules defined for the osgi.implementation Namespace on page
635.

• A capability in the osgi .service namespace representing the Subsystem service. This capability
must also declare a uses constraint for the org.osgi .service.subsystem package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.subsystem.Subsystem";
 uses:="org.osgi.service.subsystem"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

134.20 Security

134.20.1 Subsystem Permission
The Subsystem Permission is a permission used to grant the right to manage Subsystems with the
option to restrict this right to a subset of Subsystems, called targets. For example, an operator can
give a bundle the right to only manage Subsystems with a symbolic-name prefix of com.acme. :

...SubsystemPermission("(name=com.acme.*)",

. . .)

The actions of Subsystem Permission are fine-grained. They allow a deployer to assign only the per-
missions that are necessary for a bundle. For example, a bundle may be granted only the permission
to start and stop all Subsystems:

Security Subsystem Service Specification Version 1.1

Page 612 OSGi Enterprise Release 7

...SubsystemPermission["*", EXECUTE]

Code that needs to check Subsystem Permission must always use the constructor that takes a Sub-
system as a parameter: SubsystemPermission(Subsystem, Str ing) with a single action.

For example, the implementation of Subsystem.start method must check that the caller has access
to execute the Subsystem:

public class SubsystemImpl implements Subsystem{
 public void start() {
 securityManager.checkPermission(new SubsystemPermission(this,"execute"));
 }
}

The Subsystem Permission takes a Filter as its name argument. Filter based permissions are de-
scribed in [1] Filter Based Permissions. Subsystem Archives are not signed and therefore the signer key
is not supported. The keys have the following meaning for the Subsystem Permission:

• id - The Subsystem ID of a Subsystem. For example (id=23)
• locat ion - The location of a Subsystem. For example (locat ion=https://www.acme.com/down-

load/*)
• name - The symbolic name of a Subsystem. For example (name=com.acme.*)

The name parameter of the permission can also be a single wildcard character ('* ' \u002a). In that
case all Subsystems must match.

134.20.2 Actions
The action parameter of Subsystem Permission will specify the subset of privileged Subsystem man-
agement operations that are allowed. The actions that are architected are listed below. Future ver-
sions of the specification can add additional actions. The given set should therefore not be assumed
to be a closed set.

Table 134.3 Actions

Action Used in
CONTEXT Subsystem.getBundleContext
METADATA Subsystem.getSubsystemHeaders

Subsystem.getLocation
LIFECYCLE Subsystem.instal l

Subsystem.uninstal l
EXECUTE Subsystem.start

Subsystem.stop

134.20.3 Required Permissions
A Subsystems implementation must check the caller for the appropriate Subsystem Permission
before initiating a Subsystem management operation (e.g. install, start, stop, uninstall). Once the
Subsystem Permission is checked against the caller the Subsystems implementation will proceed
with the actual Subsystem operation. This operation will require a number of other permissions to
complete. For example, the Admin Permission will be needed to install, start, stop, and uninstall re-
sources of type osgi.bundle for a Subsystem. The Subsystems implementation must isolate the caller
from such permission checks by use of a proper doPriv i leged block.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Enterprise Release 7 Page 613

134.21 org.osgi.service.subsystem

Subsystem Service Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.subsystem; version="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.subsystem; version="[1.1 ,1 .2)"

134.21.1 Summary

• Subsystem - A subsystem is a collection of resources constituting a logical, possibly isolated,
unit of functionality.

• Subsystem.State - An enumeration of the possible states of a subsystem.
• SubsystemConstants - Defines the constants used by Subsystem service property, manifest

header, attribute and directive keys.
• SubsystemException - A Subsystem exception used to indicate a problem.
• SubsystemPermission - A bundle's authority to perform specific privileged administrative oper-

ations on or to get sensitive information about a subsystem.

134.21.2 public interface Subsystem
A subsystem is a collection of resources constituting a logical, possibly isolated, unit of functionali-
ty.

A subsystem may be scoped or unscoped. Scoped subsystems are isolated by implicit or explicit shar-
ing policies. Unscoped subsystems are not isolated and, therefore, have no sharing policy. There are
three standard types of subsystems.

• Application - An implicitly scoped subsystem. Nothing is exported, and imports are computed
based on any unsatisfied content requirements.

• Composite - An explicitly scoped subsystem. The sharing policy is defined by metadata within
the subsystem archive.

• Feature - An unscoped subsystem.

Conceptually, a subsystem may be thought of as existing in an isolated region along with zero or
more other subsystems. Each region has one and only one scoped subsystem, which dictates the
sharing policy. The region may, however, have many unscoped subsystems. It is, therefore, possible
to have shared constituents across multiple subsystems within a region. Associated with each re-
gion is a bundle whose context may be retrieved from any subsystem within that region. This con-
text may be used to monitor activity occurring within the region.

A subsystem may have children and, unless it's the root subsystem, must have at least one parent.
Subsystems become children of the subsystem in which they are installed. Unscoped subsystems
have more than one parent if they are installed in more than one subsystem within the same re-
gion. The subsystem graph may be thought of as an acyclic digraph [http://en.wikipedia.org/wi-
ki/Directed_acyclic_graph] with one and only one source vertex, which is the root subsystem. The
edges have the child as the head and parent as the tail.

A subsystem has several identifiers.

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 614 OSGi Enterprise Release 7

• Location - An identifier specified by the client as part of installation. It is guaranteed to be unique
within the same framework.

• ID - An identifier generated by the implementation as part of installation. It is guaranteed to be
unique within the same framework.

• Symbolic Name/Version - The combination of symbolic name and version is guaranteed to be
unique within the same region. Although type is not formally part of the identity, two subsys-
tems with the same symbolic names and versions but different types are not considered to be
equal.

A subsystem has a well-defined life cycle. Which stage a subsystem is in may be obtained from the
subsystem's state and is dependent on which life cycle operation is currently active or was last in-
voked.

A subsystem archive is a ZIP file having an .esa extension and containing metadata describing the
subsystem. The form of the metadata may be a subsystem or deployment manifest, as well as any
content resource files. The manifests are optional and will be computed if not present. The subsys-
tem manifest headers may be retrieved in raw or localized forms. There are five standard types of re-
sources that may be included in a subsystem.

• Bundle - A bundle that is not a fragment.
• Fragment - A fragment bundle.
• Application Subsystem - An application subsystem.
• Composite Subsystem - A composite subsystem.
• Feature Subsystem - A feature subsystem.

Resources contained by a subsystem are called constituents. There are several ways a resource may
become a constituent of a subsystem:

• A resource is listed as part of the subsystem's content.
• A subsystem resource is a child of the subsystem.
• The subsystem has a provision policy of accept dependencies.
• A bundle resource is installed using the region bundle context.
• A bundle resource is installed using the bundle context of another resource contained by the

subsystem.

In addition to invoking one of the install methods, a subsystem instance may be obtained through
the service registry. Each installed subsystem has a corresponding service registration. A subsystem
service has the following properties.

• ID - The ID of the subsystem.
• Symbolic Name - The symbolic name of the subsystem.
• Version - The version of the subsystem.
• Type - The type of the subsystem.
• State - The state of the subsystem.

Because a subsystem must be used to install other subsystems, a root subsystem is provided as a
starting point. The root subsystem may only be obtained as a service and has the following charac-
teristics.

• The ID is 0 .
• The symbolic name is org.osgi.service.subsystem.root.
• The version matches this specification's version.
• It has no parents.
• All existing bundles, including the system and subsystem implementation bundles, are con-

stituents.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Enterprise Release 7 Page 615

• The type is osgi.subsystem.application with no imports.
• The provision policy is acceptDependencies.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

134.21.2.1 public BundleContext getBundleContext()

□ Returns the bundle context of the region within which this subsystem resides.

The bundle context offers the same perspective of any resource contained by a subsystem within
the region. It may be used, for example, to monitor events internal to the region as well as external
events visible to the region. All subsystems within the same region have the same bundle context. If
this subsystem is in a state where the bundle context would be invalid, nul l is returned.

Returns The bundle context of the region within which this subsystem resides or nul l if this subsystem's
state is in INSTALL_FAILED, UNINSTALLED.

Throws SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,CONTEXT], and the runtime supports permissions.

134.21.2.2 public Collection<Subsystem> getChildren()

□ Returns the child subsystems of this subsystem.

Returns The child subsystems of this subsystem. The returned collection is an unmodifiable snapshot of all
subsystems that are installed in this subsystem. The collection will be empty if no subsystems are
installed in this subsystem.

Throws I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLED.

134.21.2.3 public Collection<Resource> getConstituents()

□ Returns the constituent resources of this subsystem.

Returns The constituent resources of this subsystem. The returned collection is an unmodifiable snapshot
of the constituent resources of this subsystem. If this subsystem has no constituents, the collection
will be empty.

Throws I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLED.

134.21.2.4 public Map<String, String> getDeploymentHeaders()

□ Returns the headers for this subsystem's deployment manifest.

Each key in the map is a header name and the value of the key is the corresponding header value. Be-
cause header names are case-insensitive, the methods of the map must treat the keys in a case-insen-
sitive manner. If the header name is not found, nul l is returned. Both original and derived headers
will be included in the map.

This method must continue to return the headers while this subsystem is in the INSTALL_FAILED
or UNINSTALLED states.

Returns The headers for this subsystem's deployment manifest. The returned map is unmodifiable.

Throws SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,METADATA], and the runtime supports permissions.

Since 1.1

134.21.2.5 public String getLocation()

□ Returns the location identifier of this subsystem.

The location identifier is the locat ion that was passed to the install method of the parent subsystem.
It is unique within the framework.

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 616 OSGi Enterprise Release 7

This method must continue to return this subsystem's headers while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The location identifier of this subsystem.

Throws SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,METADATA], and the runtime supports permissions.

134.21.2.6 public Collection<Subsystem> getParents()

□ Returns the parent subsystems of this subsystem.

Returns The parent subsystems of this subsystem. The returned collection is an unmodifiable snapshot of
all subsystems in which this subsystem is installed. The collection will be empty for the root subsys-
tem; otherwise, it must contain at least one parent. Scoped subsystems always have only one parent.
Unscoped subsystems may have multiple parents.

Throws I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLED.

134.21.2.7 public Subsystem.State getState()

□ Returns the current state of this subsystem.

This method must continue to return this subsystem's state while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The current state of this subsystem.

134.21.2.8 public Map<String, String> getSubsystemHeaders(Locale locale)

locale The locale for which translations are desired. The header values are translated according to the spec-
ified locale. If the specified locale is nul l or not supported, the raw values are returned. If the transla-
tion for a particular header is not found, the raw value is returned.

□ Returns the headers for this subsystem's subsystem manifest.

Each key in the map is a header name and the value of the key is the corresponding header value. Be-
cause header names are case-insensitive, the methods of the map must treat the keys in a case-insen-
sitive manner. If the header name is not found, nul l is returned. Both original and derived headers
will be included in the map.

This method must continue to return the headers while this subsystem is in the INSTALL_FAILED
or UNINSTALLED states.

Returns The headers for this subsystem's subsystem manifest. The returned map is unmodifiable.

Throws SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,METADATA], and the runtime supports permissions.

134.21.2.9 public long getSubsystemId()

□ Returns the identifier of this subsystem.

The identifier is a monotonically increasing, non-negative integer automatically generated at instal-
lation time and guaranteed to be unique within the framework. The identifier of the root subsystem
is zero.

This method must continue to return this subsystem's identifier while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The identifier of this subsystem.

134.21.2.10 public String getSymbolicName()

□ Returns the symbolic name of this subsystem.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Enterprise Release 7 Page 617

The subsystem symbolic name conforms to the same grammar rules as the bundle symbolic name
and is derived from one of the following, in order.

• The value of the Subsystem-SymbolicName header, if specified.
• The subsystem URI if passed as the locat ion along with the content to the install method.
• Optionally generated in an implementation specific way.

The combination of subsystem symbolic name and version is unique within a region. The symbolic
name of the root subsystem is org.osgi.service.subsystem.root.

This method must continue to return this subsystem's symbolic name while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The symbolic name of this subsystem.

134.21.2.11 public String getType()

□ Returns the type of this subsystem.

This method must continue to return this subsystem's type while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The type of this subsystem.

134.21.2.12 public Version getVersion()

□ Returns the version of this subsystem.

The subsystem version conforms to the same grammar rules as the bundle version and is derived
from one of the following, in order.

• The value of the Subsystem-Version header, if specified.
• The subsystem URI if passed as the locat ion along with the content to the install method.
• Defaults to 0.0.0 .

The combination of subsystem symbolic name and version is unique within a region. The version of
the root subsystem matches this specification's version.

This method must continue to return this subsystem's version while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The version of this subsystem.

134.21.2.13 public Subsystem install(String location)

location The location identifier of the subsystem to install.

□ Installs a subsystem from the specified location identifier.

This method performs the same function as calling install(String, InputStream) with the specified
location identifier and nul l as the content.

Returns The installed subsystem.

Throws I l legalStateException– If this subsystem's state is in INSTALLING, INSTALL_FAILED, UNINSTAL-
LING, UNINSTALLED.

SubsystemException– If the installation failed.

SecurityException– If the caller does not have the appropriate SubsystemPermission[installed
subsystem,LIFECYCLE], and the runtime supports permissions.

See Also install(String, InputStream)

134.21.2.14 public Subsystem install(String location, InputStream content)

location The location identifier of the subsystem to be installed.

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 618 OSGi Enterprise Release 7

content The input stream from which this subsystem will be read or nul l to indicate the input stream must
be created from the specified location identifier. The input stream will always be closed when this
method completes, even if an exception is thrown.

□ Installs a subsystem from the specified content.

The specified location will be used as an identifier of the subsystem. Every installed subsystem is
uniquely identified by its location, which is typically in the form of a URI. If the specified location
conforms to the subsystem-uri grammar, the required symbolic name and optional version infor-
mation will be used as default values.

If the specified content is nul l , a new input stream must be created from which to read the subsys-
tem by interpreting, in an implementation dependent manner, the specified location.

A subsystem installation must be persistent. That is, an installed subsystem must remain installed
across Framework and VM restarts.

All references to changing the state of this subsystem include both changing the state of the subsys-
tem object as well as the state property of the subsystem service registration.

The following steps are required to install a subsystem.

1. If an installed subsystem with the specified location identifier already exists, return the installed
subsystem.

2. Read the specified content in order to determine the symbolic name, version, and type of the in-
stalling subsystem. If an error occurs while reading the content, an installation failure results.

3. If an installed subsystem with the same symbolic name and version already exists within this
subsystem's region, complete the installation with one of the following.
• If the installing and installed subsystems' types are not equal, an installation failure results.
• If the installing and installed subsystems' types are equal, and the installed subsystem is al-

ready a child of this subsystem, return the installed subsystem.
• If the installing and installed subsystems' types are equal, and the installed subsystem is not

already a child of this subsystem, add the installed subsystem as a child of this subsystem, in-
crement the installed subsystem's reference count by one, and return the installed subsystem.

4. Create a new subsystem based on the specified location and content.
5. If the subsystem is scoped, install and start a new region context bundle.
6. Change the state to INSTALLING and register a new subsystem service.
7. Discover the subsystem's content resources. If any mandatory resource is missing, an installa-

tion failure results.
8. Discover the dependencies required by the content resources. If any mandatory dependency is

missing, an installation failure results.
9. Using a framework ResolverHook , disable runtime resolution for the resources.
10. For each resource, increment the reference count by one. If the reference count is one, install the

resource. If an error occurs while installing a resource, an install failure results with that error as
the cause.

11. If the subsystem is scoped, enable the import sharing policy.
12. Enable runtime resolution for the resources.
13. Change the state of the subsystem to INSTALLED.
14. Return the new subsystem.

Implementations should be sensitive to the potential for long running operations and periodically
check the current thread for interruption. An interrupted thread should result in a SubsystemExcep-
tion with an InterruptedException as the cause and be treated as an installation failure.

All installation failure flows include the following, in order.

1. Change the state to INSTALL_FAILED.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Enterprise Release 7 Page 619

2. Change the state to UNINSTALLING.
3. All content and dependencies which may have been installed by the installing process must be

uninstalled.
4. Change the state to UNINSTALLED.
5. Unregister the subsystem service.
6. If the subsystem is a scoped subsystem then, uninstall the region context bundle.
7. Throw a SubsystemException with the cause of the installation failure.

Returns The installed subsystem.

Throws I l legalStateException– If this subsystem's state is in INSTALLING, INSTALL_FAILED, UNINSTAL-
LING, UNINSTALLED.

SubsystemException– If the installation failed.

SecurityException– If the caller does not have the appropriate SubsystemPermission[installed
subsystem,LIFECYCLE], and the runtime supports permissions.

134.21.2.15 public Subsystem install(String location, InputStream content, InputStream deploymentManifest)

location The location identifier of the subsystem to be installed.

content The input stream from which this subsystem will be read or nul l to indicate the input stream must
be created from the specified location identifier. The input stream will always be closed when this
method completes, even if an exception is thrown.

deploymentMani-
fest

The deployment manifest to use in lieu of the one in the archive, if any, or a computed one.

□ Installs a subsystem from the specified content according to the specified deployment manifest.

This method installs a subsystem using the provided deployment manifest instead of the one in the
archive, if any, or a computed one. If the deployment manifest is nul l , the behavior is exactly the
same as in the install(String, InputStream) method. Implementations must support deployment
manifest input streams in the format described by section 134.2 of the Subsystem Service Specifica-
tion. If the deployment manifest does not conform to the subsystem manifest (see 134.15.2), the in-
stallation fails.

Returns The installed subsystem.

Throws I l legalStateException– If this subsystem's state is in INSTALLING, INSTALL_FAILED, UNINSTAL-
LING, UNINSTALLED.

SubsystemException– If the installation failed.

SecurityException– If the caller does not have the appropriate SubsystemPermission[installed
subsystem,LIFECYCLE], and the runtime supports permissions.

Since 1.1

134.21.2.16 public void start()

□ Starts this subsystem.

The following table shows which actions are associated with each state. An action of Wait means
this method will block until a state transition occurs, upon which the new state will be evaluated
in order to determine how to proceed. If a state transition does not occur in a reasonable time while
waiting then no action is taken and a SubsystemException is thrown to indicate the subsystem was
unable to be started. An action of Return means this method returns immediately without taking
any other action.

State Action
INSTALLING Wait

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 620 OSGi Enterprise Release 7

INSTALLED Resolve , Start
INSTALL_FAILED I l legalStateException
RESOLVING Wait
RESOLVED Start
STARTING Wait
ACTIVE Return
STOPPING Wait
UNINSTALLING I l legalStateException
UNINSTALLED I l legalStateException

All references to changing the state of this subsystem include both changing the state of the subsys-
tem object as well as the state property of the subsystem service registration.

A subsystem must be persistently started. That is, a started subsystem must be restarted across
Framework and VM restarts, even if a start failure occurs.

The following steps are required to start this subsystem.

1. Set the subsystem autostart setting to started.
2. If this subsystem is in the RESOLVED state, proceed to step 7.
3. Change the state to RESOLVING.
4. Resolve the content resources. A resolution failure results in a start failure with a state of INS-

TALLED.
5. Change the state to RESOLVED.
6. If this subsystem is scoped, enable the export sharing policy.
7. Change the state to STARTING.
8. For each eligible resource, increment the active use count by one. If the active use count is one,

start the resource. All dependencies must be started before any content resource, and content re-
sources must be started according to the specified start order. If an error occurs while starting a
resource, a start failure results with that error as the cause.

9. Change the state to ACTIVE.

Implementations should be sensitive to the potential for long running operations and periodically
check the current thread for interruption. An interrupted thread should be treated as a start failure
with an InterruptedException as the cause.

All start failure flows include the following, in order.

1. If the subsystem state is STARTING then change the state to STOPPING and stop all resources
that were started as part of this operation.

2. Change the state to either INSTALLED or RESOLVED.
3. Throw a SubsystemException with the specified cause.

Throws SubsystemException– If this subsystem fails to start.

I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLING, or UNINS-
TALLED, or if the state of at least one of this subsystem's parents is not in STARTING, ACTIVE.

SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,EXECUTE], and the runtime supports permissions.

134.21.2.17 public void stop()

□ Stops this subsystem.

The following table shows which actions are associated with each state. An action of Wait means
this method will block until a state transition occurs, upon which the new state will be evaluated

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Enterprise Release 7 Page 621

in order to determine how to proceed. If a state transition does not occur in a reasonable time while
waiting then no action is taken and a SubsystemException is thrown to indicate the subsystem was
unable to be stopped. An action of Return means this method returns immediately without taking
any other action.

State Action
INSTALLING Wait
INSTALLED Return
INSTALL_FAILED I l legalStateException
RESOLVING Wait
RESOLVED Return
STARTING Wait
ACTIVE Stop
STOPPING Wait
UNINSTALLING I l legalStateException
UNINSTALLED I l legalStateException

A subsystem must be persistently stopped. That is, a stopped subsystem must remain stopped across
Framework and VM restarts.

All references to changing the state of this subsystem include both changing the state of the subsys-
tem object as well as the state property of the subsystem service registration.

The following steps are required to stop this subsystem.

1. Set the subsystem autostart setting to stopped.
2. Change the state to STOPPING.
3. For each eligible resource, decrement the active use count by one. If the active use count is zero,

stop the resource. All content resources must be stopped before any dependencies, and content
resources must be stopped in reverse start order.

4. Change the state to RESOLVED.

With regard to error handling, once this subsystem has transitioned to the STOPPING state, every
part of each step above must be attempted. Errors subsequent to the first should be logged. Once
the stop process has completed, a SubsystemException must be thrown with the initial error as the
specified cause.

Implementations should be sensitive to the potential for long running operations and periodically
check the current thread for interruption, in which case a SubsystemException with an Interrupt-
edException as the cause should be thrown. If an interruption occurs while waiting, this method
should terminate immediately. Once the transition to the STOPPING state has occurred, however,
this method must not terminate due to an interruption until the stop process has completed.

Throws SubsystemException– If this subsystem fails to stop cleanly.

I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLING, or UNINS-
TALLED.

SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,EXECUTE], and the runtime supports permissions.

134.21.2.18 public void uninstall()

□ Uninstalls this subsystem.

The following table shows which actions are associated with each state. An action of Wait means
this method will block until a state transition occurs, upon which the new state will be evaluated
in order to determine how to proceed. If a state transition does not occur in a reasonable time while

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 622 OSGi Enterprise Release 7

waiting then no action is taken and a SubsystemException is thrown to indicate the subsystem was
unable to be uninstalled. An action of Return means this method returns immediately without tak-
ing any other action.

State Action
INSTALLING Wait
INSTALLED Uninstal l
INSTALL_FAILED Wait
RESOLVING Wait
RESOLVED Uninstal l
STARTING Wait
ACTIVE Stop , Uninstal l
STOPPING Wait
UNINSTALLING Wait
UNINSTALLED Return

All references to changing the state of this subsystem include both changing the state of the subsys-
tem object as well as the state property of the subsystem service registration.

The following steps are required to uninstall this subsystem after being stopped if necessary.

1. Change the state to INSTALLED.
2. Change the state to UNINSTALLING.
3. For each referenced resource, decrement the reference count by one. If the reference count is ze-

ro, uninstall the resource. All content resources must be uninstalled before any dependencies.
4. Change the state to UNINSTALLED.
5. Unregister the subsystem service.
6. If the subsystem is scoped, uninstall the region context bundle.

With regard to error handling, once this subsystem has transitioned to the UNINSTALLING state,
every part of each step above must be attempted. Errors subsequent to the first should be logged.
Once the uninstall process has completed, a SubsystemException must be thrown with the speci-
fied cause.

Implementations should be sensitive to the potential for long running operations and periodically
check the current thread for interruption, in which case a SubsystemException with an Interrupt-
edException as the cause should be thrown. If an interruption occurs while waiting, this method
should terminate immediately. Once the transition to the UNINSTALLING state has occurred, how-
ever, this method must not terminate due to an interruption until the uninstall process has com-
pleted.

Throws SubsystemException– If this subsystem fails to uninstall cleanly.

SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,LIFECYCLE], and the runtime supports permissions.

134.21.3 enum Subsystem.State
An enumeration of the possible states of a subsystem.

These states are a reflection of what constituent resources are permitted to do and not an aggrega-
tion of constituent resource states.

134.21.3.1 INSTALLING

The subsystem is in the process of installing.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Enterprise Release 7 Page 623

A subsystem is in the INSTALLING state when the install method of its parent is active, and attempts
are being made to install its content resources. If the install method completes without exception,
then the subsystem has successfully installed and must move to the INSTALLED state. Otherwise,
the subsystem has failed to install and must move to the INSTALL_FAILED state.

134.21.3.2 INSTALLED

The subsystem is installed but not yet resolved.

A subsystem is in the INSTALLED state when it has been installed in a parent subsystem but is not or
cannot be resolved. This state is visible if the dependencies of the subsystem's content resources can-
not be resolved.

134.21.3.3 INSTALL_FAILED

The subsystem failed to install.

A subsystem is in the INSTALL_FAILED state when an unrecoverable error occurred during installa-
tion. The subsystem is in an unusable state but references to the subsystem object may still be avail-
able and used for introspection.

134.21.3.4 RESOLVING

The subsystem is in the process of resolving.

A subsystem is in the RESOLVING state when attempts are being made to resolve its content re-
sources. If the resolve process completes without exception, then the subsystem has successfully re-
solved and must move to the RESOLVED state. Otherwise, the subsystem has failed to resolve and
must move to the INSTALLED state.

134.21.3.5 RESOLVED

The subsystem is resolved and able to be started.

A subsystem is in the RESOLVED state when all of its content resources are resolved. Note that the
subsystem is not active yet.

134.21.3.6 STARTING

The subsystem is in the process of starting.

A subsystem is in the STARTING state when its start method is active, and attempts are being made
to start its content and dependencies. If the start method completes without exception, then the
subsystem has successfully started and must move to the ACTIVE state. Otherwise, the subsystem
has failed to start and must move to the RESOLVED state.

134.21.3.7 ACTIVE

The subsystem is now running.

A subsystem is in the ACTIVE state when its content and dependencies have been successfully start-
ed.

134.21.3.8 STOPPING

The subsystem is in the process of stopping.

A subsystem is in the STOPPING state when its stop method is active, and attempts are being made
to stop its content and dependencies. When the stop method completes, the subsystem is stopped
and must move to the RESOLVED state.

134.21.3.9 UNINSTALLING

The subsystem is in the process of uninstalling.

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 624 OSGi Enterprise Release 7

A subsystem is in the UNINSTALLING state when its uninstall method is active, and attempts are be-
ing made to uninstall its constituent and dependencies. When the uninstall method completes, the
subsystem is uninstalled and must move to the UNINSTALLED state.

134.21.3.10 UNINSTALLED

The subsystem is uninstalled and may not be used.

The UNINSTALLED state is only visible after a subsystem's constituent and dependencies are unin-
stalled. The subsystem is in an unusable state but references to the subsystem object may still be
available and used for introspection.

134.21.3.11 public static Subsystem.State valueOf(String name)

134.21.3.12 public static Subsystem.State[] values()

134.21.4 public class SubsystemConstants
Defines the constants used by Subsystem service property, manifest header, attribute and directive
keys.

The values associated with these keys are of type Str ing , unless otherwise indicated.

Concurrency Immutable

134.21.4.1 public static final String DEPLOYED_CONTENT = "Deployed-Content"

Manifest header identifying the resources to be deployed.

134.21.4.2 public static final String DEPLOYED_VERSION_ATTRIBUTE = "deployed-version"

Manifest header attribute identifying the deployed version.

134.21.4.3 public static final String DEPLOYMENT_MANIFESTVERSION = "Deployment-ManifestVersion"

Manifest header identifying the deployment manifest version. If not present, the default value is 1 .

134.21.4.4 public static final String PREFERRED_PROVIDER = "Preferred-Provider"

Manifest header used to express a preference for particular resources to satisfy implicit package de-
pendencies.

134.21.4.5 public static final String PROVISION_POLICY_ACCEPT_DEPENDENCIES = "acceptDependencies"

A value for the provision-policy directive indicating the subsystem accepts dependency resources.
The root subsystem has this provision policy.

134.21.4.6 public static final String PROVISION_POLICY_DIRECTIVE = "provision-policy"

Manifest header directive identifying the provision policy. The default value is rejectDependencies

See Also PROVISION_POLICY_ACCEPT_DEPENDENCIES, PROVISION_POLICY_REJECT_DEPENDENCIES

134.21.4.7 public static final String PROVISION_POLICY_REJECT_DEPENDENCIES = "rejectDependencies"

A value for the provision-policy directive indicating the subsystem does not accept dependency re-
sources. This is the default value.

134.21.4.8 public static final String PROVISION_RESOURCE = "Provision-Resource"

Manifest header identifying the resources to be deployed to satisfy the dependencies of a subsystem.

134.21.4.9 public static final String ROOT_SUBSYSTEM_SYMBOLICNAME = "org.osgi.service.subsystem.root"

The symbolic name of the root subsystem.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Enterprise Release 7 Page 625

134.21.4.10 public static final String START_ORDER_DIRECTIVE = "start-order"

Manifest header directive identifying the start order of subsystem contents. There is no default val-
ue. Specified values are of type Str ing and must represent an integer.

134.21.4.11 public static final String SUBSYSTEM_CATEGORY = "Subsystem-Category"

Manifest header identifying the categories of a subsystem as a comma-delimited list.

Since 1.1

134.21.4.12 public static final String SUBSYSTEM_CONTACTADDRESS = "Subsystem-ContactAddress"

Manifest header identifying the contact address where problems with a subsystem may be reported;
for example, an email address.

Since 1.1

134.21.4.13 public static final String SUBSYSTEM_CONTENT = "Subsystem-Content"

Manifest header identifying the list of subsystem contents identified by a symbolic name and ver-
sion.

134.21.4.14 public static final String SUBSYSTEM_COPYRIGHT = "Subsystem-Copyright"

Manifest header identifying a subsystem's copyright information.

Since 1.1

134.21.4.15 public static final String SUBSYSTEM_DESCRIPTION = "Subsystem-Description"

Manifest header identifying the human readable description.

134.21.4.16 public static final String SUBSYSTEM_DOCURL = "Subsystem-DocURL"

Manifest header identifying a subsystem's documentation URL, from which further information
about the subsystem may be obtained.

Since 1.1

134.21.4.17 public static final String SUBSYSTEM_EXPORTSERVICE = "Subsystem-ExportService"

Manifest header identifying services offered for export.

134.21.4.18 public static final String SUBSYSTEM_ICON = "Subsystem-Icon"

Manifest header identifying the icon URL for the subsystem.

Since 1.1

134.21.4.19 public static final String SUBSYSTEM_ID_PROPERTY = "subsystem.id"

The name of the service property for the subsystem ID. The value of this property must be of type
Long .

134.21.4.20 public static final String SUBSYSTEM_IMPORTSERVICE = "Subsystem-ImportService"

Manifest header identifying services required for import.

134.21.4.21 public static final String SUBSYSTEM_LICENSE = "Subsystem-License"

Manifest header identifying a subsystem's license.

Since 1.1

134.21.4.22 public static final String SUBSYSTEM_LOCALIZATION = "Subsystem-Localization"

Manifest header identifying the base name of a subsystem's localization entries.

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 626 OSGi Enterprise Release 7

Since 1.1

134.21.4.23 public static final String SUBSYSTEM_LOCALIZATION_DEFAULT_BASENAME = "OSGI-INF/l10n/subsystem"

Default value for the Subsystem-Localization manifest header.

Since 1.1

134.21.4.24 public static final String SUBSYSTEM_MANIFESTVERSION = "Subsystem-ManifestVersion"

Manifest header identifying the subsystem manifest version. If not present, the default value is 1 .

134.21.4.25 public static final String SUBSYSTEM_NAME = "Subsystem-Name"

Manifest header identifying the human readable subsystem name.

134.21.4.26 public static final String SUBSYSTEM_STATE_PROPERTY = "subsystem.state"

The name of the service property for the subsystem state. The value of this property must be of type
Subsystem.State.

134.21.4.27 public static final String SUBSYSTEM_SYMBOLICNAME = "Subsystem-SymbolicName"

Manifest header value identifying the symbolic name for the subsystem. Must be present.

134.21.4.28 public static final String SUBSYSTEM_SYMBOLICNAME_PROPERTY = "subsystem.symbolicName"

The name of the service property for the subsystem symbolic name.

134.21.4.29 public static final String SUBSYSTEM_TYPE = "Subsystem-Type"

Manifest header identifying the subsystem type.

See Also SUBSYSTEM_TYPE_APPLICATION, SUBSYSTEM_TYPE_COMPOSITE,
SUBSYSTEM_TYPE_FEATURE

134.21.4.30 public static final String SUBSYSTEM_TYPE_APPLICATION = "osgi.subsystem.application"

The resource type value identifying an application subsystem.

This value is used for the osgi . identity capability attribute type , the SUBSYSTEM_TYPE manifest
header and the SUBSYSTEM_TYPE_PROPERTY service property.

134.21.4.31 public static final String SUBSYSTEM_TYPE_COMPOSITE = "osgi.subsystem.composite"

The resource type value identifying an composite subsystem.

This value is used for the osgi . identity capability attribute type , the SUBSYSTEM_TYPE manifest
header and the SUBSYSTEM_TYPE_PROPERTY service property.

134.21.4.32 public static final String SUBSYSTEM_TYPE_FEATURE = "osgi.subsystem.feature"

The resource type value identifying an feature subsystem.

This value is used for the osgi . identity capability attribute type , the SUBSYSTEM_TYPE manifest
header and the SUBSYSTEM_TYPE_PROPERTY service property.

134.21.4.33 public static final String SUBSYSTEM_TYPE_PROPERTY = "subsystem.type"

The name of the service property for the subsystem type.

See Also SUBSYSTEM_TYPE_APPLICATION, SUBSYSTEM_TYPE_COMPOSITE,
SUBSYSTEM_TYPE_FEATURE

134.21.4.34 public static final String SUBSYSTEM_VENDOR = "Subsystem-Vendor"

Manifest header identifying a subsystem's vendor.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Enterprise Release 7 Page 627

Since 1.1

134.21.4.35 public static final String SUBSYSTEM_VERSION = "Subsystem-Version"

Manifest header value identifying the version of the subsystem. If not present, the default value is
0.0.0 .

134.21.4.36 public static final String SUBSYSTEM_VERSION_PROPERTY = "subsystem.version"

The name of the service property for the subsystem version. The value of this property must be of
type Version .

134.21.5 public class SubsystemException
extends RuntimeException
A Subsystem exception used to indicate a problem.

134.21.5.1 public SubsystemException()

□ Construct a Subsystem exception with no message.

134.21.5.2 public SubsystemException(String message)

message The message to include in the exception.

□ Construct a Subsystem exception specifying a message.

134.21.5.3 public SubsystemException(Throwable cause)

cause The cause of the exception.

□ Construct a Subsystem exception specifying a cause.

134.21.5.4 public SubsystemException(String message, Throwable cause)

message The message to include in the exception.

cause The cause of the exception.

□ Construct a Subsystem exception specifying a message and a cause.

134.21.6 public final class SubsystemPermission
extends BasicPermission
A bundle's authority to perform specific privileged administrative operations on or to get sensitive
information about a subsystem. The actions for this permission are:

 Action Methods
 context Subsystem.getBundleContext
 execute Subsystem.start
 Subsystem.stop
 lifecycle Subsystem.install
 Subsystem.uninstall
 metadata Subsystem.getSubsystemHeaders
 Subsystem.getLocation

The name of this permission is a filter expression. The filter gives access to the following attributes:

• location - The location of a subsystem.
• id - The subsystem ID of the designated subsystem.
• name - The symbolic name of a subsystem.

Filter attribute names are processed in a case sensitive manner.

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 628 OSGi Enterprise Release 7

Concurrency Thread-safe

134.21.6.1 public static final String CONTEXT = "context"

The action string context .

134.21.6.2 public static final String EXECUTE = "execute"

The action string execute .

134.21.6.3 public static final String LIFECYCLE = "lifecycle"

The action string l i fecycle .

134.21.6.4 public static final String METADATA = "metadata"

The action string metadata .

134.21.6.5 public SubsystemPermission(String filter, String actions)

filter A filter expression that can use, location, id, and name keys. Filter attribute names are processed in a
case sensitive manner. A special value of "*" can be used to match all subsystems.

actions execute , l i fecycle , metadata , or context .

□ Create a new SubsystemPermission. This constructor must only be used to create a permission that
is going to be checked.

Examples:

 (name=com.acme.*)(location=http://www.acme.com/subsystems/*))
 (id>=1)

Throws I l legalArgumentException– If the filter has an invalid syntax.

134.21.6.6 public SubsystemPermission(Subsystem subsystem, String actions)

subsystem A subsystem.

actions execute , l i fecycle , metadata , or context .

□ Creates a new requested SubsystemPermission object to be used by the code that must perform
checkPermission . SubsystemPermission objects created with this constructor cannot be added to an
SubsystemPermission permission collection.

134.21.6.7 public boolean equals(Object obj)

obj The object being compared for equality with this object.

□ Determines the equality of two SubsystemPermission objects.

Returns true if obj is equivalent to this SubsystemPermission ; fa lse otherwise.

134.21.6.8 public String getActions()

□ Returns the canonical string representation of the SubsystemPermission actions.

Always returns present SubsystemPermission actions in the following order: execute , l i fecycle ,
metadata , context .

Returns Canonical string representation of the SubsystemPermission actions.

134.21.6.9 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

Subsystem Service Specification Version 1.1 References

OSGi Enterprise Release 7 Page 629

134.21.6.10 public boolean implies(Permission p)

p The requested permission.

□ Determines if the specified permission is implied by this object. This method throws an exception if
the specified permission was not constructed with a subsystem.

This method returns true if the specified permission is a SubsystemPermission AND

• this object's filter matches the specified permission's subsystem ID, subsystem symbolic name,
and subsystem location OR

• this object's filter is "*"

AND this object's actions include all of the specified permission's actions.

Special case: if the specified permission was constructed with "*" filter, then this method returns
true if this object's filter is "*" and this object's actions include all of the specified permission's ac-
tions

Returns true if the specified permission is implied by this object; fa lse otherwise.

134.21.6.11 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing SubsystemPermissions.

Returns A new PermissionCol lect ion object.

134.22 References

[1] Filter Based Permissions
OSGi Core, Chapter 2, Filter Based Permissions

[2] Core Service Hooks
OSGi Core, Chapter 55 Service Hook Service Specification

[3] Resource and Wiring
OSGi Core, Chapter 6 Resource API Specification

[4] Zip File Format
The Zip file format as defined by the java.util.zip package.

[5] IANA application/vnd.osgi.subsystem
http://www.iana.org/assignments/media-types/application/vnd.osgi.subsystem

[6] RFC 1738 Uniform Resource Locators
http://www.ietf.org/rfc/rfc1738.txt

[7] Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

[8] Equinox Region Digraph
http://underlap.blogspot.com/2011/02/stumbling-towards-better-design.html

[9] Open Source initiative
http://www.opensource.org/

[10] Resolver Service Specification
OSGi Core, Chapter 58 Resolver Service Specification

http://www.iana.org/assignments/media-types/application/vnd.osgi.subsystem
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2396.txt
http://underlap.blogspot.com/2011/02/stumbling-towards-better-design.html
http://www.opensource.org/

References Subsystem Service Specification Version 1.1

Page 630 OSGi Enterprise Release 7

Common Namespaces Specification Version 1.2 Introduction

OSGi Enterprise Release 7 Page 631

135 Common Namespaces
Specification

Version 1.2

135.1 Introduction
A key aspect of the OSGi general dependency model based on requirements and capabilities is the
concept of a Namespace. A Namespace defines the semantics of a Requirement-Capability pair. The
generic model is defined in the [3] Resources API Specification. This section defines a number of Name-
spaces that are not part of the OSGi Core Release 7 specification. Unless an attribute is specifically
overridden, all Namespaces inherit the attributes and directives of the default Namespace as defined
[4] Framework Namespaces Specification.

Each Namespace is defined with the following items:

• Name - the name of an attribute or directive
• Kind - Defines where the attribute or directive can be used

• CA - Capability Attribute
• CD - Capability Directive
• RA - Requirement Attribute
• RD - Requirement Directive

• M/O - Mandatory (M) or Optional (O)
• Type - The data type
• Syntax - Any syntax rules. The syntax refers in general to the syntaxes defined in [5] General Syn-

tax Definitions and [6] Common Headers.

135.1.1 Versioning
In general, capabilities in a Namespace are versioned using Semantic Versioning. See [7] Semantic
Versioning. Therefore, a capability will specify a single version and a requirement will specify a ver-
sion range. See osgi.extender Namespace for an example.

For some Namespaces, capabilities are not versioned using Semantic Versioning. The versioning
scheme used in those Namespaces will be described in the specification for the Namespace.

135.2 osgi.extender Namespace
An Extender is a bundle that uses the life cycle events from another bundle, the extendee, to extend
that bundle's functionality when that bundle is active. It can use metadata (headers, or files inside
the extendee) to control its functionality. Extendees therefore have a dependency on the Extender
that can be modeled with the osgi .extender Namespace. The definition for this Namespace can be
found in the following table and the ExtenderNamespace class.

osgi.extender Namespace Common Namespaces Specification Version 1.2

Page 632 OSGi Enterprise Release 7

Table 135.1 osgi.extender Namespace

Name Kind M/O Type Syntax Description
osgi .extender CA M String symbol ic-name A symbolic name for the extender. These names

are defined in their respective specifications and
should in general use the specification top level
package name. For example, org.acme.foo . The
OSGi Alliance reserves names that start with "os-
gi .".

version CA M Version version A version. This version must correspond to the
specification of the extender.

Specifications for extenders (Blueprint, Declarative Services, etc.) should specify the values for these
attributes. Extenders that provide such a capability should list the packages that they use in their
specification in the uses directive of that capability to ensure class space consistency. For example a
Declarative Services implementation could declare its capability with the following manifest head-
er:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.component";
 uses:="org.osgi.service.component";
 version:Version="1.3"

A bundle that depends on a Declarative Services implementation should require such an extender
with the following manifest header:

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.3)(!(version>=2.0)))"

Extenders can extend an extendee bundle even if that bundle does not require the extender, unless
the extender's specification explicitly forbids this. It is recommended that an extender should only
extend a bundle if one of the following is true:

• The bundle's wiring has a required wire for at least one osgi .extender capability with the name
of the extender and the first of these required wires is wired to the extender.

• The bundle's wiring has no required wire for an osgi .extender capability with the name of the
extender.

Otherwise, the extender should not extend the bundle.

135.2.1 Extenders and Framework Hooks
The Framework provides a number of hooks that allow groups of bundles to be scoped. For exam-
ple, the Subsystem Service Specification. An extender may want to extend the complete set of bundles
installed in the Framework even when extendee bundles are hidden from the extender. The system
bundle context provides a complete view of the bundles and services available in the Framework
even if Framework hooks are used to scope groups of bundles. The system bundle context can be
used by an extender to track all bundles installed in the Framework regardless of how Framework
hooks are used to scope groups of bundles. This is useful in scenarios where several scoped groups
contain bundles that require an extender. Instead of requiring an extender to be installed in each
scoped group of bundles, a single extender that uses the system bundle context to track extendees
can be installed to extend all scoped groups of bundles.

Common Namespaces Specification Version 1.2 osgi.contract Namespace

OSGi Enterprise Release 7 Page 633

135.3 osgi.contract Namespace
Products or technologies often have a number of related APIs consisting of a large set of packages.
Some IDEs have not optimized for OSGi and requires work for each imported package. In these de-
velopment environments using modularized systems tends to require a significant amount of man-
ual effort to manage the imported packages.

The osgi .contract Namespace addresses this IDE deficiency. It allows a developer to specify a single
name and version for a contract that can then be expanded to a potentially large number of pack-
ages. For example, a developer can then specify a dependency on Java Enterprise Edition 6 contract
that can be provided by an application server.

The osgi .contract Namespace provides such a name and binds it to a set of packages with the us-
es constraint. The bundle that declares this contract must then import or export each of the listed
packages with the correct versioning. Such a bundle is called a contract bundle. The contract bundle
must ensure that it is bound to the correct versions of the packages contained within the contract it
is providing. If the contract bundle imports the packages which are specified as part of the contract
then proper matching attributes must be used to make sure it is bound to the correct versions of the
packages.

Additionally, the osgi .contract Namespace can be used in cases where API is defined by parties
that do not use Semantic Versioning. In those cases, the version of the exported package can be un-
clear and so it is difficult to specify a meaningful version range for the package import. In such cas-
es, importing the package without specifying a version range and specifying a requirement in the
osgi .contract Namespace can provide a way to create portable bundles that use the API. OSGi has
defined contract names for a number of such APIs. See [2] Portable Java Contract Definitions for more
information.

An osgi .contract capability can then be used in the following ways:

• IDEs can use the information in the uses directive to make all those packages available on the
build path. In this case the developer no longer has to specify each package separately.

• During run time the uses clause is used to enforce that all packages in the contract form a consis-
tent class space.

The uses directive will make it impossible to get wired to packages that are not valid for the con-
tract. Since the uses constrains enforce the consistency, it is in principle not necessary to version the
imported packages on client bundles since only the correctly versioned packages can be used. Con-
tracts are aggregates and therefore make clients depend on the whole and all their transitive depen-
dencies, even if the client only uses a single package of the contract.

The recommended way of using contracts is to create a contract bundle that provides the
osgi .contract capability and imports the packages with their required version range. For example:

Provide-Capability: osgi.contract;
 osgi.contract=JavaServlet;
 version:Version=2.5;
 uses:="javax.servlet,javax.servlet.http"
Export-Package:
 javax.servlet; version="2.5",
 javax.servlet.http; version="2.5"

A contract may support multiple versions of a named contract. Such a contract must use a single ca-
pability for the contract name that specifies a list of all the versions that are supported. For example,
the JavaServlet 3.1 contract capability would be specified with the following:

Provide-Capability: osgi.contract;

osgi.contract Namespace Common Namespaces Specification Version 1.2

Page 634 OSGi Enterprise Release 7

 osgi.contract=JavaServlet;
 version:List<Version>="2.5,3.0,3.1";
 uses:=
 "javax.servlet,
 javax.servlet.annotation,
 javax.servlet.descriptor,
 javax.servlet.http"
Export-Package:
 javax.servlet; version="3.1",
 javax.servlet.annotation; version="3.1",
 javax.servlet.descriptor; version="3.1",
 javax.servlet.http; version="3.1"

A client bundle that requires the Servlet 2.5 contract can then have the following manifest:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))",
Import-Package:
 javax.servlet, javax.servlet.http

The client bundle will be constrained by the contract's uses constraints and automatically gets
the correct packages. In this example, no semantic versioning is used for the contract because the
Servlet Specifications do not use semantic versioning (version 3.0 is backward compatible with 2.X).

In this model it is even possible to use the normally not recommended DynamicImport-Package
header with a wild card since also this header is constrained by the uses constraints. However, using
a full wildcard can also dynamically import packages that are not part of the contract. To prevent
these unwanted dynamic imports, the exporter could include an attribute on the exports. For exam-
ple:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))"
DynamicImport-Package:
 *;JavaServlet=contract

However, this model requires the exporter to specify an agreed attribute. The contract bundle does
not require such coordination; it also allows the package exporters to reside in different and unrelat-
ed bundles.

The definition of the osgi .contract Namespace is in the following table and in the ContractName-
space class. See [2] Portable Java Contract Definitions.

Table 135.2 osgi.contract Namespace

Name Kind M/O Type Syntax Description
osgi .contract CA M String symbol ic-name A symbolic name for the contract.
version CA O Version+ version A list of versions for the contract. A contract that

supports multiple versions must use a single ca-
pability with a version attribute that lists all ver-
sions supported.

uses CD O String package-name

(',' package-name)

For a contract, the standard uses clause is used to
indicate which packages are part of the contract.
The imports or exports of those packages link
these packages to a particular version.

135.3.1 Versioning
As the osgi .contract Namespace follows the versioning of the associated contract, capabilities in
this Namespace are not semantically versioned. The associated contracts are often versioned using

Common Namespaces Specification Version 1.2 osgi.service Namespace

OSGi Enterprise Release 7 Page 635

marketing or other versioning schemes and therefore the version number cannot be used as an indi-
cation of backwards compatibility.

As a result, capabilities in the osgi .contract Namespace use a discrete versioning scheme. In such a
versioning scheme, each version is treated as separate without any implied relation to another ver-
sion. A capability lists all compatible versions. A requirement only selects a single version.

135.4 osgi.service Namespace
The Service Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that potentially can register
a specific service.

• Providing a hint to the provisioning agent that the bundle requires a given service.
• Used as template for specifications like Blueprint and Declarative Services to express their pro-

vided and referenced services in the Repository model, see the Repository Service Specification.

A bundle providing this capability indicates that it can register such a service with at least the given
custom attributes as service properties. At resolve time this is a promise since there is no guarantee
that during runtime the bundle will actually register such a service; clients must handle this with
the normal runtime dependency managers like Blueprint, Declarative Services, or others.

See the following table and the ServiceNamespace class for this Namespace definition.

Table 135.3 osgi.service Namespace

Name Kind M/O Type Syntax Description
objectClass CA M List

<Str ing>

qname

(',' qname)*

The fully qualified name of the object class of the
service.

* CA O * * Custom attributes that will be provided as service
properties if they do not conflict with the service
properties rules and are not private service prop-
erties. Private properties start with a full stop ('.'
\u002E).

135.4.1 Versioning
Capabilities in the osgi .service Namespace are not versioned. The package of a service's object class
is generally versioned and the package can be associated with the capability via the uses directive.

135.5 osgi.implementation Namespace
The Implementation Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that provides an implemen-
tation of the specified specification or contract.

• Providing uses constraints to ensure that bundles which require an implementation of a specifi-
cation or contract will be wired appropriately by the framework.

• Providing a hint to the provisioning agent that the bundle requires a given specification or con-
tract implementation.

• Used as a general capability Namespace for specifications or contracts to express their provided
function in the Repository model, see the Repository Service Specification.

osgi.unresolvable Namespace Common Namespaces Specification Version 1.2

Page 636 OSGi Enterprise Release 7

A bundle providing this capability indicates that it implements a specification or contract with the
specified name and version. For example, the Asynchronous Service Specification would provide the
following capability:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.async";
 version:Version="1.0";
 uses:="org.osgi.service.async"

See the following table and the ImplementationNamespace class for this Namespace definition.

Table 135.4 osgi.implementation Namespace

Name Kind M/O Type Syntax Description
osgi . implementation CA M String symbol ic-name The symbolic name of the specification or con-

tract. The OSGi Alliance reserves names that start
with "osgi .".

version CA M Version version The version of the implemented specification or
contract.

* CA O * * Custom attributes that can be used to further
identify the implementation

135.6 osgi.unresolvable Namespace
The Unresolvable Namespace is intended to be used to mark a bundle as unresolvable:

• Preventing the bundle from resolving since it is intended for compilation use only and is not in-
tended for runtime use.

• Providing a hint to the provisioning agent that the bundle must not be included in a provision-
ing solution.

For example, a bundle that must be unresolvable at runtime can include the following requirement:

Require-Capability: osgi.unresolvable;
 filter:="(&(must.not.resolve=*)(!(must.not.resolve=*)))"

The filter expression in the example above always evaluates to fa lse .

See the UnresolvableNamespace class for this Namespace definition.

135.7 org.osgi.namespace.contract

Contract Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.7.1 Summary

• ContractNamespace - Contract Capability and Requirement Namespace.

135.7.2 public final class ContractNamespace
extends Namespace
Contract Capability and Requirement Namespace.

Common Namespaces Specification Version 1.2 org.osgi.namespace.extender

OSGi Enterprise Release 7 Page 637

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.7.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Versions of the specification of the contract. The value of this
attribute must be of type Version , Version[] , or List<Version> .

135.7.2.2 public static final String CONTRACT_NAMESPACE = "osgi.contract"

Namespace name for contract capabilities and requirements.

Also, the capability attribute used to specify the name of the contract.

135.8 org.osgi.namespace.extender

Extender Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.8.1 Summary

• ExtenderNamespace - Extender Capability and Requirement Namespace.

135.8.2 public final class ExtenderNamespace
extends Namespace
Extender Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.8.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification of the extender. The value of this
attribute must be of type Version .

135.8.2.2 public static final String EXTENDER_NAMESPACE = "osgi.extender"

Namespace name for extender capabilities and requirements.

Also, the capability attribute used to specify the name of the extender.

135.9 org.osgi.namespace.service

Service Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

org.osgi.namespace.implementation Common Namespaces Specification Version 1.2

Page 638 OSGi Enterprise Release 7

135.9.1 Summary

• ServiceNamespace - Service Capability and Requirement Namespace.

135.9.2 public final class ServiceNamespace
extends Namespace
Service Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

All unspecified capability attributes are of one of the following types:

• Str ing
• Version
• Long
• Double
• List<Str ing>
• List<Version>
• List<Long>
• List<Double>

and are used as arbitrary matching attributes for the capability. The values associated with the speci-
fied directive and attribute keys are of type Str ing , unless otherwise indicated.

Concurrency Immutable

135.9.2.1 public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"

The capability attribute used to specify the types of the service. The value of this attribute must be
of type List<Str ing> .

A ServiceNamespace capability should express a uses constraint for all the packages mentioned in
the value of this attribute.

135.9.2.2 public static final String SERVICE_NAMESPACE = "osgi.service"

Namespace name for service capabilities and requirements.

135.10 org.osgi.namespace.implementation

Implementation Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.10.1 Summary

• ImplementationNamespace - Implementation Capability and Requirement Namespace.

135.10.2 public final class ImplementationNamespace
extends Namespace
Implementation Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.

Common Namespaces Specification Version 1.2 org.osgi.namespace.unresolvable

OSGi Enterprise Release 7 Page 639

The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.10.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification or contract being implemented.
The value of this attribute must be of type Version .

135.10.2.2 public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

Namespace name for "implementation" capabilities and requirements. This is also the capability at-
tribute used to specify the name of the specification or contract being implemented.

A ImplementationNamespace capability should express a uses constraint for the appropriate pack-
ages defined by the specification/contract the packages mentioned in the value of this attribute.

135.11 org.osgi.namespace.unresolvable

Unresolvable Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.11.1 Summary

• UnresolvableNamespace - Unresolvable Capability and Requirement Namespace.

135.11.2 public final class UnresolvableNamespace
extends Namespace
Unresolvable Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.11.2.1 public static final String UNRESOLVABLE_FILTER = "(&(must.not.resolve=*)(!(must.not.resolve=*)))"

An unresolvable filter expression.

This can be used as the filter expression for an UnresolvableNamespace requirement.

 @Requirement(namespace = UnresolvableNamespace.UNRESOLVABLE_NAMESPACE,
 filter = UnresolvableNamespace.UNRESOLVABLE_FILTER)

135.11.2.2 public static final String UNRESOLVABLE_NAMESPACE = "osgi.unresolvable"

Namespace name for "unresolvable" capabilities and requirements.

This is typically used as follows to prevent a bundle from being resolvable.

 Require-Capability: osgi.unresolvable;
 filter:="(&(must.not.resolve=*)(!(must.not.resolve=*)))"

References Common Namespaces Specification Version 1.2

Page 640 OSGi Enterprise Release 7

135.12 References

[1] Specification References
https://www.osgi.org/developer/specifications/reference/

[2] Portable Java Contract Definitions
https://www.osgi.org/portable-java-contract-definitions/

[3] Resources API Specification
OSGi Core, Chapter 6 Resource API Specification

[4] Framework Namespaces Specification
OSGi Core, Chapter 8 Framework Namespaces Specification

[5] General Syntax Definitions
OSGi Core, General Syntax Definitions

[6] Common Headers
OSGi Core, Chapter 3, Common Header Syntax

[7] Semantic Versioning
OSGi Core, Chapter 3, Semantic Versioning

135.13 Changes
• Added osgi.unresolvable Namespace on page 636.

https://www.osgi.org/developer/specifications/reference/
https://www.osgi.org/portable-java-contract-definitions/

REST Management Service Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 641

137 REST Management Service
Specification

Version 1.0

137.1 Introduction
Cloud computing is a continuing trend in the IT industry. Due to its service model which embraces
dynamism as opposed to masking it, OSGi appears to be an ideal base for building scalable and de-
pendable applications for the cloud where changes in the deployment, network topology, and ser-
vice availability are the norm rather than the exception. One of the possible scenarios for OSGi to
be successfully applied to cloud computing is using it in a Platform as a Service (PaaS) spirit. Users
write their bundles and can deploy them to a provided OSGi instance running in the cloud. This,
however, requires the platform provider to expose the OSGi management API to the end user and
make them available through a network protocol. One of the popular approaches in cloud comput-
ing to remote communication is the use of RESTful web services.

Representational State Transfer (REST) is the architectural style of the world wide web. It can be
described as a set of constraints that govern the interactions between the main components of the
Internet. Recently, REST style interaction has gained popularity as a architecture for web services
(RESTful web services), mainly to overcome the perceived complexity and verbosity of SOAP-based
web services. This specification describes a REST interface for framework management, client-side
Java and JavaScript APIs, and an extension mechanism through which other bundles can contribute
their own RESTful management APIs and make them discoverable by clients.

137.1.1 Essentials

• Client-Server - A separation of concern between the entity responsible for the user-interaction
(client) and the other entity (server) responsible for data storage. For instance, in the original
world wide web the browser is the client rendering and presenting the content delivered by one
or more web servers. As a result, web content becomes more portable and content providers
more scalable.

• Stateless - State is entirely kept at the client side. Therefore, every request must contain all state
required for the server to accomplish the transaction and deliver content. The main rationale
behind this design constraint is to again improve the scalability since in a pure stateless design
the server resources are not burdened with maintaining any client state. Another perceived ad-
vantage is that the failure models of stateless interactions is simpler and fault tolerance easier to
achieve.

• Cacheable - Content marked as cacheable can be temporarily stored and used to immediately an-
swer future equivalent requests and improve efficiency and reduce network utilization and ac-
cess latencies. Due to the end-to-end principle, caches can be placed where necessary, e.g., at the
client (forward-proxy), at the server side (backward-proxy), or somewhere in-between for exam-
ple in a content delivery network. Content marked as non-cacheable must be freshly retrieved
with every request even in the presence of caches.

• Layered - Layering introduces natural boundaries to coupling since every layer only accesses the
services provided by the lower layer and provides services to the next higher layer.

Interacting with the REST Management Service REST Management Service Specification Version 1.0

Page 642 OSGi Enterprise Release 7

• Uniform Interface - Generality of component interfaces provides a natural decoupling of imple-
mentation and interface. REST furthermore encourages the separation of identifiable resources
(addressing) and their representation (content delivery).

137.1.2 Entities

• Resource - A resource is an abstract piece of information that can be addressed by a resource iden-
tifier. The mapping of a resource to a concrete set of entities can vary over time.

• Representation - A representation is a sequence of bytes plus associated meta-data that describe the
state of a resource. The data format of a representation is called the media-type. Every concrete
representation of a resource is just one of arbitrarily many possible representations. The selec-
tion of a concrete representation of a resource can be made according to the media types support-
ed by both the client and the server.

• REST Management Service - The management service exposes a REST API for remotely managing
an OSGi framework through the network in a lightweight and portable fashion.

• Client - The client is a machine using the management service by issuing REST requests through
the network. It can do so either directly or indirectly, i.e., through client-side libraries using the
REST calls internally.

137.1.3 Synopsis
The manageable entities of an OSGi framework are mapped to resources accessible through re-
source identifiers. These identifiers are relative to the (usually externally accessible) root URL of the
management service. Clients can either discover this root URL or receive it through configuration.
Subsequently, a client is able to introspect the state of the framework and perform management op-
erations.

The internal state of a framework resource is expressed and transmitted as a representation. The for-
mat of the representation is subject to a mutual agreement between client and management service
regarding media types commonly supported by both endpoints. This specification describes two
representation formats: JSON and XML.

137.2 Interacting with the REST Management Service
The REST Management Service is not a traditional OSGi service and it does not appear in the service
registry. Its purpose is to expose a management interface to clients which can perform operations
on the framework through a network connection. Therefore, it is ideally suited for situations where
the user of an OSGi framework does not have direct access to the machine it is running on, a typical
situation in Infrastructure as a Service (IaaS) or Platform as a Service (PaaS). However, even in oth-
er domains having a lightweight and easily accessible management solution can be of benefit, e.g.,
for embedded devices. The advantage of REST is that it uses HTTP and therefore does usually not in-
terfere with firewalls. Furthermore, the REST format is easily embeddable into client-side scripting
technologies like JavaScript and can be consumed in web browsers.

Much of the value of the REST Management Service lies in client-side libraries which can use the
REST protocol and interact with the OSGi framework through the Management Service. Therefore,
this specification contains API for two clients, a Java Client API and a JavaScript Client API.

137.2.1 Resource Identifier Overview
The REST Management Service comprises of a set of resources that can be retrieved and in some cas-
es also modified through REST requests. These resources need to be made available under well-de-
fined paths so that clients can interact with them. As the initial entry point a client receives a URL
to the REST Management Service. This can be done, e.g., as part of the creation of a cloud-based OSGi

REST Management Service Specification Version 1.0 Interacting with the REST Management Service

OSGi Enterprise Release 7 Page 643

framework, and the precise mechanism would be proprietary to the cloud platform used. Relative to
this URL the client can access the resources through the following resource identifiers:

framework
framework/state
framework/startlevel
framework/bundles

framework/bundles/representations

framework/bundle/{bundleid}
framework/bundle/{bundleid}/state
framework/bundle/{bundleid}/startlevel
framework/bundle/{bundleid}/header
framework/services

framework/services/representations

framework/service/{serviceid}

f ramework/bundle/0/state is an alias for f ramework/state

Extensions to the REST Management Service can be discovered by visiting the Extensions Resource
at:

extensions

For more details on the extension mechanism see Extending the REST Management Service on page
655

137.2.2 Filtering Results
The bundles , bundles/representat ions , services , and services/representat ions resources allow the
use of a query parameter which specifies a filter to restrict the result set. The filter expression fol-
lows the Core Specifications Framework Filter Syntax; see [1] Framework Filter Syntax.

Filters on services are matched against the service attributes. The query parameter is of the form:

f ramework/services?fi l ter=ldap-fi l ter

Filters on bundles are matched against the attributes of capabilities in the respective namespaces.
Filters on bundles have the form:

f ramework/bundles?namespace1=ldap-fi l ter1&namespace2=ldap-fi l ter2&.. .

If multiple capabilities for a given namespace are present, then a filter succeeds when one of these
capabilities matches. When multiple filter expressions across namespaces are given, these are com-
bined with the and operator.

137.2.3 Content Type Matching
Resources can present themselves through different representation variants. An implementation of
this specification must support at least the JSON representation and the XML representation of re-
sources. Clients can support a subset of representations. Matching the clients capabilities to under-
stand certain representation formats with the servers supported formats follows the typical HTTP
pattern of content negotiation and requires the client to set corresponding HTTP Accept headers for
supported formats in the form of their media types. This specification describes the format and me-
dia types for representations in JSON and XML format in Representations on page 649.

Implementations of the REST Management Service offering different variants of representations
must return the best matching variant based on the HTTP accept header. In addition, they must re-

Resources REST Management Service Specification Version 1.0

Page 644 OSGi Enterprise Release 7

spect the file extensions defined for the different media types as specified in the respective IETF RFC
(e.g., ".xml" as specified in IETF RFC 3032 and ".json" as specified in IETF RFC 4627). If a file extension
is appended to the resource, an implementation must return the variant mandated by the file exten-
sion provided that it supports this content type.

137.3 Resources
The framework and its state is mapped to a set of different resources. Each resource is accessible
through a resource identifier, as summarized in Resource Identifier Overview on page 642.

137.3.1 Framework Startlevel Resource
f ramework/start level

The startlevel resource represents the active start level of the framework. It supports the GET and
PUT requests.

137.3.1.1 GET

The GET request retrieves a Framework Startlevel Representation from the REST management service.
The request can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a startlevel rep-
resentation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

137.3.1.2 PUT

The PUT request sets the target framework startlevel. The body of the request needs to be a Frame-
work Startlevel Representation. The request can return the following status codes:

• 204 (NO CONTENT): the request was received and valid. The framework will asynchronously
start to adjust the framework startlevel until the target startlevel has been reached.

• 415 (UNSUPPORTED MEDIA TYPE): the request had a media type that is not supported by the
REST management service.

• 400 (BAD REQUEST): the REST management service received an IllegalArgumentException
when trying to adjust the framework startlevel, e.g., because the requested startlevel was zero or
negative.

137.3.2 Bundles Resource
f ramework/bundles

The bundles resource represents the list of all bundles installed on the managed framework. It sup-
ports the GET request and two syntactically different forms of POST requests which are used to in-
stall new bundles to the framework.

Results for this resource can be filtered as described in Filtering Results on page 643.

137.3.2.1 GET

The GET request retrieves a Bundle List Representation from the REST management service. The re-
quest can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle list
representation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

REST Management Service Specification Version 1.0 Resources

OSGi Enterprise Release 7 Page 645

137.3.2.2 POST with Location String

The POST request installs a new bundle to the managed framework and thereby logically appends
it to the bundles resource. The new bundle to be installed is referenced by a location string which is
passed as the body of the request. In order to disambiguate the request from the other form of POST,
the content type must be set to text/plain. In practice, the location string is usually a URL. Since the
framework will use the location retrieving the physical bundle, it needs to be accessible from the re-
motely managed framework and not necessarily from the managing client.

The management service implementation must check if the result of the install request matches the
requested bundle since the OSGi framework will return an existing bundle object as the return val-
ue of an install call if there was already one with the same location string installed. One way of do-
ing it is comparing the last modification timestamp. A detected collision is indicated to the request-
ing clients through an error code 409.

The body of the response is Bundle Representation of the newly installed bundle. The following status
codes can be returned:

• 200 (OK): the bundle has been successfully installed and the body of the response contains the
URI.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
install. The body of the message is a Bundle Exception Representation describing the reason why the
installation did not succeed.

• 409 (CONFLICT): there is already a bundle installed with the same location string.

137.3.2.3 POST with Bundle

This variant of the POST request uploads the bundle as the body of the request. The media type of
the request should be set to application/vnd.osgi.bundle which must be supported by all REST man-
agement services. Implementations are free to accept other media types for this request with the ex-
ception of text/plain. For instance, they can opt to additionally support application/zip or applica-
tion/x-jar.

Clients should use the HTTP Content-Location field to set a bundle location. If no content location
is given, REST management service implementations must generate a unique location string in or-
der to avoid unintended collisions between unrelated bundles.

The body of the response is Bundle Representation of the newly installed bundle. The following status
codes can be returned:

• 200 (OK): the bundle has been successfully installed and the body of the response contains the
URI.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
install. The body of the message is a Bundle Exception Representation describing the reason why the
installation did not succeed.

• 409 (CONFLICT): there is already a bundle installed with the same location string.

137.3.3 Bundles Representations Resource
f ramework/bundles/representat ions

137.3.3.1 GET of the Representations

The bundles resource returns a list of the URIs of all bundles installed on the framework. For clients
interested in the details of multiple bundles there is also the possibility to retrieve the bundle repre-
sentation of each installed bundle with a single request through the bundles/representations resource.

The body of the response is a Bundle Representations List Representation. The request can return the fol-
lowing status codes:

Results for this resource can be filtered as described in Filtering Results on page 643.

Resources REST Management Service Specification Version 1.0

Page 646 OSGi Enterprise Release 7

• 200 (OK): the request has been served successfully and the body of the response is a bundle list
representation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

137.3.4 Bundle Resource
f ramework/bundle/{bundleid}

The bundle resource represents a single, distinct bundle in the system. Hence, it has to be qualified
by a bundle id. The resource supports the GET, two variants of PUT, and the DELETE requests.

137.3.4.1 GET

The GET request retrieves a Bundle Representation from the REST management service. The request
can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle repre-
sentation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.4.2 PUT with Location String

The PUT request updates the bundle with a new version, referenced by a location string which is
passed as the body of the request. In order to disambiguate the request from the other form of PUT,
the content type must be set to text/plain. The same rationale applies as for POST with Location
String and POST with Bundle on page 645, if a location string is given it must point to a location
reachable by the managed framework. If no location string is passed as the body of the request, the
framework will perform an update based on the existing bundle's location string.

The body of the response is Bundle Representation of the updated bundle. The following status codes
can be returned:

• 204 (NO CONTENT): the request was received and valid and the framework has issued the up-
date.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
update. The body of the message is a Bundle Exception Representation describing the reason why
the update did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.

137.3.4.3 PUT with Bundle

The PUT request updates the bundle with a new version, uploaded as the body of the request. The
media type of the request should be set to application/vnd.osgi.bundle which must be supported
by all REST management services. Implementations are free to accept other media types for this re-
quest with the exception of text/plain. For instance, they can opt to additionally support applica-
tion/zip or application/x-jar.

The body of the response is Bundle Representation of the updated bundle. The following status codes
can be returned:

• 204 (NO CONTENT): the request was received and valid and the framework has issued the up-
date.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
update. The body of the message is a Bundle Exception Representation describing the reason why
the update did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.

REST Management Service Specification Version 1.0 Resources

OSGi Enterprise Release 7 Page 647

137.3.4.4 DELETE

The DELETE request uninstalls the bundle from the framework.

The body of the response is Bundle Representation of the uninstalled bundle, where the bundle state
will be UNINSTALLED. The following status codes can be returned:

• 204 (NO CONTENT): the request was received and valid and the framework has uninstalled the
bundle.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
uninstall. The body of the message is a Bundle Exception Representation describing the reason why
the uninstallation did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.

137.3.5 Bundle State Resource
f ramework/bundle/{bundleid}/state

The bundle state resource represents the internal state of an installed bundle qualified through its
bundle id. It supports the GET and PUT requests.

137.3.5.1 GET

The GET request retrieves a Bundle State Representation from the REST management service. The re-
quest can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle state
representation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.5.2 PUT

The PUT request sets the target state for the given bundle. This can, e.g., be state=32 for transitioning
the bundle to started, or state=4 for stopping the bundle and transitioning it to resolved. The body
of the request needs to be a Bundle State Representation. Not all state transitions are valid. The body
of the response is the new Bundle State Representation. The request can return the following status
codes:

• 200 (OK): the request was received and valid. The framework has performed a state change and
the new bundle state is contained in the body.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
perform the state transition. The body of the message is a Bundle Exception Representation describ-
ing the reason why the operation did not succeed.

• 402 (PRECONDITION FAILED): the requested target state is not reachable from the current bun-
dle state or is not a target state. An example such state is the STOPPING state.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 415 (UNSUPPORTED MEDIA TYPE): the request had a media type that is not supported by the

REST management service.

137.3.6 Bundle Header Resource
f ramework/bundle/{bundleid}/header

The bundle header resource represents manifest header of a bundle which is qualified by its bundle
id. It can only be read through a GET request.

Resources REST Management Service Specification Version 1.0

Page 648 OSGi Enterprise Release 7

137.3.6.1 GET

The GET request retrieves a Bundle Header Representation from the REST management service. The
raw header value is used unless an Accept-Language header is set on the HTTP request. If multiple
accepted languages are set only the first is used to localize the header. The request can return the fol-
lowing status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle head-
er representation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.7 Bundle Startlevel Resource
f ramework/bundle/{bundleid}/start level

The bundle startlevel resource represents the start level of the bundle qualified by its bundle id. It
supports the GET and PUT requests.

137.3.7.1 GET

The GET request retrieves a Bundle Startlevel Representation from the REST management service. The
request can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle
startlevel representation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.7.2 PUT

The PUT request sets the target bundle startlevel. The body of the request needs to be a Bundle
Startlevel Representation, however only the startLevel property is used. The request can return the fol-
lowing status codes:

• 200 (OK): the request was received and valid. The REST management service has changed the
bundle startlevel according to the target value. The body of the response is the new bundle
startlevel representation.

• 400 (BAD REQUEST): either the target startlevel state involved invalid values, e.g., a startlevel
smaller or equal to zero and the REST management service got an IllegalArgumentException, or
the REST management service received a BundleException when trying to perform the startlevel
change. In the latter case, the body of the message is a Bundle Exception Representation describing
the reason why the operation did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 415 (UNSUPPORTED MEDIA TYPE): the request had a media type that is not supported by the

REST management service.

137.3.8 Services Resource
f ramework/services

The services resource represents the set of all services available on the framework, optionally con-
strained by a filter expression. It is read-only and therefore only supports the GET request.

Results for this resource can be filtered as described in Filtering Results on page 643.

REST Management Service Specification Version 1.0 Representations

OSGi Enterprise Release 7 Page 649

137.3.8.1 GET

The GET request retrieves a Service List Representation from the REST management service. The re-
quest can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a service list
representation.

• 400 (BAD REQUEST): the provided filter expression was not valid.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.9 Services Representations Resource
f ramework/services/representat ions

137.3.9.1 GET of the Representations

The services resource returns a list of the URIs of all services registered on the framework. For
clients interested in the details of multiple services there is also the possibility to retrieve the service
representation of each available service with a single request through the services/representations re-
source. The body of the response is a Service Representations List Representation from the REST man-
agement service. The request can return the following status codes:

Results for this resource can be filtered as described in Filtering Results on page 643.

• 200 (OK): the request has been served successfully and the body of the response is a service list
representation.

• 400 (BAD REQUEST): the provided filter expression was not valid.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.10 Service Resource
f ramework/service/{serviceid}

The service resource represents a single, distinct service in the framework. Hence, it has to be quali-
fied by a service id. Services can only be read through the REST Management Service and therefore
only support the GET request.

137.3.10.1 GET

The GET request retrieves a Service Representation . The request can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a service repre-
sentation.

• 404 (NOT FOUND): there is not service with the given service id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.4 Representations

137.4.1 Bundle Representation

137.4.1.1 JSON

Content-Type: appl icat ion/org.osgi .bundle+json

{

Representations REST Management Service Specification Version 1.0

Page 650 OSGi Enterprise Release 7

 "id":0,
 "lastModified":1314999275542,
 "state":32,
 "symbolicName":"org.eclipse.osgi",
 "version":"3.7.0.v20110613"
}

137.4.1.2 XML

Content-Type: appl icat ion/org.osgi .bundle+xml

<bundle>
 <id>0</id>
 <lastModified>1314999275542</lastModified>
 <state>32</state>
 <symbolicName>org.eclipse.osgi</symbolicName>
 <version>3.7.0.v20110613</version>
</bundle>

137.4.2 Bundles Representations

137.4.2.1 Bundle List Representation

137.4.2.1.1 JSON

Content-Type: appl icat ion/org.osgi .bundles+json

{
 [bundleURI, bundleURI, ..., bundleURI]
}

137.4.2.1.2 XML

Content-Type: appl icat ion/org.osgi .bundles+xml

<bundles>
 <uri>bundleURI</uri>
 <uri>bundleURI</uri>
 ...
 <uri>bundleURI</uri>
</bundles>

137.4.2.2 Bundle Representations List Representation

137.4.2.2.1 JSON

Content-Type: appl icat ion/org.osgi .bundles.representat ions+json

{
 [BUNDLE REPRESENTATION, BUNDLE REPRESENTATION, ..., BUNDLE REPRESENTATION]
}

137.4.2.2.2 XML

Content-Type: appl icat ion/org.osgi .bundles.representat ions+xml

<bundles>
 BUNDLE REPRESENTATION
 BUNDLE REPRESENTATION
 ...
 BUNDLE REPRESENTATION

REST Management Service Specification Version 1.0 Representations

OSGi Enterprise Release 7 Page 651

</bundles>

137.4.3 Bundle State Representation

137.4.3.1 JSON

Content-Type: appl icat ion/org.osgi .bundlestate+json

{
 "state":32
 "options":1
}

The options are used in start or stop calls. Valid options include, e.g., Bundle.START_TRANSIENT
and Bundle.START_ACTIVATION_POLICY.

137.4.3.2 XML

Content-Type: appl icat ion/org.osgi .bundlestate+xml

<bundleState>
 <state>32</state>
 <options>1</options>
</bundleState>

137.4.4 Bundle Header Representation

137.4.4.1 JSON

Content-Type: appl icat ion/org.osgi .bundleheader+json

{
 key:value,
 key:value,
 ...
 key:value
}

137.4.4.2 XML

Content-Type: appl icat ion/org.osgi .bundleheader+xml

<bundleHeader>
 <entry key="key" value="value"/>
 <entry key="key" value="value"/>
 ...
 <entry key="key" value="value"/>
<bundleHeader>

137.4.5 Framework Startlevel Representation

137.4.5.1 JSON

Content-Type: appl icat ion/org.osgi .f rameworkstart level+json

{
 "startLevel":6,
 "initialBundleStartLevel":4
}

Representations REST Management Service Specification Version 1.0

Page 652 OSGi Enterprise Release 7

137.4.5.2 XML

Content-Type: appl icat ion/org.osgi .f rameworkstart level+xml

<frameworkStartLevel>
 <startLevel>6</startLevel>
 <initialBundleStartLevel>4</initialBundleStartLevel>
</frameworkStartLevel>

137.4.6 Bundle Startlevel Representation

137.4.6.1 JSON

Content-Type: appl icat ion/org.osgi .bundlestart level+json

{
 "startLevel":6

 "activationPolicyUsed":true
 "persistentlyStarted":false
}

137.4.6.2 XML

Content-Type: appl icat ion/org.osgi .bundlestart level+xml

<bundleStartLevel>
 <startLevel>6</startLevel>

 <activationPolicyUsed>true</actiovationPolicyUsed>
 <persistentlyStarted>false</persistentlyStarted>
</bundleStartLevel>

137.4.7 Service Representation

137.4.7.1 JSON

Content-Type: appl icat ion/org.osgi .service+json

{
 "id":10,
 "properties":
 {
 "prop1":"val1",
 "prop2":2.82,
 ...
 "prop3":true
 },
 "bundle":bundleURI,
 "usingBundles":[bundleURI, bundleURI, ... bundleURI]
}

Note: service properties are converted to JSON-supported data types where possible: "str ing" , number
or boolean (true|false) . If there is no conversion to JSON data types is possible the toStr ing() result
is used as a string value.

137.4.7.2 XML

Content-Type: appl icat ion/org.osgi .service+xml

<service>

REST Management Service Specification Version 1.0 Representations

OSGi Enterprise Release 7 Page 653

 <id>10</id>
 <properties>
 <property name="prop1" value="val1"/>
 <property name="prop2" type="Float" value="2.82"/>
 ...
 <property name="prop3" type="Boolean" value="true"/>
 </properties>
 <bundle>bundleURI</bundle>
 <usingBundles>
 <bundle>bundleURI</bundle>
 <bundle>bundleURI</bundle>
 ...
 <bundle>bundleURI</bundle>
 </usingBundles>
</service>

Note: service properties are represented using the same method as used for the property XML ele-
ment in the Declarative Services specification, see Property and Properties Elements on page 227. Ser-
vice properties that cannot be represented using the supported data types, will be represented as
String values obtained via the toStr ing() method.

137.4.8 Services Representations

137.4.8.1 Service List Representation

137.4.8.1.1 JSON

Content-Type: appl icat ion/org.osgi .services+json

{
 [serviceURI, serviceURI, ..., serviceURI]
}

137.4.8.1.2 XML

Content-Type: appl icat ion/org.osgi .services+xml

<services>
 <uri>serviceURI</uri>
 <uri>serviceURI</uri>
 ...
 <uri>serviceURI</uri>
</services>

137.4.8.2 Service Representations List Representation

137.4.8.2.1 JSON

Content-Type: org.osgi .services.representat ions+json

{
 [SERVICE REPRESENTATION, SERVICE REPRESENTATION, ..., SERVICE REPRESENTATION]
}

137.4.8.2.2 XML

Content-Type: appl icat ion/org.osgi .services.representat ions+xml

<services>
 SERVICE REPRESENTATION

Clients REST Management Service Specification Version 1.0

Page 654 OSGi Enterprise Release 7

 SERVICE REPRESENTATION
 ...
 SERVICE REPRESENTATION
</services>

137.4.9 Bundle Exception Representation

137.4.9.1 JSON

Content-Type: appl icat ion/org.osgi .bundleexception+json

{
 "typecode": 5,
 "message": "BundleException: Bundle activation error"
}

137.4.9.2 XML

Content-Type: appl icat ion/org.osgi .bundleexception+xml

<bundleexception>
 <typecode>5</typecode>
 <message>BundleException: Bundle activation error</message>
</bundleexception>

137.5 Clients
The REST service can be used by a variety of clients directly. In addition this specification describes
Client APIs built over this REST protocol to facilitate use from Java and JavaScript clients.

137.5.1 Java Client
The Java Client provides a Java API over the REST API providing a convenient and portable way to
use this API from a Java application.

To use the Java Client, obtain the RestCl ientFactory service. Create a client by providing the root
URL of the REST service, for example:

RestClientFactory restClientFactory = ... // from Service Registry
RestClient restClient = restClientFactory.createRestClient(
 new URI("http://localhost:8080/restendpoint"));

// Now we can start interacting
Collection<String> bundles = restClient.getBundlePaths();
BundleDTO newBundle = restClient.installBundle(bundleLocation, bundleStream);
restClient.startBundle(newBundle.id);

The more details on the Java Client can be found in the org.osgi .service.rest .c l ient API documenta-
tion section.

137.5.2 JavaScript Client
This specification also describes a JavaScript client to the REST Management service. This client
makes it easy to manage an OSGi framework from any JavaScript environment, including Web
Browsers.

The JavaScript client follows the promises programming style; the request is made asynchronously
and a success() or fa i lure() callback is made when the response arrives.

REST Management Service Specification Version 1.0 Extending the REST Management Service

OSGi Enterprise Release 7 Page 655

To use the JavaScript client create an instance of OSGiRestCl ient providing the root URL of the REST
service.

var client = new OSGiRestClient('http://localhost:8080/restendpoint');
client.installBundle({
 success : function(res) {
 // Start the bundle once the install has finished
 client.startBundle(res.id);
 },
 failure : function(httpCode, res) {
 // handle failure
 }
});

More details on the JavaScript Client can be found in the JavaScr ipt Cl ient API API documentation
section.

137.6 Extending the REST Management Service
This specification describes a REST-based management interface for Core Framework functionali-
ty. Other services in the framework might also benefit from management access through REST. This
can involve services specified by the OSGi Alliance as part of the Core Framework, Compendium, or
Enterprise Specifications but also application-specific functionality provided by the developer. It is
desirable to expose such management services as extensions of the REST Management Service.

This REST service can be implemented by using various technologies such as Java Servlets, Restlet,
JAX-RS, and others. Therefore, it might not always be possible to integrate extensions at the imple-
mentation level because they might use other underlying technologies to implement their REST in-
terface. Defining a format for delegating requests between the REST Management Service and exten-
sions would furthermore necessarily expose implementation details and is therefore not feasible ei-
ther. As a consequence, this specification only describes how to logically integrate extensions with
the REST Management Service. Implementations of this specification might offer mechanisms for
tighter integration for the case that extensions are developed using the same underlying technology.

The main purpose of the extension mechanism is to advertise extensions to the core REST imple-
mentation, which makes them discoverable for clients. This mechanism can be used to check if a
REST interface exists for a specific service. This is done through the Extensions Resource which con-
tains a description and a path for every extension currently available. Implementations that want to
contribute their extensions to the REST Management Service can do so by registering the RestApiEx-
tension service using the [4] Whiteboard Pattern. The extension interface is only a marker and the
relevant information is exposed through the NAME , URI_PATH and optionally SERVICE properties.
Note that it is the responsibility of the extension to ensure that the endpoint announced via the
RestApiExtension service is actually present. The Whiteboard service does not realize the extension
endpoint; it purely announces it to the main REST implementation for inclusion in the Extensions
Resource.

In order to be discoverable REST interface extensions to OSGi Core, Compendium, or Enterprise ser-
vices must use their canonical package name as advertised name. E.g., the name of the REST inter-
face for the User Admin must be org.osgi .service.useradmin . This way, a client is able to check if
there is a given extension available on a host. User-defined extensions should use the package name
of the service they provide management capabilities for.

137.6.1 Extensions Resource
extensions

XML Schema REST Management Service Specification Version 1.0

Page 656 OSGi Enterprise Release 7

The extensions resource enumerates all extensions currently registered through the Whiteboard
Pattern. It is read-only and therefore only supports the GET request.

137.6.1.1 GET

The GET request retrieves a Extensions Representation . The request can return the following status
codes:

• 200 (OK): the request has been served successfully and the body of the response is a extension list
representation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

137.6.2 Extensions Representation

137.6.2.1 JSON

Content-Type: appl icat ion/org.osgi .extensions+json

{
 [{ "name" : "org.osgi.service.event", "path" : "contributions/eventadmin",
 "service" : 12 }, ...]
}

137.6.2.2 XML

Content-Type: appl icat ion/org.osgi .extensions+xml

<extensions>
 <extension>
 <name>org.osgi.service.event</name>
 <path>contributions/eventadmin</path>
 <service>12</service>
 </extension>
</extensions>

137.7 XML Schema
The namespace for XML representations is:

http://www.osgi.org/xmlns/rest/v1.0.0

The recommended prefix for this namespace is rest .

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:rest="http://www.osgi.org/xmlns/rest/v1.0.0"
 targetNamespace="http://www.osgi.org/xmlns/rest/v1.0.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.0.0">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for
 XML representations used by
 the REST Management Service
 Specification.
 </documentation>
 </annotation>

 <element name="bundle" type="rest:Tbundle">
 <annotation>
 <documentation xml:lang="en">

REST Management Service Specification Version 1.0 XML Schema

OSGi Enterprise Release 7 Page 657

 Representation for the
 application/org.osgi.bundle+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tbundle">
 <all>
 <element name="id" type="long" />
 <element name="lastModified" type="long" />
 <element name="state" type="integer" />
 <element name="symbolicName" type="string" />
 <element name="version" type="string" />
 </all>
 </complexType>

 <element name="bundles" type="rest:Tbundles">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundles+xml and
 application/org.osgi.bundles.representations+xml content
 types.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tbundles">
 <choice>
 <element name="uri" type="string" minOccurs="0"
 maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundles+xml content type.
 </documentation>
 </annotation>
 </element>
 <element name="bundle" type="rest:Tbundle"
 minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundles.representations+xml
 content type.
 </documentation>
 </annotation>
 </element>
 </choice>
 </complexType>

 <element name="bundleState" type="rest:TbundleState">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundlestate+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TbundleState">
 <all>
 <element name="state" type="integer" />
 <element name="options" type="integer" />
 </all>
 </complexType>

 <element name="bundleHeader" type="rest:TbundleHeader">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundleheader+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TbundleHeader">
 <sequence>
 <element name="entry" minOccurs="0" maxOccurs="unbounded">

XML Schema REST Management Service Specification Version 1.0

Page 658 OSGi Enterprise Release 7

 <complexType>
 <attribute name="key" type="string" use="required" />
 <attribute name="value" type="string" use="required" />
 </complexType>
 </element>
 </sequence>
 </complexType>

 <element name="frameworkStartLevel" type="rest:TframeworkStartLevel">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.frameworkstartlevel+xml content
 type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TframeworkStartLevel">
 <all>
 <element name="startLevel" type="integer" />
 <element name="initialBundleStartLevel" type="integer" />
 </all>
 </complexType>

 <element name="bundleStartLevel" type="rest:TbundleStartLevel">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundlestartlevel+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TbundleStartLevel">
 <all>
 <element name="startLevel" type="integer" />
 <element name="activationPolicyUsed" type="boolean" />
 <element name="persistentlyStarted" type="boolean" />
 </all>
 </complexType>

 <element name="service" type="rest:Tservice">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.service+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tservice">
 <all>
 <element name="id" type="long" />
 <element name="properties">
 <complexType>
 <sequence>
 <element name="property" minOccurs="0"
 maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="name"
 type="string" use="required" />
 <attribute name="value"
 type="string" use="optional" />
 <attribute name="type"
 default="String" use="optional">
 <simpleType>
 <restriction
 base="string">
 <enumeration
 value="String" />
 <enumeration
 value="Long" />
 <enumeration
 value="Double" />
 <enumeration

REST Management Service Specification Version 1.0 XML Schema

OSGi Enterprise Release 7 Page 659

 value="Float" />
 <enumeration
 value="Integer" />
 <enumeration
 value="Byte" />
 <enumeration
 value="Character" />
 <enumeration
 value="Boolean" />
 <enumeration
 value="Short" />
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="bundle" type="string" />
 <element name="usingBundles">
 <complexType>
 <sequence>
 <element name="bundle" type="string"
 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 </element>
 </all>
 </complexType>

 <element name="services" type="rest:Tservices">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.services+xml and
 application/org.osgi.services.representations+xml
 content types.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tservices">
 <choice>
 <element name="uri" type="string" minOccurs="0"
 maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.services+xml content type.
 </documentation>
 </annotation>
 </element>
 <element name="service" type="rest:Tservice"
 minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.services.representations+xml
 content type.
 </documentation>
 </annotation>
 </element>
 </choice>
 </complexType>

 <element name="bundleexception" type="rest:Tbundleexception">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundleexception+xml content type.
 </documentation>
 </annotation>
 </element>

Capabilities REST Management Service Specification Version 1.0

Page 660 OSGi Enterprise Release 7

 <complexType name="Tbundleexception">
 <all>
 <element name="typecode" type="integer" />
 <element name="message" type="string" />
 </all>
 </complexType>

 <element name="extensions" type="rest:Textensions">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.extensions+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Textensions">
 <sequence>
 <element name="extension" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <all>
 <element name="name" type="string" />
 <element name="path" type="string" />
 <element name="service" type="long" minOccurs="0" />
 </all>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

The schema is also available in digital form from [3] OSGi XML Schemas.

137.8 Capabilities

137.8.1 osgi.implementation Capability
An implementation of this specification must provide the osgi . implementation capability with
name osgi . rest . This capability can be used by provisioning tools and during resolution to ensure
that a REST Management implementation is present to handle REST requests defined in this specifi-
cation. The capability must also declare a uses constraint on the org.osgi .service.rest package:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.rest";
 uses:="org.osgi.service.rest";
 version:Version="1.0"

This capability must follow the rules defined for the osgi.implementation Namespace on page 635.

137.8.2 osgi.service Capability
A bundle providing the RestCl ientFactory service as described by this specification must inform
tools about this service by providing the osgi .service capability representing this service. This capa-
bility must also declare a uses constraint for the org.osgi .service.rest .c l ient package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.rest.client.RestClientFactory";
 uses:="org.osgi.service.rest.client"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

REST Management Service Specification Version 1.0 Security

OSGi Enterprise Release 7 Page 661

137.9 Security
Like any externally visible management interface, the REST interface exposes privileged operations
and hence requires access control. Since REST builds upon the HTTP(s) protocol, authentication
mechanisms and encryption can be applied the same way as usually done for web servers: they can
be layered below the REST protocol. E.g., confidentiality of the transmitted commands can be en-
sured by using HTTPS as the underlying transport. Authentication can be added by requiring, e.g.,
basic authentication prior to accepting a REST command. The REST interface should only be imple-
mented by a trusted bundle. Implementations of this specification require all Admin Permissions
and all Service Permissions.

137.10 org.osgi.service.rest

Rest Service Package Version 1.0.

137.10.1 Summary

• RestApiExtension - Marker interface for registering extensions to the Rest API service.

137.10.2 public interface RestApiExtension
Marker interface for registering extensions to the Rest API service.

The REST service provides a RESTful interface to clients that need to manage an OSGi framework
through a network connection. Other components running on the same framework can contribute
their own specific REST interface and make it available and discoverable by registering this marker
service using the Whiteboard pattern.

Integration of third-party REST interfaces with the framework REST service on the implementation
level might not always be possible since it requires knowledge about the underlying implementa-
tion and an extension mechanism on that level. Specific technologies such as servlets might sup-
port this but the REST service could as well be implemented without the use of a supporting ab-
straction layer and not offer extensibility.

Using this marker service, the REST service includes the advertised service in the Extensions Re-
source, allowing clients to discover it and use the extension's functionality.

137.10.2.1 public static final String NAME = "org.osgi.rest.name"

This service property describes the package name of the technology manageable by this REST API
extension. Services specified in OSGi specifications must use their canonical package name as the
name. Third-party technologies should also use their package names. The type of this property is
java. lang.Str ing and the property is mandatory.

137.10.2.2 public static final String SERVICE = "org.osgi.rest.service"

This service property refers to the id of the service the REST API extension provides management
capabilities for. This can be useful if more than one service of a given type is present in the frame-
work. For example if more than one Http Service is available this property is used to associate a
REST extension managing the Http Service with a specific service instance. The type of the property
is java. lang.Long and the property is optional; if the REST extension is not directly associated with a
service in the service registry, the property should not be set.

137.10.2.3 public static final String URI_PATH = "org.osgi.rest.uri.path"

This service property describes a URI to the REST extension on this local machine. It is either an ful-
ly qualified URI with a different port if no integration with the framework REST service is possible

org.osgi.service.rest.client REST Management Service Specification Version 1.0

Page 662 OSGi Enterprise Release 7

or a relative URI implicitly using the same port if integration is possible. The type of this property is
java. lang.Str ing and the property is mandatory.

137.11 org.osgi.service.rest.client

Rest Service Client Package Version 1.0.

137.11.1 Summary

• RestCl ient - A Java client API for a REST service endpoint.
• RestCl ientFactory - Factory to construct new REST client instances.

137.11.2 public interface RestClient
A Java client API for a REST service endpoint.

Provides a Java client API for accessing and managing a remote OSGi framework through the REST
API. Implementations of this interface will usually take the URL to the remote REST Management
Service instance as an argument in their constructor. Further arguments might be needed, for exam-
ple, if the cloud provider requires URL signing.

Provider Type Consumers of this API must not implement this type

137.11.2.1 public BundleDTO getBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Retrieve the bundle representation for a given bundle Id.

Returns A BundleDTO for the requested bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.2 public BundleDTO getBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Retrieve the bundle representation for a given bundle path.

Returns A BundleDTO for the requested bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.3 public Map<String, String> getBundleHeaders(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the header for a bundle given by its bundle Id.

Returns Returns the map of headers entries.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.4 public Map<String, String> getBundleHeaders(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Get the header for a bundle given by its URI path.

Returns Returns the map of headers entries.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.5 public Collection<String> getBundlePaths() throws Exception

□ Get the bundles currently installed on the managed framework.

REST Management Service Specification Version 1.0 org.osgi.service.rest.client

OSGi Enterprise Release 7 Page 663

Returns Returns a collection of the bundle URIs in the form of Strings. The URIs are relative to the REST API
root URL and can be used to retrieve bundle representations.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.6 public Collection<BundleDTO> getBundles() throws Exception

□ Get the bundle representations for all bundles currently installed in the managed framework.

Returns Returns a collection of BundleDTO objects.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.7 public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the start level for a bundle given by its bundle Id.

Returns Returns a BundleStartLevelDTO describing the current start level of the bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.8 public BundleStartLevelDTO getBundleStartLevel(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Get the start level for a bundle given by its URI path.

Returns Returns a BundleStartLevelDTO describing the current start level of the bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.9 public int getBundleState(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the state for a given bundle Id.

Returns Returns the current bundle state as defined in (@link org.osgi.framework.Bundle}.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.10 public int getBundleState(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Get the state for a given bundle path.

Returns Returns the current bundle state as defined in (@link org.osgi.framework.Bundle}.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.11 public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception

□ Retrieves the current framework start level.

Returns Returns the current framework start level in the form of a FrameworkStartLevelDTO.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.12 public Collection<String> getServicePaths() throws Exception

□ Gets a collection of URI paths to all installed services.

Returns Returns a collection of URI paths to the installed services.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.13 public Collection<String> getServicePaths(String filter) throws Exception

filter Passes a filter to restrict the result set.

org.osgi.service.rest.client REST Management Service Specification Version 1.0

Page 664 OSGi Enterprise Release 7

□ Gets a collection of URI paths to all installed services.

Returns Returns a collection of URI paths to the installed services.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.14 public ServiceReferenceDTO getServiceReference(long id) throws Exception

id Addresses the service by its identifier.

□ Get the service representation for a service given by its service Id.

Returns The service representation as ServiceReferenceDTO.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.15 public ServiceReferenceDTO getServiceReference(String servicePath) throws Exception

servicePath Addresses the service by its URI path.

□ Get the service representation for a service given by its URI path.

Returns The service representation as ServiceReferenceDTO.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.16 public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.17 public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception

filter Passes a filter to restrict the result set.

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.18 public BundleDTO installBundle(String location) throws Exception

location Passes the location string to retrieve the bundle content from.

□ Install a new bundle given by an externally reachable location string, typically describing a URL.

Returns Returns the BundleDTO of the newly installed bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.19 public BundleDTO installBundle(String location, InputStream in) throws Exception

location Passes the location string to be used to install the new bundle.

in Passes the input stream to a bundle.

□ Install a new bundle given by an InputStream to a bundle content.

Returns Returns the BundleDTO of the newly installed bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.20 public void setBundleStartLevel(long id, int startLevel) throws Exception

id Addresses the bundle by its identifier.

startLevel The target start level.

REST Management Service Specification Version 1.0 org.osgi.service.rest.client

OSGi Enterprise Release 7 Page 665

□ Set the start level for a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.21 public void setBundleStartLevel(String bundlePath, int startLevel) throws Exception

bundlePath Addresses the bundle by its URI path.

startLevel The target start level.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.22 public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception

startLevel set the framework start level to this target.

□ Sets the current framework start level.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.23 public void startBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.24 public void startBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Start a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.25 public void startBundle(long id, int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.start(int)

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.26 public void startBundle(String bundlePath, int options) throws Exception

bundlePath Addresses the bundle by its URI path.

options Passes additional options as defined in org.osgi.framework.Bundle.start(int)

□ Start a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.27 public void stopBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.28 public void stopBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Stop a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

org.osgi.service.rest.client REST Management Service Specification Version 1.0

Page 666 OSGi Enterprise Release 7

137.11.2.29 public void stopBundle(long id, int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.stop(int)

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.30 public void stopBundle(String bundlePath, int options) throws Exception

bundlePath Addresses the bundle by its URI path.

options Passes additional options as defined in org.osgi.framework.Bundle.stop(int)

□ Stop a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.31 public BundleDTO uninstallBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Uninstall a bundle given by its bundle Id.

Returns Returns the BundleDTO of the uninstalled bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.32 public BundleDTO uninstallBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Uninstall a bundle given by its URI path.

Returns Returns the BundleDTO of the uninstalled bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.33 public BundleDTO updateBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Updates a bundle given by its bundle Id using the bundle-internal update location.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.34 public BundleDTO updateBundle(long id, String url) throws Exception

id Addresses the bundle by its identifier.

url The URL whose content is to be used to update the bundle.

□ Updates a bundle given by its URI path using the content at the specified URL.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.35 public BundleDTO updateBundle(long id, InputStream in) throws Exception

id Addresses the bundle by its identifier.

in Passes an input stream to the new bundle content.

□ Updates a bundle given by its bundle Id and passing the new bundle content in the form of an In-
putStream.

Returns Returns the BundleDTO of the updated bundle.

REST Management Service Specification Version 1.0 JavaScript Client API

OSGi Enterprise Release 7 Page 667

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.3 public interface RestClientFactory
Factory to construct new REST client instances. Each instance is specific to a REST service endpoint.

Implementations can choose to extend this interface to add additional creation methods, where ad-
ditional arguments are needed for request signing, etc.

In OSGi environments, this factory is registered as a service.

Provider Type Consumers of this API must not implement this type

137.11.3.1 public RestClient createRestClient(URI uri)

uri The URI to the REST service endpoint.

□ Create a new REST client instance.

Returns A new REST client instance for the specified REST service endpoint.

137.12 JavaScript Client API
REST JavaScript Client API Version 1.0

137.12.1 Summary

• OSGiRestCl ient - A JavaScript client API for accessing and managing a remote OSGi framework
through the REST API.

• OSGiRestCal lback - Callback object provided to the OSGiRestCl ient functions. Invoked on com-
pletion of the remote invocation.

JavaScript does not support the concept of interfaces and therefore implementations of the
JavaScript client specification can provide objects of any type as long as they conform to the to the
signatures described in this specification.

To facilitate documenting the JavaScript APIs Web IDL is used; see [2] Web IDL. This clarifies the ac-
cepted arguments and return types for otherwise untyped functions. Web IDL is only used for docu-
mentation purposes and has no bearing on the implementation of this API.

Note: some data types in Web IDL have slightly different names than commonly used in languages
like Java or JavaScript. For example a Str ing is called DOMString and the equivalent of a Java long is
called long long . Additionally, when a representation as defined in this specification is passed to one
of the JavaScript client APIs this representation is provided as a JavaScript object. Following the rec-
ommendations for mapping these to Web IDL, these JavaScript Object parameters are described us-
ing the dict ionary data type. For more information see the Web IDL specification.

137.12.2 interface OSGiRestClient
Provides a JavaScript client API for accessing and managing a remote OSGi framework through the
REST API. Implementations will provide a proprietary constructor to create objects of this signa-
ture. Once created the object can be used from JavaScript environments to manage the framework.

137.12.2.1 void getBundle((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation as JavaScript object.

□ Get the Bundle representation of a specific bundle.

JavaScript Client API REST Management Service Specification Version 1.0

Page 668 OSGi Enterprise Release 7

137.12.2.2 void getBundleHeader((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle Header representation as JavaScript object.

□ Get the Bundle Header representation of a specific bundle.

137.12.2.3 void getBundleRepresentations(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle Representations List representation as JavaScript object.

□ List the bundles details.

137.12.2.4 void getBundles(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle List representation as JavaScript object.

□ List the bundles.

137.12.2.5 void getBundleStartLevel((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle Start Level representation as JavaScript object.

□ Get the Bundle Start Level representation of a specific bundle.

137.12.2.6 void getBundleState((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object.

□ Get the Bundle State representation of a specific bundle.

137.12.2.7 void getFrameworkStartLevel(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Framework Start Level representation as JavaScript object.

□ Obtain the Framework Start Level.

137.12.2.8 void getService((DOMString or long long) service, OSGiRestCallback cb)

service The service, either the numeric service ID or the service URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Service representation as JavaScript object.

□ Get a service representation.

137.12.2.9 void getServiceRepresentations(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Service Representations List representation as JavaScript object.

□ Get all services representations.

137.12.2.10 void getServices(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Service List representation as JavaScript object.

REST Management Service Specification Version 1.0 JavaScript Client API

OSGi Enterprise Release 7 Page 669

□ Get all services URIs.

137.12.2.11 void installBundle((DOMString or ArrayBuffer) bundle, OSGiRestCallback cb)

bundle The Bundle to install, either represented as a URL or as an ArrayBuffer of

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation of the newly installed Bundle. This parameter is optional.

□ Install a bundle from a URI or by value.

137.12.2.12 void setBundleStartLevel((DOMString or long long) bundle, dictionary bsl, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

bsl A Bundle Start Level representation dictionary with the desired state.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the resulting Framework Start Level representation as JavaScript object. This parame-
ter is optional.

□ Change the Framework Start Level and/or initial bundle start level.

137.12.2.13 void setBundleState((DOMString or long long) bundle, dictionary state, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

state Bundle State representation dictionary with the desired state.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the resulting Bundle Start Level representation as JavaScript object. This parameter is
optional.

□ Change the Bundle Start Level and/or other options defined in the Bundle Start Level representa-
tion.

137.12.2.14 void setFrameworkStartLevel(dictionary fwsl, OSGiRestCallback cb)

fwsl Framework Start Level representation dictionary with the desired state.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the resulting Framework Start Level representation as JavaScript object. This parame-
ter is optional.

□ Change the Framework Start Level and/or initial bundle start level.

137.12.2.15 void startBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

options The options passed to the bundle's start method as a number. This parameter is optional.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object. This parameter is optional.

□ Start a bundle.

137.12.2.16 void stopBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

options The options passed to the bundle's start method as a number. This parameter is optional.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object. This parameter is optional.

□ Stop a bundle.

References REST Management Service Specification Version 1.0

Page 670 OSGi Enterprise Release 7

137.12.2.17 void uninstallBundle((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation of the uninstalled Bundle. This parameter is optional.

□ Uninstall a bundle.

137.12.2.18 void updateBundle((DOMString or long long) bundle, (DOMString or ArrayBuffer) updated,
OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

updated The Bundle to update, either represented as a URL or as an ArrayBuffer of

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation of the updated Bundle. This parameter is optional.

□ Update a bundle from a URI or by value.

137.12.3 callback interface OSGiRestCallback
Objects implementing this signature are provided by users of the OSGiRestCl ient as callbacks. One
of the callback functions is invoked on completion of a REST invocation.

137.12.3.1 void success(object response)

response The result of the invocation. The type of this parameter is depends on the function being invoked. It
can be found in the documentation of the function.

□ Called when the invocation completes successfully.

137.12.3.2 void failure(short httpCode, object response)

httpCode The HTTP code returned. If no HTTP code is associated with the failure this parameter is set to -1 .

response The failure response.

□ Called when the invocation failed.

137.13 References

[1] Framework Filter Syntax
OSGi Core, Chapter 3.2.7 Filter Syntax

[2] Web IDL
http://www.w3.org/TR/WebIDL/

[3] OSGi XML Schemas
https://www.osgi.org/developer/specifications/

[4] Whiteboard Pattern
https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

http://www.w3.org/TR/WebIDL/
https://www.osgi.org/developer/specifications/
https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

Asynchronous Service Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 671

138 Asynchronous Service
Specification

Version 1.0

138.1 Introduction
OSGi Bundles collaborate using loosely coupled services registered in the OSGi service registry. This
is a powerful and flexible model, and allows for the dynamic replacement of services at runtime. OS-
Gi services are therefore a very common interaction pattern within OSGi.

As with most Java APIs and Objects, OSGi services are primarily synchronous in operation. This has
several benefits; synchronous APIs are typically easier to write and to use than asynchronous ones;
synchronous APIs provide immediate feedback; synchronous implementations typically have a less
complex threading model.

Asynchronous APIs, however, have different advantages. Asynchronous APIs can reduce bottle-
necks by encouraging more effective use of parallelism, improving the responsiveness of the ap-
plication. In many cases high throughput systems can be written more simply and elegantly using
asynchronous programming techniques.

The Promises Specification on page 929 provides powerful primitives for asynchronous program-
ming, including the ability to compose flows in a functional style. There are, however, many exist-
ing services that do not use the Promise API. The purpose of the Asynchronous Service is to bridge
the gap between these existing, primarily synchronous, services in the OSGi service registry, and
asynchronous programming. The Asynchronous Service therefore provides a way to invoke arbi-
trary OSGi services asynchronously, providing results and failure notifications through the Promise
API.

138.1.1 Essentials

• Async Invocation - A single method call that is to be executed without blocking the requesting
thread.

• Client - Application code that wishes to invoke one or more OSGi services asynchronously.
• Async Service - The OSGi service representing the Asynchronous Services implementation. Used

by the Client to make one or more Async Invocations.
• Async Mediator - A mediator object created by the Async Service which represents the target ser-

vice. Used by the Client to register Async Invocations.
• Success Callback - A callback made when an Async Invocation completes with a normal return

value.
• Failure Callback - A callback made when an Async Invocation completes with an exception.

138.1.2 Entities

• Async Service - A service that can create Async Mediators and run Async Invocations.
• Target Service - A service that is to be called asynchronously by the Client.
• Client - The code that makes Async Invocations using the Async Service

Usage Asynchronous Service Specification Version 1.0

Page 672 OSGi Enterprise Release 7

• Promise - A promise, representing the result of the Async Invocation.

Figure 138.1 Class and Service overview

Target ServiceClient

Async Impl

Async

<<interface>>
MyService

138.2 Usage
This section is an introduction in the usage of the Async Service. It is not the formal specification,
the normative part starts at Async Service on page 675. This section leaves out some of the details
for clarity.

138.2.1 Synopsis
The Async Service provides a mechanism for a client to asynchronously invoke methods on a target
service. The service may be aware of the asynchronous nature of the call and actively participate
in it, or be unaware and execute normally. In either case the client's thread will not block, and will
continue executing its next instructions. Clients are notified of the completion of their task, and
whether it was successful or not, through the use of the Promise API.

Each async invocation is registered by the client making a method call on an Async Mediator, and
then started by making a call to the Async Service that created the mediator. This call returns a
Promise that will eventually be resolved with the return value from the async invocation.

An Async Mediator can be created by the client, either from an Object, or directly from a Service
Reference. Using a service reference has the advantage that the mediator will track the underlying
service. This means that if the service is unregistered before the asynchronous call begins then the
Promise will resolve with a failure, rather than continuing using an invalid service object.

138.2.2 Making Async Invocations
The general pattern for a client is to obtain the Async Service, and a service reference for the target
service. The client then creates an Async Mediator for the target service, invokes a method on the
mediator, then starts the asynchronous call. This is demonstrated in the following example:

private Async asyncService;
private ServiceReference<Foo> fooRef;
private Foo mediated;

@Reference
void setAsync(Async async) {

Asynchronous Service Specification Version 1.0 Usage

OSGi Enterprise Release 7 Page 673

 asyncService = async;
}

@Reference(service = Foo.class)
void setList(ServiceReference<Foo> foo) {
 fooRef = foo;
}

@Activate
void start() {
 mediated = asyncService.mediate(fooRef, Foo.class);
}

public synchronized void doStuff() {
 Promise<Boolean> promise = asyncService
 .call(mediated.booleanMethod(“aValue”));
 ...
}

This example demonstrates how simply clients can make asynchronous calls using the Async Ser-
vice. The eventual result can be obtained from the promise using one of the relevant callbacks.

One important thing to note is that whilst the call to cal l () or cal l (R) causes the async invocation to
begin, the actual execution of the underlying task may be queued until a thread is available to run
it. If the service has been unregistered before the execution actually begins then the promise will be
resolved with a Service Exception. The type of the Service Exception will be ASYNC_ERROR .

138.2.3 Async Invocations of Void Methods
The return value of the mediator method call is used to provide type information to the Async Ser-
vice. This, however, does not work for void methods that have no return value. In this case the client
can either pass an arbitrary object to the cal l (R) method, or use the zero argument cal l () method. In
either case the returned promise will eventually resolve with a value of nul l . This is demonstrated in
the following example.

private Async asyncService;
private ServiceReference<Foo> fooRef;
private Foo mediated;

@Reference
void setAsync(Async async) {
 asyncService = async;
}

@Reference(service = Foo.class)
void setList(ServiceReference<Foo> foo) {
 fooRef = foo;
}

@Activate
void start() {
 mediated = asyncService.mediate(fooRef, Foo.class);
}

Usage Asynchronous Service Specification Version 1.0

Page 674 OSGi Enterprise Release 7

public synchronized void doStuff() {
 mediated.voidMethod();
 Promise<?> promise = asyncService
 .call();
 ...
}

138.2.4 Fire and Forget Calls
Sometimes a client does not require any notification that an async invocation has completed. In
this case the client could use one of the cal l () or cal l (R) methods and simply discard the returned
Promise object. This, however, can be wasteful of resources. The act of resolving the Promise object
may be expensive, for example it may involve serializing the return value over a network if the re-
mote call was asynchronous.

If the client knows that no Promise object representing the result of the asynchronous task is need-
ed then it can signal this to the Async Service. This allows the Async Service to better optimize the
async invocation by not providing a result.

To indicate that the client wants to make a fire-and-forget style call the client invokes the mediator
as normal, but then begins the asynchronous invocation using the execute() method as show below.

private Async asyncService;
private ServiceReference<Foo> fooRef;

private Foo mediated;

@Reference
void setAsync(Async async) {
 asyncService = async;
}

@Reference(service = Foo.class)
void setList(ServiceReference<Foo> foo) {
 fooRef = foo;
}

@Activate
void start() {
 mediated = asyncService.mediate(fooRef, Foo.class);
}

public synchronized void doStuff() {
 mediated.someMethod();
 asyncService.execute();
 ...
}

Note that the execute() method does still return a Promise. This Promise is not the same as the ones
returned by cal l () or cal l (R) , its resolution value does not provide access to the result, but instead in-
dicates whether the fire-and-forget call could be successfully started. If there is a failure which pre-
vents the task from being executed then this is used to fail the returned promise.

Asynchronous Service Specification Version 1.0 Async Service

OSGi Enterprise Release 7 Page 675

138.2.5 Multi Threading
By their very definition asynchronous tasks do not run inline, and typically they will not run on the
same thread as the caller. This is not, however, a guarantee. A valid implementation of the Async
Service may have only one worker thread, which may be the thread currently running in the client
code. Async invocations also have the same threading model as the Promise API. This means that
callbacks may run on arbitrary threads, which may, or may not, be the same as the client thread, or
the thread which executed the asynchronous work.

It is important for multi-threaded clients to note that calls to the mediator and Async Service must
occur on the same thread. For example it is not supported to invoke a mediator using one thread,
and then to begin the async invocation by calling the cal l () , cal l (R) or execute() method on a differ-
ent thread.

138.3 Async Service
The Async Service is the primary interaction point between a client and the Async Service imple-
mentation. An Async Service implementation must expose a service implementing the Async inter-
face. Clients obtain an instance of the Async Service using the normal OSGi service registry mecha-
nisms, either directly using the OSGi framework API, or using dependency injection.

The Async Service is used to:

• Create async mediators
• Begin async invocations
• Obtain Promise objects representing the result of the async invocation

138.3.1 Using the Async Service
The first action that a client wishing to make an async invocation must take is to create an async
mediator using one of the mediate methods. Once created the client invokes the method that
should be run asynchronously, supplying the arguments that should be used. This call records the
invocation, but does not start the asynchronous task. The asynchronous task begins when the client
invokes one of the cal l or execute methods on the Async Service. The cal l methods must return a
Promise representing the async invocation. The promise must resolve with the value returned by
the async invocation, or fail with the failure thrown by the async invocation.

If the client attempts to begin an async invocation without first having called a method on the me-
diator object then the Async Service must detect this usage error and throw an I l legalStateExcep-
t ion to the client. This applies to all methods that begin an async invocation.

138.3.2 Asynchronous Failures
There are a variety of reasons that async invocations may be started correctly by the client, but then
fail without running the asynchronous task. In any of these cases the Promise representing the
async invocation must fail with a Service Exception. This Service Exception must be initialized with
a type of ASYNC_ERROR . If there is no promise representing the async invocation then there is no
way to notify the client of the failure, therefore the Service Exception must be logged by the Async
Service using all available Log Service implementations.

The following list of scenarios is not exhaustive, but indicates failure scenarios that must result in a
Service Exception with a type of async

• If the client is using a service reference backed mediator and the client bundle's bundle context
becomes invalid before looking up the target service.

• If the client is using a service reference backed mediator and the service is unregistered before
making the async invocation.

The Async Mediator Asynchronous Service Specification Version 1.0

Page 676 OSGi Enterprise Release 7

• If the client is using a service reference backed mediator and the service lookup returns nul l
• If the Async Service is unable to accept new work, for example it is in the process of being shut

down.
• If the type of the mediator object does not match the type of the service object to be invoked.

138.3.3 Thread Safety and Instance Sharing
Implementations of the Async Service must be thread safe and may be used simultaneously across
multiple clients and from multiple threads within the same client. Whilst the Async Service is able
to be used across multiple threads, if a client wishes to make an async invocation then the call to the
mediator and the call to begin the async invocation must occur on the same thread. The returned
Promise may then be shared between threads if required.

It is expected, although not required, that the Async Service implementation will use a Service Fac-
tory to create customized implementations for each client bundle. This simplifies the tracking of
the relevant client bundle context to use when performing service lookups on the client bundle's
behalf. Clients should therefore not share instances of the Async Service with other bundles. Instead
both bundles should obtain their own instances from the service registry.

138.3.4 Service Object Lifecycle Management
If the Async Service is being used to call an OSGi service object and the service reference is available
then the service object should be looked up immediately before the asynchronous task begins ex-
ecuting. This ensures that the service is still available at the point it is eventually called. Any call
to getService must have a corresponding call to ungetService after the mediated method invoked
has returned and, if available, the promise is resolved, but before the asynchronous task releases its
thread of execution.

138.4 The Async Mediator
Async mediators are dynamically created objects that have the same type or interface as the object
being mediated, and are used to record method invocations and arguments. Mediator objects are
specific to an Async Service implementation, and must only be used in conjunction with the Async
Service object that they were created by.

Mediators may be created either from a ServiceReference or from a service object. The actions and
overall result are similar for both the mediate(ServiceReference,Class) and mediate(T,Class) meth-
ods, with the primary difference being that mediated objects created from a ServiceReference will
validate whether the service object is still available immediately before the asynchronous task is ex-
ecuted.

138.4.1 Building the Mediator Object
The client passes in a Class indicating the type that should be mediated. If the class object represents
an interface type then the generated mediator object must implement that interface. If the class ob-
ject represents a Java class type then the mediator object must either be an instance of that type or
extend it.

When building a mediator object the Async Service has the opportunity to detect numerous prob-
lems, for example if the referenced service to be mediated has been unregistered. Although fail-fast
behavior is usually preferable, in this case it would force the client to handle errors in two places;
both when creating the mediator, and for the returned Promise. To simplify client usage, error cases
detected when creating a mediator must not prevent the mediator from being created and must not
result in an exception being thrown. The only reason that the Async Service may fail to create a me-
diator is if the class object passed in cannot be mediated.

There are three reasons why the Async Service may not be able to mediate a class type:

Asynchronous Service Specification Version 1.0 Fire and Forget Invocations

OSGi Enterprise Release 7 Page 677

• The class object passed in represents a final type.
• The class object passed in represents a type that has no zero-argument constructor.
• The class object passed in represents a type which has one or more public final methods present

in its type hierarchy (other than those declared by java. lang.Object).

If any of these constraints are violated and prevent the Async Service from creating a mediator then
the Async Service must throw an IllegalArgumentException.

138.4.2 Async Mediator Behaviors
When invoked, the Async mediator must record the method call, and its arguments, and then re-
turn rapidly and should avoid performing blocking operations. The values returned by the mediator
object are opaque, and the client should not attempt to interpret the returned value. The value may
be null (or null-like in the case of primitives) or contain implementation specific information. If the
mediated method call has a return type, specifically it is non-void, then this object must be passed to
the Async Service's cal l method when beginning the async invocation

Async mediators should make a best-effort attempt to detect incorrect API usage from the client. If
this incorrect usage is detected then the mediator object must throw an IllegalStateException when
invoked. An example of incorrect usage that must be detected is when a client makes multiple invo-
cations on a single mediator object from the same thread without making any calls to the Async Ser-
vice.

After a usage error has been detected and an IllegalStateException has been thrown the mediator ob-
ject must be reset so that a subsequent invocation from the client thread can proceed normally.

138.4.3 Thread Safety and Instance Sharing
Async mediators, like instances of the Async Service, are required to be thread safe. Clients may
therefore share mediator objects across threads, and can safely store them as instance fields. Whilst
mediators are thread safe, if a client wishes to make an async invocation then the call to the media-
tor and the call to cal l () or cal l (R) must occur on the same thread. The returned Promise may then be
shared between threads if required.

Async mediators created from ServiceReference objects remain directly associated with the service
reference and client bundle after creation. Clients should therefore not share mediator objects with
other bundles. Instead each bundle should create its own mediator.

138.5 Fire and Forget Invocations
The Async Service provides cal l () and cal l (R) methods for clients to use when they wish to receive
results from asynchronous tasks. Clients that do not need the result can simply discard the returned
Promise object. This, however, can be wasteful of resources. The act of resolving the Promise object
may be expensive, for example it may involve serializing the return value over a network.

To address this use case the Async Service provides the execute() method, which behaves similarly
to cal l () and cal l (R) , but does not provide access to the eventual result. Instead the execute() method
returns a Promise that indicates whether the fire-and-forget call is able to be successfully started.

The returned Promise must be resolved with nul l if the asynchronous task begins executing success-
fully. There is no happens-before relationship required, meaning that if the Promise resolves success-
fully then the task may, or may not, have started or finished. The primary usage of the Promise is ac-
tually to detect failures. If the fire-and-forget task cannot be executed for some reason, for example
the backing service has been unregistered, then the returned promise must be failed appropriately
using the same rules as defined in Asynchronous Failures on page 675. If the returned Promise is
failed then the fire-and-forget task has not executed and will not execute in the future.

Delegating to Asynchronous Implementations Asynchronous Service Specification Version 1.0

Page 678 OSGi Enterprise Release 7

138.6 Delegating to Asynchronous Implementations
Some service APIs are already asynchronous in operation, and others are partly asynchronous, in
that some methods run asynchronously and others do not. There are also services which have a syn-
chronous API, but could run asynchronously because they are a proxy to another service. A good
example of this kind of service is a remote service. Remote services are local views of a remote end-
point, and depending upon the implementation of the endpoint it may be possible to make the re-
mote call asynchronously, optimizing the thread usage of any local asynchronous call.

Services that already have some level of asynchronous support may advertise this to clients and to
the Async Service by having their service object be an instanceof AsyncDelegate . The service object
can be cast to AsyncDelegate to be used by the Async Service implementation, or by the client di-
rectly, to make an asynchronous call on the service.

Because the Async Delegate behavior is transparently handled by the Async Service, clients of the
Async Service do not need to know whether the service object is an instanceof AsyncDelegate or
not. Their usage pattern can remain unchanged.

When making an async invocation, the Async Service must check to see whether the service ob-
ject is an instanceof AsyncDelegate . If the service object is an instanceof AsyncDelegate , then the
Async Service must attempt to delegate the asynchronous call. The exact delegation operation de-
pends on whether a Promise result is required.

138.6.1 Obtaining a Promise from an Async Delegate
If the result of the method invocation is needed by the client, then the Async Service must attempt
to delegate to the async(Method,Object[]) method. The delegation proceeds as follows:

• If the call to the Async Delegate returns a Promise, then the Promise returned by the Async Ser-
vice must be resolved with that Promise.

• If the call to the Async Delegate throws an exception, then the Promise returned by the Async
Service must be failed with the exception.

• If the Async Delegate is unable to optimize the call and returns nul l from the
async(Method,Object[]) method, the Async Service must continue processing the async invoca-
tion, treating the service as a normal service object.

138.6.2 Delegating Fire and Forget Calls to an Async Delegate
If the result of the method invocation is not needed by the client, then the Async Service must at-
tempt to delegate to the execute(Method,Object[]) method. This gives the Async Delegate imple-
mentation the opportunity to further optimize its processing. The delegation proceeds as follows:

• If the call to the Async Delegate returns true , then the Promise returned by the Async Service
must be resolved with nul l .

• If the call to the Async Delegate throws an exception, then the Promise returned by the Async
Service must be failed with the exception.

• If the Async Delegate is unable to optimize the call and returns fa lse from the
execute(Method,Object[]) method, the Async Service must continue processing the async invo-
cation, treating the service as a normal service object.

138.6.3 Lifecycle for Service Objects When Delegating
If an Async Delegate implementation accepts an asynchronous task, via a call to either
execute(Method,Object[]) or async(Method,Object[]) , then it is responsible for continuing to
process the work until completion. This means that if the service implementing Async Delegate is
unregistered for some reason, then the task must be properly cleaned up and succeed or fail as ap-
propriate.

Asynchronous Service Specification Version 1.0 Capabilities

OSGi Enterprise Release 7 Page 679

If the Async Service implementation used a service reference to obtain the service, then it must re-
lease the service object after the task has been accepted. This means that if the service object is pro-
vided by a service factory, then the service object should take extra care not to destroy its internal
state when released. The service object must remain valid until all executing asynchronous tasks as-
sociated with the service object are either completed or failed.

If an Async Delegate implementation rejects an asynchronous task, by returning fa lse or nul l , the
Async Service implementation must take over the asynchronous invocation of the method. In this
case, if the Async Service implementation used a service reference to obtain the service, the Async
Service must not release the service object until the asynchronous task is completed.

If an Async Delegate implementation throws an exception and the Async Service implementation
used a service reference to obtain the service, then the service object must be released immediately.

138.7 Capabilities
Implementations of the Asynchronous Service specification must provide the following capabili-
ties.

• A capability in the osgi . implementation namespace declaring the implemented specification to
be osgi .async . This capability must also declare a uses constraint for the org.osgi .service.async
and org.osgi .service.async.delegate packages. For example:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.async";
 version:Version="1.0";
 uses:="org.osgi.service.async,org.osgi.service.async.delegate"

This capability must follow the rules defined for the osgi.implementation Namespace on page 635.
• A capability in the osgi .service namespace representing the Async service. This capability must

also declare a uses constraint for the org.osgi .service.async package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.async.Async";
 uses:="org.osgi.service.async"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

138.8 Security
Asynchronous Services implementations must be careful to avoid elevating the privileges of client
bundles when calling services asynchronously, and also to avoid restricting the privileges of clients
that are permitted to make a call. This means that the implementation must:

• Be granted AllPermission . As the Async Service will always be on the stack when invoking a ser-
vice object asynchronously it must be granted AllPermission so that it does not interfere with se-
curity any checks made by the service object.

• Establish the caller's AccessControlContext in a worker thread before starting to call the service
object. This prevents a bundle from being able to call a service asynchronously that it would not
normally be able to call. The AccessControlContext must be collected during any call to cal l () ,
cal l (R) or execute() .

• Use a doPriv i leged block when mediating a concrete type. A no-args constructor in a concrete
type may perform actions that the client may not have permission to perform. This should not

org.osgi.service.async Asynchronous Service Specification Version 1.0

Page 680 OSGi Enterprise Release 7

prevent the client from mediating the object, as the client is not directly performing these ac-
tions.

• If the mediator object was created using a service reference, then the Async Services implementa-
tion must use the client's bundle context when retrieving the target service. If the service lookup
occurs on a worker thread, then the lookup must use the AccessControlContext collected dur-
ing the call to cal l () , cal l (R) or execute() . This prevents the client bundle from being able to make
calls on a service object that they do not have permission to obtain, and ensures that an appropri-
ately customized object is returned if the service is implemented using a service factory.

Further security considerations can be addressed using normal OSGi security rules. For example ac-
cess to the Async Service can be controlled using ServicePermission[. . .Async, GET] .

138.9 org.osgi.service.async

Asynchronous Services Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.async; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.async; vers ion="[1.0,1.1)"

138.9.1 Summary

• Async - The Asynchronous Execution Service.

138.9.2 public interface Async
The Asynchronous Execution Service. This can be used to make asynchronous invocations on OSGi
services and objects through the use of a mediator object.

Typical usage:

 Async async = ctx.getService(asyncRef);

 ServiceReference<MyService> ref = ctx.getServiceReference(MyService.class);

 MyService mediator = async.mediate(ref, MyService.class);

 Promise<BigInteger> result = async.call(mediator.getSumOverAllValues());

The Promise API allows callbacks to be made when asynchronous tasks complete, and can be used
to chain Promises.

Multiple asynchronous tasks can be started concurrently, and will run in parallel if the Async Ser-
vice has threads available.

Provider Type Consumers of this API must not implement this type

138.9.2.1 public Promise<R> call(R r)

Type Parameters <R>

r The return value of the mediated call, used for type information.

Asynchronous Service Specification Version 1.0 org.osgi.service.async

OSGi Enterprise Release 7 Page 681

□ Invoke the last method call registered by a mediated object as an asynchronous task. The result of
the task can be obtained using the returned Promise.

Typically the parameter for this method will be supplied inline like this:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

Returns A Promise which can be used to retrieve the result of the asynchronous task.

138.9.2.2 public Promise<?> call()

□ Invoke the last method call registered by a mediated object as an asynchronous task. The result of
the task can be obtained using the returned Promise.

Generally it is preferable to use call(Object) like this:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

However this pattern does not work for void methods. Void methods can therefore be handled like
this:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 i.voidMethod()
 Promise<?> p = async.call();

Returns A Promise which can be used to retrieve the result of the asynchronous task.

138.9.2.3 public Promise<Void> execute()

□ Invoke the last method call registered by a mediated object as a "fire-and-forget" asynchronous task.
This method should be used by clients in preference to call() and call(Object) when no callbacks, or
other features of Promise, are needed.

The advantage of this method is that it allows for greater optimization of the underlying asyn-
chronous task. Clients are therefore likely to see better performance when using this method com-
pared to using call(Object) or call() and ignoring the returned Promise. The Promise returned by this
method is different from the Promise returned by call(Object) or call(), in that the returned Promise
will resolve when the fire-and-forget task is successfully started, or fail if the task cannot be started.
Note that there is no happens-before relationship and the returned Promise may resolve before or af-
ter the fire-and-forget task starts, or completes.

Typically this method is used like call():

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 i.someMethod()
 Promise<Void> p = async.execute();

Returns A Promise representing whether the fire-and-forget task was able to start.

138.9.2.4 public T mediate(T target, Class<T> iface)

Type Parameters <T>

target The service object to mediate.

iface The type that the mediated object should provide.

org.osgi.service.async.delegate Asynchronous Service Specification Version 1.0

Page 682 OSGi Enterprise Release 7

□ Create a mediator for the specified object. The mediator is a generated object that registers the
method calls made against it. The registered method calls can then be run asynchronously using ei-
ther the call(Object), call(), or execute() method.

The values returned by method calls made on a mediated object are opaque and should not be inter-
preted.

Normal usage:

 I s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

Returns A mediator for the service object.

Throws I l legalArgumentException– If the type represented by iface cannot be mediated.

138.9.2.5 public T mediate(ServiceReference<? extends T> target, Class<T> iface)

Type Parameters <T>

target The service reference to mediate.

iface The type that the mediated object should provide.

□ Create a mediator for the specified service. The mediator is a generated object that registers the
method calls made against it. The registered method calls can then be run asynchronously using ei-
ther the call(Object), call(), or execute() method.

The values returned by method calls made on a mediated object are opaque and should not be inter-
preted.

This method differs from mediate(Object, Class) in that it can track the availability of the specified
service. This is recommended as the preferred option for mediating OSGi services as asynchronous
tasks may not start executing until some time after they are requested. Tracking the validity of the
ServiceReference for the service ensures that these tasks do not proceed with an invalid object.

Normal usage:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

Returns A mediator for the service object.

Throws I l legalArgumentException– If the type represented by iface cannot be mediated.

138.10 org.osgi.service.async.delegate

Asynchronous Services Delegation Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package contains only interfaces that are implemented by consumers.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.async.delegate; vers ion="[1.0,2.0)"

138.10.1 Summary

• AsyncDelegate - This interface is used by services to allow them to optimize Asynchronous calls
where they are capable of executing more efficiently.

Asynchronous Service Specification Version 1.0 org.osgi.service.async.delegate

OSGi Enterprise Release 7 Page 683

138.10.2 public interface AsyncDelegate
This interface is used by services to allow them to optimize Asynchronous calls where they are ca-
pable of executing more efficiently.

This may mean that the service has access to its own thread pool, or that it can delegate work to a re-
mote node, or act in some other way to reduce the load on the Asynchronous Services implementa-
tion when making an asynchronous call.

138.10.2.1 public Promise<?> async(Method m, Object[] args) throws Exception

m The method to be asynchronously invoked.

args The arguments to be used to invoke the method.

□ Invoke the specified method as an asynchronous task with the specified arguments.

This method can be used by clients, or the Async Service, to optimize Asynchronous execution of
methods.

When called, this method should invoke the supplied method using the supplied arguments asyn-
chronously, returning a Promise that can be used to access the result.

If the method cannot be executed asynchronously by this method then nul l must be returned.

Returns A Promise representing the asynchronous result, or nul l if this method cannot be asynchronously
invoked.

Throws Exception– An exception should be thrown only if there was a serious error that prevented the asyn-
chronous task from starting. For example, the specified method does not exist on this object. Excep-
tions must not be thrown to indicate that the call does not support asynchronous invocation. In-
stead this method must return nul l . Exceptions must also not be thrown to indicate a failure from
the execution of the underlying method. This must be handled by failing the returned Promise.

138.10.2.2 public boolean execute(Method m, Object[] args) throws Exception

m The method to be asynchronously invoked.

args The arguments to be used to invoke the method.

□ Invoke the specified method as a "fire-and-forget" asynchronous task with the specified arguments.

This method can be used by clients, or the Async Service, to optimize Asynchronous execution of
methods.

When called, this method should invoke the specified method using the specified arguments asyn-
chronously. This method differs from async(Method, Object[]) in that it does not return a Promise.
This method therefore allows the implementation to perform more aggressive optimizations be-
cause the end result of the invocation does not need to be returned to the caller.

If the method cannot be executed asynchronously by this method then fa lse must be returned.

Returns true if the asynchronous execution request has been accepted, or fa lse if this method cannot be
asynchronously invoked by the AsyncDelegate.

Throws Exception– An exception should be thrown only if there was a serious error that prevented the asyn-
chronous task from starting. For example, the specified method does not exist on this object. Excep-
tions must not be thrown to indicate that the call does not support asynchronous invocation. In-
stead this method must return fa lse . Exceptions must also not be thrown to indicate a failure from
the execution of the underlying method.

org.osgi.service.async.delegate Asynchronous Service Specification Version 1.0

Page 684 OSGi Enterprise Release 7

Http Whiteboard Specification Version 1.1 Introduction

OSGi Enterprise Release 7 Page 685

140 Http Whiteboard Specification

Version 1.1

140.1 Introduction
Servlets have become a popular and widely supported mechanism for providing dynamic con-
tent on the Internet. While servlets are defined in the [4] Java Servlet 3.1 Specification, the OSGi Http
Whiteboard Specification provides a light and convenient way of using servlets, servlet filters,
servlet listeners and web resources in an OSGi environment through the use of the [7] Whiteboard
Pattern.

The Http Whiteboard specification supports:

• Registering Servlets - Registering a servlet in the Service Registry makes it available to be bound to
an endpoint to serve content over the network.

• Registering Servlet Filters - Servlet filters support pre- and post-processing of servlet requests and
responses. Servlet filters can be registered in the Service Registry to include them in the handling
pipeline.

• Registering Resources - Resources such as HTML files, JavaScript, image files, and other static re-
sources can be made available over the network by registering resource services.

• Registering Servlet Listeners - The servlet specification defines a variety of listeners, which receive
callbacks when certain events take place.

Implementations of this specification can support the following versions of the HTTP protocol:

• [1] HTTP 1.0 Specification RFC-1945
• [2] HTTP 1.1 Specifications RFCs 7230-7235
• [3] HTTP/2 Specifications

Alternatively, implementations of this service can support other protocols if these protocols can
conform to the semantics of the Java Servlet API.

Http Whiteboard implementations must support version 3.1 or later of the Java Servlet API.

140.1.1 Entities
This specification defines the following entities:

• Http Whiteboard service - An object registered in the Service Registry under one of the Whiteboard
service interfaces defined by this specification.

• Http Whiteboard implementation - An implementation that processes Http Whiteboard services.
• Http Service Runtime service - Service providing runtime introspection into the Http Whiteboard

implementation.
• Listener - Various listeners can be registered to receive notifications about servlet or Http Session

events.
• Resource Service - A service thats binds static resources.
• Servlet - Component that dynamically generates web pages or other resources provided over the

network.

The Servlet Context Http Whiteboard Specification Version 1.1

Page 686 OSGi Enterprise Release 7

• Servlet Context Helper - A service to control the behavior of the Servlet Context.
• Servlet Filter - Can be used to augment or transform web resources or for cross-cutting functional-

ity such as security, common widgets or otherwise.

Figure 140.1 Http Whiteboard Overview Diagram

ServletContextHelper

Servlet

Filter / Pre-processor

Resources Service

Http Whiteboard
implementation

Listeners

Http Service Runtime

140.2 The Servlet Context
The servlet specification defines the ServletContext which is provided to servlets at runtime by the
container. Whiteboard services defined by this specification are also provided with a ServletCon-
text . The behavior of this Servlet Context can be influenced by providing a ServletContextHelper
service. A custom ServletContextHelper can provide resources, mime-types, handle security and
supports a number of methods from the ServletContext .

The Http Whiteboard implementation must create a separate ServletContext instance for each
ServletContextHelper service. Whiteboard services can be associated with the Servlet Context
Helper by using the osgi .http.whiteboard.context.select property. If this property is not set, the de-
fault Servlet Context Helper is used.

To achieve the required behavior for ServletContext.getClassLoader each bundle must be provided
with a separate Servlet Context instance to serve the class loader of the Whiteboard services for that
bundle. For more information see getClassLoader in Table 140.2 on page 689.

Some implementations of the ServletContextHelper may be implemented using a Service Factory,
for example to provide resources from the associated bundle, as the default implementation does.
Therefore the Whiteboard implementation must get the Servlet Context Helper using the Bundle
Context of the bundle that registered the Whiteboard service.

Some environments may use [8] Core Service Hooks to isolate ServletContextHelper service reg-
istrations. For example, Subsystem Service Specification on page 563. The Whiteboard implemen-
tation must check that the bundle registering the Whiteboard service has the ability to find the
ServletContextHelper service before allowing the Whiteboard service to bind to the Servlet Context
Helper. This can be done by calling one of the getServiceReferences methods on the Bundle Context
of bundle that registered the Whiteboard service.

Http Whiteboard Specification Version 1.1 The Servlet Context

OSGi Enterprise Release 7 Page 687

Table 140.1 Service registration properties for ServletContextHelper services.

Service Property Type Description
osgi .http.whiteboard.context.name

name

Str ing

required

Name of the Servlet Context Helper. This name
can be referred to by Whiteboard services via the
osgi .http.whiteboard.context.select property. The syntax of the
name is the same as the syntax for a Bundle Symbolic Name. The
default Servlet Context Helper is named default . To override the
default, register a custom ServletContextHelper service with the
name default . If multiple Servlet Context Helper services are reg-
istered with the same name, the one with the highest Service
Ranking is used. In case of a tie, the service with the lowest ser-
vice ID wins. In other words, the normal OSGi service ranking
applies.

Registrations with an invalid or unspecified name
are not used and reflected in the failure DTOs. See
HTTP_WHITEBOARD_CONTEXT_NAME .

osgi .http.whiteboard.context.path

path

Str ing

required

Additional prefix to the context path for servlets. This prop-
erty is mandatory. Valid characters are specified in IETF RFC
3986, section 3.3. The context path of the default Servlet Con-
text Helper is / . A custom default Servlet Context Helper may
use an alternative path. If the path is invalid or unspecified,
the service is not used and reflected in the failure DTOs. See
HTTP_WHITEBOARD_CONTEXT_PATH .

context. init .* Str ing

optional

Properties starting with this prefix are provided as init pa-
rameters through the ServletContext.getInitParameter
and ServletContext.getInitParameterNames methods. The
context. init . prefix is removed from the parameter name. See
HTTP_WHITEBOARD_CONTEXT_INIT_PARAM_PREFIX .

Multiple ServletContextHelper services can have identical or overlapping
osgi .http.whiteboard.context.path values. A matching servlet or resource is located as follows:

1. The Servlet Context Helper service with the longest matching path is matched first.
2. In the case of two Servlet Context Helpers with the same path, the service with the highest rank-

ing is searched first for a match. In the case of a tie, the lowest service ID is searched first.

For example, if two ServletContextHelper services are registered as follows

osgi.http.whiteboard.context.path = /foo
osgi.http.whiteboard.context.path = /foo/bar

Then a request for http:// localhost/foo/bar/someServlet is looked up in the following order:

1. /foo/bar context looking for a pattern to match /someServlet
2. /foo context looking for a pattern to match /bar/someServlet

Note that whole path segments must match. Therefore the following request can only be han-
dled by the Servlet Context Helper registered under the /foo path: http:// localhost/foo/bars/
someOtherServlet.

For details on the association process between servlet, servlet filter, resource and listener services
and the ServletContextHelper see Common Whiteboard Properties on page 692.

If a Servlet Context Helper can not be used, for example because it is shadowed by another Servlet
Context Helper service with the same name, but with a higher ranking, this is reflected in the
Fai ledServletContextDTO . Similarly, if an alternative default Servlet Context Helper is provided,

The Servlet Context Http Whiteboard Specification Version 1.1

Page 688 OSGi Enterprise Release 7

the default Servlet Context Helper provided by the Http Whiteboard implementation is not used
and represented in a failure DTO.

An example Servlet Context Helper defined using Declarative Services annotations can be found be-
low, it prefixes the path with /myapp for any associated whiteboard service. Additionally, it serves
static resources from a non-standard location, a content delivery network. Other methods use the
default ServletContextHelper implementation.

@Component(service = ServletContextHelper.class, scope = ServiceScope.BUNDLE)
@HttpWhiteboardContext(name = "my-context", path = "/myapp")
public class CDNServletContextHelper extends ServletContextHelper {
 public URL getResource(String name) {
 try {
 return new URL("http://acmecdn.com/myapp/" + name);
 } catch (MalformedURLException e) {
 return null;
 }
 }
}

The following sections outline the methods a custom ServletContextHelper can override and the
behavior of the default implementation.

140.2.1 String getMimeType(String)
Called to provide the MIME type for a resource.

Default Behavior - Always returns nul l .

140.2.2 String getRealPath(String)
Called to support the ServletContext.getRealPath method.

Default Behavior - Always returns nul l .

140.2.3 URL getResource(String)
Obtain a URL for a given resource request.

Default Behavior - Assumes the resources are in the bundle registering the Whiteboard service.
Its Bundle.getEntry method is called to obtain a URL to the resource. The default Servlet Context
Helper implementation assumes the path to be relative to the bundle's root.

140.2.4 Set<String> getResourcePaths(String)
Called to support the ServletContext.getResourcePaths method. Returns all the matching resources
for the path.

Default Behavior - Assumes the resources are in the bundle registering the Whiteboard service. Its
Bundle.f indEntr ies method is called to obtain the listing.

140.2.5 Security Handling
The
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse)
method is invoked to handle implementation-defined security on the request. It is invoked before
the request is sent to the filter-servlet pipeline.

When the request returns from the filter-servlet pipeline the
f in ishSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse)
method is called. This method can be used by the security handling mechanism to clean up any con-
text associated with the current request. f in ishSecurity is only called if handleSecurity returned true

Http Whiteboard Specification Version 1.1 The Servlet Context

OSGi Enterprise Release 7 Page 689

for the specified request. If an exception occurs during processing of the pipeline, f in ishSecurity is
still called. This allows to clean up regardless of the result of the pipeline.

In the case a request is dispatched either using the include or forward method handleSecurity and
f in ishSecurity are called again on this new context. These calls are nested within the originating re-
quest. Servlet Context Helpers that implement these methods must be prepared to deal with such
nested invocations.

Default Behavior - handleSecurity always returns true . f in ishSecurity does nothing by default.

140.2.6 Behavior of the Servlet Context
The ServletContext provided to Whiteboard services is based on the associated ServletContex-
tHelper , Whiteboard service registration properties and the underlying servlet container.

Methods to programmatically add servlets, servlet filters and listeners are not supported on the
ServletContext . Such functionality is available by registering these entities as Whiteboard services.

Table 140.2 Behavior of ServletContext methods.

ServletContext method Since Description
addFi lter(. . .) 3.0 Throws UnsupportedOperationException .
addListener(. . .) 3.0 Throws UnsupportedOperationException .
addServlet(. . .) 3.0 Throws UnsupportedOperationException .
createFi l ter(Class) 3.0 Throws UnsupportedOperationException .
createListener(Class) 3.0 Throws UnsupportedOperationException .
createServlet(Class) 3.0 Throws UnsupportedOperationException .
declareRoles(Str ing . . .) 3.0 Throws UnsupportedOperationException .
getAttr ibute(Str ing) 2.0 Stored per ServletContextHelper . The Servlet

Context keeps a set of attributes per Servlet Con-
text Helper.

getAttr ibuteNames() 2.1 Stored per ServletContextHelper . The Servlet
Context keeps a set of attributes per Servlet Con-
text Helper.

getClassLoader() 3.0 Returns the class loader of the bundle that regis-
tered the Whiteboard service. An implementa-
tion of this specification can achieve this by re-
turning separate façades of the ServletContext
to each Whiteboard service. Each façade access-
es the Whiteboard service's Bundle Wiring to ob-
tain its class loader.

getContext(Str ing) 2.1 Backed by the Servlet Container.
getContextPath() 2.5 Return the web context path of the Servlet

Context. This takes into account the
osgi .http.whiteboard.context.path of the Servlet
Context Helper and the path of the Http runtime.

getDefaultSessionTrackingModes() 3.0 Backed by the Servlet Container.
getEffect iveMajorVersion() 3.0 Backed by the Servlet Container.
getEffect iveMinorVersion() 3.0 Backed by the Servlet Container.
getEffect iveSessionTracking-
Modes()

3.0 Backed by the Servlet Container.

getFi l terRegistrat ion(Str ing) 3.0 Backed by the Servlet Container.
getFi l terRegistrat ions() 3.0 Backed by the Servlet Container.
getInitParameter(Str ing) 2.2 From context. init .* service registration proper-

ties.

The Servlet Context Http Whiteboard Specification Version 1.1

Page 690 OSGi Enterprise Release 7

ServletContext method Since Description
getInitParameterNames() 2.2 From context. init .* service registration proper-

ties.
getJspConfigDescr iptor() 3.0 Returns nul l .
getMajorVersion() 2.1 Backed by the Servlet Container.
getMimeType(Str ing) 2.1 Backed by the ServletContextHelper .
getMinorVersion() 2.1 Backed by the Servlet Container.
getNamedDispatcher(Str ing) 2.2 Provides the Whiteboard servlet with the

specified name, provided through the
osgi .http.whiteboard.servlet .name property, if
associated with this Servlet Context Helper. If
multiple servlets have the same name and are as-
sociated with this Servlet Context Helper then
the highest ranked servlet is used. In the case of a
tie, the one with the lowest service ID is used.

getRealPath(Str ing) 2.0 Backed by the ServletContextHelper .
getResource(Str ing) 2.1 Backed by the ServletContextHelper .
getRequestDispatcher(Str ing) 2.1 If the argument matches a servlet associated with

this Servlet Context Helper, this will be returned.
getResourceAsStream(Str ing) 2.1 Backed by the ServletContextHelper .
getResourcePaths(Str ing) 2.3 Backed by the ServletContextHelper .
getServlet(Str ing) 2.0 Deprecated. Backed by the Servlet Container.
getServletContextName() 2.2 The name of the ServletContextHelper provided

via the osgi .http.whiteboard.context.name ser-
vice property.

getServletNames() 2.0 Deprecated. Backed by the Servlet Container.
getServletRegistrat ion(Str ing) 3.0 Backed by the Servlet Container.
getServletRegistrat ions() 3.0 Backed by the Servlet Container.
getServlets() 2.0 Deprecated. Backed by the Servlet Container.
getServerInfo() 2.0 Backed by the Servlet Container.
getSessionCookieConfig() 3.0 Returns a SessionCookieConfig object. This ob-

ject is read-only and all setters throw a I l legalSta-
teException .

getVirtualServerName() 3.1 Backed by the Servlet Container.
log(Str ing) 2.0 Backed by the Servlet Container.
log(Exception, Str ing) 2.0 Deprecated. Backed by the Servlet Container.
log(Str ing, Throwable) 2.1 Backed by the Servlet Container.
removeAttr ibute(Str ing) 2.1 Stored per ServletContextHelper . The Servlet

Context keeps a set of attributes per Servlet Con-
text Helper.

setAttr ibute(Str ing, Object) 2.1 Stored per ServletContextHelper . The Servlet
Context keeps a set of attributes per Servlet Con-
text Helper.

setInitParameter(Str ing, Str ing) 3.0 Throws I l legalStateException . The ServletCon-
text has already been initialized.

setSessionTrackingModes(Set) 3.0 Throws I l legalStateException . The ServletCon-
text has already been initialized.

Http Whiteboard Specification Version 1.1 The Servlet Context

OSGi Enterprise Release 7 Page 691

140.2.7 Relation to the Servlet Container
Implementations of this specification will often be backed by existing servlet containers or a Java EE
application server. There may also exist implementations which bridge into a servlet container into
which the OSGi Framework has been deployed as a Web Application.

In bridged situations the Http Whiteboard implementation will live in one servlet context and
all Whiteboard services registered by this implementation will be backed by the same underlying
Servlet Context. However, to exhibit the behavior described in Table 140.2 on page 689 different
Servlet Context objects may be required. Therefore an implementation of this specification may
need to create additional ServletContext objects which delegate certain functionality to the Servlet-
ContextHelper and other functionality to the Servlet Context of the Web Application, yet further
functionality can be obtained otherwise. In such cases the relationship may look like the below fig-
ure.

Figure 140.2 Servlet Context entities and their relation

Application Server

WebApp

Http Whiteboard

Servlet Context

Servlet Context

Servlet Context Servlet Context

Servlet Context Helper

OSGi Bundle OSGi Bundle

Whiteboard
Service A

Whiteboard
Service B

Whiteboard
Service C

Servlet Context provided by
Application Server.

Servlet Context associated
with the Servlet Context Helper
to provide behavior as defined
in the table above.

Servlet Context per whiteboard
services bundle to provide
getClassLoader() API.

Where Table 140.2 on page 689 states Backed by the Servlet Container and the Http Whiteboard im-
plementation is deployed in bridged mode, the API call can be forwarded to the top-level Servlet
Context. If the Http Whiteboard implementation is not deployed in bridged mode, it must provide
another means to handle these APIs.

In bridged deployments, the implementation needs to ensure the following:

1. That Whiteboard services are provided with the correct ServletContext keeping in mind that
each distinct ServletContextHelper should be associated with a separate ServletContext ob-
ject, which in turn may delegate certain requests to the underlying shared ServletContext as de-
scribed in the table above.

2. That Http Sessions are not shared amongst servlets registered with different ServletContex-
tHelpers. That is, HttpRequest.getSession calls must provide different sessions per associated
ServletContextHelper . Http Sessions are defined in chapter 7 of the [4] Java Servlet 3.1 Specifica-
tion.

Common Whiteboard Properties Http Whiteboard Specification Version 1.1

Page 692 OSGi Enterprise Release 7

140.3 Common Whiteboard Properties
Whiteboard servlet, servlet filter, resource and listener services support common service registra-
tion properties to associate them with a ServletContextHelper and/or a Http Whiteboard imple-
mentation.

Table 140.3 Common properties

Service Property Type Description
osgi .http.whiteboard.context.select

HttpWhiteboardContextSelect

Str ing

optional

An LDAP-style filter to select the associated ServletContex-
tHelper service to use. Any service property of the Servlet
Context Helper can be filtered on. If this property is miss-
ing the default Servlet Context Helper is used.

For example, to select a Servlet Context Helper with name
myCTX provide the following value:

(osgi.http.whiteboard.context.name=myCTX)

To select all Servlet Context Helpers provide the following
value:

(osgi.http.whiteboard.context.name=*)

If no matching context exists this is reflected in the failure
DTOs. See HTTP_WHITEBOARD_CONTEXT_SELECT .

osgi .http.whiteboard.target

HttpWhiteboardTarget

Str ing

optional

The value of this service property is an LDAP-style filter ex-
pression to select the Http Whiteboard implementation(s)
to handle this Whiteboard service. The LDAP filter is
used to match HttpServiceRuntime services. Each Http
Whiteboard implementation exposes exactly one HttpSer-
viceRuntime service. This property is used to associate
the Whiteboard service with the Http Whiteboard im-
plementation that registered the HttpServiceRuntime
service. If this property is not specified, all Http White-
board implementations can handle the service. See
HTTP_WHITEBOARD_TARGET .

If multiple Servlet Context Helper services match the osgi .http.whiteboard.context.select proper-
ty the servlet, filter, resource or listener will be registered with all these Servlet Context Helpers. To
avoid multiple in it and destroy calls on the same instance, servlets and filters should be registered as
Prototype Service Factory.

140.4 Registering Servlets
Servlets can be registered with the Http Whiteboard implementation by registering them as White-
board services. This means that Servlet implementations are registered in the Service Registry under
the javax.servlet .Servlet interface.

Servlets are registered with one or more pattern through the osgi .http.whiteboard.servlet .pattern
service property. Each pattern defines the URL context that will trigger the servlet to handle the re-
quest. They are defined by the [4] Java Servlet 3.1 Specification in section 12.2, Specification of Mappings.
Note that these mapping rules are slightly different than those defined in the Http Service Specifica-
tion on page 69. The mapping rules are:

Http Whiteboard Specification Version 1.1 Registering Servlets

OSGi Enterprise Release 7 Page 693

• A string beginning with a '/' character and ending with a "/*" suffix is used for path mapping.
• A string beginning with a "*." prefix is used as an extension mapping.
• The empty string ("") is a special URL pattern that exactly maps to the application's context root.

That is, requests of the form http://host:port/<context-root>/. In this case the path info is "/" and
the servlet path and context path are the empty string ("").

• A string containing only the '/' character indicates the "default" servlet of the application. In this
case, the servlet path is the request URI minus the context path and the path info is null.

• All other strings are used for exact matches only.

Servlet and resource service registrations associated with a single Servlet Context share the same
namespace. In case of identical registration patterns, service ranking rules are used to select the ser-
vice handling a request. That is, Whiteboard servlets that have patterns shadowed by other White-
board services associated with the same Servlet Context are represented in the failure DTOs.

The above rules can cause servlets that are already bound becoming unbound if a better match ar-
rives. This ensures a predictable end result regardless of the order in which services are registered.

A servlet may be registered with the property osgi .http.whiteboard.servlet .name which can be used
by servlet filters to address this servlet. If the servlet service does not have this property, the servlet
name defaults to the fully qualified class name of the service object.

With implementations that both implement this specification as well as the Http Service Specification
on page 69, situations can arise where a servlet is registered for the same pattern with the Http Ser-
vice as well as with the Http Whiteboard. The Servlet Context of the Http Service is treated in the
same way as all contexts managed by the Whiteboard implementation. The highest ranking is asso-
ciated with the context of the Http Service. For a request, contexts are processed in the order as de-
scribed in section The Servlet Context on page 686.

For example, if the Http Whiteboard implementation is listening on port 80 on the machine
www.acme.com and the Servlet object is registered with the pattern "/servlet" , then the Servlet
object's service method is called when the following URL is used from a web browser:

http://www.acme.com/servlet

The following table describes the properties that can be used by Servlets registered as Whiteboard
services. Additionally, the common properties listed in Table 140.3 on page 692 are supported.

Table 140.4 Service properties for Servlet Whiteboard services.

Service Property Type Description
osgi .http.whiteboard.servlet .«

 asyncSupported

HttpWhiteboardServletAsyncSup-
ported

Boolean |
Str ing

optional

Declares whether the servlet supports the asyn-
chronous operation mode. Allowed values are true
and fa lse independent of case. Defaults to fa lse . See
HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED .

osgi .http.whiteboard.servlet .«

 errorPage

HttpWhiteboardServletErrorPage

Str ing+

optional†

Register the servlet as an error page for the error code and/
or exception specified; the value may be a fully qualified ex-
ception type name or a three-digit HTTP status code in the
range 400-599 . Special values 4xx and 5xx can be used to
match value ranges. Any value not being a three-digit num-
ber is assumed to be a fully qualified exception class name. See
HTTP_WHITEBOARD_SERVLET_ERROR_PAGE .

osgi .http.whiteboard.servlet .«

 name

HttpWhiteboardServletName

Str ing

optional†

The name of the servlet. This name is used as the value of the
javax.servlet .ServletConfig.getServletName method and de-
faults to the fully qualified class name of the service object. See
HTTP_WHITEBOARD_SERVLET_NAME .

Registering Servlets Http Whiteboard Specification Version 1.1

Page 694 OSGi Enterprise Release 7

Service Property Type Description
osgi .http.whiteboard.servlet .«

 pattern

HttpWhiteboardServletPattern

Str ing+

optional†

Registration pattern(s) for the servlet. See
HTTP_WHITEBOARD_SERVLET_PATTERN .

osgi .http.whiteboard.servlet .«

 mult ipart .enabled

enabled

Boolean |
Str ing

optional

Enables support for multipart configuration on the servlet. Allowed
values are true and false independent of case. Defaults to fa lse . See
HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED .

osgi .http.whiteboard.servlet .«

 mult ipart .f i leSizeThreshold

fi leSizeThreshold

Integer

optional

The file size threshold after which the file is stored as a tempo-
rary file on disk while uploading. Defaults to 0. Files will be stored
in the directory as specified in . . . locat ion on the file system. See
HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD .

osgi .http.whiteboard.servlet .«

 mult ipart . locat ion

location

Str ing

optional

The location where files are stored on disk. Defaults to the val-
ue of javax.servlet .context.tempdir servlet context attribute. If
this attribute is not set, the value of the java. io.tmpdir system
property will be used as default. If an absolute path is specified
then this path is used as-is. If a relative path is specified, it will
be used as relative to the default value. java. io.F i le . isAbsolute
must be used to evaluate whether a path is absolute or relative. See
HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION .

osgi .http.whiteboard.servlet .«

 mult ipart .maxFi leSize

maxFi leSize

Long

optional

The maximum size for an uploaded file. Defaults to unlimit-
ed. Files larger than this size will cause a servlet exception. See
HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE .

osgi .http.whiteboard.servlet .«

 mult ipart .maxRequestSize

maxRequestSize

Long

optional

The maximum size of a mult ipart/form-data re-
quest, in bytes. Defaults to unlimited. Requests larg-
er than this value will cause a servlet exception. See
HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE .

servlet . init .* Str ing

optional

Properties starting with this prefix are provided as init pa-
rameters to the javax.servlet .Servlet . init method. The
servlet . init . prefix is removed from the parameter name. See
HTTP_WHITEBOARD_SERVLET_INIT_PARAM_PREFIX .

† Note that at least one of the following properties must be specified on Servlet Whiteboard services:

 osgi.http.whiteboard.servlet.pattern
 osgi.http.whiteboard.servlet.name
 osgi.http.whiteboard.servlet.errorPage

Servlet objects are initialized by a Http Whiteboard implementation before they start serving re-
quests. The initialization is done by calling the Servlet object's Servlet . init(ServletConfig) method.
The ServletConfig parameter provides access to the initialization parameters specified when the
Servlet object was registered. Once the servlet is no longer used by the Http Whiteboard implemen-
tation the destroy method is called. Failure during Servlet . init will prevent the servlet from being
used, which is reflected using a failure DTO. In such a case the system treats the servlet as unusable
and attempts to find an alternative servlet matching the request.

If the service properties of the servlet Whiteboard service are modified, the destroy method is called.
Subsequently the servlet is re-initialized. If a Prototype Service Factory is used for the servlet this re-
initialization is done on a new service object.

When multiple Http Whiteboard implementations are present all of them can potentially process
the Servlet . In such situations it can be useful to associate the servlet with a specific implemen-
tation by specifying the osgi .http.whiteboard.target property on the Servlet service to match its
HttpServiceRuntime service.

Http Whiteboard Specification Version 1.1 Registering Servlets

OSGi Enterprise Release 7 Page 695

If more than one Http Service Runtime matches the osgi .http.whiteboard.target property or the
property is not set, the Servlet will be processed by all the matching implementations. A Servlet ser-
vice that is processed by more than one Http Whiteboard implementation will have its in it method
called for each implementation that processes this Servlet . Similarly, the destroy method is called
once when the Servlet is shut down once for each implementation that processed it. As multiple in it
and destroy calls on the same Servlet instance are generally not desirable, Servlet implementations
should be registered as Prototype Service Factories as defined in the OSGi Core Release 7. This will en-
sure that each Http Whiteboard implementation processing the Servlet will use a separate instance,
ensuring that only one in it and destroy call is made per Servlet object. Servlets not registered as a
Prototype Service Factory may received in it and destroy calls multiple times on the same service ob-
ject.

The following example code uses Declarative Services annotations to register a servlet whiteboard
service.

@HttpWhiteboardServletPattern("/myservlet")
@Component(service = Servlet.class, scope = ServiceScope.PROTOTYPE,
 property = "servlet.init.myname=value")
public class MyServlet extends HttpServlet {
 private String name = "<not set>";

 public void init(ServletConfig config) {
 name = config.getInitParameter("myname");
 }

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 resp.setContentType("text/plain");
 resp.getWriter().println("Servlet name: " + name);
 }
}

This example registers the servlet at: /myservlet . Requests for http://www.acme.com/myservlet
map to the servlet, whose service method is called to process the request.

To associate the above example servlet with the example ServletContextHelper in The Servlet Con-
text on page 686, add the following service property:

osgi.http.whiteboard.context.select=(osgi.http.whiteboard.context.name=my-context)

This will cause the servlet to move to http://www.acme.com/myapp/myservlet as configured by the
custom Servlet Context Handler.

140.4.1 Multipart File Upload
Multipart file uploads are supported by specifying the osgi .http.whiteboard.servlet .mult ipart .*
properties on the Servlet service registration. The following example illustrates this:

@Component(service = Servlet.class)
@HttpWhiteboardServletPattern("/image")
@HttpWhiteboardServletMultipart(enabled = true, maxFileSize = 200000)
public class ImageServlet extends HttpServlet {

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {

Registering Servlets Http Whiteboard Specification Version 1.1

Page 696 OSGi Enterprise Release 7

 Collection<Part> parts = request.getParts();

 for (Part part : parts) {
 System.out.printf("File %s, %s, %d%n", part.getName(),
 part.getContentType(), part.getSize());

 try (InputStream is = part.getInputStream()) {
 // ...
 }
 }
 }
}

140.4.2 Error Pages
Servlets can be used to serve Error Pages. These are invoked when an exception is thrown during
processing or if a servlet uses the sendError method with a status code between 400 and 599 .

For a servlet service to handle error situations the service property
osgi .http.whiteboard.servlet .errorPage must be set. This property can have multiple values, al-
lowing a single servlet to handle a variety of error situations. Possible values are 3-digit HTTP error
codes and fully qualified exception names.

Two special error code values are recognized. The special value 4xx means every error code in the
400-499 range. The special value 5xx means every error code in the 500-599 range. To override such
wildcard error page for a specific error, register an error page with the specific error code and a high-
er service ranking. Error pages shadowed by other error pages are reported via the failure DTOs. A
4xx/5xx wildcard error page is only reported in the failure DTOs if it is shadowed by another wild-
card page.

Matching exceptions follows the exception hierarchy. First the most specific exception class - the ac-
tual class of the exception - is looked up. If no matching error page for the most specific exception is
found, the error page for the super class of the exception is looked up and so on. The process ends by
looking up an error page for the java. lang.Throwable class.

While not being common practice, it is possible to combine the
osgi .http.whiteboard.servlet .errorPage and osgi .http.whiteboard.servlet .pattern properties. If a
single servlet registration has both these registration properties it is considered both an ordinary
servlet as well as an error page.

If an error or exception occurs for which an error page servlet can be matched, it is invoked to ren-
der the error page. If the error page servlet causes an error or exception while handling the request,
an implementation built-in error page is returned.

For example:

@Component(service = Servlet.class, scope = ServiceScope.PROTOTYPE)
@HttpWhiteboardServletErrorPage(errorPage = {"java.io.IOException", "500"})
public class MyErrorServlet extends HttpServlet {
 ...
}

The example servlet is invoked in case of a 500 error code, or if an IOException (or subclass) occurs.
If there is more than one error page registered for the same exception or error code, service ranking
rules are used to select the handling servlet.

140.4.3 Asynchronous Request Handling
Servlets can use the asynchronous request handling feature, as defined by the servlet specification.

Http Whiteboard Specification Version 1.1 Registering Servlet Filters

OSGi Enterprise Release 7 Page 697

A servlet or servlet filter supporting the asynchronous mode must declare this with
the appropriate service property osgi .http.whiteboard.servlet .asyncSupported or
osgi .http.whiteboard.f i l ter.asyncSupported .

An example simple asynchronous servlet that handles the servlet requests in a thread from a cus-
tom thread pool rather than in the thread provided by the servlet container:

@Component(service = Servlet.class, scope = ServiceScope.PROTOTYPE)
@HttpWhiteboardServletPattern("/as")
@HttpWhiteboardServletAsyncSupported
public class AsyncServlet extends HttpServlet {
 ExecutorService executor = Executors.newCachedThreadPool(
 r -> new Thread(r, "Pooled Thread"));

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 doGetAsync(req.startAsync());
 }

 private void doGetAsync(AsyncContext asyncContext) {
 executor.submit(() -> {
 try {
 PrintWriter writer = asyncContext.getResponse().getWriter();
 writer.print("Servlet executed async in: " +
 Thread.currentThread()); // writes 'Pooled Thread'
 } finally {
 asyncContext.complete();
 }
 return null;
 });
 }
}

140.4.4 Annotations
Annotations defined in the Servlet API Specifications are ignored by an implementation of the Http
Whiteboard Specification. The OSGi service model is used instead by this specification.

Implementations of this specification may support these annotations through a proprietary opt-in
mechanism.

140.5 Registering Servlet Filters
Servlet filters provide a mechanism to intercept servlet invocations. They support modifying the
ServletRequest and ServletResponse objects and are often used to augment web pages generated by
servlets, for example with a common header or footer. Servlet filters can also be used to handle secu-
rity, do logging or transform the content produced by a servlet to a certain format.

Similar to servlets, servlet filters are registered as Whiteboard services, by registering a
javax.servlet .F i l ter instance in the Service Registry. The following table describes the supported ser-
vice properties. In addition the common properties as described in Table 140.3 on page 692 are
supported.

Registering Servlet Filters Http Whiteboard Specification Version 1.1

Page 698 OSGi Enterprise Release 7

Table 140.5 Service properties for Fi lter Whiteboard services.

Service Property Type Description
osgi .http.whiteboard.f i l ter.«

 asyncSupported

HttpWhiteboardFi lterAsyncSupported

Str ing

optional

Declares whether the servlet filter supports asyn-
chronous operation mode. Allowed values are true
and fa lse independent of case. Defaults to fa lse . See
HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED .

osgi .http.whiteboard.f i l ter.«

 dispatcher

HttpWhiteboardFi lterDispatcher

Str ing+

optional

Select the dispatcher configuration when the servlet filter
should be called. Allowed string values are REQUEST , ASYNC ,
ERROR , INCLUDE , and FORWARD . The default for a filter is
REQUEST . See HTTP_WHITEBOARD_FILTER_DISPATCHER .

osgi .http.whiteboard.f i l ter.name

HttpWhiteboardFi lterName

Str ing

optional

The name of a servlet filter. This name is used as the val-
ue of the Fi l terConfig.getFi l terName method and defaults
to the fully qualified class name of the service object. See
HTTP_WHITEBOARD_FILTER_NAME .

osgi .http.whiteboard.f i l ter.pattern

HttpWhiteboardFi lterPattern

Str ing+

optional†

Apply this servlet filter to the specified URL path patterns.
The format of the patterns is specified in the servlet specifica-
tion. See HTTP_WHITEBOARD_FILTER_PATTERN .

osgi .http.whiteboard.f i l ter. regex

HttpWhiteboardFi lterRegex

Str ing+

optional†

Apply this servlet filter to the specified URL paths. The
paths are specified as regular expressions following the
syntax defined in the java.ut i l . regex.Pattern class. See
HTTP_WHITEBOARD_FILTER_REGEX .

osgi .http.whiteboard.f i l ter.servlet

HttpWhiteboardFi lterServlet

Str ing+

optional†

Apply this servlet filter to the referenced servlet(s) by name.
See HTTP_WHITEBOARD_FILTER_SERVLET .

f i l ter. in it .* Str ing+

optional

Properties starting with this prefix are passed as init
parameters to the Fi l ter. in it method. The f i l ter. in it .
prefix is removed from the parameter name. See
HTTP_WHITEBOARD_FILTER_INIT_PARAM_PREFIX .

† Note that at least one of the following properties must be specified on Fi l ter Whiteboard services:

 osgi.http.whiteboard.filter.pattern
 osgi.http.whiteboard.filter.regex
 osgi.http.whiteboard.filter.servlet

Similar to servlets, Fi l ter objects are initialized by a Http Whiteboard implementation before they
start filtering requests. The initialization is done by calling the Fi l ter. in it(F i l terConfig) method. The
Fi l terConfig parameter provides access to f i l ter. in it .* properties on the servlet filter service registra-
tion. Once the Fi l ter is no longer used by the Http Whiteboard implementation, the destroy method
is called. When the service properties on the servlet filter are modified, the destroy method is called
and the servlet filter is subsequently re-initialized, if it can still be associated with a Http White-
board implementation after the modification. By default, a servlet filter can be used with any Servlet
Context Helper or Http Whiteboard implementation. To restrict a servlet filter to a single imple-
mentation or a specific Servlet Context Helper, the Common Whiteboard Properties on page 692 can
be used.

To deal with the dynamicity of the Whiteboard service lifecycle, it is recommended to implement
a servlet filter as Prototype Service Factory service. This will ensure that one single servlet filter in-
stance only receives one in it and one destroy call. Otherwise a single servlet filter instance can re-
ceive multiple such calls. This is similar to the behavior recommended for Servlet Whiteboard ser-
vices.

Multiple servlet filters can process the same servlet request/response. If more than one Fi l ter match-
es, the order in which they are processed is governed by their service ranking. The servlet filter with
the highest ranking is processed first in the filter chain, while the servlet filter with the lowest rank-

Http Whiteboard Specification Version 1.1 Registering Servlet Filters

OSGi Enterprise Release 7 Page 699

ing is processed last, before the Servlet .service method is called. In the case of a service ranking tie,
the servlet filter with the lowest service. id is processed first. After the servlet completes its service
method the filter chain is unwound in reverse order.

Servlet filters are only applied to servlet requests if they are bound to the same Servlet Context
Helper and the same Http Whiteboard implementation.

The example Filter below adds some text before and after the content generated by a servlet:

@Component(scope = ServiceScope.PROTOTYPE)
@HttpWhiteboardFilterPattern("/*")
public class MyFilter implements Filter {
 public void init(FilterConfig filterConfig) throws ServletException {}

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {
 response.getWriter().write("before");
 chain.doFilter(request, response);
 response.getWriter().write("after");
 }

 public void destroy() {}
}

140.5.1 Servlet Pre-Processors
Servlet Filters are always run after
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse) is
called. However in some cases it is necessary to process servlet requests before security is handled.
For example if all requests must be logged, even ones that are rejected by security. In other scenarios,
requests may need to be prepared for the handleSecurity call.

A whiteboard Preprocessor service can be registered to handle such cases. The Preprocessor service
only supports the following service registration properties:

Table 140.6 Service properties for Preprocessor Whiteboard services.

Service Property Type Description
osgi .http.whiteboard.target

HttpWhiteboardTarget

Str ing

optional

The value of this service property is an LDAP-style filter expression to
select the Http Whiteboard implementation(s) to handle this White-
board service. The LDAP filter is used to match HttpServiceRuntime
services. Each Http Whiteboard implementation exposes exactly one
HttpServiceRuntime service. This property is used to associate the
Whiteboard service with the Http Whiteboard implementation that
registered the HttpServiceRuntime service. If this property is not speci-
fied, all Http Whiteboard implementations can handle the service. See
HTTP_WHITEBOARD_TARGET .

preprocessor. init .* Str ing+

optional

Properties starting with this prefix are passed as init pa-
rameters to the Fi l ter. in it method. The preprocessor. init .
prefix is removed from the parameter name. See
HTTP_WHITEBOARD_PREPROCESSOR_INIT_PARAM_PREFIX .

A Preprocessor is invoked before request dispatching is performed. If multiple pre-processors are
registered they are invoked in the order as described for servlet filters.

The Preprocessor has the same API as the servlet Fi l ter and is handled in the same way, the
in it and destroy are called at the appropriate life-cycle events. However, as pre-processors

Registering Resources Http Whiteboard Specification Version 1.1

Page 700 OSGi Enterprise Release 7

are called before dispatching, the targeted servlet context is not yet know. Therefore the
Fi l terConfig.getServletContext returns the servlet context of the backing implementation, the
same context as returned by the request. As a pre-processor instance is not associated with a specific
servlet context, it is safe to implement it as a singleton.

When called in the doFi lter method, the pre-processor can use the Fi l terChain to
invoke the next pre-processor, or if the end of the chain is reached, start process-
ing the request. The pre-processor can also terminate the processing and gener-
ate a response directly. Before request processing returns to the pre-processors
f in ishSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse) is
called. If an exception is thrown during request processing, the exception is propagated through the
pre-processors.

The example Preprocessor below logs a message before and after request processing:

@Component
public class MyPreprocessor implements Preprocessor {

 @Reference(service=LoggerFactory.class)
 private Logger logger;

 public void init(FilterConfig filterConfig) throws ServletException {}

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {
 logger.debug("Request processing starts");
 chain.doFilter(request, response);
 logger.debug("Request processing ends");
 }

 public void destroy() {}
}

140.6 Registering Resources
A resource is a file containing images, static HTML pages, JavaScript, CSS, sounds, movies, etc. Re-
sources do not require any handling from the bundle. They are transferred directly from their source
- usually the JAR file that contains the code for the bundle - to the requester.

Resources can be served by registering a service of any type with a service registration property that
marks it as a resource service: osgi .http.whiteboard.resource.pattern . The actual service object reg-
istered is not used to serve resources, it is merely used to inform the Http Whiteboard implementa-
tion to serve resources from a certain source.

The following table describes the supported service properties. In addition the common properties
as described in Table 140.3 on page 692 are supported.

Table 140.7 Service properties for resource services.

Service Property Type Description
osgi .http.whiteboard.resource.pattern

pattern

Str ing+

required

The pattern(s) to be used to serve resources. As defined by
the [4] Java Servlet 3.1 Specification in section 12.2, Specifica-
tion of Mappings.

This property marks the service as a resource service.

See HTTP_WHITEBOARD_RESOURCE_PATTERN .

Http Whiteboard Specification Version 1.1 Registering Listeners

OSGi Enterprise Release 7 Page 701

Service Property Type Description
osgi .http.whiteboard.resource.prefix

prefix

Str ing

required

The prefix used to map a requested resource to the bundle's
entries. If the request's path info is not null, it is append-
ed to this prefix. The resulting string is passed to the
getResource(Str ing) method of the associated Servlet Con-
text Helper.

See HTTP_WHITEBOARD_RESOURCE_PREFIX .

The examples below use Declarative Services annotations to register a resources service. Note that
this service is purely used to convey information to the Http Whiteboard implementation and is
never invoked.

@Component(service = MyResourceService.class)
@HttpWhiteboardResource(pattern = "/files/*", prefix = "/www")
public class MyResourceService {}

A Http Whiteboard implementation configured on port 80 will serve a request for http:// local-
host/fi les/cheese.html from the location /www/cheese.html .

The following example maps requests for /favicon. ico to serve the / logo.png resource. Note that the
pattern is not appended to the prefix as the path info in this case is null.

@Component(service = SomeResourceService.class)
@HttpWhiteboardResource(pattern = "/favicon.ico", prefix = "/logo.png")
public class SomeResourceService {}

The above examples use the default ServletContextHelper implementation, which loads these re-
sources from the bundle that registered the resource service. For more control around serving re-
sources, a resources service can be associated to a custom ServletContextHelper . For example, a cus-
tom Servlet Context Helper can serve resources from locations other than the current bundle.

140.6.1 Overlapping Resource and Servlet Registrations
Resources and servlets registered with the same Servlet Context share a single URI namespace.
This means that the value specified in osgi .http.whiteboard.resource.pattern competes with the
osgi .http.whiteboard.servlet .pattern property specified on servlets. If these values overlap, the
rules as outlined in Registering Servlets on page 692 are used to resolve conflicts, where resource
services are treated just like servlets. Shadowed resource patterns are reported as Fai ledResourceD-
TO .

140.7 Registering Listeners
The servlet specification defines listener interfaces that can be implemented to receive a variety of
servlet-related events. When using the Http Whiteboard implementation these listeners can be reg-
istered as Whiteboard services.

• ServletContextListener - Receive notifications when Servlet Contexts are initialized and de-
stroyed.

• ServletContextAttr ibuteListener - Receive notifications for Servlet Context attribute changes.
• ServletRequestListener - Receive notifications for servlet requests coming in and being de-

stroyed.
• ServletRequestAttr ibuteListener - Receive notifications when servlet Request attributes change.
• HttpSessionListener - Receive notifications when Http Sessions are created or destroyed.
• HttpSessionAttr ibuteListener - Receive notifications when Http Session attributes change.

Life Cycle Http Whiteboard Specification Version 1.1

Page 702 OSGi Enterprise Release 7

• HttpSessionIdListener - Receive notifications when Http Session ID changes.

Events are sent to listeners registered in the Service Registry with the osgi .http.whiteboard. l istener
service property set to true , independent of case. Listeners can be associated with a ServletContex-
tHelper as described in Common Whiteboard Properties on page 692. Listeners not specifically as-
sociated with a Servlet Context Helper will receive events relating to the default Servlet Context
Helper.

Multiple listeners of the same type registered with a given Servlet Context Helper are invoked in se-
quence, service ranking rules are used to determine the order.

Table 140.8 Service properties for listener services.

Service Property Type Description
osgi .http.whiteboard. l istener

HttpWhiteboardListener

Boolean |
Str ing

required

When set to true this listener service is handled by the Http
Whiteboard implementation. When not set or set to fa lse
the service is ignored. Any other value is invalid and will be
reflected in a Fai ledListenerDTO . Note the property value is
case independent. See HTTP_WHITEBOARD_LISTENER .

An example listener that reports on client requests being initialized and destroyed is listed below:

@Component
@HttpWhiteboardListener
public class MyServletRequestListener implements ServletRequestListener {
 public void requestInitialized(ServletRequestEvent sre) {
 System.out.println("Request initialized for client: " +
 sre.getServletRequest().getRemoteAddr());
 }

 public void requestDestroyed(ServletRequestEvent sre) {
 System.out.println("Request destroyed for client: " +
 sre.getServletRequest().getRemoteAddr());
 }
}

For more details on the behavior of the listeners see the [4] Java Servlet 3.1 Specification.

140.8 Life Cycle
If a Whiteboard service is used by a Http Whiteboard implementation, the following order of ac-
tions are performed:

1. The service is obtained from the service registry.
2. For servlets and servlet filters, in it is called.

When the service is not used anymore, these actions are performed:

3. For servlets and servlet filters, destroy is called.
4. The service is released.

Note that some of the above actions may not be performed immediately, allowing an implementa-
tion to utilize lazy or asynchronous behavior.

As servlets and servlet filters services might come and go as well as ServletContextHelper services
might come and go, use of the Whiteboard services can be very dynamic. Therefore servlet and
servlet filter services might transition between bound to a Http Whiteboard implementation to be-

Http Whiteboard Specification Version 1.1 The Http Service Runtime Service

OSGi Enterprise Release 7 Page 703

ing unbound and back to be bound. For example, when a matching Servlet Context Helper with
the same name arrives with a higher ranking than the currently bound Servlet Context Helper, the
servlet will be destroyed and re-initialized, bound to this better matching Servlet Context Helper.
This is to ensure that timing issues cannot dictate the topology of the system.

As in it and destroy are called each time the service life cycle changes, the recommended way to
register services is to use the Prototype Service scope as defined in the OSGi Core Release 7. This en-
sures a new instance is created for each time such service is re-initialized. If the prototype scope is
not used, the service should be prepared that after a call to destroy a new initialization through in it
might follow.

140.8.1 Whiteboard Service Dynamics and Active Requests
When the Http Whiteboard implementation receives a network request it establishes the process-
ing pipeline based on the available Whiteboard services (servlets, servlet filters and resource ser-
vices) and executes this pipeline. Between establishing the pipeline and finishing the processing,
services used in this pipeline might become unregistered. It is up to the Http Whiteboard imple-
mentation whether it completes the active request or throws a Servlet Exception in this case.

140.9 The Http Service Runtime Service
The HttpServiceRuntime service represents the runtime state information of a Http Whiteboard im-
plementation. This information is provided through Data Transfer Objects (DTOs). The architecture
of OSGi DTOs is described in OSGi Core Release 7.

Each Http Whiteboard implementation registers exactly one HttpServiceRuntime service which
can be used to target Whiteboard services defined in this specification to a specific Http Whiteboard
implementation.

Implementations of this specification that also implement the Http Service Specification on page 69
can provide runtime information for servlets registered using the HttpService via the HttpSer-
viceRuntime as well. In this case the osgi .http.service. id service property must be set to associate
the HttpServiceRuntime service with the HttpService .

The HttpServiceRuntime provides service registration properties to declare its underlying Http
Whiteboard implementation. These service properties can include implementation-specific key-val-
ue pairs. They also include the following:

Table 140.9 Service properties for the HttpServiceRuntime service

Service Property Type Description
osgi .http.endpoint Str ing+ Endpoint(s) where this Http Whiteboard implementation is lis-

tening. Registered Whiteboard services are made available here.
Values could be provided as URLs e.g. http://192.168.1.10:8080/
or relative paths, e.g. /myapp/ . Relative paths may be used if the
scheme and authority parts of the URLs are not known such as in a
bridged Http Service implementation. If the Http Service is serving
the root context and scheme and authority are not known, the val-
ue of the property is / . Each entry must end with a slash.

See HTTP_SERVICE_ENDPOINT .
osgi .http.service. id Col lect ion<Long> If this Http Whiteboard implementation also implements the

Http Service Specification on page 69, this property is set to hold the
service. id values of all the HttpService services provided by this
implementation.

See HTTP_SERVICE_ID .

The Http Service Runtime Service Http Whiteboard Specification Version 1.1

Page 704 OSGi Enterprise Release 7

Service Property Type Description
service.changecount Long Whenever the DTOs available from the Http Service Runtime ser-

vice change, the value of this property will increase by an amount
of 1 or more.

This allows interested parties to be notified of changes
to the DTOs by observing Service Events of type
MODIFIED for the HttpServiceRuntime service. See
org.osgi .f ramework.Constants.SERVICE_CHANGECOUNT in OSGi
Core Release 7.

The Http Service Runtime service provides information on registered Whiteboard services through
the RuntimeDTO and RequestInfoDTO . The RuntimeDTO provides information on services that
have been successfully registered as well as information about the Whiteboard services that were
not successfully registered. Whiteboard services that have the required properties set but cannot
be processed, are reflected in the failure DTOs. Whiteboard services of interfaces described in this
specification that do not have the required properties set are ignored and not reflected in the failure
DTOs.

The Runtime DTO can be obtained using the getRuntimeDTO() method. The Runtime DTO provid-
ed has the following structure:

Figure 140.3 Runtime DTO Overview Diagram

Runtime DTO 0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

Servlet
Context DTO

Failed Servlet
Context DTO

Failed
Servlet DTO

Failed
Resource DTO

Failed
Filter DTO

Failed Error
Page DTO

Failed
Listener DTO

Servlet DTO

Resource DTO

Filter DTO

Error Page DTO

Listener DTO

0..n Pre-Processor
DTO

0..n Failed Pre-
Processor DTO

Handlers for a given request path can be found with the calculateRequestInfoDTO(Str ing) method.
This method returns a RequestInfoDTO with the following structure:

Http Whiteboard Specification Version 1.1 Integration with Http Service Contexts

OSGi Enterprise Release 7 Page 705

Figure 140.4 Request Info DTO Overview Diagram

Request Info DTO

Pre-Processor DTO

Filter DTO

Servlet DTO

0..n

Resource DTO

0..n

Where servlets registered via the Http Service Specification on page 69 are returned via this service,
the Servlet DTO will report negative service IDs for these servlets to distinguish them from Servlet
Whiteboard services.

140.10 Integration with Http Service Contexts
Some systems are implemented using a mixture of Http Whiteboard services and Http Service
servlets and contexts as specified in the Http Service Specification on page 69. When a servlet is regis-
tered with the Http Service it is either registered with a provided HttpContext or it uses the default
Http Context. It can be desirable to register a Http Whiteboard filter, listener or error page that also
acts on servlets registered with the Http Service.

A Http Whiteboard service which should be registered with a Http Context from the Http
Service can achieve this by targeting a ServletContextHelper with the registration property
osgi .http.whiteboard.context.httpservice . The value for this property is not further specified. Note
that this mechanism only works if the Http Service is provided by the same implementation that al-
so provides the Http Whiteboard implementation.

The following example registers a servlet filter for all servlets managed by the Http Service.

@Component(service = Filter.class, scope=ServiceScope.PROTOTYPE)
@HttpWhiteboardFilterPattern("/*")
@HttpWhiteboardContextSelect(HttpWhiteboardConstants.HTTP_SERVICE_CONTEXT_FILTER)
public class MyFilter implements Filter

This specification does not provide a way to select in individual Http Context from the Http Service,
however a Http Whiteboard implementation may provide an implementation-specific mechanism
to do this. Also, the Http Service implementation is not required to register the Http Context objects
in the service registry. The matching can be done internally by the implementation.

Association with Http Context from the Http Service can only be done for servlet filters, error pages
and listeners. Servlets and resources cannot be associated with Http Contexts managed by the Http
Service. If this is attempted this will be reflected in the failure DTOs.

Configuration Properties Http Whiteboard Specification Version 1.1

Page 706 OSGi Enterprise Release 7

140.11 Configuration Properties
If the Http Whiteboard implementation does not have its port values configured through some oth-
er means, the implementation should use the following Framework properties to determine the
port values to listen on.

• org.osgi .service.http.port - This property specifies the port used for servlets and resources acces-
sible via HTTP. The default value for this property is 80.

• org.osgi .service.http.port .secure - This property specifies the port used for servlets and re-
sources accessible via HTTPS. The default value for this property is 443.

140.12 Capabilities

140.12.1 osgi.implementation Capability
The Http Whiteboard implementation bundle must provide the osgi . implementation capability
with name osgi .http . This capability can be used by provisioning tools and during resolution to en-
sure that a Http Whiteboard implementation is present to process the Whiteboard services defined
in this specification. The capability must also declare a uses constraint for the Servlet and OSGi Http
Whiteboard packages and provide the version of this specification:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.http";
 uses:="javax.servlet, javax.servlet.http,
 org.osgi.service.http.context, org.osgi.service.http.whiteboard";
 version:Version="1.1"

This capability must follow the rules defined for the osgi.implementation Namespace on page 635.

Bundles registering services to be picked up by the Http Whiteboard implementation should re-
quire the osgi . implementation capability. For example:

Require-Capability: osgi.implementation;
 filter:="(&(osgi.implementation=osgi.http)
 (version>=1.1)(!(version>=2.0)))"

To simplify the creation of this requirement, the RequireHttpWhiteboard annotation can be used.

140.12.2 osgi.contract Capability
The Http Whiteboard implementation must provide a capability in the osgi .contract namespace
with name JavaServlet if it exports the javax.servlet and javax.servlet .http packages. See [5] Portable
Java Contract Definitions.

Providing the osgi .contract capability enables developer to build portable bundles for packages that
are not versioned under OSGi Semantic Versioning rules. For more details see osgi.contract Namespace
on page 633.

If the Servlet API is provided by another bundle, the Http Whiteboard implementation must be a
consumer of the API and require the contract.

Http Whiteboard Specification Version 1.1 Security

OSGi Enterprise Release 7 Page 707

140.12.3 osgi.service Capability
The bundle providing the HttpServiceRuntime service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service.http.runtime and org.osgi .service.http.runtime.dto packages:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.http.runtime.HttpServiceRuntime";
 uses:="org.osgi.service.http.runtime,org.osgi.service.http.runtime.dto"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

140.13 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

140.13.1 Service Permissions
Bundles that need to register Http Whiteboard services must be granted
ServicePermission[interfaceName, REGISTER] where interface name is the Http Whiteboard ser-
vice interface name.

The Http Whiteboard implementation must be granted ServicePermission[interfaceName, GET] to
retrieve the Http Whiteboard services from the service registry.

140.13.2 Introspection
Bundles that need to introspect the state of the Http runtime will need
ServicePermission[org.osgi .service.http.runtime.HttpServiceRuntime, GET] to obtain the HttpSer-
viceRuntime service and access the DTO types.

140.13.3 Accessing Resources with the Default Servlet Context Helper Implementation
The Http Whiteboard implementation must be granted AdminPermission[*,RESOURCE]
so that bundles may use the default ServletContextHelper implementation. This is
necessary because the implementation of the default ServletContextHelper must call
Bundle.getEntry to access the resources of a bundle and this method requires the caller to have
AdminPermission[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling Class.getResource . This operation is
privileged. The resulting URL object may then be passed to the Http Whiteboard implementation as
the result of a ServletContextHelper.getResource call. No further permission checks are performed
when accessing bundle entry or resource URL objects, so the Http Whiteboard implementation does
not need to be granted any additional permissions.

140.13.4 Accessing Other Types of Resources
In order to access resources that were not returned from the default ServletContextHelper imple-
mentation, the Http Whiteboard implementation must be granted sufficient privileges to access
these resources. For example, if the getResource method of a ServletContextHelper service returns
a file URL, the Http Whiteboard implementation requires the corresponding Fi lePermission to read
the file. Similarly, if the getResource method of a ServletContextHelper service returns an HTTP
URL, the Http Whiteboard implementation requires the corresponding SocketPermission to con-
nect to the resource.

Therefore, in most cases, the Http Whiteboard implementation should be a privileged service that
is granted sufficient permission to serve any bundle's resources, no matter where these resources

org.osgi.service.http.context Http Whiteboard Specification Version 1.1

Page 708 OSGi Enterprise Release 7

are located. Therefore, the Http Whiteboard implementation must capture the AccessControlCon-
text object of the bundle registering a ServletContextHelper service, and then use the captured Ac-
cessControlContext object when accessing resources returned by the ServletContextHelper service.
This situation prevents a bundle from supplying resources that it does not have permission to ac-
cess.

Therefore, the Http Whiteboard implementation should follow a scheme like the following exam-
ple. When using a ServletContextHelper service, it should capture the context.

ServiceReference<ServletContextHelper> servletContextHelperReference = ...
AccessControlContext acc = servletContextHelperReference.getBundle()
 .adapt(AccessControlContext.class);

When a URL returned by the getResource method of a ServletContextHelper service is used by the
Http Whiteboard implementation, the implementation must use the URL in a doPriv i leged con-
struct using the AccessControlContext object of the registering bundle:

AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 ...
 }
 }, acc);

This ensures the Http Whiteboard implementation can only use the URL if the bundle registering
the ServletContextHelper service that returned the URL also has permission to use the URL. The use
of a captured AccessControlContext only applies when accessing URL objects returned by the ge-
tResource method of the ServletContextHelper service.

140.13.5 Calling Http Whiteboard Services
This specification does not require that the Http Whiteboard implementation is granted All Permis-
sion or wraps calls to the Http Whiteboard services in a doPriv i leged block. Therefore, it is the re-
sponsibility of the Http Whiteboard service implementations to use a doPriv i leged block when per-
forming privileged operations.

140.13.6 Multipart Upload
If multipart upload is enabled for a servlet, the uploaded data is usually temporarily written to a file.
Therefore if security is enabled file permissions must be granted accordingly.

If a servlet is using the default path to store uploaded data, the Http Whiteboard implementation
needs Fi lePermission[path, "read,write,delete"] for that path. As the servlet is reading the data, the
bundle containing the servlet needs Fi lePermission[path, "read"] for that path.

If a servlet is providing the path to store uploaded data, the bundle containing the servlet needs
Fi lePermission[path, "read,write,delete"] for that path. The Http Whiteboard implementation
needs the same permissions for that path. Therefore, it is the responsibility of the Http Whiteboard
service implementations to use a doPriv i leged block when performing the write operation.

If security is enabled and any of the above required permissions is not granted, the multipart han-
dling servlet is regarded invalid and will not be registered. This state is reflected in the error DTOs.

140.14 org.osgi.service.http.context

Http Whiteboard Context Package Version 1.1.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.context

OSGi Enterprise Release 7 Page 709

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.context; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.context; vers ion="[1.1 ,1 .2)"

140.14.1 Summary

• ServletContextHelper - Helper service for a servlet context used by a Http Whiteboard imple-
mentation to serve HTTP requests.

140.14.2 public abstract class ServletContextHelper
Helper service for a servlet context used by a Http Whiteboard implementation to serve HTTP re-
quests.

This service defines methods that the Http Whiteboard implementation may call to get information
for a request when dealing with whiteboard services.

Each ServletContextHelper is registered with a "osgi.http.whiteboard.context.name" service proper-
ty containing a name to reference by servlets, servlet filters, resources, and listeners. If there is more
than one ServletContextHelper registered with the same context name, the one with the highest
service ranking is active, the others are inactive.

A context is registered with the "osgi.http.whiteboard.context.path" service property to define a
path under which all services registered with this context are reachable. If there is more than one
ServletContextHelper registered with the same path, each duplicate context path is searched by ser-
vice ranking order according to org.osgi.framework.ServiceReference.compareTo(Object) until a
matching servlet or resource is found.

Servlets, servlet filters, resources, and listeners services may be associated with a ServletContex-
tHelper service with the "osgi.http.whiteboard.context.select" service property. If the referenced
ServletContextHelper service does not exist or is currently not active, the whiteboard services for
that ServletContextHelper are not active either.

If no ServletContextHelper service is associated, that is no "osgi.http.whiteboard.context.select" ser-
vice property is configured for a whiteboard service, a default ServletContextHelper is used.

Those whiteboard services that are associated with the same ServletContextHelper object will share
the same ServletContext object.

The behavior of the methods on the default ServletContextHelper is defined as follows:

• getMimeType - Always returns nul l .
• handleSecurity - Always returns true .
• getResource - Assumes the named resource is in the bundle of the whiteboard service, ad-

dressed from the root. This method calls the whiteboard service bundle's Bundle.getEntry
method, and returns the appropriate URL to access the resource. On a Java runtime environ-
ment that supports permissions, the Http Whiteboard implementation needs to be granted
org.osgi .f ramework.AdminPermission[*,RESOURCE] .

• getResourcePaths - Assumes that the resources are in the bundle of the whiteboard service. This
method calls Bundle.f indEntr ies method, and returns the found entries. On a Java runtime envi-
ronment that supports permissions, the Http Whiteboard implementation needs to be granted
org.osgi .f ramework.AdminPermission[*,RESOURCE] .

• getRealPath - Always returns nul l .

org.osgi.service.http.context Http Whiteboard Specification Version 1.1

Page 710 OSGi Enterprise Release 7

See Also HttpWhiteboardConstants.HTTP_WHITEBOARD_CONTEXT_NAME,
HttpWhiteboardConstants.HTTP_WHITEBOARD_CONTEXT_PATH

Concurrency Thread-safe

140.14.2.1 public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"

HttpServletRequest attribute specifying the scheme used in authentication. The value of the at-
tribute can be retrieved by HttpServletRequest.getAuthType .

140.14.2.2 public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"

HttpServletRequest attribute specifying the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service. The value of the attribute can be retrieved by
HttpServletRequest.getAttr ibute(ServletContextHelper.AUTHORIZATION) .

140.14.2.3 public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"

HttpServletRequest attribute specifying the name of the authenticated user. The value of the at-
tribute can be retrieved by HttpServletRequest.getRemoteUser .

140.14.2.4 public ServletContextHelper()

□ Construct a new context helper.

If needed, the subclass will have to handle the association with a specific bundle.

140.14.2.5 public ServletContextHelper(Bundle bundle)

bundle The bundle to be associated with this context helper.

□ Construct a new context helper associated with the specified bundle.

140.14.2.6 public void finishSecurity(HttpServletRequest request, HttpServletResponse response)

request The HTTP request.

response The HTTP response.

□ Finishes the security context for the specified request.

Implementations of this service can implement this method to clean up resources which have been
setup in handleSecurity(HttpServletRequest, HttpServletResponse).

This method is only called if handleSecurity(HttpServletRequest, HttpServletResponse) returned
true for the specified request. This method is called once the pipeline finishes processing or if an ex-
ception is thrown from within the pipeline execution.

The default implementation of this method does nothing.

See Also handleSecurity(HttpServletRequest, HttpServletResponse)

Since 1.1

140.14.2.7 public String getMimeType(String name)

name The name for which to determine the MIME type.

□ Maps a name to a MIME type.

Called by the Http Whiteboard implementation to determine the MIME type for the specified
name. For whiteboard services, the Http Whiteboard implementation will call this method to sup-
port the ServletContext method getMimeType . For resource servlets, the Http Whiteboard imple-
mentation will call this method to determine the MIME type for the Content-Type header in the re-
sponse.

Returns The MIME type (e.g. text/html) of the specified name or nul l to indicate that the Http Whiteboard
implementation should determine the MIME type itself.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.context

OSGi Enterprise Release 7 Page 711

140.14.2.8 public String getRealPath(String path)

path The virtual path to be translated to a real path.

□ Gets the real path corresponding to the given virtual path.

Called by the Http Whiteboard implementation to support the ServletContext method getRealPath
for whiteboard services.

Returns The real path, or nul l if the translation cannot be performed.

140.14.2.9 public URL getResource(String name)

name The name of the requested resource.

□ Maps a resource name to a URL.

Called by the Http Whiteboard implementation to map the specified resource name to a URL. For
servlets, the Http Whiteboard implementation will call this method to support the ServletContext
methods getResource and getResourceAsStream . For resources, the Http Whiteboard implementa-
tion will call this method to locate the named resource.

The context can control from where resources come. For example, the resource can be mapped to a
file in the bundle's persistent storage area via BundleContext.getDataFi le(name).toURI() .toURL() or
to a resource in the context's bundle via getClass() .getResource(name)

Returns A URL that a Http Whiteboard implementation can use to read the resource or nul l if the resource
does not exist.

140.14.2.10 public Set<String> getResourcePaths(String path)

path The partial path used to match the resources, which must start with a /.

□ Returns a directory-like listing of all the paths to resources within the web application whose
longest sub-path matches the supplied path argument.

Called by the Http Whiteboard implementation to support the ServletContext method getResour-
cePaths for whiteboard services.

Returns A Set containing the directory listing, or nul l if there are no resources in the web application whose
path begins with the supplied path.

140.14.2.11 public boolean handleSecurity(HttpServletRequest request, HttpServletResponse response) throws
IOException

request The HTTP request.

response The HTTP response.

□ Handles security for the specified request.

The Http Whiteboard implementation calls this method prior to servicing the specified request.
This method controls whether the request is processed in the normal manner or an error is re-
turned.

If the request requires authentication and the Authorizat ion header in the request is missing or not
acceptable, then this method should set the WWW-Authenticate header in the response object, set
the status in the response object to Unauthorized(401) and return fa lse . See also RFC 2617: HTTP
Authentication: Basic and Digest Access Authentication [http://www.ietf.org/rfc/rfc2617.txt].

If the request requires a secure connection and the getScheme method in the request does not re-
turn 'https' or some other acceptable secure protocol, then this method should set the status in the
response object to Forbidden(403) and return fa lse .

When this method returns fa lse , the Http Whiteboard implementation will send the response back
to the client, thereby completing the request. When this method returns true , the Http Whiteboard
implementation will proceed with servicing the request.

http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt

org.osgi.service.http.runtime Http Whiteboard Specification Version 1.1

Page 712 OSGi Enterprise Release 7

If the specified request has been authenticated, this method must set the AUTHENTICATION_TYPE
request attribute to the type of authentication used, and the REMOTE_USER request attribute to the
remote user (request attributes are set using the setAttr ibute method on the request). If this method
does not perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this method must
set the AUTHORIZATION request attribute to the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the authentication type and
remote user by calling the getAuthType and getRemoteUser methods, respectively, on the request.

If there is the need to clean up resources at the end of the request, the method
finishSecurity(HttpServletRequest, HttpServletResponse) can be implemented. That method is only
called if this method returns true .

Returns true if the request should be serviced, fa lse if the request should not be serviced and Http White-
board implementation will send the response back to the client.

Throws IOException– May be thrown by this method. If this occurs, the Http Whiteboard implementation
will terminate the request and close the socket.

See Also finishSecurity(HttpServletRequest, HttpServletResponse)

140.15 org.osgi.service.http.runtime

Http Runtime Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.runtime; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.runtime; vers ion="[1.1 ,1 .2)"

140.15.1 Summary

• HttpServiceRuntime - The HttpServiceRuntime service represents the runtime information of
an Http Whiteboard implementation.

• HttpServiceRuntimeConstants - Defines standard names for Http Runtime Service constants.

140.15.2 public interface HttpServiceRuntime
The HttpServiceRuntime service represents the runtime information of an Http Whiteboard imple-
mentation.

It provides access to DTOs representing the current state of the service.

The HttpServiceRuntime service must be registered with the
HttpServiceRuntimeConstants.HTTP_SERVICE_ENDPOINT service property.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

140.15.2.1 public RequestInfoDTO calculateRequestInfoDTO(String path)

path The request path, relative to the root of the Http Whiteboard implementation.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Enterprise Release 7 Page 713

□ Return a request info DTO containing the services involved with processing a request for the speci-
fied path.

Returns The request info DTO for the specified path.

140.15.2.2 public RuntimeDTO getRuntimeDTO()

□ Return the runtime DTO representing the current state.

Returns The runtime DTO.

140.15.3 public final class HttpServiceRuntimeConstants
Defines standard names for Http Runtime Service constants.

140.15.3.1 public static final String HTTP_SERVICE_ENDPOINT = "osgi.http.endpoint"

Http Runtime Service service property specifying the endpoints upon which the Http Whiteboard
implementation is listening.

An endpoint value is a URL or a relative path, to which the Http Whiteboard implementation is
listening. For example, http://192.168.1.10:8080/ or /myapp/ . A relative path may be used if the
scheme and authority parts of the URL are not known, e.g. in a bridged Http Whiteboard implemen-
tation. If the Http Whiteboard implementation is serving the root context and neither scheme nor
authority is known, the value of the property is "/". Both, a URL and a relative path, must end with a
slash.

An Http Whiteboard implementation can be listening on multiple endpoints.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

140.15.3.2 public static final String HTTP_SERVICE_ID = "osgi.http.service.id"

Http Runtime Service service property to associate the Http Runtime Service with one or more
HttpService services.

If this Http Whiteboard implementation also implements the Http Service Specification, this ser-
vice property is set to a collection of service. id for the HttpService services registered by this imple-
mentation.

The value of this service property must be of type Collect ion<Long> .

140.16 org.osgi.service.http.runtime.dto

Http Runtime DTO Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.runtime.dto; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.runtime.dto; vers ion="[1.1 ,1 .2)"

140.16.1 Summary

• BaseServletDTO - Represents common information about a javax.servlet .Servlet service.
• DTOConstants - Defines standard constants for the DTOs.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 714 OSGi Enterprise Release 7

• ErrorPageDTO - Represents a javax.servlet .Servlet for handling errors and currently being used
by a servlet context.

• Fai ledErrorPageDTO - Represents a javax.servlet .Servlet service registered as an error page but
currently not being used by a servlet context due to a problem.

• Fai ledFi lterDTO - Represents a servlet Fi l ter service which is currently not being used by a
servlet context due to a problem.

• Fai ledListenerDTO - Represents a listener service which is currently not being used by a servlet
context due to a problem.

• Fai ledPreprocessorDTO - Represents a preprocessor service which is currently not being used
due to a problem.

• Fai ledResourceDTO - Represents a resource definition which is currently not being used by a
servlet context due to a problem.

• Fai ledServletContextDTO - Represents a servlet context that is currently not used due to some
problem.

• Fai ledServletDTO - Represents a javax.servlet .Servlet service which is currently not being used
by a servlet context due to a problem.

• Fi l terDTO - Represents a servlet javax.servlet .F i l ter service currently being used for by a servlet
context.

• ListenerDTO - Represents a listener currently being used by a servlet context.
• PreprocessorDTO - Represents a preprocessor org.osgi .service.http.whiteboard.Preprocessor

service currently being used during request processing.
• RequestInfoDTO - Represents the services used to process a specific request.
• ResourceDTO - Represents a resource definition currently being used by a servlet context.
• RuntimeDTO - Represents the state of a Http Service Runtime.
• ServletContextDTO - Represents a javax.servlet .ServletContext created for servlets, resources,

servlet Filters, and listeners associated with that servlet context.
• ServletDTO - Represents a javax.servlet .Servlet currently being used by a servlet context.

140.16.2 public abstract class BaseServletDTO
extends DTO
Represents common information about a javax.servlet .Servlet service.

Concurrency Not Thread-safe

140.16.2.1 public boolean asyncSupported

Specifies whether the servlet supports asynchronous processing.

140.16.2.2 public Map<String, String> initParams

The servlet initialization parameters as provided during registration of the servlet. Additional para-
meters like the Http Service Runtime attributes are not included. If the service has no initialization
parameters, the map is empty.

140.16.2.3 public String name

The name of the servlet. This value is never nul l , unless this object represents a Fai ledServletDTO or
a Fai ledErrorPageDTO where the value might be nul l .

140.16.2.4 public long serviceId

Service property identifying the servlet. In the case of a servlet registered in the service registry and
picked up by a Http Whiteboard Implementation, this value is not negative and corresponds to the
service id in the registry. If the servlet has not been registered in the service registry, the value is neg-
ative and a unique negative value is generated by the Http Service Runtime in this case.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Enterprise Release 7 Page 715

140.16.2.5 public long servletContextId

The service id of the servlet context for the servlet represented by this DTO.

140.16.2.6 public String servletInfo

The information string from the servlet.

This is the value returned by the Servlet .getServlet Info() method. For a Fai ledServletDTO or a
Fai ledErrorPageDTO this is always nul l .

140.16.2.7 public BaseServletDTO()

140.16.3 public final class DTOConstants
Defines standard constants for the DTOs.

140.16.3.1 public static final int FAILURE_REASON_EXCEPTION_ON_INIT = 4

An exception occurred during initializing of the service.

This reason can only happen for servlets and servlet filters.

140.16.3.2 public static final int FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING = 1

No matching ServletContextHelper .

140.16.3.3 public static final int FAILURE_REASON_SERVICE_IN_USE = 7

The service is not registered as a prototype scoped service and is already in use with a servlet context
and therefore can't be used with another servlet context.

140.16.3.4 public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 5

The service is registered in the service registry but getting the service fails as it returns nul l .

140.16.3.5 public static final int FAILURE_REASON_SERVLET_CONTEXT_FAILURE = 2

Matching ServletContextHelper , but the context is not used due to a problem with the context.

140.16.3.6 public static final int FAILURE_REASON_SERVLET_READ_FROM_DEFAULT_DENIED = 10

The servlet is not registered as it is configured to have multipart enabled, but the bundle containing
the servlet has no read permission to the default location for the uploaded files.

Since 1.1

140.16.3.7 public static final int FAILURE_REASON_SERVLET_WRITE_TO_LOCATION_DENIED = 8

The servlet is not registered as it is configured to have multipart enabled, but the bundle containing
the servlet has no write permission to the provided location for the uploaded files.

Since 1.1

140.16.3.8 public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 3

Service is shadowed by another service.

For example, a service with the same service properties but a higher service ranking.

140.16.3.9 public static final int FAILURE_REASON_UNKNOWN = 0

Failure reason is unknown.

140.16.3.10 public static final int FAILURE_REASON_VALIDATION_FAILED = 6

The service is registered in the service registry but the service properties are invalid.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 716 OSGi Enterprise Release 7

140.16.3.11 public static final int FAILURE_REASON_WHITEBOARD_WRITE_TO_DEFAULT_DENIED = 9

The servlet is not registered as it is configured to have multipart enabled, but the whiteboard imple-
mentation has no write permission to the default location for the uploaded files.

Since 1.1

140.16.3.12 public static final int FAILURE_REASON_WHITEBOARD_WRITE_TO_LOCATION_DENIED = 11

The servlet is not registered as it is configured to have multipart enabled, but the whiteboard imple-
mentation has no write permission to the provided location for the uploaded files.

Since 1.1

140.16.4 public class ErrorPageDTO
extends BaseServletDTO
Represents a javax.servlet .Servlet for handling errors and currently being used by a servlet context.

Concurrency Not Thread-safe

140.16.4.1 public long[] errorCodes

The error codes the error page is used for. This array might be empty.

140.16.4.2 public String[] exceptions

The exceptions the error page is used for. This array might be empty.

140.16.4.3 public ErrorPageDTO()

140.16.5 public class FailedErrorPageDTO
extends ErrorPageDTO
Represents a javax.servlet .Servlet service registered as an error page but currently not being used by
a servlet context due to a problem.

As the servlet represented by this DTO is not used due to a failure, the field
FailedErrorPageDTO.servletContextId always returns 0 and does not point to an existing Servlet-
ContextHelper .

Concurrency Not Thread-safe

140.16.5.1 public int failureReason

The reason why the servlet represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.5.2 public FailedErrorPageDTO()

140.16.6 public class FailedFilterDTO
extends FilterDTO
Represents a servlet Fi l ter service which is currently not being used by a servlet context due to a
problem.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Enterprise Release 7 Page 717

As the service represented by this DTO is not used due to a failure, the field
FailedFilterDTO.servletContextId always returns 0 and does not point to an existing servlet context.

Concurrency Not Thread-safe

140.16.6.1 public int failureReason

The reason why the servlet filter represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.6.2 public FailedFilterDTO()

140.16.7 public class FailedListenerDTO
extends ListenerDTO
Represents a listener service which is currently not being used by a servlet context due to a problem.

As the listener represented by this DTO is not used due to a failure, the field
FailedErrorPageDTO.servletContextId always returns 0 and does not point to an existing servlet con-
text.

Concurrency Not Thread-safe

140.16.7.1 public int failureReason

The reason why the listener represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.7.2 public FailedListenerDTO()

140.16.8 public class FailedPreprocessorDTO
extends PreprocessorDTO
Represents a preprocessor service which is currently not being used due to a problem.

Since 1.1

Concurrency Not Thread-safe

140.16.8.1 public int failureReason

The reason why the preprocessor represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE

140.16.8.2 public FailedPreprocessorDTO()

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 718 OSGi Enterprise Release 7

140.16.9 public class FailedResourceDTO
extends ResourceDTO
Represents a resource definition which is currently not being used by a servlet context due to a
problem.

As the resource represented by this DTO is not used due to a failure, the field
FailedResourceDTO.servletContextId always returns 0 and does not point to an existing servlet con-
text.

Concurrency Not Thread-safe

140.16.9.1 public int failureReason

The reason why the resource represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.9.2 public FailedResourceDTO()

140.16.10 public class FailedServletContextDTO
extends ServletContextDTO
Represents a servlet context that is currently not used due to some problem. The following fields re-
turn an empty array for a Fai ledServletContextDTO :

• ServletContextDTO.servletDTOs
• ServletContextDTO.resourceDTOs
• ServletContextDTO.filterDTOs
• ServletContextDTO.errorPageDTOs
• ServletContextDTO.listenerDTOs

The method ServletContextDTO.attributes returns an empty map for a Fai ledServletContextDTO .

Concurrency Not Thread-safe

140.16.10.1 public int failureReason

The reason why the servlet context represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.10.2 public FailedServletContextDTO()

140.16.11 public class FailedServletDTO
extends ServletDTO
Represents a javax.servlet .Servlet service which is currently not being used by a servlet context due
to a problem.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Enterprise Release 7 Page 719

As the servlet represented by this DTO is not used due to a failure, the field
FailedServletDTO.servletContextId always returns 0 and does not point to an existing servlet con-
text.

Concurrency Not Thread-safe

140.16.11.1 public int failureReason

The reason why the servlet represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE,
DTOConstants.FAILURE_REASON_SERVLET_WRITE_TO_LOCATION_DENIED,
DTOConstants.FAILURE_REASON_WHITEBOARD_WRITE_TO_DEFAULT_DENIED,
DTOConstants.FAILURE_REASON_SERVLET_READ_FROM_DEFAULT_DENIED

140.16.11.2 public FailedServletDTO()

140.16.12 public class FilterDTO
extends DTO
Represents a servlet javax.servlet .F i l ter service currently being used for by a servlet context.

Concurrency Not Thread-safe

140.16.12.1 public boolean asyncSupported

Specifies whether the servlet filter supports asynchronous processing.

140.16.12.2 public String[] dispatcher

The dispatcher associations for the servlet filter.

The specified names are used to determine in what occasions the servlet filter is called. This array is
never nul l .

140.16.12.3 public Map<String, String> initParams

The servlet filter initialization parameters as provided during registration of the servlet filter. Addi-
tional parameters like the Http Service Runtime attributes are not included. If the servlet filter has
not initialization parameters, this map is empty.

140.16.12.4 public String name

The name of the servlet filter. This field is never nul l .

140.16.12.5 public String[] patterns

The request mappings for the servlet filter.

The specified patterns are used to determine whether a request is mapped to the servlet filter. This
array might be empty.

140.16.12.6 public String[] regexs

The request mappings for the servlet filter.

The specified regular expressions are used to determine whether a request is mapped to the servlet
filter. This array might be empty.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 720 OSGi Enterprise Release 7

140.16.12.7 public long serviceId

Service property identifying the servlet filter. In the case of a servlet filter registered in the service
registry and picked up by a Http Whiteboard Implementation, this value is not negative and corre-
sponds to the service id in the registry. If the servlet filter has not been registered in the service reg-
istry, the value is negative and a unique negative value is generated by the Http Service Runtime in
this case.

140.16.12.8 public long servletContextId

The service id of the servlet context for the servlet filter represented by this DTO.

140.16.12.9 public String[] servletNames

The servlet names for the servlet filter.

The specified names are used to determine the servlets whose requests are mapped to the servlet fil-
ter. This array might be empty.

140.16.12.10 public FilterDTO()

140.16.13 public class ListenerDTO
extends DTO
Represents a listener currently being used by a servlet context.

Concurrency Not Thread-safe

140.16.13.1 public long serviceId

Service property identifying the listener. In the case of a Listener registered in the service registry
and picked up by a Http Whiteboard Implementation, this value is not negative and corresponds to
the service id in the registry. If the listener has not been registered in the service registry, the value is
negative and a unique negative value is generated by the Http Service Runtime in this case.

140.16.13.2 public long servletContextId

The service id of the servlet context for the listener represented by this DTO.

140.16.13.3 public String[] types

The fully qualified type names the listener. This array is never empty.

140.16.13.4 public ListenerDTO()

140.16.14 public class PreprocessorDTO
extends DTO
Represents a preprocessor org.osgi .service.http.whiteboard.Preprocessor service currently being
used during request processing.

Since 1.1

Concurrency Not Thread-safe

140.16.14.1 public Map<String, String> initParams

The preprocessor initialization parameters as provided during registration of the preprocessor. Addi-
tional parameters like the Http Service Runtime attributes are not included. If the preprocessor has
not initialization parameters, this map is empty.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Enterprise Release 7 Page 721

140.16.14.2 public long serviceId

Service property identifying the preprocessor. In the case of a preprocessor registered in the service
registry and picked up by a Http Whiteboard Implementation, this value is not negative and corre-
sponds to the service id in the registry. If the preprocessor has not been registered in the service reg-
istry, the value is negative and a unique negative value is generated by the Http Service Runtime in
this case.

140.16.14.3 public PreprocessorDTO()

140.16.15 public class RequestInfoDTO
extends DTO
Represents the services used to process a specific request.

Concurrency Not Thread-safe

140.16.15.1 public FilterDTO[] filterDTOs

The servlet filters processing this request. If no servlet filters are called for processing this request,
an empty array is returned.

140.16.15.2 public String path

The path of the request relative to the root.

140.16.15.3 public ResourceDTO resourceDTO

The resource processing this request. If the request is processed by a resource, this field points to
the DTO of the resource. If the request is processed by another type of component like a servlet, this
field is nul l .

140.16.15.4 public long servletContextId

The service id of the servlet context processing the request represented by this DTO.

140.16.15.5 public ServletDTO servletDTO

The servlet processing this request. If the request is processed by a servlet, this field points to the
DTO of the servlet. If the request is processed by another type of component like a resource, this
field is nul l .

140.16.15.6 public RequestInfoDTO()

140.16.16 public class ResourceDTO
extends DTO
Represents a resource definition currently being used by a servlet context.

Concurrency Not Thread-safe

140.16.16.1 public String[] patterns

The request mappings for the resource.

The specified patterns are used to determine whether a request is mapped to the resource. This val-
ue is never nul l .

140.16.16.2 public String prefix

The prefix of the resource.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 722 OSGi Enterprise Release 7

140.16.16.3 public long serviceId

Service property identifying the resource. In the case of a resource registered in the service registry
and picked up by a Http Whiteboard Implementation, this value is not negative and corresponds to
the service id in the registry. If the resource has not been registered in the service registry, the value
is negative and a unique negative value is generated by the Http Service Runtime in this case.

140.16.16.4 public long servletContextId

The service id of the servlet context for the resource represented by this DTO.

140.16.16.5 public ResourceDTO()

140.16.17 public class RuntimeDTO
extends DTO
Represents the state of a Http Service Runtime.

Concurrency Not Thread-safe

140.16.17.1 public FailedErrorPageDTO[] failedErrorPageDTOs

Returns the representations of the error page javax.servlet .Servlet services associated with this run-
time but currently not used due to some problem. The returned array may be empty.

140.16.17.2 public FailedFilterDTO[] failedFilterDTOs

Returns the representations of the javax.servlet .F i l ter services associated with this runtime but cur-
rently not used due to some problem. The returned array may be empty.

140.16.17.3 public FailedListenerDTO[] failedListenerDTOs

Returns the representations of the listeners associated with this runtime but currently not used due
to some problem. The returned array may be empty.

140.16.17.4 public FailedPreprocessorDTO[] failedPreprocessorDTOs

Returns the representations of the servlet org.osgi .service.http.whiteboard.Preprocessor services
associated with this runtime but currently not used due to some problem. The returned array may
be empty.

Since 1.1

140.16.17.5 public FailedResourceDTO[] failedResourceDTOs

Returns the representations of the resources associated with this runtime but currently not used
due to some problem. The returned array may be empty.

140.16.17.6 public FailedServletContextDTO[] failedServletContextDTOs

Returns the representations of the javax.servlet .ServletContext objects currently not used by the
Http service runtime due to some problem. The returned array may be empty.

140.16.17.7 public FailedServletDTO[] failedServletDTOs

Returns the representations of the javax.servlet .Servlet services associated with this runtime but
currently not used due to some problem. The returned array may be empty.

140.16.17.8 public PreprocessorDTO[] preprocessorDTOs

Returns the representations of the org.osgi .service.http.whiteboard.Preprocessor objects used by
the Http Service Runtime. The returned array may be empty if the Http Service Runtime is currently
not using any org.osgi .service.http.whiteboard.Preprocessor objects.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Enterprise Release 7 Page 723

Since 1.1

140.16.17.9 public ServiceReferenceDTO serviceDTO

The DTO for the corresponding org.osgi .service.http.runtime.HttpServiceRuntime . This value is
never nul l .

140.16.17.10 public ServletContextDTO[] servletContextDTOs

Returns the representations of the javax.servlet .ServletContext objects used by the Http Service
Runtime. The returned array may be empty if the Http Service Runtime is currently not using any
javax.servlet .ServletContext objects.

140.16.17.11 public RuntimeDTO()

140.16.18 public class ServletContextDTO
extends DTO
Represents a javax.servlet .ServletContext created for servlets, resources, servlet Filters, and
listeners associated with that servlet context. The Servlet Context is usually backed by a
org.osgi.service.http.context.ServletContextHelper service.

Concurrency Not Thread-safe

140.16.18.1 public Map<String, Object> attributes

The servlet context attributes.

The value type must be a numerical type, Boolean , Str ing , DTO or an array of any of the former.
Therefore this method will only return the attributes of the servlet context conforming to this con-
straint. Other attributes are omitted. If there are no attributes conforming to the constraint, an emp-
ty map is returned.

140.16.18.2 public String contextPath

The servlet context path. This is the value returned by the ServletContext.getContextPath()
method.

140.16.18.3 public ErrorPageDTO[] errorPageDTOs

Returns the representations of the error page Servlet services associated with this context. The rep-
resentations of the error page Servlet services associated with this context. The returned array may
be empty if this context is currently not associated with any error pages.

140.16.18.4 public FilterDTO[] filterDTOs

Returns the representations of the servlet Fi l ter services associated with this context. The represen-
tations of the servlet Fi l ter services associated with this context. The returned array may be empty if
this context is currently not associated with any servlet Fi l ter services.

140.16.18.5 public Map<String, String> initParams

The servlet context initialization parameters. This is the set of parameters provided when register-
ing this context. Additional parameters like the Http Service Runtime attributes are not included. If
the context has no initialization parameters, this map is empty.

140.16.18.6 public ListenerDTO[] listenerDTOs

Returns the representations of the listener services associated with this context. The representations
of the listener services associated with this context. The returned array may be empty if this context
is currently not associated with any listener services.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 724 OSGi Enterprise Release 7

140.16.18.7 public String name

The name of the servlet context. The name of the corresponding
org.osgi.service.http.context.ServletContextHelper.

This is the value returned by the ServletContext.getServletContextName() method.

140.16.18.8 public ResourceDTO[] resourceDTOs

Returns the representations of the resource services associated with this context. The representa-
tions of the resource services associated with this context. The returned array may be empty if this
context is currently not associated with any resource services.

140.16.18.9 public long serviceId

Service property identifying the servlet context. In the case of a servlet context backed by a Servlet-
ContextHelper registered in the service registry and picked up by a Http Whiteboard Implementa-
tion, this value is not negative and corresponds to the service id in the registry. If the servlet context
is not backed by a service registered in the service registry, the value is negative and a unique nega-
tive value is generated by the Http Service Runtime in this case.

140.16.18.10 public ServletDTO[] servletDTOs

Returns the representations of the Servlet services associated with this context. The representations
of the Servlet services associated with this context. The returned array may be empty if this context
is currently not associated with any Servlet services.

140.16.18.11 public ServletContextDTO()

140.16.19 public class ServletDTO
extends BaseServletDTO
Represents a javax.servlet .Servlet currently being used by a servlet context.

Concurrency Not Thread-safe

140.16.19.1 public boolean multipartEnabled

Specifies whether multipart support is enabled.

Since 1.1

140.16.19.2 public int multipartFileSizeThreshold

Specifies the size threshold after which the file will be written to disk. If multipart is not enabled for
this servlet, 0 is returned.

See Also multipartEnabled

Since 1.1

140.16.19.3 public String multipartLocation

Specifies the location where the files can be stored on disk. If multipart is not enabled for this
servlet, nul l is returned.

See Also multipartEnabled

Since 1.1

140.16.19.4 public long multipartMaxFileSize

Specifies the maximum size of a file being uploaded. If multipart is not enabled for this servlet, 0 is
returned.

See Also multipartEnabled

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard

OSGi Enterprise Release 7 Page 725

Since 1.1

140.16.19.5 public long multipartMaxRequestSize

Specifies the maximum request size. If multipart is not enabled for this servlet, 0 is returned.

See Also multipartEnabled

Since 1.1

140.16.19.6 public String[] patterns

The request mappings for the servlet.

The specified patterns are used to determine whether a request is mapped to the servlet. This array
is never nul l . It might be empty for named servlets.

140.16.19.7 public ServletDTO()

140.17 org.osgi.service.http.whiteboard

Http Whiteboard Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.whiteboard; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.whiteboard; vers ion="[1.1 ,1 .2)"

140.17.1 Summary

• HttpWhiteboardConstants - Defines standard constants for the Http Whiteboard services.
• Preprocessor - Services registered as a Preprocessor using a whiteboard pattern are executed for

every request before the dispatching is performed.

140.17.2 public final class HttpWhiteboardConstants
Defines standard constants for the Http Whiteboard services.

140.17.2.1 public static final String DISPATCHER_ASYNC = "ASYNC"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied in the asynchronous context.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.2 public static final String DISPATCHER_ERROR = "ERROR"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied when an error page is called.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.3 public static final String DISPATCHER_FORWARD = "FORWARD"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied to forward calls to the dispatcher.

org.osgi.service.http.whiteboard Http Whiteboard Specification Version 1.1

Page 726 OSGi Enterprise Release 7

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.4 public static final String DISPATCHER_INCLUDE = "INCLUDE"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied to include calls to the dispatcher.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.5 public static final String DISPATCHER_REQUEST = "REQUEST"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied to client requests.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.6 public static final String HTTP_SERVICE_CONTEXT_FILTER = "(osgi.http.whiteboard.context.httpservice=*)"

If a servlet filter, error page or listener wants to be registered with the Http Context(s) managed by
the Http Service, they can select the contexts having the HTTP_SERVICE_CONTEXT_PROPERTY
property using this filter.

See Also HTTP_SERVICE_CONTEXT_PROPERTY

Since 1.1

140.17.2.7 public static final String HTTP_SERVICE_CONTEXT_PROPERTY = "osgi.http.whiteboard.context.httpservice"

If a servlet filter, error page or listener wants to be registered with the Http Context(s) managed by
the Http Service, they can select the contexts having this property.

Servlets or resources registered using this property are treated as an invalid registration.

See Also HTTP_SERVICE_CONTEXT_FILTER

Since 1.1

140.17.2.8 public static final String HTTP_WHITEBOARD_CONTEXT_INIT_PARAM_PREFIX = "context.init."

Service property prefix referencing a ServletContextHelper service.

For ServletContextHelper services this prefix can be used for service properties to mark them as ini-
tialization parameters which can be retrieved from the associated servlet context. The prefix is re-
moved from the service property name to build the initialization parameter name.

For ServletContextHelper services, the value of each initialization parameter service property must
be of type Str ing .

140.17.2.9 public static final String HTTP_WHITEBOARD_CONTEXT_NAME = "osgi.http.whiteboard.context.name"

Service property specifying the name of an ServletContextHelper service.

For ServletContextHelper services, this service property must be specified. Context services without
this service property are ignored.

Servlet, listener, servlet filter, and resource services might refer to a specific ServletContextHelper
service referencing the name with the HTTP_WHITEBOARD_CONTEXT_SELECT property.

For ServletContextHelper services, the value of this service property must be of type Str ing . The val-
ue must follow the "symbolic-name" specification from Section 1.3.2 of the OSGi Core Specification.

See Also HTTP_WHITEBOARD_CONTEXT_PATH, HTTP_WHITEBOARD_CONTEXT_SELECT,
HTTP_WHITEBOARD_DEFAULT_CONTEXT_NAME

140.17.2.10 public static final String HTTP_WHITEBOARD_CONTEXT_PATH = "osgi.http.whiteboard.context.path"

Service property specifying the path of an ServletContextHelper service.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard

OSGi Enterprise Release 7 Page 727

For ServletContextHelper services this service property is required. Context services without this
service property are ignored.

This property defines a context path under which all whiteboard services associated with this con-
text are registered. Having different contexts with different paths allows to separate the URL space.

For ServletContextHelper services, the value of this service property must be of type Str ing . The val-
ue is either a slash for the root or it must start with a slash but not end with a slash. Valid characters
are defined in rfc3986#section-3.3. Contexts with an invalid path are ignored.

See Also HTTP_WHITEBOARD_CONTEXT_NAME, HTTP_WHITEBOARD_CONTEXT_SELECT

140.17.2.11 public static final String HTTP_WHITEBOARD_CONTEXT_SELECT = "osgi.http.whiteboard.context.select"

Service property referencing a ServletContextHelper service.

For servlet, listener, servlet filter, or resource services, this service property refers to the associated
ServletContextHelper service. The value of this property is a filter expression which is matched
against the service registration properties of the ServletContextHelper service. If this service prop-
erty is not specified, the default context is used. If there is no context service matching, the servlet,
listener, servlet filter, or resource service is ignored.

For example, if a whiteboard service wants to select a servlet context helper with the name "Admin"
the expression would be "(osgi.http.whiteboard.context.name=Admin)". Selecting all contexts could
be done with "(osgi.http.whiteboard.context.name=*)".

For servlet, listener, servlet filter, or resource services, the value of this service property must be of
type Str ing .

See Also HTTP_WHITEBOARD_CONTEXT_NAME, HTTP_WHITEBOARD_CONTEXT_PATH

140.17.2.12 public static final String HTTP_WHITEBOARD_DEFAULT_CONTEXT_NAME = "default"

The name of the default ServletContextHelper. If a service is registered with this property, it is over-
riding the default context with a custom provided context.

See Also HTTP_WHITEBOARD_CONTEXT_NAME

140.17.2.13 public static final String HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED =
"osgi.http.whiteboard.filter.asyncSupported"

Service property specifying whether a servlet Fi l ter service supports asynchronous processing.

By default servlet filters services do not support asynchronous processing.

The value of this service property must be of type Boolean .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 2.3.3.3 Asynchronous Processing

140.17.2.14 public static final String HTTP_WHITEBOARD_FILTER_DISPATCHER = "osgi.http.whiteboard.filter.dispatcher"

Service property specifying the dispatcher handling of a servlet Fi l ter .

By default servlet filter services are associated with client requests only (see value
DISPATCHER_REQUEST).

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> . Al-
lowed values are DISPATCHER_ASYNC, DISPATCHER_ERROR, DISPATCHER_FORWARD,
DISPATCHER_INCLUDE, DISPATCHER_REQUEST.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.15 public static final String HTTP_WHITEBOARD_FILTER_INIT_PARAM_PREFIX = "filter.init."

Service property prefix referencing a Filter service.

org.osgi.service.http.whiteboard Http Whiteboard Specification Version 1.1

Page 728 OSGi Enterprise Release 7

For Filter services this prefix can be used for service properties to mark them as initialization para-
meters which can be retrieved from the associated filter config. The prefix is removed from the ser-
vice property name to build the initialization parameter name.

For Filter services, the value of each initialization parameter service property must be of type Str ing .

140.17.2.16 public static final String HTTP_WHITEBOARD_FILTER_NAME = "osgi.http.whiteboard.filter.name"

Service property specifying the servlet filter name of a Fi l ter service.

This name is used as the value for the Fi l terConfig.getFi l terName() method. If this service property
is not specified, the fully qualified name of the service object's class is used as the servlet filter name.

Servlet filter names should be unique among all servlet filter services associated with a single
ServletContextHelper.

The value of this service property must be of type Str ing .

140.17.2.17 public static final String HTTP_WHITEBOARD_FILTER_PATTERN = "osgi.http.whiteboard.filter.pattern"

Service property specifying the request mappings for a Fi l ter service.

The specified patterns are used to determine whether a request should be mapped to the servlet fil-
ter. Filter services without this service property or the HTTP_WHITEBOARD_FILTER_SERVLET or
the HTTP_WHITEBOARD_FILTER_REGEX service property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 12.2 Specif icat ion of Mappings

140.17.2.18 public static final String HTTP_WHITEBOARD_FILTER_REGEX = "osgi.http.whiteboard.filter.regex"

Service property specifying the request mappings for a servlet Fi l ter service.

The specified regular expressions are used to determine whether a request should be mapped to
the servlet filter. The regular expressions must follow the syntax defined in java.ut i l . regex.Pattern .
Servlet filter services without this service property or the HTTP_WHITEBOARD_FILTER_SERVLET
or the HTTP_WHITEBOARD_FILTER_PATTERN service property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also java.ut i l . regex.Pattern

140.17.2.19 public static final String HTTP_WHITEBOARD_FILTER_SERVLET = "osgi.http.whiteboard.filter.servlet"

Service property specifying the servlet names for a servlet Fi l ter service.

The specified names are used to determine the servlets whose requests should be
mapped to the servlet filter. Servlet filter services without this service property or the
HTTP_WHITEBOARD_FILTER_PATTERN or the HTTP_WHITEBOARD_FILTER_REGEX service
property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

140.17.2.20 public static final String HTTP_WHITEBOARD_IMPLEMENTATION = "osgi.http"

The name of the implementation capability for the Http Whiteboard specification

Since 1.1

140.17.2.21 public static final String HTTP_WHITEBOARD_LISTENER = "osgi.http.whiteboard.listener"

Service property to mark a Listener service as a Whiteboard service. Listener services with this prop-
erty set to the string value "true" will be treated as Whiteboard services opting in to being handled
by the Http Whiteboard implementation. If the value "false" is specified, the service is opting out
and this case is treated exactly the same as if this property is missing. If an invalid value is specified
this is treated as a failure.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard

OSGi Enterprise Release 7 Page 729

The value of this service property must be of type Str ing . Valid values are "true" and "false" ignoring
case.

140.17.2.22 public static final String HTTP_WHITEBOARD_PREPROCESSOR_INIT_PARAM_PREFIX = "preprocessor.init."

Service property prefix referencing a Preprocessor service.

For Preprocessor services this prefix can be used for service properties to mark them as initialization
parameters which can be retrieved from the associated filter configuration. The prefix is removed
from the service property name to build the initialization parameter name.

For Preprocessor services, the value of each initialization parameter service property must be of type
Str ing .

Since 1.1

140.17.2.23 public static final String HTTP_WHITEBOARD_RESOURCE_PATTERN =
"osgi.http.whiteboard.resource.pattern"

Service property specifying the request mappings for resources.

The specified patterns are used to determine whether a request should be mapped to resources. Re-
source services without this service property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 12.2 Specif icat ion of Mappings ,
HTTP_WHITEBOARD_RESOURCE_PREFIX

140.17.2.24 public static final String HTTP_WHITEBOARD_RESOURCE_PREFIX = "osgi.http.whiteboard.resource.prefix"

Service property specifying the resource entry prefix for a resource service.

If a resource service is registered with this property, requests are served with bundle resources.

This prefix is used to map a requested resource to the bundle's entries. The value must not end with
slash ("/") with the exception that a name of the form "/" is used to denote the root of the bundle. See
the specification text for details on how HTTP requests are mapped.

The value of this service property must be of type Str ing .

See Also HTTP_WHITEBOARD_RESOURCE_PATTERN

140.17.2.25 public static final String HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED =
"osgi.http.whiteboard.servlet.asyncSupported"

Service property specifying whether a Servlet service supports asynchronous processing.

By default servlet services do not support asynchronous processing.

The value of this service property must be of type Boolean .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 2.3.3.3 Asynchronous Processing

140.17.2.26 public static final String HTTP_WHITEBOARD_SERVLET_ERROR_PAGE =
"osgi.http.whiteboard.servlet.errorPage"

Service property specifying whether a Servlet service acts as an error page.

The service property values may be the name of a fully qualified exception class, a three digit HTTP
status code, the value "4xx" for all error codes in the 400 range, or the value "5xx" for all error codes
in the 500 range. Any value that is not a three digit number, or one of the two special values is con-
sidered to be the name of a fully qualified exception class.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

org.osgi.service.http.whiteboard Http Whiteboard Specification Version 1.1

Page 730 OSGi Enterprise Release 7

140.17.2.27 public static final String HTTP_WHITEBOARD_SERVLET_INIT_PARAM_PREFIX = "servlet.init."

Service property prefix referencing a Servlet service.

For Servlet services this prefix can be used for service properties to mark them as initialization para-
meters which can be retrieved from the associated servlet config. The prefix is removed from the ser-
vice property name to build the initialization parameter name.

For Servlet services, the value of each initialization parameter service property must be of type
Str ing .

140.17.2.28 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED =
"osgi.http.whiteboard.servlet.multipart.enabled"

Service property specifying whether a Servlet service has enabled multipart request processing.

By default servlet services do not have multipart request processing enabled.

The value of this service property must be of type Boolean .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 8.1.5 @Mult ipartConfig

Since 1.1

140.17.2.29 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD =
"osgi.http.whiteboard.servlet.multipart.fileSizeThreshold"

Service property specifying the size threshold after which the file will be written to disk.

When not set or when the value is not valid, the default threshold is determined by the implemen-
tation. This property is only evaluated if HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED
is set to true .

The value of this service property must be of type Integer .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 14.4 Deployment Descr iptor Diagram

Since 1.1

140.17.2.30 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION =
"osgi.http.whiteboard.servlet.multipart.location"

Service property specifying the location where the files can be stored on disk.

When not set the default location is defined by the value of the system property "java.io.tmpdir".
This property is only evaluated if HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED is set to
true .

The value of this service property must be of type Str ing .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 14.4 Deployment Descr iptor Diagram

Since 1.1

140.17.2.31 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE =
"osgi.http.whiteboard.servlet.multipart.maxFileSize"

Service property specifying the maximum size of a file being uploaded.

When not set or when the value is not valid, the default maximum size is [@code -1} (no maximum
size). This property is only evaluated if HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED is
set to true .

The value of this service property must be of type Long .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 14.4 Deployment Descr iptor Diagram

Since 1.1

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard

OSGi Enterprise Release 7 Page 731

140.17.2.32 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE =
"osgi.http.whiteboard.servlet.multipart.maxRequestSize"

Service property specifying the maximum request size.

When not set or when the value is not valid, the default maximum request size is -1 (no maximum
size). This property is only evaluated if HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED is
set to true .

The value of this service property must be of type Long .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 14.4 Deployment Descr iptor Diagram

Since 1.1

140.17.2.33 public static final String HTTP_WHITEBOARD_SERVLET_NAME = "osgi.http.whiteboard.servlet.name"

Service property specifying the servlet name of a Servlet service.

The servlet is registered with this name and the name can be used as a reference to the servlet for fil-
tering or request dispatching.

This name is in addition used as the value for the ServletConfig.getServletName() method.
If this service property is not specified, the fully qualified name of the service object's
class is used as the servlet name. Filter services may refer to servlets by this name in their
HTTP_WHITEBOARD_FILTER_SERVLET service property to apply the filter to the servlet.

Servlet names should be unique among all servlet services associated with a single ServletContex-
tHelper.

The value of this service property must be of type Str ing .

140.17.2.34 public static final String HTTP_WHITEBOARD_SERVLET_PATTERN = "osgi.http.whiteboard.servlet.pattern"

Service property specifying the request mappings for a Servlet service.

The specified patterns are used to determine whether a request should be mapped to the servlet.
Servlet services without this service property, HTTP_WHITEBOARD_SERVLET_ERROR_PAGE or
HTTP_WHITEBOARD_SERVLET_NAME are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 12.2 Specif icat ion of Mappings

140.17.2.35 public static final String HTTP_WHITEBOARD_SPECIFICATION_VERSION = "1.1.0"

The version of the implementation capability for the Http Whiteboard specification

Since 1.1

140.17.2.36 public static final String HTTP_WHITEBOARD_TARGET = "osgi.http.whiteboard.target"

Service property specifying the target filter to select the Http Whiteboard implementation to
process the service.

An Http Whiteboard implementation can define any number of service properties which can be ref-
erenced by the target filter. The service properties should always include the osgi.http.endpoint ser-
vice property if the endpoint information is known.

If this service property is not specified, then all Http Whiteboard implementations can process the
service.

The value of this service property must be of type Str ing and be a valid filter string.

org.osgi.service.http.whiteboard.annotations Http Whiteboard Specification Version 1.1

Page 732 OSGi Enterprise Release 7

140.17.3 public interface Preprocessor
extends Filter
Services registered as a Preprocessor using a whiteboard pattern are executed for every request be-
fore the dispatching is performed.

If there are several services of this type, they are run in order of their service ranking, the one with
the highest ranking is used first. In the case of a service ranking tie, the service with the lowest ser-
vice id is processed first.

The preprocessor is handled in the same way as filters. When a preprocessor is put into service
Filter.init(javax.servlet.FilterConfig) is called, when it is not used anymore Filter.destroy() is called.
As these preprocessors are run before dispatching and therefore the targeted servlet context is not
known yet, javax.servlet.FilterConfig.getServletContext() returns the servlet context of the backing
implementation. The same context is returned by the request object. The context path is the con-
text path of this underlying servlet context. The passed in chain can be used to invoke the next pre-
processor in the chain, or if the end of that chain is reached to start dispatching of the request. A pre-
processor might decide to terminate the processing and directly generate a response.

Service properties with the prefix
HttpWhiteboardConstants#HTTP_WHITEBOARD_PREPROCESSOR_INIT_PARAM_PREFIX are passed
as init parameters to this service.

Since 1.1

Concurrency Thread-safe

140.18 org.osgi.service.http.whiteboard.annotations

Http Whiteboard Annotations Package Version 1.1.

This package contains annotations that can be used to require the Http Whiteboard implementa-
tion.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

140.18.1 Summary

• RequireHttpWhiteboard - This annotation can be used to require the Http Whiteboard imple-
mentation.

140.18.2 @RequireHttpWhiteboard
This annotation can be used to require the Http Whiteboard implementation. It can be used directly,
or as a meta-annotation.

This annotation is applied to several of the Http Whiteboard component property annotations
meaning that it does not normally need to be applied to Declarative Services components which use
the Http Whiteboard.

Retention CLASS

Target TYPE , PACKAGE

140.19 org.osgi.service.http.whiteboard.propertytypes

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard.propertytypes

OSGi Enterprise Release 7 Page 733

Http Whiteboard Property Types Package Version 1.1.

When used as annotations, component property types are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.whiteboard.propertytypes; vers ion="[1.1 ,2.0)"

140.19.1 Summary

• HttpWhiteboardContext - Component Property Type for the
osgi .http.whiteboard.context.name and osgi .http.whiteboard.context.path service properties.

• HttpWhiteboardContextSelect - Component Property Type for the
osgi .http.whiteboard.context.select service property.

• HttpWhiteboardFi lterAsyncSupported - Component Property Type for the
osgi .http.whiteboard.f i l ter.asyncSupported service property.

• HttpWhiteboardFi lterDispatcher - Component Property Type for the
osgi .http.whiteboard.f i l ter.dispatcher service property.

• HttpWhiteboardFi lterName - Component Property Type for the
osgi .http.whiteboard.f i l ter.name service property.

• HttpWhiteboardFi lterPattern - Component Property Type for the
osgi .http.whiteboard.f i l ter.pattern service property.

• HttpWhiteboardFi lterRegex - Component Property Type for the
osgi .http.whiteboard.f i l ter. regex service property.

• HttpWhiteboardFi lterServlet - Component Property Type for the
osgi .http.whiteboard.f i l ter.servlet service property.

• HttpWhiteboardListener - Component Property Type for the osgi .http.whiteboard. l istener ser-
vice property.

• HttpWhiteboardResource - Component Property Type for the
osgi .http.whiteboard.resource.pattern and osgi .http.whiteboard.resource.prefix service prop-
erties.

• HttpWhiteboardServletAsyncSupported - Component Property Type for the
osgi .http.whiteboard.servlet .asyncSupported service property.

• HttpWhiteboardServletErrorPage - Component Property Type for the
osgi .http.whiteboard.servlet .errorPage service property.

• HttpWhiteboardServletMult ipart - Component Property
Type for the osgi .http.whiteboard.servlet .mult ipart .enabled ,
osgi .http.whiteboard.servlet .mult ipart .f i leSizeThreshold ,
osgi .http.whiteboard.servlet .mult ipart . locat ion ,
osgi .http.whiteboard.servlet .mult ipart .maxFi leSize , and
osgi .http.whiteboard.servlet .mult ipart .maxRequestSize service properties.

• HttpWhiteboardServletName - Component Property Type for the
osgi .http.whiteboard.servlet .name service property.

• HttpWhiteboardServletPattern - Component Property Type for the
osgi .http.whiteboard.servlet .pattern service property.

• HttpWhiteboardTarget - Component Property Type for the osgi .http.whiteboard.target service
property.

org.osgi.service.http.whiteboard.propertytypes Http Whiteboard Specification Version 1.1

Page 734 OSGi Enterprise Release 7

140.19.2 @HttpWhiteboardContext
Component Property Type for the osgi .http.whiteboard.context.name and
osgi .http.whiteboard.context.path service properties.

This annotation can be used on a ServletContextHelper to declare the values of the
HTTP_WHITEBOARD_CONTEXT_NAME and HTTP_WHITEBOARD_CONTEXT_PATH service
properties.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.2.1 String name

□ Service property identifying a servlet context helper name.

Returns The context name.

See Also HTTP_WHITEBOARD_CONTEXT_NAME

140.19.2.2 String path

□ Service property identifying a servlet context helper path.

Returns The context path.

See Also HTTP_WHITEBOARD_CONTEXT_PATH

140.19.2.3 String PREFIX_ = "osgi.http.whiteboard.context."

Prefix for the property name. This value is prepended to each property name.

140.19.3 @HttpWhiteboardContextSelect
Component Property Type for the osgi .http.whiteboard.context.select service property.

This annotation can be used on a Http Whiteboard component to declare the value of the
HTTP_WHITEBOARD_CONTEXT_SELECT service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.3.1 String value

□ Service property identifying the select property of a Http Whiteboard component.

Returns The filter expression.

See Also HTTP_WHITEBOARD_CONTEXT_SELECT

140.19.3.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.4 @HttpWhiteboardFilterAsyncSupported
Component Property Type for the osgi .http.whiteboard.f i l ter.asyncSupported service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED service property.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard.propertytypes

OSGi Enterprise Release 7 Page 735

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.4.1 boolean asyncSupported default true

□ Service property identifying the asynchronous support of a filter.

Returns Whether the filter supports asynchronous processing.

See Also HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED

140.19.4.2 String PREFIX_ = "osgi.http.whiteboard.filter."

Prefix for the property name. This value is prepended to each property name.

140.19.5 @HttpWhiteboardFilterDispatcher
Component Property Type for the osgi .http.whiteboard.f i l ter.dispatcher service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_DISPATCHER service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.5.1 DispatcherType[] value default javax.servlet.DispatcherType.REQUEST

□ Service property identifying dispatcher values for the filter.

Returns The dispatcher values for the filter.

See Also HTTP_WHITEBOARD_FILTER_DISPATCHER

140.19.5.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.6 @HttpWhiteboardFilterName
Component Property Type for the osgi .http.whiteboard.f i l ter.name service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_NAME service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.6.1 String value

□ Service property identifying a filter name.

Returns The filter name.

See Also HTTP_WHITEBOARD_FILTER_NAME

org.osgi.service.http.whiteboard.propertytypes Http Whiteboard Specification Version 1.1

Page 736 OSGi Enterprise Release 7

140.19.6.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.7 @HttpWhiteboardFilterPattern
Component Property Type for the osgi .http.whiteboard.f i l ter.pattern service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_PATTERN service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.7.1 String[] value

□ Service property identifying filter patterns.

Returns The filter patterns.

See Also HTTP_WHITEBOARD_FILTER_PATTERN

140.19.7.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.8 @HttpWhiteboardFilterRegex
Component Property Type for the osgi .http.whiteboard.f i l ter. regex service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_REGEX service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.8.1 String[] value

□ Service property identifying filter regular expressions.

Returns The regular expressions for the filter.

See Also HTTP_WHITEBOARD_FILTER_REGEX

140.19.8.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.9 @HttpWhiteboardFilterServlet
Component Property Type for the osgi .http.whiteboard.f i l ter.servlet service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_SERVLET service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard.propertytypes

OSGi Enterprise Release 7 Page 737

Target TYPE

140.19.9.1 String[] value

□ Service property identifying the servlets for the filter.

Returns The servlet names.

See Also HTTP_WHITEBOARD_FILTER_SERVLET

140.19.9.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.10 @HttpWhiteboardListener
Component Property Type for the osgi .http.whiteboard. l istener service property.

This annotation can be used on a Http Whiteboard listener to declare the value of the
HTTP_WHITEBOARD_LISTENER service property as being Boolean.TRUE .

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.10.1 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.11 @HttpWhiteboardResource
Component Property Type for the osgi .http.whiteboard.resource.pattern and
osgi .http.whiteboard.resource.prefix service properties.

This annotation can be used on any service to declare the values of the
HTTP_WHITEBOARD_RESOURCE_PATTERN and HTTP_WHITEBOARD_RESOURCE_PREFIX ser-
vice properties.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.11.1 String[] pattern

□ Service property identifying resource patterns.

Returns The resource patterns.

See Also HTTP_WHITEBOARD_RESOURCE_PATTERN

140.19.11.2 String prefix

□ Service property identifying resource prefix.

Returns The resource patterns.

See Also HTTP_WHITEBOARD_RESOURCE_PREFIX

140.19.11.3 String PREFIX_ = "osgi.http.whiteboard.resource."

Prefix for the property name. This value is prepended to each property name.

org.osgi.service.http.whiteboard.propertytypes Http Whiteboard Specification Version 1.1

Page 738 OSGi Enterprise Release 7

140.19.12 @HttpWhiteboardServletAsyncSupported
Component Property Type for the osgi .http.whiteboard.servlet .asyncSupported service property.

This annotation can be used on a javax.servlet.Servlet to declare the value of the
HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.12.1 boolean asyncSupported default true

□ Service property identifying the asynchronous support of a servlet.

Returns Whether the servlet supports asynchronous processing.

See Also HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED

140.19.12.2 String PREFIX_ = "osgi.http.whiteboard.servlet."

Prefix for the property name. This value is prepended to each property name.

140.19.13 @HttpWhiteboardServletErrorPage
Component Property Type for the osgi .http.whiteboard.servlet .errorPage service property.

This annotation can be used on a javax.servlet.Servlet to declare the value of the
HTTP_WHITEBOARD_SERVLET_ERROR_PAGE service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.13.1 String[] errorPage

□ Service property identifying the error pages of a servlet.

Returns The servlet error pages.

See Also HTTP_WHITEBOARD_SERVLET_ERROR_PAGE

140.19.13.2 String PREFIX_ = "osgi.http.whiteboard.servlet."

Prefix for the property name. This value is prepended to each property name.

140.19.14 @HttpWhiteboardServletMultipart
Component Property Type for the osgi .http.whiteboard.servlet .mult ipart .enabled ,
osgi .http.whiteboard.servlet .mult ipart .f i leSizeThreshold ,
osgi .http.whiteboard.servlet .mult ipart . locat ion ,
osgi .http.whiteboard.servlet .mult ipart .maxFi leSize , and
osgi .http.whiteboard.servlet .mult ipart .maxRequestSize service properties.

This annotation can be used on a javax.servlet.Servlet to declare the val-
ues of the HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED,
HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD,
HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION,
HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE, and
HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE service properties.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard.propertytypes

OSGi Enterprise Release 7 Page 739

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.14.1 boolean enabled default true

□ Service property identifying the multipart handling of a servlet.

Returns Whether the servlet supports multipart handling.

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED

140.19.14.2 int fileSizeThreshold default 0

□ Service property identifying the file size threshold for a multipart request handled by a servlet.

Returns The file size threshold for a multipart request..

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD

140.19.14.3 String location default ""

□ Service property identifying the location for a multipart request handled by a servlet.

Returns The location for a multipart request..

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION

140.19.14.4 long maxFileSize default -1L

□ Service property identifying the max file size for a multipart request handled by a servlet.

Returns The max file size for a multipart request..

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE

140.19.14.5 long maxRequestSize default -1L

□ Service property identifying the max request size for a multipart request handled by a servlet.

Returns The max request size for a multipart request..

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE

140.19.14.6 String PREFIX_ = "osgi.http.whiteboard.servlet.multipart."

Prefix for the property name. This value is prepended to each property name.

140.19.15 @HttpWhiteboardServletName
Component Property Type for the osgi .http.whiteboard.servlet .name service property.

This annotation can be used on a javax.servlet.Servlet to declare the value of the
HTTP_WHITEBOARD_SERVLET_NAME service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.15.1 String value

□ Service property identifying a servlet name.

References Http Whiteboard Specification Version 1.1

Page 740 OSGi Enterprise Release 7

Returns The servlet name.

See Also HTTP_WHITEBOARD_SERVLET_NAME

140.19.15.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.16 @HttpWhiteboardServletPattern
Component Property Type for the osgi .http.whiteboard.servlet .pattern service property.

This annotation can be used on a javax.servlet.Servlet to declare the value of the
HTTP_WHITEBOARD_SERVLET_PATTERN service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.16.1 String[] value

□ Service property identifying servlet patterns.

Returns The servlet patterns.

See Also HTTP_WHITEBOARD_SERVLET_PATTERN

140.19.16.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.17 @HttpWhiteboardTarget
Component Property Type for the osgi .http.whiteboard.target service property.

This annotation can be used on a Http Whiteboard service to declare the value of the
HTTP_WHITEBOARD_TARGET service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.17.1 String value

□ Service property identifying the Http Whiteboard target.

Returns The Http Whiteboard target filter expression.

See Also HTTP_WHITEBOARD_TARGET

140.19.17.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.20 References

[1] HTTP 1.0 Specification RFC-1945
http://www.ietf.org/rfc/rfc1945.txt, May 1996

http://www.ietf.org/rfc/rfc1945.txt

Http Whiteboard Specification Version 1.1 Changes

OSGi Enterprise Release 7 Page 741

[2] HTTP 1.1 Specifications RFCs 7230-7235
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235

[3] HTTP/2 Specifications
https://http2.github.io

[4] Java Servlet 3.1 Specification
https://jcp.org/aboutJava/communityprocess/final/jsr340/

[5] Portable Java Contract Definitions
https://www.osgi.org/portable-java-contract-definitions/

[6] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt

[7] Whiteboard Pattern
https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

[8] Core Service Hooks
OSGi Core, Chapter 55 Service Hook Service Specification

140.21 Changes
• Added

f in ishSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse)
to the Servlet Context Helper.

• Added Servlet support for Multipart Configuration Handling. See Table 140.4.
• Added Servlet Pre-Processors on page 699.
• Added service.changecount service property to Http Service Runtime Service. See Table 140.9
• Added Integration with Http Service Contexts on page 705.
• Added component property types and annotations, see

org.osgi .service.http.whiteboard.propertytypes in the API section.
• Added the RequireHttpWhiteboard annotation.

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235
https://http2.github.io
https://jcp.org/aboutJava/communityprocess/final/jsr340/
https://www.osgi.org/portable-java-contract-definitions/
http://www.ietf.org/rfc/rfc2617.txt
https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

Changes Http Whiteboard Specification Version 1.1

Page 742 OSGi Enterprise Release 7

Transaction Control Service Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 743

147 Transaction Control Service
Specification

Version 1.0

147.1 Introduction
Software Transactions are an important aspect of most modern applications. The job of a Transac-
tion is to ensure logical consistency for units of work within the application. Any time that the ap-
plication accesses a persistent external resource then a Transaction ensures that the set of changes
made to the resource(s) are Atomic, Consistent, Isolated, and Durable (ACID).

There are a variety of techniques for managing the lifecycle of software Transactions used in an ap-
plication. The most primitive mechanisms are for the application code to directly interact with the
Transaction Manager, but higher level abstractions can automatically manage the lifecycle of Trans-
actions through the use of Aspect Oriented Programming. Whatever techniques are used to manage
the Transaction lifecycle it is also necessary for any resource access that occurs within the Transac-
tion to be registered with the Transaction manager. As with managing the Transaction lifecycle, this
work may be performed by the client, or by a an intermediate framework without direct action from
the client.

OSGi applications consist of a set of independent modules which interact via the OSGi service reg-
istry; as such there is no single container which can be relied upon to manage the range of tasks
needed to successfully use a Transaction. This leaves OSGi clients with little choice but to depend
on specific environments, sacrificing portability, or to directly use Transactions via the JTA Transac-
tion Services Specification on page 371. The purpose of the Transaction Control Service is twofold:

• To enable a portable, modular abstraction for Transaction lifecycle management
• To allow different resource types to be easily used within a Transaction

147.1.1 Essentials

• Scoped Work - A function or code block with an associated execution context, known as a Scope.
The Scope may be Transactional, that is, associated with a Transaction, or a No Transaction Scope,
that is, with no associated Transaction.

• Client - Application code that wishes to invoke one or more pieces of Scoped Work.
• Transaction Control Service - The OSGi service representing the Transaction Control Service imple-

mentation. Used by the Client to execute pieces of Scoped Work.
• Resource - A local or remote software component which is stateful and can participate in a trans-

action.
• Resource Provider - A service or object which provides managed access to a Scoped Resource, that

is, a managed connection to the Resource which integrates with ongoing Transactions as neces-
sary.

• Transaction Context - A Java object representing the state of a Scope

Usage Transaction Control Service Specification Version 1.0

Page 744 OSGi Enterprise Release 7

Figure 147.1 Class and Service overview

Client <<service>>
ResourceProvider

Resource
Provider

<<service>>
TransactionControl Transaction

Control

147.1.2 Entities

• Transaction Control Service - A service that can execute pieces of work within a Scope, and be
queried to establish the current Scope.

• Client - The code that requests for Work to be run in a particular Scope.
• Work - A collection of instructions that interact with zero or more Resources within a Scope
• Scoped Resource - A resource connection with a managed lifecycle. The connection will automati-

cally participate in Transactions associated with Transactional Scopes, and its lifecycle is tied to
the Scope within which it is used.

147.2 Usage
This section is an introduction in the usage of the Transaction Control Service. It is not the formal
specification, the normative part starts at Transaction Control Service on page 747. This section
leaves out some of the details for clarity.

147.2.1 Synopsis
The Transaction Control Service provides a mechanism for a client to run work within a defined
Scope. Typically a Scope is also associated with a Transaction. The purpose of a Scope is to simpli-
fy the lifecycle of resources, and to allow those resources to participate in any ongoing Transaction.
Any Scoped Resources accessed during a Scope will remain available throughout the scope, and be
automatically cleaned up when the Scope completes.

Each Scope is started by the Client by passing piece of work to the Transaction Control Service. The
transaction control service will then begin a scope if needed, execute the work, and then complete
the scope if needed. The different methods on the Transaction Control Service provide different life-
cycle semantics for the Scope. Some methods establish a Transactional Scope, others may suspend
an active Transactional Scope replacing it with a No Transaction Scope.

When a piece of Scoped Work is executing it may access one or more Scoped Resources. When a
Scoped Resource is first accessed within a Scope it is bound to that Scope so that future accesses use
the same physical resource. At the end of the Scope the resource is detached from the scope and the
physical resource is released. If the Scope is Transactional then the Scoped Resource will also partici-
pate in the transaction.

At the end of a piece of Scoped Work the Scope is finished. For a No Transaction Scope this simply
involves calling any registered callbacks. For a Transactional Scope, however, the Transaction must
be completed or rolled back. If the Scoped Work exits normally, and no call has been made to force

Transaction Control Service Specification Version 1.0 Usage

OSGi Enterprise Release 7 Page 745

the Transaction to roll back, then the Transaction will commit. If, however, the Work exits with an
Exception or the Transaction has been marked for roll back, then the Transaction will roll back. The
result of the Work then flows back to the caller in an appropriate way.

147.2.2 Running Scoped Work
The general pattern for a client is to obtain the Transaction Control Service and one or more Re-
source Provider instances. The Resource Provider(s) may come from the Service Registry, or from a
Factory, and are used to create Scoped Resource instances. These instances can then be used in the
scoped work. This is demonstrated in the following example:

@Reference
TransactionControl control;

Connection connection;

@Reference
void setResourceProvider(JDBCConnectionProvider provider) {
 connection = provider.getResrouce(control)
}

public void addMessage(String message) {
 control.required(() -> {
 PreparedStatement ps = connection.prepareStatement(
 "Insert into TEST_TABLE values (?)");
 ps.setString(1, message);
 return ps.executeUpdate();
 });
}

public List<String> listMessages(String message) {
 control.notSupported(() -> {
 List<String> results = new ArrayList<String>();
 ResultSet rs = connection.createStatement()
 .executeQuery("Select * from TEST_TABLE");
 while(rs.next()) {
 results.add(rs.getString(1));
 }
 return results;
 });
}

This example demonstrates how simply clients can execute scoped work using the Transaction
Control Service. In this case write operations always occur in a Transactional Scope, but read opera-
tions may occur in a Transactional Scope or a No Transaction Scope. In all cases the lifecycle of the
underlying connection is automatically managed, and there is no need to close or commit the con-
nection.

147.2.3 Accessing Scoped Resources
The Transaction Control Service can be used to manage the Scope of any piece of Work, but Scopes
are primarily used to simplify resource lifecycle management when using Scoped Resources. A
Scoped Resource is created using a Resource Provider, and the returned object can then be used in
any scope to access the associated Resource.

The example in Running Scoped Work on page 745 uses a JDBCConnectionProvider , which is a spe-
cialization of the generic ResourceProvider interface that returns JDBC Connection objects. Other

Usage Transaction Control Service Specification Version 1.0

Page 746 OSGi Enterprise Release 7

specializations of the Resource Provider exist in this specification, and third party providers may
provide their own specializations for proprietary resource types.

Once a Resource Provider has been obtained, a Scoped Resource is created from it by passing the
Transaction Control Service to the getResource method. This returns the Scoped Resource object
that can then be used in Scoped Work.

147.2.4 Exception Management
One of the most significant sources of error in applications that use transactions is caused by incor-
rect Exception Handling. These errors are the primary reason for using a framework or container to
manage transactions, rather than trying to manage them in the application code.

Exceptions tend to be more common in code that makes use of transactions because the code is usu-
ally performing actions that may fail, for example making updates to a database. Also, many of these
exceptions (such as java.sql .SQLException) are checked exceptions. As Scoped Work will typical-
ly raise both checked and unchecked exceptions it is defined as a Cal lable . As the callable interface
throws Exception it is not necessary to catch or wrap any exception generated within Scoped Work.

// An SQLException may be raised by the query,
// but we don't need to catch it
control.required(() -> connection.createStatement()
 .executeQuery("Insert into TEST_TABLE values ('Hello World!')"));

An exception indicates that a problem has occurred in a piece of code therefore, by default, any
exception thrown from inside a Transactional Scope will cause the Transaction to roll back. This
means that the Scoped Work can safely ignore any updates that were made in the event of an excep-
tion.

147.2.4.1 Handling Exceptions

Scoped Work is free to throw checked or unchecked exceptions, however these exceptions cannot
be directly thrown on by the Transaction Control Service. The primary reason for this is that direct-
ly rethrowing the exception would force users of the Transaction Control Service to either:

• Declare throws Exception on the calling method
• Add try/catch Exception blocks around the calls to the Transaction Control Service.

Both of these solutions are undesirable, as they force unnecessary boilerplate code, and potentially
shadow real checked exceptions in the API. Exceptions generated as part of Scoped Work are there-
fore wrapped by the Transaction Control Service in a ScopedWorkException . ScopedWorkException
is an unchecked exception and so can be ignored if no special handling is required.

In the case where the callers API requires the unwrapped exception type to be thrown a Scoped-
WorkException can be easily unwrapped using the as method.

try {
 control.required(() -> connection.createStatement()
 .executeQuery("Insert into TEST_TABLE values ('Hello World!')"));
} catch (ScopedWorkException swe) {
 // This line throws the cause of the ScopedWorkException as
 // an SQLException or as a RuntimeException if appropriate
 throw swe.as(SQLException.class);
}

If there is more than one potential checked Exception type that should be rethrown then the asO-
neOf method can be used.

try {

Transaction Control Service Specification Version 1.0 Transaction Control Service

OSGi Enterprise Release 7 Page 747

 control.required(() -> connection.createStatement()
 .executeQuery("Insert into TEST_TABLE values ('Hello World!')"));
} catch (ScopedWorkException swe) {
 // This line throws the cause of the ScopedWorkException as
 // an SQLException or as a RuntimeException if appropriate
 throw swe.asOneOf(SQLRecoverableException.class, SQLTransientException.class);
}

147.2.4.2 Avoiding Transaction Rollback

In general if a piece of Work running in a Transactional Scope exits with an exception the associated
Transaction will roll back. Sometimes, however, certain exception types should not cause the Trans-
action to roll back. This can be indicated to the Transaction Control Service when the Scope is being
declared.

control.build()
 .noRollbackFor(URISyntaxException.class)
 .required(() -> {
 ...
 });

In this example the Transaction does not roll back for any URISyntaxException . Sometimes this is
too coarse grained, and the Transaction should only avoid rolling back for one specific exception in-
stance. In this case the instance can be passed to the Transaction Control Service ignoreException
method.

control.required(() -> {
 try {
 // A URISynaxException from here is safe
 ...
 } catch (URISyntaxException e) {
 control.ignoreException(e);
 throw e;
 }
 // A URISynaxException from here is *not* safe
 ...
 });

147.2.5 Multi Threading
By its very definition a Scope is associated with a single piece of Work, and therefore a single thread.
If a piece of Scoped Work starts new threads, or submits tasks to other threads, then any code exe-
cuted on those threads will not occur within the Scope.

Scoped Resources are always thread-safe, and can be used concurrently in different Scopes. This
is true even if the underlying physical resources are not thread safe. It is the responsibility of the
Scoped Resource implementation to ensure that the underlying physical resources are protected
correctly.

147.3 Transaction Control Service
The Transaction Control Service is the primary interaction point between a client and the Transac-
tion Control Service implementation. A Transaction Control Service implementation must expose a
service implementing the TransactionControl interface.

Clients obtain an instance of the Transaction Control Service using the normal OSGi service registry
mechanisms, either directly using the OSGi framework API, or using dependency injection.

Transaction Control Service Transaction Control Service Specification Version 1.0

Page 748 OSGi Enterprise Release 7

The Transaction Control Service is used to:

• Execute work within a defined scope
• Query the current execution scope
• Associate objects with the current execution scope
• Register for callbacks when the scope ends
• Enlist resource with the current transaction (if there is a Transaction Scope active)
• Mark the current scope for rollback (if there is a Transaction scope)

147.3.1 Scope Life Cycle
The life cycle of a scope is tied to the execution of a piece of scoped work. Unless a scope is being in-
herited then a scope starts immediately before the scoped work executes and ends immediately after
the scoped work completes, even if the scoped work throws an exception.

The first action that a client wishing to execute scoped work must take is to identify the type of
scope that they wish to use. The work should then be passed to the relevant method on the Transac-
tionControl service:

Table 147.1 Methods for executing scoped work

Method Name Existing Scope Description
required(Cal lable) Unscoped Begins a new Transaction scope and executes the work inside it
required(Cal lable) No Transaction scope Suspends the No Transaction Scope and begins a new Transaction

scope, executing the work inside it. After the work completes the
original scope is restored.

required(Cal lable) Transaction scope Runs the work within the existing scope
requiresNew(Cal lable) Unscoped Begins a new Transaction scope and executes the work inside it
requiresNew(Cal lable) No Transaction scope Suspends the No Transaction Scope and begins a new Transaction

scope, executing the work inside it. After the work completes the
original scope is restored.

requiresNew(Cal lable) Transaction scope Suspends the Transaction Scope and begins a new Transaction
scope, executing the work inside it. After the work completes the
original scope is restored.

supports(Cal lable) Unscoped Begins a new No Transaction scope and executes the work inside
it

supports(Cal lable) No Transaction scope Runs the work within the existing scope
supports(Cal lable) Transaction scope Runs the work within the existing scope
notSupported(Cal lable) Unscoped Begins a new No Transaction scope and executes the work inside

it
notSupported(Cal lable) No Transaction scope Runs the work within the existing scope
notSupported(Cal lable) Transaction scope Suspends the Transaction Scope and begins a new No Transaction

scope, executing the work inside it. After the work completes the
original transaction scope is restored.

Once the relevant method has been identified the client passes the scoped work to the Transaction
Control Service. In the typical case the Transaction Control Service must then:

1. Establish a new scope
2. Execute the scoped work
3. Finish the scope, calling any registered callbacks and committing the Transaction if the scope is

a Transaction Scope
4. Return the result of the scoped work to the client

Transaction Control Service Specification Version 1.0 Transaction Control Service

OSGi Enterprise Release 7 Page 749

The Transaction Control Service must only finish a scope once, after the execution of the Scoped
Work which originally started the scope. This means that callbacks registered by a piece of Scoped
Work may not run immediately after the work finishes, but will be delayed until the parent task has
finished if the scope was inherited.

147.3.2 Scopes and Exception Management
Resource access is intrinsically error-prone, and therefore there are many potential failure scenarios.
Exceptions therefore form an important part of the scope lifecycle.

147.3.2.1 Client Exceptions

The work provided by the client to the Transaction Control Service is passed as a Cal lable , meaning
that the work may throw an Exception. An Exception thrown by the work is known as a Client Ex-
ception.

If a client exception is thrown then it must be caught by the Transaction Control Service and han-
dled appropriately by finishing the scope as required. Once the scope has completed the client ex-
ception must be wrapped in a ScopedWorkException and rethrown by the Transaction Control ser-
vice.

If a number of scopes are nested then a ScopedWorkException may be received as a client Excep-
tion. A ScopedWorkException must not be re-wrapped by the Transaction Control Service using the
normal Exception chaining mechanism, but instead a new ScopedWorkException must be creat-
ed initialized with the original cause. The caught ScopedWorkException must then be added to the
new ScopedWorkException as a suppressed Exception. This prevents clients from having to deeply
introspect the exception cause chain to locate the original error.

147.3.2.2 Rethrowing Client Exceptions

In the general case clients will not need to catch a ScopedWorkException, and it can be left to re-
port/handle at a higher level. Sometimes, however, the Exceptions thrown by a piece of work repre-
sent an important part of the API, and they need to be thrown on without being wrapped in a Scope-
dWorkException. The ScopedWorkException provides a simple mechanism to do this. The client
simply calls one of the asOneOf(Class,Class) methods which will throw the cause of the Exception
as one of the supplied checked Exception types, or directly as an unchecked Exception if the cause is
unchecked.

The asOneOf() methods always throw an Exception, but the method return value is declared as a
RuntimeException. This can be used to simplify the act of rethrowing the cause when using this
method.

try {
 txControl.required(() -> {
 // Do some work in here that may throw IOException
 // or ClassNotFoundException
 return result;
 });
} catch (ScopedWorkException swe) {
 throw swe.asOneOf(IOException.class, ClassNotFoundException.class);
}

If the cause of a ScopedWorkException is a checked exception, but that exception is not assignable
to any of the types passed to the asOneOf() method then the cause of the ScopedWorkException
will still be thrown, however there will be no compiler assistance for the user when writing their
throws clause.

Transaction Control Service Transaction Control Service Specification Version 1.0

Page 750 OSGi Enterprise Release 7

147.3.2.3 Exceptions Generated by the Transaction Control Service

Many operations performed by the Transaction Control Service, particularly when finishing a
scope, may result in an Exception. Internal failures, for example a failure when attempting to com-
mit a resource, must be wrapped in a TransactionException and thrown to the client.

A TransactionException must never override a ScopedWorkException. In the case where a Scoped-
WorkException should be thrown and a Transaction Control Service failure occurs then the Trans-
actionException must be set as a suppressed exception in the ScopedWorkException.

147.3.3 Transaction Scope lifecycle
In addition to callbacks and scoped variables Transaction scopes also provide an ongoing software
transaction which shares the lifecycle of the scope. There are therefore additional lifecycle rules for
Transaction Scopes

147.3.3.1 Triggering Rollback in Transaction Scopes

By default a transaction will commit automatically when the piece of work completes normally. If
this is not desired (for example if the work's business logic determines that the transaction should
not complete) then the work may trigger a rollback in one of two ways.

Calling setRol lbackOnly() on the Transaction Control object will mark the transaction for rollback
so that it will never commit, even if the method completes normally. This is a one-way operation,
and the rollback state can be queried using getRol lbackOnly()

txControl.required(() -> {
 // Do some work in here
 ...
 // This work will not be committed!
 txControl.setRollbackOnly();
 return result;
 });

Throwing an exception from the piece of work will, by default, cause the transaction to be rolled
back. Note that this is different from Java EE behavior, where a checked exceptions does not trigger
rollback. This is a deliberate difference as many applications get the wrong behavior based on this
default. For example SQLException is a commonly thrown Exception in JDBC, but is rarely, if ever, a
“safe return”. Forgetting to override this behavior means that production code will fail to enforce the
correct transaction boundaries.

txControl.required(() -> {
 // Do some work in here
 ...
 // Uh oh – something went wrong!
 throw new IllegalStateException(“Kaboom!”);
 });

147.3.3.2 Avoiding Rollback

Sometimes it is preferable for a piece of work to throw an exception, but for that exception not to
trigger a rollback of the transaction. For example some business exceptions may be considered “nor-
mal”, or it may be the case that the work performed so far must be persisted for audit reasons.

There are two ways to prevent a transaction from rolling back when a particular exception occurs

The Transaction Control service provides a TransactionBui lder . The builder can be used to define
sets of Exception types that should, or should not, trigger rollback. The most specific match will be
used to determine whether the transaction should roll back or not.

Transaction Control Service Specification Version 1.0 Transaction Control Service

OSGi Enterprise Release 7 Page 751

The Transaction Control service provides an ignoreException(Throwable) method. This can be used
from within an Active Transaction to declare a specific Exception object that should not trigger roll-
back.

If a transaction is marked for rollback using setRol lbackOnly() then it must roll back, even if the
work throws an exception which would not normally trigger a rollback.

147.3.3.3 Rollback in inherited transactions

If a piece of scoped work inherits a transaction scope then the transaction is not committed until
the inherited scope completes. Therefore if the nested scoped work throws an exception then this
must mark the transaction for rollback, unless the exception has been explicitly ignored or config-
ured not to cause rollback.

Any exception thrown by the nested scoped work must result in a ScopedWorkException in exactly
the same way as it would when not nested.

txControl.required(() -> {
 // Do some work in here
 ...
 try {
 txControl.required(() -> {
 // The outer transaction is inherited
 throw new RuntimeException();
 });
 } catch (ScopedWorkException swe) {
 // The transaction is still active, but now marked for rollback
 }
 });

147.3.3.4 Read Only transactions

Resources accessed within a transaction are frequently used to update persistent data, however in
some cases it is known in advance that no changes will be made to the data. In the case where no
changes are going to be made then different, more optimal, algorithms can be used by the resource
to improve performance. It is therefore useful for applications to be able to indicate when resources
are going to be used in a read-only way.

To indicate that a transaction is read-only the TransactionBuilder must be used.

txControl.build()
 .readOnly()
 .required(() -> {
 // Do some work in here
 ...
 return result;
 });

The readOnly method provides a hint to the TransactionControl service that the scoped work only
uses read access to resources. The TransactionControl service is free to ignore this hint if it does not
offer read-only optimizations. Also, read-only only applies to Transaction Scopes. No Transaction
Scopes always ignore the call to readOnly.

147.3.3.4.1 Determining whether a Transaction is read only

The TransactionContext provides access to whether the transaction is read only using the isRead-
Only() method. This method will return true if the transaction was started using the read only flag,
and the TransactionControl service supports read-only optimization.

The TransactionContext Transaction Control Service Specification Version 1.0

Page 752 OSGi Enterprise Release 7

This method is primarily available so that resource providers can set their read-only status correctly
when they first enlist with the transaction. Resource providers are free to ignore the read only status
as it is provided for optimization only.

147.3.3.4.2 Writing to resources using in a read only transaction

When a client begins a transaction in read-only mode there is no API restriction that prevents them
from writing to one or more resources. If the scoped work does write to the resource then the result
is undefined. The write may succeed, or it may result in an exception, triggering a rollback.

Clients should avoid declaring a transaction as read only unless they are certain that no resources
are updated within the scope of the work. This includes any operations performed by external ser-
vices which inherit the transaction.

147.3.3.4.3 Changing the read state in nested transactions

When a client begins a Transaction Scope using the required method then it inherits the existing
Transaction Scope if it exists. It is not possible to change the writability of an inherited transaction.

In the case where the inherited transaction is a writable transaction then the readOnly() state de-
clared for the nested scope will be ignored. In the case where the inherited transaction is read only
then an attempt to change the transaction to a writable transaction will fail with a TransactionEx-
ception.

If the nested transaction is declared using requiresNew then it will create a new transaction which
may have a different writability from the outer scope.

147.4 The TransactionContext
When a client uses the TransactionControl service to scope a piece of work, the scope gains an asso-
ciated Transaction Context. The current transaction context is not normally needed by clients, but
is an important integration point for ResourceProviders, and for clients that wish to register transac-
tion completion callbacks.

The Transaction Control Service provides methods that can be used to query the current transaction
context.

• activeTransaction() - returns true if there is a Transaction scope associated with the currently ex-
ecuting work.

• activeScope() - returns true if there is a Transaction Scope or a No Transaction Scope associated
with the currently executing work.

• getCurrentContext() - returns the current TransactionContext , or nul l if the currently executing
code is unscoped. If the current work has a No Transaction scope then the returned Transaction
Context will report its status as NO_TRANSACTION

If a Transaction scope is active then it may either be backed by a Local Transaction, or by an XA
Transaction, which affects the types of resource that can be used with the Transaction Context. The
transaction support can be queried using the supportsLocal() and supportsXA() methods on the
transaction context object. Some implementations may support both XA and Local resources in the
same transaction, but these are still considered to be XA Transactions.

147.4.1 Transaction Lifecycle callbacks
In addition to registering Resources with the Transaction Context clients or resources may
register callback functions. Callback functions can run either before or after the transaction
finishes, depending as to whether they are registered using preCompletion(Runnable) or
postCompletion(Consumer) to register their callbacks.

Transaction Control Service Specification Version 1.0 The TransactionContext

OSGi Enterprise Release 7 Page 753

Lifecycle callbacks may be registered at any point during the execution of scoped work. Once the
scoped work has finished it is no longer possible to register a pre-completion callback (for example
inside another lifecycle callback). Attempts to register a pre-completion callback outside the exe-
cution of the scoped work must fail with an I l legalStateException . Post-completion callbacks may
be also be registered with the Transaction Context after the scoped work completes, up to the point
where the first post-completion callback is called. Specifically a pre-completion callback, or a re-
source participating in the transaction may register a post-completion callback. Attempts to register
a post-completion callback after this must fail with an I l legalStateException .

147.4.1.1 Pre-completion Callbacks

Pre-completion callbacks run immediately after the end of the scoped work, and before any associat-
ed transaction finishes. Because pre-completion callbacks run before the end of the transaction they
are able to prevent it from committing, either by calling setRol lbackOnly() or potentially by throw-
ing a RuntimeException . If the scope is a No Transaction scope then there is no commit to prevent.

If scoped work completes with an exception that triggers rollback, then the Transaction Context
must be marked for rollback before calling any pre-completion callbacks.

Exceptions generated by pre-completion callbacks are gathered, If any of the generated Exceptions
would trigger rollback then the transaction is treated as having failed with the first of those excep-
tions. Any other exceptions are added as suppressed exceptions. Assuming that no Client Exception
occurred then the failure must be reported by throwing a TransactionRol ledBackException , or in
the case of a No Transaction scope, a TransactionException .

147.4.1.2 Post-completion Callbacks

Post-completion callbacks are run after any associated transaction finishes. As the transaction
has completed, post-completion callbacks receive the completion state of the transaction as a
method parameter. In the case of a No Transaction context there is no transaction, so the post-
completion callbacks immediately follow the pre-completion callbacks, and are passed a status of
NO_TRANSACTION.

Exceptions generated by post-completion callbacks are unable to affect the outcome of any transac-
tion, and must therefore be logged, but not acted on further by the Transaction Control service.

Although Post-completion callbacks run after the transaction, the Transaction Context must still
be valid when they execute. In particular post-completion callbacks must have access to any scoped
variables registered with the Transaction Context

147.4.2 Scoped variables
A Transaction context may be used to store scoped variables. These variables are attached to the
TransactionContext, and will be released after the Context finishes. Scoped resources are guaranteed
to be accessible in lifecycle callbacks.

Variables may be added to the scope using putScopedValue(Object,Object) and retrieved using
getScopedValue(Object) . These methods are valid both for Active Transactions and the No Transac-
tion scope.

147.4.3 Transaction Key
Every Active Transaction has an associated key, which will be unique within the lifetime of the
TransactionControl service's registration. That is, a registered Transaction Control instance will
never reuse a key. The key object is opaque, but is guaranteed to be suitable for use as a key in a
HashMap . Note that the Transaction Key is not globally unique, but only unique to the registered
TransactionControl service. In particular, two concurrently registered TransactionControl services
may simultaneously use the same key, and/or a Transaction Control implementation may reuse
keys if it unregisters and then re-registers its service with a different service id.

TransactionContexts for the No Transaction scope have a null key.

The TransactionContext Transaction Control Service Specification Version 1.0

Page 754 OSGi Enterprise Release 7

147.4.4 The Transaction Status
The current state of a Transaction Context is represented by a Java enum, and can be queried by
calling getTransactionStatus() . The status of a Transaction Context will change over time until it
reaches a terminal state. Once a terminal state has been reached the status of the Transaction Con-
text will not change again.

The status of a Transaction Context will always move forward through the enum values, that is, the
status can never move from one state to another state with a lower sort order. Note that a Transac-
tion Context will not necessarily enter all of the intermediate states between two values.

Table 147.2 Transaction Status Values

Status Terminal Description
NO_TRANSACTION yes This Transaction Context is for a No Transaction Scope
ACTIVE no This Transaction Scope is executing and not marked for

rollback
MARKED_ROLLBACK no This Transaction Scope is executing and has been

marked for rollback
PREPARING no A two phase commit is occurring and the transaction is

being prepared. This state is visible during the prepare
calls on XA resources

PREPARED no A two phase commit is occurring and the transaction
has been prepared. This state is visible immediately pri-
or to committing or rolling back XA resources

COMMITTING no The transaction is being committed. This state is visible
during the commit calls on resources

COMMITTED yes The transaction was successfully committed.
ROLLING_BACK no The transaction is being rolled back. This state is visible

during the rol lback calls on resources
ROLLED_BACK yes The transaction was successfully rolled back.

147.4.5 Local Transaction scopes
A Local Transaction is not persistent, and therefore not recoverable. It also may not be atomic or
consistent if multiple resources are involved. Local transactions do, however, provide isolation and
durability, even when multiple resources are involved.

A Local Transaction is therefore a very good choice when a single resource is involved as it is ex-
tremely lightweight and provides ACID behavior. Local Transactions do provide benefits when mul-
tiple resources are involved, however it is important to realize that Local Transactions may end up
in a state where some commits have succeeded and others failed.

147.4.5.1 The Local Transaction Lifecycle

The transaction context for a local transaction begins in the ACTIVE state, and may enter the
MARKED_ROLLBACK state if the client calls setRollbackOnly().

A local transaction must always return true from the supportsLocal() method, indicating that Local-
Resource participants may be registered using the registerLocalResource(LocalResource) method.

Once the transactional work has completed and the pre-completion callbacks have run the transac-
tion will be proceed as follows:

Transaction Control Service Specification Version 1.0 The TransactionContext

OSGi Enterprise Release 7 Page 755

Table 147.3 Lifecycle rules for Local Transactions

Active Marked for Rollback
1. Set the Transaction Status to COMMITTING
2. Call commit on the first LocalResource
3. If the first commit fails set the status Trans-

action Status to ROLLING_BACK and initial-
ize a TransactionRolledBackException with
its cause set to the failure.

4. Continue committing or rolling-back re-
sources based on the Transaction Status. If a
failure occurs then add it as a suppressed ex-
ception of an existing TransactionException,
creating a new TransactionException if this
is the first failure.

5. Set the Transaction Status to COMMITTED
or ROLLED_BACK as appropriate

6. Call the post-completion callbacks, passing
the Transaction Status

1. Set the Transaction Status to
ROLLING_BACK

2. Call rollback on each of the LocalResources
3. If a failure occurs then add it as a suppressed

exception of an existing TransactionExcep-
tion, creating a new TransactionException if
this is the first failure.

4. Set the Transaction Status to ROLLED_BACK
5. Call the post-completion callbacks, passing

the Transaction Status

147.4.5.2 Local Transaction Support Service Properties

A TransactionControl Service which supports local transactions may be identified using the
osgi . local .enabled property which will be set to Boolean.TRUE .

147.4.6 XA Transaction scopes
An XA transaction is persistent, and therefore can be recoverable. It is also atomic and consistent
even if multiple resources are involved.

An XA Transaction is therefore a very good choice when a multiple resource are involved as it pro-
vides ACID behavior. XA transactions are, however, more heavyweight than local transactions, and
should only be used where they are needed.

147.4.6.1 The XA Transaction Lifecycle

The transaction context for an XA transaction begins in the ACTIVE state, and may enter the
MARKED_ROLLBACK state if the client calls setRollbackOnly().

An XA transaction must always return true from the supportsXA() method, indicating that XA par-
ticipants may be registered using the registerXAResource method. XA transactions may also sup-
port one or more LocalResource participants. In this case the Transaction Context should also re-
turn true from the supportsLocal() method, indicating that LocalResource participants may be reg-
istered using the registerLocalResource method.

Once the transactional work has completed and the pre-completion callbacks have run the transac-
tion should be completed using the normal XA algorithm. If the transaction fails during a commit
attempt, resulting in a rollback, then the Transaction Control Service must generate a Transaction-
Rol ledBackException . If the transaction fails in any other way then the Transaction Control service
must generate a TransactionException . Exceptions from the commit should be added to an existing
ScopedWorkException if it exists.

147.4.6.2 XA Transaction Support Service Properties

A Transaction Control Service which supports XA transactions may be identified using the
osgi .xa.enabled property which will be set to Boolean.TRUE .

If the Transaction Control Service also supports Local transactions then it must also set the
osgi . local .enabled property to Boolean.TRUE .

Resource Providers Transaction Control Service Specification Version 1.0

Page 756 OSGi Enterprise Release 7

147.5 Resource Providers
It is important that clients can easily control the transaction boundaries within their application,
but it is equally important that the resources that the clients use participate in these transactions. In
a Java EE Application server this is achieved by having the central application container create and
manage all of the resources. In the Spring framework the Application context is responsible for en-
suring that the resources are linked to a Transaction Manager.

There is no central container in OSGi, and so a modular solution is required. This specification de-
fines the concept of a Resource Provider. A Resource Provider is a generic service which can provide
a resource of some kind to the client. The Resource Provider exists to ensure that the resource being
used will always be enlisted with the correct transaction context.

147.5.1 Generic Resource Providers
The purpose of a ResourceProvider is to provide the client with a configured resource which will au-
tomatically integrate with the correct transaction context at runtime.

Resources are created from a Resource Provider using the following method:

public <T> T getResource(TransactionControl txControl);

Typically clients will not use a plain Resource Provider, but will search for a specific subclass in-
stead, which reifies the type parameter T . This allows for type safe access to resources, and ensures
that the correct ResourceProvider implementation has been found.

147.5.1.1 The Basic Resource Lifecycle

Resources returned by a Resource Provider are proxies to an underlying factory for physical re-
sources. Whenever the proxy is accessed then it should check the current transaction scope. If this
is the first time the proxy has been accessed in the scope then the proxy should associate a new
physical resource with the scope. If the scope is a Transaction scope then the resource must also be
enlisted into the transaction at this point. Subsequent uses of the proxy within the same scope must
use the same backing physical resource.

When a scope finishes any resources associated with the scope must be cleaned up without action
required by the client. This rule applies to both the Transaction scope and the No Transaction scope,
meaning that a client can safely write code using TransactionControl#supports without being con-
cerned about resource leaks.

147.5.1.2 Unscoped Resource Access

If a resource is accessed by unscoped code then it must throw a TransactionException to indicate
that it cannot be used without an active scope.

147.5.1.3 Closing, Flushing and Committing Resources

Most resources offer programmatic APIs for transaction and lifecycle management. For example
java.sql .Connection has methods called commit and close .

If a client attempts to close a scoped resource then this operation should be silently ignored. The re-
source will be automatically cleaned up when the current scope completes and so there is no need
to manually close the resource. Furthermore, if the resource were prematurely closed then it may
prevent other services from accessing the resource within this scope.

If the resource is being used in a Transaction Scope then any transaction lifecycle methods, such as
commit or rol lback , must not delegate to the real resource and must throw a TransactionException
instead.

Transaction Control Service Specification Version 1.0 Resource Providers

OSGi Enterprise Release 7 Page 757

147.5.1.4 Releasing Resource Providers

Resource Provider instances typically hold references to one or more physical resources, often in
a pool. When a Resource Provider is no longer needed then it is important that these physical re-
sources can be released to avoid resource leaks. The way in which a Resource Provider can deter-
mine it is no longer needed depends upon how the Resource Provider is created.

If the Resource Provider is registered directly as a service then it may release its physical resources
when it is no longer used by any bundles. One way to achieve this is through the use of an OSGi Ser-
vice Factory.

In some cases a Resource Provider is created by the client using a service from the service registry. In
this case the lifecycle of the Resource Provider must be bounded by the lifecycle of the service that
created it. In particular if the client bundle releases the service which created the Resource Provider
then the Resource Provider must also be released. This mechanism ensures that Resource Providers
do not need to be explicitly released by a client bundle when it stops. In addition services which cre-
ate Resource Provider instances should provide a method which can be used to immediately release
a particular Resource Provider instance without releasing service which created it. This allows client
bundles to independently manage the lifecycle of multiple Resource Providers, and also to dynami-
cally replace a Resource Provider instance.

Once a Resource Provider has been released then all proxy instances associated with it must be in-
validated, and all methods on the proxies throw TransactionException .

147.5.2 JDBC Resource Providers
One of the most common resources to use in a transaction is a JDBC Connection. This specifica-
tion therefore defines a specialized resource provider for obtaining JDBC Connections called a JD-
BCConnectionProvider . The purpose of this type is simply to reify the generic type of the Resource-
Provider interface.

The scoped resource for a JDBC Connection Provider is a JDBC connection. The scoped resource al-
lows for JDBC connections to be transparently pooled, enlisted in Transaction Scopes, and automati-
cally closed.

147.5.2.1 JDBC and Transaction Scopes

When enlisted in an Active Transaction a JDBC connection will have autocommit set to false. Also
the following methods must not be called by the client and must trigger a TransactionException if
called.

• commit()
• setAutoCommit()
• setSavepoint()
• setSavepoint(Str ing)
• releaseSavepoint()
• rol lback()
• rol lback(Savepoint)

If the Active Transaction commits the JDBC Connection must commit any work performed in the
transaction. Similarly if the Active Transaction rolls back then the JDBC Connection must roll back
any work performed in the transaction. After the transaction completes the JDBC connection must
be cleaned up in an appropriate way, for example by closing it or returning it to a connection pool.
There is no need for the client to close the connection, and any attempt to do so must be ignored by
the resource provider.

Resource Providers Transaction Control Service Specification Version 1.0

Page 758 OSGi Enterprise Release 7

147.5.2.2 JDBC and No Transaction Scopes

When accessed with from the No Transaction scope the JDBC connection may have autocommit set
to true or false depending on the underlying configuration of the resource provider. This value may
be changed by the client by using setAutoCommit within the scope, but the value will be reset after
the end of the scope.

In the No Transaction context the JDBC connection will not be committed or rolled back by the
Transaction Control Service or the Resource Provider. It is therefore the client's responsibility to call
commit or rol lback if appropriate. Savepoints may be used for partial rollback if desired.

After the end of the scope the JDBC connection must be automatically cleaned up by the Resource
Provider in an appropriate way, for example by closing it or returning it to a connection pool. There
is no need for the client to close the connection, and any attempt to do so must be ignored by the re-
source provider.

147.5.2.3 Closing the JDBC connection

As for all resource providers, calls to close() the connection must be ignored. JDBC connections also
have an abort() method. Abort is effectively an asynchronous close operation for a JDBC connection,
and so must also be ignored for any scoped connection.

147.5.2.4 The JDBCConnectionProviderFactory

The JDBCConnectionProvider may be provided as a service directly in the OSGi service registry,
however this may not be acceptable in all use cases. JDBC Connections are often authenticated us-
ing a username and password. If the username and password relate to a specific bundle then it may
not be appropriate to have the fully configured connections available in the Service Registry. In this
case the JDBCConnectionProviderFactory offers several factory methods that can programmatically
create a JDBCConnectionProvider.

147.5.2.4.1 JDBCConnectionProvider Configuration

Each factory method on the JDBCConnectionProviderFactory supplies set of properties which are
used to configure the JDBCConnectionProvider, including the connection pooling behavior, and
whether the ResourceProvider can be enlisted with XA and/or Local transactions.

By default the JDBCConnectionProvider will have a pool of 10 connections with a connection time-
out of 30 seconds, an idle timeout of 10 minutes and a maximum connection lifetime of 3 hours.
The JDBCConnectionProvider will also, by default, work all transaction types supported by the re-
source provider.

If the JDBCConnectionProvider is configured to enable XA then the DataSourceFactory being used
must support XADataSource creation. If a pre-configured DataSource is supplied then it must be
able to be unwrapped to an XADataSource.

147.5.2.4.2 Creating a JDBCConnectionProvider Using a DataSourceFactory

In this case the client provides the DataSourceFactory that should be used, along with the properties
that should be used to create the DataSource/XADataSource. If XA transactions are enabled then the
factory must create an XADataSource, otherwise the “osgi.use.driver” property can be used to force
the creation of a Driver instance rather than a DataSource.

147.5.2.4.3 Creating a JDBCConnectionProvider Using a DataSource

In this case the client provides a pre-configured DataSource that should be used. If XA transactions
are enabled then the DataSource must be able to be unwrapped to an XADataSource using the un-
wrap method.

147.5.2.4.4 Creating a JDBCConnectionProvider Using an XADataSource

In this case the client provides a preconfigured XADataSource that should be used by the resource
provider.

Transaction Control Service Specification Version 1.0 Resource Providers

OSGi Enterprise Release 7 Page 759

147.5.2.4.5 Creating a JDBCConnectionProvider Using a Driver

In this case the client provides an instantiated driver class that should be used, along with the prop-
erties that should be used to create the JDBC connection. The JDBC properties must include a JDBC
url to use when connecting to the database. XA transactions may not be enabled when using a Dri-
ver instance.

147.5.2.4.6 Releasing a JDBCConnectionProvider

In some cases a client of the JDBCConnectionProviderFactory may wish to release a created JDBC-
ConnectionProvider without releasing the JDBCConnectionProviderFactory service. In this case the
JDBCConnectionProvider instance should be passed to the releaseProvider method, which will im-
mediately release the Resource Provider.

147.5.2.5 JDBCResourceProvider Examples

Setting up data Access with Declarative Services:

@Reference
TransactionControl txControl;

@Reference
JDBCConnectionProviderFactory resourceProviderFactory;

@Reference
DataSourceFactory dsf;

Connection connection;

@Activate
public void setUp(Config config) {
 Properties jdbc = new Properties();
 jdbc.setProperty(JDBC_URL, config.getURL());

 connection = resourceProviderFactory.getProviderFor(dsf, jdbc, null)
 .getResource(txControl);
}

Reading data from a table:

txControl.supports(() -> {
 ResultSet rs = connection.createStatement()
 .executeQuery("Select message from TEST_TABLE");

 rs.next();
 return rs.getString(1);
 });

Updating a table:

txControl.required(() ->
 connection.createStatement()
 .execute("Insert into TEST_TABLE values ('Hello World!')")
);

Resource Providers Transaction Control Service Specification Version 1.0

Page 760 OSGi Enterprise Release 7

147.5.3 JPA
JPA is a popular Object Relational Mapping (ORM) framework used to abstract away the low-level
database access from business code. As an alternative means of accessing a database it is just as im-
portant for JPA resources to participate in transactions as it is for JDBC resources. This RFC therefore
defines the JPAEntityManagerProvider interface as a specialized resource provider for JPA.

147.5.3.1 JPA and Transaction Scopes

When enlisted in a Transaction a JPA EntityManager will automatically track the state of persisted
entity types and update the database as necessary. When participating in a transaction it is forbid-
den to call the getTransaction method on the EntityManager as manual transaction management
is disabled. The jo inTransaction method, however must be a no-op, and the is JoinedToTransaction
must always return true .

If the Transaction commits the JPA EntityManager must commit any work performed in the trans-
action. Similarly if the Transaction rolls back then the JPA EntityManager must roll back any work
performed in the transaction. After the transaction completes the JPA EntityManager must be
cleaned up in an appropriate way, for example by closing it or returning it to a pool. There is no
need for the client to close the entity manager, and any attempt to do so must be ignored by the re-
source provider.

147.5.3.2 JPA and No Transaction Scopes

When accessed with from the No Transaction scope the JPA EntityManager will not be participating
in a Transaction or rolled back, it is therefore the client's responsibility to set up an EntityTransac-
tion and to call commit or rol lback as appropriate.

The jo inTransaction method must throw a TransactionException , and the is JoinedToTransaction
must always return fa lse .

After the end of the scope the EntityManager must be automatically cleaned up in an appropriate
way, for example by closing it or returning it to a pool.

147.5.3.3 RESOURCE_LOCAL and JTA EntityManagerFactory instances

When defining a JPA Persistence Unit the author must declare whether the EntityManagerFacto-
ry integrates with JTA transactions, or is suitable for resource local usage. The JPAEntityManager-
Provider must take this into account when creating the transactional resource.

JTA scoped EntityManager instances may not manage their own transactions and must throw a JPA
TransactionRequiredException if the client attempts to use the EntityTransaction interface. In effect
the EntityManager behaves as a Synchronized, Transaction-Scoped, Managed Persistence Context as
per the JPA 2.1 Specification. It is important to ensure that the Database connections used in a JTA
Persistence Unit are integrated with the ongoing transaction.

RESOURCE_LOCAL scoped EntityManager instances may not participate in XA transactions, but
otherwise behave in much the same way as JTA EntityManager instances. The one significant differ-
ence is that RESOURCE_LOCAL EntityManager instances may obtain an EntityTransaction when
running in the No Transaction context.

147.5.3.4 The JPAEntityManagerProvider Factory

The JPAEntityManagerProvider may be provided directly in the OSGi service registry, however this
may not be acceptable in all use cases. Database Connections are often authenticated using a user-
name and password. If the username and password relate to a specific bundle then it may not be
appropriate to have the configured connections available in the Service Registry. In this case the
JPAEntityManagerProviderFactory offers several factory methods that can programmatically create
a JPAEntityManagerProvider.

Transaction Control Service Specification Version 1.0 Resource Providers

OSGi Enterprise Release 7 Page 761

147.5.3.4.1 Creating a JPAEntityManagerProvider Using an EntityManagerFactoryBuilder

In this case the client provides the EntityManagerFactoryBuilder that should be used, along with the
properties that should be used to create the EntityManagerFactory.

The typical reason for using an EntityManagerFactoryBuilder is to allow for the late binding of con-
figuration, such as the database location. To support this usage pattern it is best to specify as few
properties as possible inside the persistence descriptor. For example:

<persistence-unit name="test-unit">
 <description>My application's persistence unit</description>
</persistence-unit>

Passing String class names and expecting the JPA provider to load the Database driver re-
flectively should be avoided, however a configured DataSource can be passed using the
javax.persistence. jtaDataSource property. If the JPA resource provider supports XA transactions
then this property may be used to pass a configured XADataSource to be enlisted by the provider.

The osgi . jdbc.provider property can be passed to the resource provider defining a JDBCConnec-
tionProvider that should be converted into a DataSource and passed to the EntityManageFactory-
Builder using the javax.persistence.jtaDataSource property. This allows the same physical data-
base connection to be used by JPA and by JDBC within the same scope. Note that when using the
osgi . jdbc.provider property to provide a connection to the database the JPA Resource Provider im-
plementation should ignore configuration properties that cannot be acted upon, for example con-
nection pool configuration, or setting an XA recovery identifier.

When configured to use JTA transactions most JPA implementations require integration with the
transaction lifecycle. The JPA resource provider is required introspect the Entity Manager Facto-
ry Builder and to provide sufficient configuration to integrate the JPA provider with the supplied
Transaction Control service. If the JPA resource provider is unable to supply the necessary configu-
ration for the JPA implementation being used then it must log a warning.

147.5.3.4.2 Creating a JPAEntityManagerProvider Using an EntityManagerFactory

In this case the client provides the configured EntityManagerFactory that should be used, along
with the properties that should be used to create the EntityManager.

When using an EntityManagerFactory to create the JPA resource provider there is no possibility for
the resource provider implementation to customize the configuration of the EntityManagerFacto-
ry. This means that the client is responsible for fully configuring the EntityManagerFactory in this
case. For Local Transactions this is reasonably simple, however for XA transactions this configura-
tion process may be very involved. For example JPA providers typically require custom plugins to in-
tegrate with external Transaction lifecycle management. It is recommended that clients use the En-
tity Manager Factory Builder when XA transactions are needed.

147.5.3.4.3 Releasing a JPAEntityManagerProvider

In some cases a client of the JPAEntityManagerProviderFactory may wish to release a created JPAEn-
tityManagerProvider without releasing the JPAEntityManagerProviderFactory service. In this case
the JPAEntityManagerProvider instance should be passed to the releaseProvider method, which will
immediately release the Resource Provider.

147.5.4 Connection Pooling
Database connections are usually heavyweight objects that require significant time to create. They
may also consume physical resources such as memory or network ports. Creating a new database
connection for every request is therefore wasteful, and adds unnecessary load to both the applica-
tion and the database. Caching of database connections is therefore a useful way of improving per-
formance. On the other hand applications must be careful not to create too many database connec-
tions. If one thousand requests arrive simultaneously then creating one thousand database connec-

Transaction Recovery Transaction Control Service Specification Version 1.0

Page 762 OSGi Enterprise Release 7

tions is likely to crash the database server. These two requirements make database connections an
excellent candidate for pooling. A small number of connections are made available and recycled af-
ter use. This saves the cost of recreating the connection and limits the overall load on the database.

In fact pooling is an excellent solution for many transactional resources, including JMS and EIS ac-
cess.

147.5.4.1 Pooling in OSGi

Pooling has traditionally been difficult in OSGi because most connection pooling libraries use re-
flective access to load the underlying resource connector. This obviously fails unless the pooling li-
brary creates a static wiring to the connector, or has dynamic package imports. Both of these solu-
tions are bad practices which create brittle dependencies.

The correct way to obtain Database connections in OSGi is to use a DataSourceFactory, however this
offers no Connection Pooling. There is no real equivalent of a DataSourceFactory for JMS Connec-
tionFactory instances, but they also require manual decoration to enable connection pooling.

As pooling is such a core requirement for transactional resource access it is required for JDBC-
ConnectionProviderFactory and JPAEntityManagerProviderFactory instances to offer connection
pooling. The resource provider properties can be used to override the connection pooling configura-
tion defaults (or to disable connection pooling entirely).

Third party resource providers should offer connection pooling using the same configuration prop-
erties and defaults wherever possible.

Table 147.4 Pooling configuration properties

Property Name Default Description
osgi .connection.pool ing.enabled true Whether connection pooling is enabled

for this ResourceProvider
osgi .connection.t imeout 30000 The maximum time that a client will

wait for a connection (in ms)
osgi . id le.t imeout 180000 The time that a connection will remain

idle before being closed (in ms)
osgi .connection. l i fet ime 10800000 The maximum time that a connection

will remain open (in ms)
osgi .connection.min 10 The minimum number of connections

that will be kept alive
osgi .connection.max 10 The maximum number of connections

that will exist in the pool

147.6 Transaction Recovery
The XA transaction protocol defines a recovery mechanism which can be used to resolve in-doubt
transactions. This is based upon the interaction of an XA Transaction Manager with an XAResource.
In an OSGi environment resources may come and go at any time, as may Transaction Manager in-
stances. Transaction recovery in OSGi is therefore a continuous, rather than a one-time process.

There are two main recovery scenarios that must be resolved by a Transaction Manager:

• Failure of one or more remote resources before the end of the transaction. In this case the Trans-
action Manager remains running and can roll-back or commit the other resources as appropri-
ate. When the failed resource(s) eventually become available again the Transaction Manager can
complete the in-doubt Transaction branch by committing it or rolling it back as appropriate.

• Failure of the Transaction Manager before the end of the transaction. In this case the Transac-
tion Manager must use its recovery log to discover any in-doubt transaction branches. When the

Transaction Control Service Specification Version 1.0 Transaction Recovery

OSGi Enterprise Release 7 Page 763

resources associated with the in-doubt transaction branches become available the Transaction
Manager can resolve the in-doubt branch by committing or rolling it back as appropriate.

In both of these cases it is crucial that the Transaction Manager can uniquely identify the resource
that is being recovered. The Transaction Manager must be able to tell that a returning resource is
suitable for recovering an in-doubt transaction branch.

The transaction branch itself has an Xid, which could theoretically be used to identify the resource.
The problem with this, however, is that if the resource has already completed the transaction
branch (for example if the failure occurred after sending a commit operation) then the resource may
have discarded the Xid. We therefore require another identifier for a resource. The identifier must
be unique to the Transaction Manager, but need not be Globally Unique. The identifier must also be
persistent, that is, the same resource must have the same identifier after a restart of the OSGi frame-
work. This ensures that transaction recovery can occur after a system crash.

147.6.1 Enlisting a Recoverable Resource in a Transaction
When a recoverable XA resource is associated with a TransactionContext using the registerXARe-
source method the resource identifier String is passed as a second argument. This is the identifier
that will be used to locate the resource during recovery. If the XAResource is not recoverable then it
may simply pass null as the second argument when registering.

147.6.2 Providing an XAResource for Recovery
When recovery is required the Transaction Manager may or may not be actively processing transac-
tions involving the required recoverable resource. Therefore the Transaction Control service must
be able to locate and obtain an XAResource instance for a named ResourceProvider.

To enable this the ResourceProvider must provide a whiteboard service which implements the Re-
coverableXAResource interface. This interface provides the resource identifier, and acts as a factory
for XAResources that can be used to recover Transaction Branches.

The Transaction Control service can use this whiteboard to locate the correct XAResource to use. It
may be, however, that when recovery is attempted it is not possible to provide a valid XAResource.
In this case the RecoverableXAResource service may throw an exception. For example if the Resour-
ceProvider is providing pooling and the pool is currently fully used then this may result in an excep-
tion.

Once the Transaction Control service has finished attempting to recover a Transaction branch then
it must release the XAResource it obtained from the RecoverableXAResource using the releaseXARe-
source method.

147.6.3 Identifying implementations which support recovery
Transaction Control implementations which support recovery must register the Transaction Con-
trol service with the osgi . recovery.enabled service property with a value of true if recovery is en-
abled. Recovery may only be enabled if the implementation is configured for recovery, for example
by configuring a transaction log.

Resource Provider factory services which support creating recoverable scoped resources must also
register the osgi . recovery.enabled service property with a value of true . The recovery identifier of
a scoped resource created by the factory is specified using the osgi . recovery. identi f ier property. It is
an error to attempt to create a recoverable scoped resource from a factory which does not support
recovery, and a TransactionException will be thrown to the caller if they attempt to set a recovery
identifier when using a factory that does not support recovery.

Capabilities Transaction Control Service Specification Version 1.0

Page 764 OSGi Enterprise Release 7

147.7 Capabilities
Implementations of the Transaction Control Service specification must provide a capability in the
osgi .service namespace representing the TransactionControl service. This capability must also de-
clare a uses constraint for the org.osgi .service.transact ion.control package, and attributes indicat-
ing whether the service supports local transactions, XA transactions, and recovery. For example, an
XA capable, recoverable Transaction Control implementation which also supports recovery would
offer the following capability.

Provide-Capability: osgi.service;objectClass:List<String>=
 "org.osgi.service.transaction.control.TransactionControl";
 uses:="org.osgi.service.transaction.control";osgi.local.enabled="true";
 osgi.xa.enabled="true";osgi.recovery.enabled="true"

Resource Provider Implementations must provide capabilities in the osgi .service namespace repre-
senting the ResourceProvider services and any factory services that they provide. These capabilities
must also declare uses constraints for the org.osgi .service.transact ion.control package and any oth-
er packages that they provide. In the case where a more specific type is registered (for example JD-
BCConnectionProvider) then that type should be used instead. The service properties that indicate
whether the resource provider supports local transactions, XA transactions, and recovery must be
advertised as attributes. For example:

Provide-Capability: osgi.service;objectClass:List<String>=
 "org.osgi.service.transaction.control.jdbc.JDBCConnectionProvider";
 uses:="org.osgi.service.transaction.control,org.osgi.service.transaction.
 control.jdbc";osgi.local.enabled="true";osgi.xa.enabled="true";
 osgi.recovery.enabled="true",
 osgi.service;objectClass:List<String>=
 "org.osgi.service.transaction.control.jdbc.JDBCConnectionProviderFactory";
 uses:="org.osgi.service.transaction.control,org.osgi.service.transaction.
 control.jdbc";osgi.local.enabled="true";osgi.xa.enabled="true";
 osgi.recovery.enabled="true"

These capabilities must follow the rules defined for the osgi.service Namespace on page 635.

147.8 Security
Access to the Transaction Control service and to Resource Provider services can be secured through
the standard OSGi service permission model.

Clients should be aware that when they run scoped work there will be code from the Transaction
Control service on the stack. Client operations that require specific privileges will therefore have to
be performed inside a doPrivileged block.

147.9 org.osgi.service.transaction.control

Transaction Control Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Enterprise Release 7 Page 765

Import-Package: org.osgi .service.transact ion.control ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.transact ion.control ; vers ion="[1.0,1.1)"

147.9.1 Summary

• LocalResource - Resources that can integrate with local transactions should do so using this in-
terface

• ResourceProvider - A resource provider is used to provide a transactional resource to the appli-
cation

• ScopedWorkException - An Exception that is thrown when a piece of scoped work exits with an
Exception.

• TransactionBui lder - A builder for a piece of transactional work
• TransactionContext - A transaction context defines the current transaction, and allows re-

sources to register information and/or synchronizations
• TransactionControl - The interface used by clients to control the active transaction context
• TransactionException - An Exception indicating that there was a problem with starting, finish-

ing, suspending or resuming a transaction
• TransactionRol ledBackException - An Exception indicating that the active transaction was un-

expectedly rolled back
• TransactionStarter - Implementations of this interface are able to run a piece of work within a

transaction
• TransactionStatus - The status of the transaction A transaction may not enter all of the states in

this enum, however it will always traverse the enum in ascending order.

147.9.2 public interface LocalResource
Resources that can integrate with local transactions should do so using this interface

147.9.2.1 public void commit() throws TransactionException

□ Commit the resource

Throws TransactionException –

147.9.2.2 public void rollback() throws TransactionException

□ Roll back the resource

Throws TransactionException –

147.9.3 public interface ResourceProvider<T>
<T>

A resource provider is used to provide a transactional resource to the application

147.9.3.1 public T getResource(TransactionControl txControl) throws TransactionException

txControl

□ Get a resource which will associate with the current transaction context when used

Returns The resource which will participate in the current transaction

Throws TransactionException– if the resource cannot be registered with the transaction

org.osgi.service.transaction.control Transaction Control Service Specification Version 1.0

Page 766 OSGi Enterprise Release 7

147.9.4 public class ScopedWorkException
extends RuntimeException
An Exception that is thrown when a piece of scoped work exits with an Exception.

If the scope was inherited and therefore is still active when this exception is raised then the current
TransactionContext will be available from the ongoingContext() method.

Provider Type Consumers of this API must not implement this type

147.9.4.1 public ScopedWorkException(String message, Throwable cause, TransactionContext context)

message

cause

context

□ Creates a new TransactionException with the supplied message and cause

147.9.4.2 public T extends Throwable as(Class<T> throwable) throws T

Type Parameters <T extends Throwable>

throwable

□ Throws the cause of this Exception as a RuntimeException the supplied Exception type.

Usage is of the form:

 public void doStuff() throws IOException {
 try {
 ...
 } catch (ScopedWorkException swe) {
 throw swe.as(IOException.class);
 }
 }

Returns This method will always throw an exception

Throws T–

147.9.4.3 public RuntimeException asOneOf(Class<A> a, Class b) throws A, B

Type Parameters <A extends Throwable, B extends Throwable>

a

b

□ Throws the cause of this Exception as a RuntimeException or one of the supplied Exception types.

Usage is of the form:

 public void doStuff() throws IOException, ClassNotFoundException {
 try {
 ...
 } catch (ScopedWorkException swe) {
 throw swe.asOneOf(IOException.class, ClassNotFoundException.class);
 }
 }

Returns This method will always throw an exception

Throws A–

B–

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Enterprise Release 7 Page 767

147.9.4.4 public RuntimeException asOneOf(Class<A> a, Class b, Class<C> c) throws A, B, C

Type Parameters <A extends Throwable, B extends Throwable, C extends Throwable>

a

b

c

□ Throws the cause of this Exception as a RuntimeException or one of the supplied Exception types.

Returns This method will always throw an exception

Throws A–

B–

See Also asOneOf(Class, Class)

147.9.4.5 public RuntimeException asOneOf(Class<A> a, Class b, Class<C> c, Class<D> d) throws A, B, C, D

Type Parameters <A extends Throwable, B extends Throwable, C extends Throwable, D extends Throwable>

a

b

c

d

□ Throws the cause of this Exception as a RuntimeException or one of the supplied Exception types.

Returns This method will always throw an exception

Throws A–

B–

C–

D–

See Also asOneOf(Class, Class)

147.9.4.6 public RuntimeException asRuntimeException()

Returns The cause of this Exception as a RuntimeException if it is one, or this otherwise

147.9.4.7 public TransactionContext ongoingContext()

Returns The ongoing transaction context if the current scope was still active when this exception was raised
or nul l otherwise. Note that this property will not be persisted during serialization.

147.9.5 public abstract class TransactionBuilder
implements TransactionStarter
A builder for a piece of transactional work

Provider Type Consumers of this API must not implement this type

147.9.5.1 protected final List<Class<? extends Throwable>> noRollbackFor

The list of Throwable types that must not trigger rollback

147.9.5.2 protected final List<Class<? extends Throwable>> rollbackFor

The list of Throwable types that must trigger rollback

org.osgi.service.transaction.control Transaction Control Service Specification Version 1.0

Page 768 OSGi Enterprise Release 7

147.9.5.3 public TransactionBuilder()

147.9.5.4 public final TransactionBuilder noRollbackFor(Class<? extends Throwable> t, Class<? extends Throwable>...
throwables)

t An exception type that should not trigger rollback

throwables further exception types that should not trigger rollback

□ Declare a list of Exception types (and their subtypes) that must not trigger a rollback. By default the
transaction will rollback for all Exceptions. If an Exception type is registered using this method
then that type and its subtypes will not trigger rollback. If the same type is registered using both
rollbackFor(Class, Class...) and noRollbackFor(Class, Class...) then the transaction will not begin and
will instead throw a TransactionException

Note that the behavior of this method differs from Java EE and Spring in two ways:

• In Java EE and Spring transaction management checked exceptions are considered "nor-
mal returns" and do not trigger rollback. Using an Exception as a normal return value is
considered a bad design practice. In addition this means that checked Exceptions such as
java.sql.SQLException do not trigger rollback by default. This, in turn, leads to implementation
mistakes that break the transactional behavior of applications.

• In Java EE it is legal to specify the same Exception type in rollbackFor and noRollbackFor. Stat-
ing that the same Exception should both trigger and not trigger rollback is a logical impossibili-
ty, and clearly indicates an API usage error. This API therefore enforces usage by triggering an ex-
ception in this invalid case.

Returns this builder

147.9.5.5 public abstract TransactionBuilder readOnly()

□ Indicate to the Transaction Control service that this transaction will be read-only. This hint may be
used by the Transaction Control service and associated resources to optimize the transaction.

Note that this method is for optimization purposes only. The TransactionControl service is free to
ignore the call if it does not offer read-only optimization.

If a transaction is marked read-only and then the scoped work performs a write operation on a re-
source then this is a programming error. The resource is free to raise an exception when the write is
attempted, or to permit the write operation. As a result the transaction may commit successfully, or
may rollback.

Returns this builder

147.9.5.6 public final TransactionBuilder rollbackFor(Class<? extends Throwable> t, Class<? extends Throwable>...
throwables)

t

throwables The Exception types that should trigger rollback

□ Declare a list of Exception types (and their subtypes) that must trigger a rollback. By default
the transaction will rollback for all Exceptions. If a more specific type is registered using
noRollbackFor(Class, Class...) then that type will not trigger rollback. If the same type is registered
using both rollbackFor(Class, Class...) and noRollbackFor(Class, Class...) then the transaction will not
begin and will instead throw a TransactionException

Note that the behavior of this method differs from Java EE and Spring in two ways:

• In Java EE and Spring transaction management checked exceptions are considered "nor-
mal returns" and do not trigger rollback. Using an Exception as a normal return value is

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Enterprise Release 7 Page 769

considered a bad design practice. In addition this means that checked Exceptions such as
java.sql.SQLException do not trigger rollback by default. This, in turn, leads to implementation
mistakes that break the transactional behavior of applications.

• In Java EE it is legal to specify the same Exception type in rollbackFor and noRollbackFor. Stat-
ing that the same Exception should both trigger and not trigger rollback is a logical impossibili-
ty, and clearly indicates an API usage error. This API therefore enforces usage by triggering an ex-
ception in this invalid case.

Returns this builder

147.9.6 public interface TransactionContext
A transaction context defines the current transaction, and allows resources to register information
and/or synchronizations

Provider Type Consumers of this API must not implement this type

147.9.6.1 public boolean getRollbackOnly() throws IllegalStateException

□ Is this transaction marked for rollback only

Returns true if this transaction is rollback only

Throws I l legalStateException– if no transaction is active

147.9.6.2 public Object getScopedValue(Object key)

key

□ Get a value scoped to this transaction

Returns The resource, or nul l

147.9.6.3 public Object getTransactionKey()

□ Get the key associated with the current transaction

Returns the transaction key, or null if there is no transaction

147.9.6.4 public TransactionStatus getTransactionStatus()

Returns The current transaction status

147.9.6.5 public boolean isReadOnly()

Returns true if the TransactionContext supports read-only optimizations and the transaction was marked
read only. In particular it is legal for this method to return false even if the transaction was marked
read only by the initiating client.

147.9.6.6 public void postCompletion(Consumer<TransactionStatus> job) throws IllegalStateException

job

□ Register a callback that will be made after the scope completes

For transactional scopes the state of the scope will be either TransactionStatus.COMMITTED or
TransactionStatus.ROLLED_BACK.

For no-transaction scopes the state of the scope will always be
TransactionStatus.NO_TRANSACTION.

Post-completion callbacks should not throw Exceptions and cannot affect the outcome of a piece of
scoped work

org.osgi.service.transaction.control Transaction Control Service Specification Version 1.0

Page 770 OSGi Enterprise Release 7

Throws I l legalStateException– if no transaction is active

147.9.6.7 public void preCompletion(Runnable job) throws IllegalStateException

job The action to perform before completing the scope

□ Register a callback that will be made before a scope completes.

For transactional scopes the state of the scope will be either TransactionStatus.ACTIVE or
TransactionStatus.MARKED_ROLLBACK. Pre-completion callbacks may call setRollbackOnly() to
prevent a commit from proceeding.

For no-transaction scopes the state of the scope will always be
TransactionStatus.NO_TRANSACTION.

Exceptions thrown by pre-completion callbacks are treated as if they were thrown by the scoped
work, including any configured commit or rollback behaviors for transactional scopes.

Throws I l legalStateException– if the transaction has already passed beyond the
TransactionStatus.MARKED_ROLLBACK state

147.9.6.8 public void putScopedValue(Object key, Object value)

key

value

□ Associate a value with this transaction

147.9.6.9 public void registerLocalResource(LocalResource resource) throws IllegalStateException

resource

□ Register a Local resource with the current transaction

Throws I l legalStateException– if no transaction is active, or the current transaction does not support local
resources.

147.9.6.10 public void registerXAResource(XAResource resource, String recoveryId) throws IllegalStateException

resource

recoveryId The resource id to be used for recovery, the id may be nul l if this resource is not recoverable.

If an id is passed then a RecoverableXAResource with the same id must be registered in the service
registry for recovery to occur.

If the underlying TransactionControl service does not support recovery then it must treat the re-
source as if it is not recoverable.

□ Register an XA resource with the current transaction

Throws I l legalStateException– if no transaction is active, or the current transaction is not XA capable

147.9.6.11 public void setRollbackOnly() throws IllegalStateException

□ Mark this transaction for rollback

Throws I l legalStateException– if no transaction is active

147.9.6.12 public boolean supportsLocal()

Returns true if the current transaction supports Local resources

147.9.6.13 public boolean supportsXA()

Returns true if the current transaction supports XA resources

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Enterprise Release 7 Page 771

147.9.7 public interface TransactionControl
extends TransactionStarter
The interface used by clients to control the active transaction context

Provider Type Consumers of this API must not implement this type

147.9.7.1 public boolean activeScope()

Returns true if a transaction is currently active, or if there is a "no transaction" context active

147.9.7.2 public boolean activeTransaction()

Returns true if a transaction is currently active

147.9.7.3 public TransactionBuilder build()

□ Build a transaction context to surround a piece of transactional work

Returns A builder to complete the creation of the transaction

147.9.7.4 public TransactionContext getCurrentContext()

Returns The current transaction context, which may be a "no transaction" context, or null if there is no ac-
tive context

147.9.7.5 public boolean getRollbackOnly() throws IllegalStateException

□ Gets the rollback status of the active transaction

Returns true if the transaction is marked for rollback

Throws I l legalStateException– if no transaction is active

147.9.7.6 public void ignoreException(Throwable t) throws IllegalStateException

t The exception to ignore

□ Marks that the current transaction should not be rolled back if the supplied Exception is thrown by
the current transactional work

Throws I l legalStateException– if no transaction is active

147.9.7.7 public void setRollbackOnly() throws IllegalStateException

□ Marks the current transaction to be rolled back

Throws I l legalStateException– if no transaction is active

147.9.8 public class TransactionException
extends RuntimeException
An Exception indicating that there was a problem with starting, finishing, suspending or resuming
a transaction

Provider Type Consumers of this API must not implement this type

147.9.8.1 public TransactionException(String message)

message

□ Creates a new TransactionException with the supplied message

147.9.8.2 public TransactionException(String message, Throwable cause)

message

org.osgi.service.transaction.control Transaction Control Service Specification Version 1.0

Page 772 OSGi Enterprise Release 7

cause

□ Creates a new TransactionException with the supplied message and cause

147.9.9 public class TransactionRolledBackException
extends TransactionException
An Exception indicating that the active transaction was unexpectedly rolled back

Provider Type Consumers of this API must not implement this type

147.9.9.1 public TransactionRolledBackException(String message)

message

□ Create a new TransactionRolledBackException with the supplied message

147.9.9.2 public TransactionRolledBackException(String message, Throwable cause)

cause

message

□ Create a new TransactionRolledBackException with the supplied message

147.9.10 public interface TransactionStarter
Implementations of this interface are able to run a piece of work within a transaction

Provider Type Consumers of this API must not implement this type

147.9.10.1 public T notSupported(Callable<T> work) throws TransactionException, ScopedWorkException

Type Parameters <T>

work

□ The supplied piece of work must be run outside the context of a transaction. If an existing transac-
tion is active then it must be suspended and a "no transaction" context associated with the work. Af-
ter the work has completed any suspended transaction must be resumed.

The "no transaction" context does not support resource enlistment, and will not commit or rollback
any changes, however it does provide a post completion callback to any registered functions. This
function is suitable for final cleanup, such as closing a connection

Returns The value returned by the work

Throws TransactionException– if there is an error starting or completing the transaction

ScopedWorkException– if the supplied work throws an Exception

147.9.10.2 public T required(Callable<T> work) throws TransactionException, TransactionRolledBackException,
ScopedWorkException

Type Parameters <T>

work

□ A transaction is required to run the supplied piece of work. If no transaction is active then it must be
started and associated with the work and then completed after the transactional work has finished.

Returns The value returned by the work

Throws TransactionException– if there is an error starting or completing the transaction

TransactionRol ledBackException– if the transaction rolled back due to a failure in one of the re-
sources or an internal error in the TransactionControl service

ScopedWorkException– if the supplied work throws an Exception

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Enterprise Release 7 Page 773

147.9.10.3 public T requiresNew(Callable<T> work) throws TransactionException, TransactionRolledBackException,
ScopedWorkException

Type Parameters <T>

work

□ A new transaction is required to run the supplied piece of work. If an existing transaction is active
then it must suspended and a new transaction started and associated with the work. After the work
has completed the new transaction must also complete and any suspended transaction be resumed.

Returns The value returned by the work

Throws TransactionException– if there is an error starting or completing the transaction

TransactionRol ledBackException– if the transaction rolled back due to a failure

ScopedWorkException– if the supplied work throws an Exception

147.9.10.4 public T supports(Callable<T> work) throws TransactionException, ScopedWorkException

Type Parameters <T>

work

□ The supplied piece of work may run inside or outside the context of a transaction. If an existing
transaction or "no transaction" context is active then it will continue, otherwise a new "no transac-
tion" context is associated with the work. After the work has completed any created transaction con-
text must be completed.

The "no transaction" context does not support resource enlistment, and will not commit or rollback
any changes, however it does provide a post completion callback to any registered functions. This
function is suitable for final cleanup, such as closing a connection

Returns The value returned by the work

Throws TransactionException– if there is an error starting or completing the transaction

ScopedWorkException– if the supplied work throws an Exception

147.9.11 enum TransactionStatus
The status of the transaction A transaction may not enter all of the states in this enum, however it
will always traverse the enum in ascending order. In particular if the TransactionStatus is reported
as X then it will never proceed into a state Y where X.compareTo(Y) >= 0;

147.9.11.1 NO_TRANSACTION

No transaction is currently active

147.9.11.2 ACTIVE

A transaction is currently in progress

147.9.11.3 MARKED_ROLLBACK

A transaction is currently in progress and has been marked for rollback

147.9.11.4 PREPARING

A two phase commit is occurring and the transaction is being prepared

147.9.11.5 PREPARED

A two phase commit is occurring and the transaction has been prepared

147.9.11.6 COMMITTING

The transaction is in the process of being committed

org.osgi.service.transaction.control.jdbc Transaction Control Service Specification Version 1.0

Page 774 OSGi Enterprise Release 7

147.9.11.7 COMMITTED

The transaction has committed

147.9.11.8 ROLLING_BACK

The transaction is in the process of rolling back

147.9.11.9 ROLLED_BACK

The transaction has been rolled back

147.9.11.10 public static TransactionStatus valueOf(String name)

147.9.11.11 public static TransactionStatus[] values()

147.10 org.osgi.service.transaction.control.jdbc

Transaction Control JDBC Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.transact ion.control . jdbc; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.transact ion.control . jdbc; vers ion="[1.0,1.1)"

147.10.1 Summary

• JDBCConnectionProvider - A specialized ResourceProvider suitable for obtaining JDBC connec-
tions.

• JDBCConnectionProviderFactory - A factory for creating JDBCConnectionProvider instances

147.10.2 public interface JDBCConnectionProvider
extends ResourceProvider<Connection>
A specialized ResourceProvider suitable for obtaining JDBC connections.

Instances of this interface may be available in the Service Registry, or can be created using a JDBC-
ConnectionProviderFactory.

147.10.3 public interface JDBCConnectionProviderFactory
A factory for creating JDBCConnectionProvider instances

This factory can be used if the JDBCConnectionProvider should not be a public service, for example
to protect a username/password.

Provider Type Consumers of this API must not implement this type

147.10.3.1 public static final String CONNECTION_LIFETIME = "osgi.connection.lifetime"

The property used to set the maximum amount of time that connections in the pool should remain
open

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control.jdbc

OSGi Enterprise Release 7 Page 775

147.10.3.2 public static final String CONNECTION_POOLING_ENABLED = "osgi.connection.pooling.enabled"

The property used to determine whether connection pooling is enabled for this resource provider

147.10.3.3 public static final String CONNECTION_TIMEOUT = "osgi.connection.timeout"

The property used to set the maximum amount of time that the pool should wait for a connection

147.10.3.4 public static final String IDLE_TIMEOUT = "osgi.idle.timeout"

The property used to set the maximum amount of time that connections in the pool should remain
idle before being closed

147.10.3.5 public static final String LOCAL_ENLISTMENT_ENABLED = "osgi.local.enabled"

The property used to determine whether local enlistment is enabled for this resource provider

147.10.3.6 public static final String MAX_CONNECTIONS = "osgi.connection.max"

The property used to set the maximum number of connections that should be held in the pool

147.10.3.7 public static final String MIN_CONNECTIONS = "osgi.connection.min"

The property used to set the minimum number of connections that should be held in the pool

147.10.3.8 public static final String OSGI_RECOVERY_IDENTIFIER = "osgi.recovery.identifier"

The property used to set the recovery identifier that should be used by this resource

147.10.3.9 public static final String USE_DRIVER = "osgi.use.driver"

The property used to set the maximum number of connections that should be held in the pool

147.10.3.10 public static final String XA_ENLISTMENT_ENABLED = "osgi.xa.enabled"

The property used to determine whether XA enlistment is enabled for this resource provider

147.10.3.11 public static final String XA_RECOVERY_ENABLED = "osgi.recovery.enabled"

The property used to determine whether XA recovery is enabled for this resource provider

147.10.3.12 public JDBCConnectionProvider getProviderFor(DataSourceFactory dsf, Properties jdbcProperties,
Map<String, Object> resourceProviderProperties)

dsf

jdbcProperties The properties to pass to the DataSourceFactory in order to create the underlying DataSource

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

□ Create a private JDBCConnectionProvider using a DataSourceFactory. This call may fail with a
TransactionException if the supplied configuration is invalid. Examples of invalid configuration in-
clude:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Returns A JDBCConnectionProvider that can be used in transactions

147.10.3.13 public JDBCConnectionProvider getProviderFor(DataSource ds, Map<String, Object>
resourceProviderProperties)

ds

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

org.osgi.service.transaction.control.jpa Transaction Control Service Specification Version 1.0

Page 776 OSGi Enterprise Release 7

□ Create a private JDBCConnectionProvider using an existing DataSource. This call may fail with a
TransactionException if the supplied configuration is invalid. Examples of invalid configuration in-
clude:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Returns A JDBCConnectionProvider that can be used in transactions

147.10.3.14 public JDBCConnectionProvider getProviderFor(Driver driver, Properties jdbcProperties, Map<String,
Object> resourceProviderProperties)

driver

jdbcProperties The properties to pass to the Driver in order to create a Connection

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

□ Create a private JDBCConnectionProvider using an existing Driver. This call may fail with a Trans-
actionException if the supplied configuration is invalid. Examples of invalid configuration include:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Returns A JDBCConnectionProvider that can be used in transactions

147.10.3.15 public JDBCConnectionProvider getProviderFor(XADataSource ds, Map<String, Object>
resourceProviderProperties)

ds

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

□ Create a private JDBCConnectionProvider using an existing XADataSource. This call may fail with
a TransactionException if the supplied configuration is invalid. Examples of invalid configuration
include:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Returns A JDBCConnectionProvider that can be used in transactions

147.10.3.16 public void releaseProvider(JDBCConnectionProvider provider)

provider

□ Release a JDBCConnectionProvider instance that has been created by this factory. Released instances
are eligible to be shut down and have any remaining open connections closed.

Note that all JDBCConnectionProvider instances created by this factory service are implicitly re-
leased when the factory service is released by this bundle.

Throws I l legalArgumentException– if the supplied resource was not created by this factory service instance.

147.11 org.osgi.service.transaction.control.jpa

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control.jpa

OSGi Enterprise Release 7 Page 777

Transaction Control JPA Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.transact ion.control . jpa; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.transact ion.control . jpa; vers ion="[1.0,1.1)"

147.11.1 Summary

• JPAEntityManagerProvider - A specialized ResourceProvider suitable for obtaining JPA Entity-
Manager instances.

• JPAEntityManagerProviderFactory - A factory for creating JPAEntityManagerProvider instances

147.11.2 public interface JPAEntityManagerProvider
extends ResourceProvider<EntityManager>
A specialized ResourceProvider suitable for obtaining JPA EntityManager instances.

Instances of this interface may be available in the Service Registry, or can be created using a JPAEnti-
tyManagerProviderFactory.

147.11.3 public interface JPAEntityManagerProviderFactory
A factory for creating JPAEntityManagerProvider instances

This factory can be used if the JPAEntityManagerProvider should not be a public service, for exam-
ple to protect a username/password.

Provider Type Consumers of this API must not implement this type

147.11.3.1 public static final String CONNECTION_LIFETIME = "osgi.connection.lifetime"

The property used to set the maximum amount of time that connections in the pool should remain
open

147.11.3.2 public static final String CONNECTION_POOLING_ENABLED = "osgi.connection.pooling.enabled"

The property used to determine whether connection pooling is enabled for this resource provider

147.11.3.3 public static final String CONNECTION_TIMEOUT = "osgi.connection.timeout"

The property used to set the maximum amount of time that the pool should wait for a connection

147.11.3.4 public static final String IDLE_TIMEOUT = "osgi.idle.timeout"

The property used to set the maximum amount of time that connections in the pool should remain
idle before being closed

147.11.3.5 public static final String LOCAL_ENLISTMENT_ENABLED = "osgi.local.enabled"

The property used to determine whether local enlistment is enabled for this resource provider

147.11.3.6 public static final String MAX_CONNECTIONS = "osgi.connection.max"

The property used to set the maximum number of connections that should be held in the pool

147.11.3.7 public static final String MIN_CONNECTIONS = "osgi.connection.min"

The property used to set the minimum number of connections that should be held in the pool

org.osgi.service.transaction.control.jpa Transaction Control Service Specification Version 1.0

Page 778 OSGi Enterprise Release 7

147.11.3.8 public static final String OSGI_RECOVERY_IDENTIFIER = "osgi.recovery.identifier"

The property used to set the recovery identifier that should be used by this resource

147.11.3.9 public static final String PRE_ENLISTED_DB_CONNECTION = "osgi.jdbc.enlisted"

The property used to indicate that database connections will be automatically enlisted in ongoing
transactions without intervention from the JPA resource provider

147.11.3.10 public static final String TRANSACTIONAL_DB_CONNECTION = "osgi.jdbc.provider"

The property used to provide a JDBCConnectionProvider to the resource provider. This will be con-
verted into a DataSource by the factory, and passed to the EntityManagerFactoryBuilder using the
javax.persistence.jtaDataSource property

147.11.3.11 public static final String XA_ENLISTMENT_ENABLED = "osgi.xa.enabled"

The property used to determine whether XA enlistment is enabled for this resource provider

147.11.3.12 public static final String XA_RECOVERY_ENABLED = "osgi.recovery.enabled"

The property used to determine whether XA recovery is enabled for this resource provider

147.11.3.13 public JPAEntityManagerProvider getProviderFor(EntityManagerFactoryBuilder emfb, Map<String, Object>
jpaProperties, Map<String, Object> resourceProviderProperties)

emfb

jpaProperties The properties to pass to the EntityManagerFactoryBuilder in order to create the underlying Entity-
ManagerFactory and EntityManager instances

resourceProvider-
Properties

Configuration properties to pass to the JPA Resource Provider runtime

□ Create a private JPAEntityManagerProvider using an EntityManagerFactoryBuilder. This call may
fail with a TransactionException if the supplied configuration is invalid. Examples of invalid config-
uration include:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

If XA transactions are used then this factory will provide configuration to ensure that the JPA
Provider can participate correctly in ongoing transactions.

Returns A JPAEntityManagerProvider that can be used in transactions

147.11.3.14 public JPAEntityManagerProvider getProviderFor(EntityManagerFactory emf, Map<String, Object>
resourceProviderProperties)

emf

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

□ Create a private JPAEntityManagerProvider using an existing EntityManagerFactory. This call may
fail with a TransactionException if the supplied configuration is invalid. Examples of invalid config-
uration include:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control.recovery

OSGi Enterprise Release 7 Page 779

When using this method the client is responsible for all configuration of the EntityManagerFactory.
This includes setting any relevant integration plugins for ensuring that the JPA provider can partici-
pate in the ongoing transaction context.

Returns A JPAEntityManagerProvider that can be used in transactions

147.11.3.15 public void releaseProvider(JPAEntityManagerProvider provider)

provider

□ Release a JPAEntityManagerProvider instance that has been created by this factory. Released in-
stances are eligible to be shut down and have any remaining open connections closed.

Note that all JPAEntityManagerProvider instances created by this factory service are implicitly re-
leased when the factory service is released by this bundle.

Throws I l legalArgumentException– if the supplied resource was not created by this factory service instance.

147.12 org.osgi.service.transaction.control.recovery

Transaction Control Service Recovery Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.transact ion.control . recovery; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.transact ion.control . recovery; vers ion="[1.0,1.1)"

147.12.1 Summary

• RecoverableXAResource - A RecoverableXAResource service may be provided by a Resource-
Provider if they are able to support XA recovery operations.

147.12.2 public interface RecoverableXAResource
A RecoverableXAResource service may be provided by a ResourceProvider if they are able to support
XA recovery operations. There are two main sorts of recovery:

• Recovery after a remote failure, where the local transaction manager runs throughout
• Recovery after a local failure, where the transaction manager replays in-doubt transactions from

its log

This service is used in both of these cases. The identifier returned by getId() provides a persistent
name that can be used to correlate usage of the resource both before and after failure. This identifier
must also be passed to TransactionContext.registerXAResource(XAResource, String) each time the
recoverable resource is used.

147.12.2.1 public static final String OSGI_RECOVERY_ENABLED = "osgi.recovery.enabled"

This service property key is used by TransactionControl services and ResourceProvider factories to
indicate that they can support transaction recovery.

147.12.2.2 public String getId()

□ Get the id of this resource. This should be unique, and persist between restarts

org.osgi.service.transaction.control.recovery Transaction Control Service Specification Version 1.0

Page 780 OSGi Enterprise Release 7

Returns an identifier, never nul l

147.12.2.3 public XAResource getXAResource() throws Exception

□ Get a new, valid XAResource that can be used in recovery This XAResource will be returned later us-
ing the releaseXAResource(XAResource) method

Returns a valid, connected, XAResource

Throws Exception– If it is not possible to acquire a valid XAResource at the current time, for example if the
database is temporarily unavailable.

147.12.2.4 public void releaseXAResource(XAResource xaRes)

xaRes An XAResource previously returned by getXAResource()

□ Release the XAResource that has been used for recovery

Cluster Information Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 781

148 Cluster Information Specification

Version 1.0

148.1 Introduction
Modern enterprise applications are most often deployed on distributed infrastructure such as a pri-
vate or public cloud environment, instead of on a single server. This is done to distribute the appli-
cation load, to replicate the application to guarantee availability or to exploit dedicated hardware
for certain application functionality (for example, a database server).

The unit of management is often no longer a single physical machine. Server infrastructure is nowa-
days mostly offered in a virtualized fashion, such as hardware virtualization using a hypervisor or
operating system virtualization using containers. Potentially these can also be hierarchically man-
aged, for example having multiple containers running inside a virtual machine. Therefore, it be-
comes key to manage an application running on a cluster of such (virtual) machines and/or contain-
ers.

Also in the context of the Internet of Things (IoT), often a number of gateway devices is deployed in
the network that connect various sensors and actuators creating a smart environment. Again, it be-
comes key to discover and manage these devices, and query their capabilities.

The OSGi specification already provides chapters describing how to deploy software on remote in-
frastructure, how to call remote services or how manage a remote OSGi framework. In this chapter
we define an API for a management agent to discover, list and inspect available nodes in the cluster.

148.1.1 Essentials

• Cluster - A cluster is a collection of nodes connected by a network. Most often the nodes are man-
aged by a public or private cloud provider.

• Node - A node is a discoverable entity in the cluster, for example a physical machine, a virtual ma-
chine (VM), a container or an OSGi framework.

148.1.2 Entities

• NodeStatus - The Node Status service represents a node in the cluster. This can be any entity in the
cluster such as a database server, a virtual machine, a container, an OSGi framework, etc.

• FrameworkNodeStatus - The Framework Node Status service represents an OSGi framework in the
cluster.

• FrameworkManager - The FrameworkManager service provides an interface to manage an OSGi
framework in the cluster.

OSGi frameworks in a cluster Cluster Information Specification Version 1.0

Page 782 OSGi Enterprise Release 7

Figure 148.1 Clusterinfo Entity overview

<<interface>>
Framework

ClusterInfo
Framework
NodeStatus

<<interface>>

<<interface>>

1

impl

NodeStatus
impl

0..n

1
0..n

impl

NodeStatus
NodeStatus

Framework
Manager

148.2 OSGi frameworks in a cluster
We distinguish two types of nodes in a cluster. On the one hand we have OSGi frameworks, which
publish their presence using a Framework Node Status service. On the other hand there can be oth-
er nodes in the cluster, such as the virtual machines or containers the OSGi frameworks are running
on, or an external server such as a database. These can be represented using a Node Status service.

When an OSGi framework is part of a cluster, this means it gets access to remote services of any oth-
er OSGi framework in that cluster. Ensuring the discovery, visibility and access of remote services
within the cluster is the responsibility of the Remote Service Admin Service Specification on page 323.

An example cluster deployment is shown in Figure 148.2 on page 783. Here, a cluster consisting
of three virtual machines or containers has deployed a total of four OSGi frameworks. Each OSGi
framework has a Cluster Information implementation running that exposes a Framework Node Sta-
tus service. Besides these, there can also be an entity managing the virtual machines/containers (for
example, the cloud provider), that exposes three Node Status services, one for each VM/container. In
this case, each Framework Node Status will have a parent id pointing to the id of the Node Status of
the VM/container it is deployed on.

Cluster Information Specification Version 1.0 Node Status Service

OSGi Enterprise Release 7 Page 783

Figure 148.2 Example cluster deployment

ClusterInfo
impl

OSGi framework

ClusterInfo
impl

OSGi framework

ClusterInfo
impl

OSGi framework

ClusterInfo
impl

OSGi framework

VM/Container 1

VM/Container 2

VM/Container 3

VM/Container manager
ClusterInfo
impl

Framework
NodeStatus

Framework
NodeStatus

Framework
NodeStatus

Framework
NodeStatus

NodeStatus

148.3 Node Status Service
The NodeStatus service advertises the availability of a node in the cluster. This node can be any enti-
ty in the cluster such as a physical machine, a virtual machine, a container or an OSGi framework.

The Node Status service provides metadata about the node via its service properties. Each Node Sta-
tus must provide an id and cluster name. Optionally additional service properties can be provid-
ed such as the physical location of the node, the endpoints at which this node can be accessed, etc.
These service properties can be converted to a NodeStatusDTO to have type-safe access to these
properties using the Converter Specification on page 985.

Table 148.1 Service properties of the NodeStatus service

Service Property Name Type Description
osgi .c luster info. id Str ing The globally unique ID for this node. For example

the Docker ID if this node is a Docker container, or
the framework UUID if this node is an OSGi frame-
work.

osgi .c luster info.c luster Str ing The name of the cluster this node belongs to.
osgi .c luster info.parent Str ing In the case this node is part of or embedded in anoth-

er node, this field contains the id of the parent node.
For example multiple virtual machines could run on
the same physical node.

osgi .c luster info.endpoint Str ing+ The endpoint(s) at which this node can be accessed
from the viewpoint of the consumer of the service.

osgi .c luster info.endpoint.pr ivate Str ing+ Private endpoint(s) at which this node can be ac-
cessed from within the cluster only.

osgi .c luster info.vendor Str ing The vendor name of the cloud/environment in
which the node operates.

Node Status Service Cluster Information Specification Version 1.0

Page 784 OSGi Enterprise Release 7

Service Property Name Type Description
osgi .c luster info.version Str ing The version of the cloud/environment in which the

node operates. The value follows the versioning
scheme of the cloud provider and may therefore not
comply with the OSGi versioning syntax.

osgi .c luster info.country Str ing ISO 3166-1 alpha-3 location where this node is run-
ning, if known.

osgi .c luster info. locat ion Str ing ISO 3166-2 location where this node is running,
if known. This location is more detailed than the
country code as it may contain province or territory.

osgi .c luster info.region Str ing Something smaller than a country and bigger than
a location (for example, us-east-1 or other cloud-spe-
cific location)

osgi .c luster info.zone Str ing Regions are often subdivided in zones that represent
different physical locations. The zone can be provid-
ed here.

osgi .c luster info.tags Str ing+ Tags associated with this node that can be con-
tributed to by the provider and also by bundles.

The Node Status service can also provide access to some dynamic properties of the node. The get-
Metr ics method allows to query key-value pairs, that are specific for that node. For example, for
an OSGi framework these could be CPU and memory usage, for a database node these could be the
number of database reads and writes, and for a VM these could be metrics made accessible by the
cloud provider. In this case the service implementor can provide DTOs to have a type-safe way to ac-
cess these metrics by converting the returned map to one of these DTOs. For example, an implemen-
tation could expose JMX metrics together with a type-safe DTO:

public class JMXMetricsDTO extends DTO {
 /**
 * The number of processors available
 */
 public int availableProcessors;

 /**
 * The average system load
 */
 public float systemLoadAverage;

 /**
 * The maximal amount of heap memory available to the JVM
 */
 public long heapMemoryMax;

 /**
 * The amount of heap memory used by the JVM
 */
 public long heapMemoryUsed;

 /**
 * The maximal amount of non-heap memory available to the JVM
 */
 public long nonHeapMemoryMax;

 /**

Cluster Information Specification Version 1.0 Framework Node Status Service

OSGi Enterprise Release 7 Page 785

 * The amount of non-heap memory used by the JVM
 */
 public long nonHeapMemoryUsed;
}

Such DTO can be used to obtain metrics from a NodeStatus service as follows:

// From service registry
NodeStatus ns = ...;
// Obtain all metrics for this node
Map<String, Object> metrics = ns.getMetrics();

// Convert the metrics map to a DTO for type-safe access
JMXMetricsDTO dto = Converters.standardConverter().convert(metrics)
 .to(JMXMetricsDTO.class);

// Use metrics
System.out.println("System Load Average: " + dto.systemLoadAverage);

148.4 Framework Node Status Service
In case the cluster node is an OSGi framework, the FrameworkNodeStatus service is used to repre-
sent the node. FrameworkNodeStatus extends NodeStatus , and the node id is the OSGi framework
UUID. Next to the Node Status service properties, this service has some additional service properties
describing the OSGi and Java runtime:

Table 148.2 Additional service properties of the FrameworkNodeStatus service

Service Property Name Type Description
org.osgi .f ramework.version Str ing The OSGi framework version.
org.osgi .f ramework.processor Str ing The OSGi framework processor architecture.
org.osgi .f ramework.os_name Str ing The OSGi framework operating system name.
java.version Str ing The Java version.
java.runtime.version Str ing The Java runtime version.
java.specif icat ion.version Str ing The Java specification version.
java.vm.version Str ing The Java VM version.

Similar to the Node Status service, the service properties of the Framework Node Status service can
be converted to a FrameworkNodeStatusDTO to have type-safe access to these properties using the
Converter Specification on page 985.

The Framework Node Status service also extends the FrameworkManager interface, which provides
a management interface for the OSGi framework. This allows a remote management agent to inter-
act with the OSGi framework. The Framework Node Status service can be exported remotely with
Remote Services, however alternative mechanisms to distribute this service are also permitted. For
example, the FrameworkManager interface can also be made available through the REST Manage-
ment Service Specification on page 641.

The following example uses the NodeStatus properties from a FrameworkNodeStatus service to
see what country the framework is running in. If it is running in Germany a bundle specific for that
country is installed:

@Component
public class FrameworkProvisioner {
 private static final Converter CONVERTER = Converters.standardConverter();

Application-specific Node Status metadata Cluster Information Specification Version 1.0

Page 786 OSGi Enterprise Release 7

 @Reference(cardinality = MULTIPLE, policy = DYNAMIC)
 void addFramework(FrameworkNodeStatus fns, Map<String,Object> props) {
 // Convert the properties to the DTO for type safe access
 NodeStatusDTO dto = CONVERTER.convert(props).to(NodeStatusDTO.class);

 // Check the ISO 3166-1 alpha 3 country code
 if ("DEU".equals(dto.country)) {
 // If this framework runs in Germany, install a special bundle into it
 try {
 fns.installBundle("... Germany specific bundle ...");
 } catch (Exception e) {
 // log
 }
 }
 }
}

148.5 Application-specific Node Status metadata
The Node Status service provides a osgi .c luster info.tags property. Here, application specific tags can
be assigned to the NodeStatus services. For example, one could assign different roles to the nodes
such as "worker", "database", "storage", "gateway", etc. These roles are application-specific and should
be defined by the application developer.

Bundles can specify additional tags to be included in the FrameworkNodeStatus service
representing the current framework by registering any service with the service property
org.osgi .service.c luster info.tags providing a custom Str ing[] of tags. The Cluster Information im-
plementation will add those to the tags property of the FrameworkNodeStatus service that repre-
sents the OSGi framework. For example:

// Register an arbitrary service that communicates the tags
// to be added to the osgi.clusterinfo.tags service property.
Dictionary<String, Object> props = new Hashtable<>();
props.put("org.osgi.service.clusterinfo.tags",
 new String [] {"database", "large_box"});
bundleContext.registerService(MyClass.class, this, props);

148.6 Security

148.6.1 Cluster Tag Permission
The ClusterTagPermission class allows fine-grained control over which bundles may add which tags
to the Framework Node Status service. A bundle can be granted to add a certain tag to the Frame-
work Node Status, or be granted to add any tag using the * wildcard.

148.6.2 Required Permissions
The Cluster Information Specification should only be implemented by trusted bundles. These
bundles require ServicePermission[NodeStatus|FrameworkNodeStatus|FrameworkManager,
REGISTER] .

All bundles accessing the Cluster Information services should get ServicePermission[NodeStatus|
FrameworkNodeStatus|FrameworkManager, GET] .

Cluster Information Specification Version 1.0 org.osgi.service.clusterinfo

OSGi Enterprise Release 7 Page 787

Only trusted bundles who must be able to add Node Status tags should be assigned
ClusterTagPermission[ClusterTag, ADD] .

148.6.3 Remote service visibility in a cluster
By default, all remote OSGi services are visible within a cluster. This is handled by the Remote Service
Admin Service Specification on page 323.

148.7 org.osgi.service.clusterinfo

ClusterInfo Services Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.c luster info; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.c luster info; vers ion="[1.0,1.1)"

148.7.1 Summary

• ClusterTagPermission - A bundle's authority to add a tag to a NodeStatus service.
• FrameworkManager - Provides a management interface for accessing and managing a remote

OSGi framework.
• FrameworkNodeStatus - The FrameworkNodeStatus service represents a node in the cluster

that is also an OSGi framework.
• NodeStatus - The NodeStatus service represents a node in the cluster.

148.7.2 public final class ClusterTagPermission
extends Permission
A bundle's authority to add a tag to a NodeStatus service.

148.7.2.1 public static final String ADD = "add"

The action string add .

148.7.2.2 public ClusterTagPermission(String tag, String actions)

tag Give permission to add this tag, use * wildcard to give permission to add any tag.

actions add .

□ Defines the authority to add a tag to the NodeStatus service.

148.7.2.3 public boolean equals(Object obj)

obj The object to test for equality with this ClusterTagPermission object.

□ Determines the equality of two ClusterTagPermission objects. This method checks that specified
ClusterTagPermission has the same tag as this ClusterTagPermission object.

Returns true if obj is a ClusterTagPermission , and has the same tag as this ClusterTagPermission object; fa lse
otherwise.

org.osgi.service.clusterinfo Cluster Information Specification Version 1.0

Page 788 OSGi Enterprise Release 7

148.7.2.4 public String getActions()

□ Returns the canonical string representation of the ClusterTagPermission action.

Always returns the ADD action.

Returns Canonical string representation of the ClusterTagPermission actions.

148.7.2.5 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

148.7.2.6 public boolean implies(Permission p)

p The target permission to interrogate.

□ Determines if the specified permission is implied by this object.

This method checks that the tag of the target is implied by the tag name of this object.

Returns true if the specified ClusterTagPermission action is implied by this object; fa lse otherwise.

148.7.2.7 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing ClusterTagPermission objects.

Returns A new PermissionCol lect ion object.

148.7.3 public interface FrameworkManager
Provides a management interface for accessing and managing a remote OSGi framework. This inter-
face can be accessed remotely via Remote Services.

148.7.3.1 public BundleDTO getBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Retrieve the bundle representation for a given bundle Id.

Returns A BundleDTO for the requested bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.2 public Map<String, String> getBundleHeaders(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the header for a bundle given by its bundle Id.

Returns Returns the map of headers entries.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.3 public Collection<BundleDTO> getBundles() throws Exception

□ Get the bundle representations for all bundles currently installed in the managed framework.

Returns Returns a collection of BundleDTO objects.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.4 public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the start level for a bundle given by its bundle Id.

Cluster Information Specification Version 1.0 org.osgi.service.clusterinfo

OSGi Enterprise Release 7 Page 789

Returns Returns a BundleStartLevelDTO describing the current start level of the bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.5 public int getBundleState(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the state for a given bundle Id.

Returns Returns the current bundle state as defined in org.osgi.framework.Bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.6 public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception

□ Retrieves the current framework start level.

Returns Returns the current framework start level in the form of a FrameworkStartLevelDTO.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.7 public ServiceReferenceDTO getServiceReference(long id) throws Exception

id Addresses the service by its identifier.

□ Get the service representation for a service given by its service Id.

Returns The service representation as ServiceReferenceDTO.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.8 public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.9 public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception

filter Passes a filter to restrict the result set.

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.10 public BundleDTO installBundle(String location) throws Exception

location Passes the location string to retrieve the bundle content from.

□ Install a new bundle given by an externally reachable location string, typically describing a URL.

Returns Returns the BundleDTO of the newly installed bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.11 public void setBundleStartLevel(long id, int startLevel) throws Exception

id Addresses the bundle by its identifier.

startLevel The target start level.

□ Set the start level for a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.12 public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception

startLevel set the framework start level to this target.

org.osgi.service.clusterinfo Cluster Information Specification Version 1.0

Page 790 OSGi Enterprise Release 7

□ Sets the current framework start level.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.13 public void startBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.14 public void startBundle(long id, int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.start(int)

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.15 public void stopBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.16 public void stopBundle(long id, int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.stop(int)

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.17 public BundleDTO uninstallBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Uninstall a bundle given by its bundle Id.

Returns Returns the BundleDTO of the uninstalled bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.18 public BundleDTO updateBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Updates a bundle given by its bundle Id using the bundle-internal update location.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.19 public BundleDTO updateBundle(long id, String url) throws Exception

id Addresses the bundle by its identifier.

url The URL whose content is to be used to update the bundle.

□ Updates a bundle given by its URI path using the content at the specified URL.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

Cluster Information Specification Version 1.0 org.osgi.service.clusterinfo.dto

OSGi Enterprise Release 7 Page 791

148.7.4 public interface FrameworkNodeStatus
extends NodeStatus, FrameworkManager
The FrameworkNodeStatus service represents a node in the cluster that is also an OSGi framework.

148.7.5 public interface NodeStatus
The NodeStatus service represents a node in the cluster.

A node could represent an entity available in the network that is not necessarily running an OSGi
framework, such as a database or a load balancer.

148.7.5.1 public Map<String, Object> getMetrics(String... names)

names a set of metric names that have to be obtained from the node. Of no names are specified all available
metrics will be obtained. If a metric is requested that is not available by the node this metric is ig-
nored and not present in the returned map.

□ Get the current metrics or other dynamic data from the node. Nodes may support custom metrics
and as such the caller can request those metrics by name. The caller can specify the metric names to
avoid having to compute and send all metrics over, if the caller is only interested in a subset of the
available metrics.

Returns Map with the current node metrics

148.8 org.osgi.service.clusterinfo.dto

ClusterInfo DTO Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.c luster info.dto; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.c luster info.dto; vers ion="[1.0,1.1)"

148.8.1 Summary

• FrameworkNodeStatusDTO - Data Transfer Object for a FrameworkNodeStatus Service.
• NodeStatusDTO - Data Transfer Object for a NodeStatus Service.

148.8.2 public class FrameworkNodeStatusDTO
extends NodeStatusDTO
Data Transfer Object for a FrameworkNodeStatus Service.

148.8.2.1 public String java_runtime_version

The Java runtime version.

148.8.2.2 public String java_specification_version

The Java specification version.

148.8.2.3 public String java_version

The Java version.

org.osgi.service.clusterinfo.dto Cluster Information Specification Version 1.0

Page 792 OSGi Enterprise Release 7

148.8.2.4 public String java_vm_version

The Java VM version.

148.8.2.5 public String org_osgi_framework_os_name

The OSGi framework operating system name.

148.8.2.6 public String org_osgi_framework_processor

The OSGi framework processor architecture.

148.8.2.7 public String org_osgi_framework_version

The OSGi framework version.

148.8.2.8 public FrameworkNodeStatusDTO()

□ This DTO can be used to provide type safe access to properties of the FrameworkNodeStatus service.

148.8.3 public class NodeStatusDTO
extends DTO
Data Transfer Object for a NodeStatus Service.

148.8.3.1 public String cluster

The name of the cluster this node belongs to.

148.8.3.2 public String country

ISO 3166-1 alpha-3 location where this node instance is running, if known.

148.8.3.3 public String[] endpoints

The endpoint(s) at which this node can be accessed from the viewpoint of the consumer of the ser-
vice.

148.8.3.4 public String id

The globally unique ID for this node. For example the Docker ID if this node is a Docker container,
or the framework UUID if this node is an OSGi framework.

148.8.3.5 public String location

ISO 3166-2 location where this node instance is running, if known. This location is more detailed
than the country code as it may contain province or territory.

148.8.3.6 public String parentid

An optional parentID indicating this node is part of or embedded in another node. For example mul-
tiple virtual machines could run on the same physical node.

148.8.3.7 public static final String PREFIX_ = "osgi.clusterinfo."

Prefix used for the converter

148.8.3.8 public String[] privateEndpoints

Private endpoint(s) at which this node can be accessed from within the cluster only.

148.8.3.9 public String region

Something smaller than a country and bigger than a location (e.g. us-east-1 or other cloud-specific
location)

Cluster Information Specification Version 1.0 org.osgi.service.clusterinfo.dto

OSGi Enterprise Release 7 Page 793

148.8.3.10 public String[] tags

Tags associated with this node that can be contributed to by the provider and also by bundles.

148.8.3.11 public String vendor

The vendor name of the cloud/environment in which the node operates.

148.8.3.12 public String version

The version of the cloud/environment in which the node operates. The value follows the versioning
scheme of the cloud provider and may therefore not comply with the OSGi versioning syntax.

148.8.3.13 public String zone

Regions are often subdivided in zones that represent different physical locations. The zone can be
provided here.

148.8.3.14 public NodeStatusDTO()

□ This DTO can be used to provide type safe access to properties of the NodeStatus service.

org.osgi.service.clusterinfo.dto Cluster Information Specification Version 1.0

Page 794 OSGi Enterprise Release 7

Configurator Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 795

150 Configurator Specification

Version 1.0

150.1 Introduction
OSGi defines a model to provide bundles with configurations. This is specified in the Configura-
tion Admin specification where a configuration is identified by a persistent identity (PID). A PID is
a unique token, recommended to be conforming to the symbolic name syntax. A configuration con-
sists of a set of properties, where a property consists of a string key and a corresponding value. The
type of the value is limited to the primitive types and their wrappers, Strings, or Java Arrays/List/
Vector of these.

This specification defines a mechanism to feed configurations into the Configuration Admin Ser-
vice through configuration resources. A single configuration resource can feed multiple PIDs with
configuration and multiple configuration resources can be provided in one or more bundles.

150.2 Entities
The following entities are used in this specification.

• Configuration Admin Service - Standard service to configure OSGi-based systems. See Configuration
Admin Service Specification on page 85.

• Configuration Resource - A JSON resource in a bundle containing configurations. This resource is
processed by an implementation of this specification.

• Extendee - The extendee is a bundle containing configuration resources. It is extended by an imple-
mentation of this specification.

• Configurator - The Configurator implements the behavior specified in this specification. It
processes configuration resources and passes the configuration dictionary on to the Configura-
tion Admin Service.

• Configuration dictionary - The configuration information when it is passed to the Configuration
Admin Service. It consists of a Dictionary object with a number of properties and identifiers.

• Persistent Identity (PID) - A configuration dictionary is associated with a unique PID to identify the
destination of this data. See The Persistent Identity on page 88.

• Configuration Object - Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service Fac-
tory. These objects are manipulated by configuring bundles.

• Coordinator Service - The coordinator groups related operations to optimize handling of these op-
erations. Using the coordinator with configuration updates can minimize the volatility in the
system. See Coordinator Service Specification on page 499.

Configuration Resources Configurator Specification Version 1.0

Page 796 OSGi Enterprise Release 7

Figure 150.1 Configurator Entity Overview

Configuration
PID

Configuration
Resource

Configurator
Implementation

creates
updates
deletes configurations

reads

declares
1..n

Configuration
Admin Service

0..n

150.3 Configuration Resources
The Configurator is processing configuration resources containing configurations. The resources
can either be part of a bundle or be provided to the Configurator on startup.

150.3.1 Configuration Resource Format
The format for a configuration resource is [1] JSON (JavaScript Object Notation) and it must be UTF-8
encoded. An example configuration resource has the following structure:

{
 // Resource Format Version
 ":configurator:resource-version" : 1,

 // First Configuration
 "pid.a": {
 "key": "val",
 "some_number": 123
 },

 // Second Configuration
 "pid.b": {
 "a_boolean": true
 }
}

Comments in the form of [2] JSMin (The JavaScript Minifier) comments are supported, that is, any text
on the same line after // is ignored and any text between /* */ is ignored.

Configuration resources provide a set of configuration dictionaries each with a PID key to target a
specific PID in the Configuration Admin Service and zero or more configuration values for this PID.
Keys starting with the prefix :configurator: contain information about the resource or instructions
for the Configurator and therefore are not interpreted as PIDs containing configurations. If a key
contains an invalid PID, this entry is ignored and the Configurator should log an error with the Log
Service if available.

Configurator Specification Version 1.0 Configuration Resources

OSGi Enterprise Release 7 Page 797

The Configurator defines the following special keys on the resource level.

Table 150.1 Resource-level Configurator Keys

Key Value type Syntax Description
:configurator:

 resource-version

Number integer > 0 The version of the configuration resource format.
This specification only supports version 1 . If this
entry is omitted then version 1 is assumed. Re-
sources specifying an unsupported or invalid ver-
sion are ignored and the Configurator should log an
error with the Log Service if available.

:configurator:

 symbol ic-name

String symbolic-name The symbolic name of the configuration resource. If
not specified the symbolic name of the bundle con-
taining the resource is used. Mandatory for configu-
ration resources that do not reside in a bundle.

:configurator:vers ion String version The version of this configuration resource. If not
specified the version of the bundle containing the
resource is used. Mandatory for configuration re-
sources that do not reside in a bundle.

150.3.2 PIDs, Factory Configurations and Targeted PIDs
Configuration resources provide a set of configuration dictionaries each with a PID key to target a
specific PID in the Configuration Admin Service.

Factory configurations can be addressed using the factory PID and a name by starting with the fac-
tory PID, appending a tilde (' ~ ' \u007e), and then appending the name. This ensures a well-known
name for the factory configuration instance. The PID for such a configuration is exactly this key.
The Configurator must use the getFactoryConfigurat ion methods on Configuration Admin Service
to create or obtain configurations with the given factory PID and name.

Targeted PIDs are supported through the configuration resource. In the case of single configura-
tions, the full targeted PID is used as the key. For factory configurations, the key is assembled by
chaining the targeted factory PID, a tilde (' ~ ' \u007e), and the name.

The Configurator obtains all configurations with the location value of ? to allow the configurations
to be received by multiple bundles.

The Configurator uses the Configurat ion.updateIfDifferent method on the configuration object to
avoid any volatility in the system if the configuration applied has not been changed.

150.3.3 Configuration Dictionary
A configuration dictionary for the Configuration Admin Service is specified through a JSON object
in the configuration resource. It is introduced using the PID as the key. The value is a JSON object
containing the configuration dictionary.

The Configurator removes any comments and all properties where the key is starting with the spe-
cial prefix :configurator: from the configuration object before converting it to a configuration dic-
tionary that is provided to the Configuration Admin Service.

The Configurator defines special keys that can be used within the configuration object.

Table 150.2 PID-level Configurator Keys

Key Value type Syntax Description
:configurator:pol icy String default or force Specifies the overwrite policy on configurations set

by non-Configurator sources. See Overwrite Policies
on page 800.

Configuration Resources Configurator Specification Version 1.0

Page 798 OSGi Enterprise Release 7

Key Value type Syntax Description
:configurator:ranking Number integer The ranking of this configuration. If multiple bun-

dles provide configuration for the same PID rank-
ing rules are used to decide which configuration
gets applied, see Ranking on page 799.

150.3.4 Data Types
Configuration values support data types as specified with the Filter Syntax in the OSGi Core Specifi-
cation. Configuration resources are specified in JSON, which supports a more basic set of data types.
The following table describes how values are converted from JSON to configuration values.

Table 150.3 JSON Conversions

JSON type To Java type
Boolean Boolean
Number Whole number: Long

Floating point number: Double
String Str ing
Array Array, or if requested Collect ion . Contents are

boxed. If the array contents are of the same JSON
type, the associated Java type is used as the array
type. Otherwise the array elements are convert-
ed to String and a Str ing[] array is used.

Object Literal object as JSON String

If a specific data type is required for a configuration, the Configurator can be instructed to convert
the JSON value to a given data type. The target type can be specified by adding a colon : and the de-
sired data type to the property name. Supported data types are Str ing , Integer , Long , Float , Double ,
Byte , Short , Character and Boolean . Additionally arrays of Scalar or primitive types are support-
ed and Collect ion of scalar. The primitive types that can be specified for arrays are: int , long , f loat ,
double , byte , short , char , boolean . For Collect ion the Configurator picks a suitable implementation
that preserves order. Both bare Collect ion as well as typed collections that use the generics style no-
tation are supported. If a requested conversion cannot be performed, then the configuration is not
processed and the Configurator implementation should log an error.

An example configuration resource with typed data:

{
 "my.pid": {
 "port:Integer" : 300,
 "an_int_array:int[]" : [2, 3, 4],
 "an_Integer_collection:Collection<Integer>" : [2, 3, 4],
 "complex": {
 "a" : 1,
 "b" : "two"
 }
 }
}

The above configuration gets converted to a configuration dictionary with the following entries (in
pseudo Java language):

Integer port = 300;
int[] an_int_array = {2, 3, 4};
Collection<Integer> an_Integer_collection = {2, 3, 4};

Configurator Specification Version 1.0 Configuration Resources

OSGi Enterprise Release 7 Page 799

String complex = "{ \"1\" : 1, \"b\" : \"two\" }"

As an alternative of specifying data types for the Configurator, consumers of configuration can con-
vert the configuration values to the desired type by using the OSGi Converter see Converter Specifica-
tion on page 985. A convenient way to convert a configuration map to the desired data types is by
using the Converter to convert it to an annotation instance or by using a Declarative Services com-
ponent property type.

150.3.4.1 Binary Data

In some cases binary data is associated with configurations such as certificates, security keys or oth-
er resources. The Configurator can manage this binary data. The bundle developer places the bina-
ries in a location in the extendee and references it from the configuration resource, marking its type
as binary :

{
 "my.config": {
 "security.enabled": true,
 "public.key:binary" : "/OSGI-INF/files/mykey.pub"
 }
}

When the Configurator applies the configuration, it extracts the binary file to a public area on the
file system. The Configurator creates a subdirectory with as name the PID of the configuration. The
PID must be URL-encoded to ensure that it does not contain characters that are illegal on a file sys-
tem. The binary file is extracted in this subdirectory. The Configurator then applies the configura-
tion with as value for the binary entry the absolute path of the extracted binary file.

A binary data property can also specify an array of binary resources by declaring the binary[] data
type. Each resource referenced is extracted as a separate file on the file system and the value of the
property will be an array of strings, each string being the full path of one extracted binary.

By default a directory called binar ies in the bundle data area of the Configurator implementation is
used. An alternative location can be specified via the configurator.binar ies framework property. The
value of this property must be an absolute path on the file system to which the Configurator has
write access. If the directory does not exist the Configurator will create it. If the Configurator cannot
write to this location, it logs an error and uses the default location instead.

When a configuration is removed, its associated binary files are also removed from the file system.
When a configuration is updated, associated binary files are updated, if necessary. In the case of an
update the Configurator should use a different filename for the extracted binary file to avoid any
open file lock issues.

150.3.5 Ranking
The order in which the Configurator processes bundles is not defined. To control which configu-
rations are in effect configuration ranking can be used. Configuration ranking is similar to service
ranking; it is an integer which defaults to 0. Configurations with a higher ranking are preferred over
configurations with a lower ranking. When multiple configurations arrive over time it is possible
that the Configurator changes the effective configuration if a higher ranked configuration arrives
later. The design of the Configurator is such that the effective set of configurations once the system
stabilizes is consistent, regardless of the order in which bundles are installed and processed.

The ranking of a configuration can be specified by adding the :configurator:ranking property. The
value of this property is converted to an Integer as defined by the Converter specification. If the val-
ue cannot be converted a warning should be logged. When multiple configurations for a given PID
have the same ranking the bundle providing the configuration with the lowest bundle ID is pre-
ferred. If multiple configurations for the same PID with the same ranking are specified within a sin-
gle bundle, the first one encountered is used.

Configuration Resources Configurator Specification Version 1.0

Page 800 OSGi Enterprise Release 7

The following example shows two bundles with a configuration resource containing a configura-
tion for the same PID:

Resource in Bundle A:
{
 "my.pid": {
 "port:Integer" : 300,
 ":configurator:ranking" : 100
 }
}

Resource in Bundle B:
{
 "my.pid": {
 "port:Integer" : 100,
 ":configurator:ranking" : 10
 }
}

Bundle A contains the configuration with the higher ranking. Therefore, regardless of the installa-
tion order of bundle A and B, the configuration from Bundle A will be in effect after both bundles
are installed and processed by the Configurator.

150.3.6 Overwrite Policies
In an IT operations scenario configurations are often updated by a systems administrator to suit
the deployments requirements. In such scenarios it may be undesirable to have these modifications
overwritten by a software update which includes a configuration resource. In other cases, bundles
with configuration resources are used to enforce best practices or compliance with corporate guide-
lines, which should replace any previous manual settings. This specification defines policies to de-
fine the overwrite behavior of the Configurator when configurations have been set or modified by
another entity.

Configuration policies are set by specifying the :configurator:pol icy property. Accepted values are
default and force . This policy defines the behavior when a configuration to be applied was set by an-
other entity in the system, or if it was modified by someone from the values set by the Configurator.
The default value for this property is default . If the specified value is invalid an error is logged and
the default value is used.

Table 150.4 Applying Configurations: Overwrite Policies

Policy value Action
default No action
force Configuration is added

The Configurator must keep track of configuration change count values to identify configurations
that were changed by other entities or administrators.

When a bundle that provides configuration resources is uninstalled, the Configurator removes any
configurations that it has provided on behalf of this bundle from the system. Before it removes a
configuration the Configurator checks with the Configuration Admin Service whether the con-
figuration it has provided has been changed by another entity. If the configuration has not been
changed by another entity it is removed. If it has been changed then whether the configuration is re-
moved depends on the value of the configurator:pol icy property:

Table 150.5 Removing externally modified configurations

Policy value Action
default No action

Configurator Specification Version 1.0 Bundle Configuration Resources

OSGi Enterprise Release 7 Page 801

Policy value Action
force Configuration is removed

When a configuration is removed the Configurator checks whether another, lower ranked, configu-
ration resource is available. If present the Configurator sets this configuration.

The following examples explain the two policy options. In the first example Bundle A contains
a configuration for the PID my.pid without specifying the policy. In this case the default policy is
used:

{
 "my.pid": {
 "port:Integer" : 300
 }
}

The following actions demonstrate the behavior of the default policy:

1. The framework is started without any configuration for PID my.pid .
2. Bundle A is installed, the Configurator creates the configuration for PID my.pid .
3. An administrator manually changes the configuration for PID my.pid .
4. Bundle A is updated with an updated configuration for PID my.pid . The Configurator detects the

manual change of the configuration in Configuration Admin Service and does not apply the up-
dated configuration from the bundle.

5. Bundle A is uninstalled. The Configurator detects the manual change of the configuration in
Configuration Admin Service and does not delete the configuration.

In the second example Bundle A contains a configuration for the PID my.pid this time with the over-
write policy set to force .

{
 "my.pid": {
 "port:Integer" : 300,
 ":configurator:policy" : "force"
 }
}

The following actions demonstrate the behavior of the force policy:

1. The framework is started without any configuration for PID my.pid .
2. Bundle A is installed, the Configurator creates the configuration for PID my.pid .
3. An administrator manually changes the configuration for PID my.pid .
4. Bundle A is updated with an updated configuration for PID my.pid . The Configurator applies the

updated configuration.
5. Bundle A is uninstalled. The Configurator detects the manual change of the configuration in

Configuration Admin Service and deletes the configuration.

150.4 Bundle Configuration Resources
The Configurator follows the OSGi extender model and looks for JSON configuration resources
in installed bundles, if the bundle has opted-in to be processed. In order to get processed, a bundle
must require the Configurator extender:

Require-Capability: osgi.extender;
 filter := "(&(osgi.extender=osgi.configurator)

Initial Configurations Configurator Specification Version 1.0

Page 802 OSGi Enterprise Release 7

 (version>=1.0)(!(version>=2.0)))"

The Configurator must ensure to only process bundles that it is wired to by the resolver.

By default the configuration resources are in the OSGI-INF/configurator directory in the bundle.

Configuration files are UTF-8 encoded and have the . json file extension. Files not having this exten-
sion are ignored. The Configurator processes the configuration resources within a single bundle in
lexical order using the full resource path for sorting.

150.5 Initial Configurations
When the Configurator starts it calls bundleContext.getProperty("configurator. init ia l") to ob-
tain initial configurations from the runtime environment. If this property is available its value is
processed as follows:

1. If the value starts with a left curly bracket ('{' \u007B), ignoring any leading white space, the
Configurator will interpret the value as a literal configuration JSON resource.

2. Otherwise the value is treated as a comma-separated list of URLs. The Configurator will read the
resource at each URL and parse it as a JSON Configuration resource. If any errors occur during
this process they are logged and the URL is skipped. The URLs are processed in alphabetical or-
der of their provided value.

The ranking of these configurations can be set in the configuration resource as described in Ranking
on page 799. The Configurator treats the initial configurations as being provided from a bundle
with the bundle id -1 .

If the framework is restarted, the Configurator needs to check whether the provided initial configu-
rations are different than on the previous startup. The implementation is free to use whatever is ap-
propriate to perform this check, like comparing last modified for the URLs or using a hash etc. If the
provided configuration is different than on a previous startup, this is treated like a bundle update
with an updated configuration.

150.6 Life Cycle
The Configurator uses the Configuration Admin Service. Therefore the Configurator implementa-
tion should require the Configuration Admin Service through a service requirement. The Configu-
rator should not start processing configuration resources until it has runtime access to the Configu-
ration Admin Service.

The Configurator uses the Configuration Admin Service that is visible to both the Configurator it-
self as well as the bundle that is being processed. If there are multiple candidates, the service with
the highest ranking is used. If there is no Configuration Admin Service visible to both the bundle
that is processed and the Configurator, the processing is delayed until such a service becomes avail-
able.

When the Configurator starts, it processes all started bundles and applies configurations provid-
ed by those bundles. From then on, the Configurator processes bundles as they enter the STARTING
state. The Configurator should process as many bundles as possible in a single pass to minimize
volatility for PIDs where multiple configurations with different rankings are provided.

When a bundle containing configuration resources is updated, the configurations must be updated
in the Configuration Admin Service to which they were originally provided, keeping in mind that
the system might have been restarted in-between. One way of keeping track of the original Configu-
ration Admin Service is via the bundle location of the bundle providing the service. If this service is

Configurator Specification Version 1.0 Grouping and Coordinations

OSGi Enterprise Release 7 Page 803

not available the Configurator must attempt to apply the updated configuration when this Configu-
ration Admin Service re-appears.

Configurations remain in the system until the bundle that provided the configurations is unin-
stalled. When this happens, the Configurator must uninstall the configurations from the Configu-
ration Admin Service to which it originally installed it as is the case with updates. If this Configu-
ration Admin Service is not available at this time, the Configurator must remember the configura-
tions that are to be removed, and remove them when the Configuration Admin Service re-appears at
a later time.

When the Configurator becomes active, it must check whether configurations that it installed pre-
viously are still valid. If the bundles that provided these configurations have been uninstalled, the
associated configurations must be removed. If a bundle is updated the associated configurations are
also updated. The Configurator calls updateIfDifferent on the configuration to avoid volatility in
the system if the actual configuration values did not change.

When updating or removing configurations, the Configurator must take the Overwrite Policies on
page 800 into account. This means that for certain policy values an externally modified configu-
ration is not replaced or removed.

When a bundle that provides the Configuration Admin Service is uninstalled, the Configurator con-
siders all configurations previously provided to that Configuration Admin Service as not yet ap-
plied. If another Configuration Admin Service is or becomes visible to both the Configurator and
the bundle containing configuration resources, the Configurator will provide the configurations to
this Configuration Admin Service as new.

When the Configurator is stopped or uninstalled the configurations applied will remain in the sys-
tem.

150.7 Grouping and Coordinations
The Coordinator Service Specification on page 499 defines a mechanism for multiple parties to collabo-
rate on a common task without a priori knowledge of who will collaborate in that task. The Configu-
rator must participate in such scenarios to coordinate with provisioning or configuration tasks.

Whenever the Configurator is processing configuration resources and interacting with the Config-
uration Admin Service, the Configurator must check whether a Coordinator Service is present. If it
is present, the Configurator checks for an implicit coordination on the current thread. If such an im-
plicit coordination exists, the Configurator does not need to create one. However, if such an implicit
coordination is not present, the Configurator starts an implicit coordination on the current thread
when interacting with the Configuration Admin Service and ends this coordinator when it is fin-
ished doing the current set of work. The Configurator does not need to delay applying any changes
to the Configuration Admin Service until the coordination ends.

150.8 Security
When Java permissions are enabled, the Configurator must perform the following security proce-
dures.

150.8.1 Configuration Permission
The Configurator manages configurations on behalf of the bundle contain-
ing the configuration resources. Therefore the Configurator needs to have the
Configurat ionPermission[*,org.osgi .service.cm.Configurat ionPermission.CONFIGURE] .

Capabilities Configurator Specification Version 1.0

Page 804 OSGi Enterprise Release 7

Every bundle has the implicit right to receive and configure configurations with a location that ex-
actly matches the Bundle's location or that is nul l . Therefore the extendee does not need to special
permissions.

150.8.2 Service Permission
The Configurator needs ServicePermission[<interface>, GET] for the Coordinator service.

The extendee needs ServicePermission[<interface>, GET] for the Configuration Admin Service.

150.8.3 Configuration Admin Service
The Configurator does get the Configuration Admin Service on behalf of the extendee. Therefore
the extendee needs to be included in permission checks for getting the Configuration Admin Ser-
vice. The Configurator needs to perform the required calls to ensure the extendee has the necessary
permission to get the Configuration Admin Service.

150.8.4 File Permission
If binaries are used, the Configurator needs to have read/write/delete permission to the configured
directory to store the binaries.

A bundle using a binary referenced from a configuration needs to have read permission to correct
sub directory of the configured binary directory. The subdirectory is named after the PID of the con-
figuration.

By default binaries are stored in the bundle data are of the Configurator. While this works without
Java security enabled, permission configuration for the extendees gets challenging as the location of
the bundle data area is only known at runtime. Therefore with Java security enabled, the directory
holding the binaries should be configured to allow permission configuration for the extendees.

150.9 Capabilities

150.9.1 osgi.extender Capability
The Configurator implementation bundle must provide the osgi .extender capability with name
osgi .configurator with the version of this specification:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.configurator";
 version:Version="1.0"

This capability must follow the rules defined for the osgi.extender Namespace on page 631.

Bundles providing configuration resources must require the osgi .extender capability to opt in to
being processed by the Configurator. The default location for configuration resources is in OSGI-
INF/configurator . A bundle can specify alternate locations for configuration resources through
the configurat ions attribute. The value of this attribute is of type Str ing or List<Str ing> . Each val-
ue represents a path inside the bundle. This path is always relative to the root of the bundle and
may start with a slash / . A path value of / indicates the root of the bundle. The Configurator uses
Bundle.f indEntr ies to find all resources with the . json extension in this location. Sub directories are
not considered. If the configurat ion attribute specifies multiple paths, these are visited in the order
specified. Duplicate paths are ignored. Paths that do not exist in the bundle are logged as an error
and skipped. Resources in a single directory are processed in alphabetical order. For example:

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.configurator)
 (version>=1.0)(!(version>=2.0)))";

Configurator Specification Version 1.0 osgi.configuration Namespace

OSGi Enterprise Release 7 Page 805

 configurations="resources/configs"

To simplify the creation of this requirement the RequireConfigurator annotation can be used. This
annotation allows the configurat ions attribute to be defined is a value other than the default is
needed.

@RequireConfigurator("resources/configs")

150.10 osgi.configuration Namespace
Configuration resources define configuration for one or more PIDs. To declare what configuration is
being provided, the osgi .configurat ion capability namespace can be used. Configuration resources
and bundles can define the osgi .configurat ion capability for each configuration that they define.
This capability should have resolve time effectiveness.

The osgi .configurat ion Namespace supports the attributes defined in the following table and Con-
figurat ionNamespace .

Table 150.6 osgi.configuration namespace definition

Name Kind M/O Type Syntax Description
service.pid CA O† Str ing qname Defines the PID of the configuration.
service.factoryPid CA O† Str ing qname Defines the factory PID if this is a factory configuration.

† Note that at least one of service.pid or service.factorypid must be defined. If the configuration
is a standard configuration then only the service.pid is used. If the configuration is a factory con-
figuration with an automatically generated identity then only the service.factoryPid is used. If
the configuration is a factory configuration with a specified identity then both the service.pid and
service.factoryPid are used.

150.11 Configuration Resources in a Repository
The configuration file format in Configuration Resources on page 796 defines a portable representa-
tion of configurations for the Configuration Admin Service. Whilst the Configurator implementa-
tion is necessary to process these configurations when they are packaged inside a bundle or provid-
ed on startup, these files can also offer significant value to other tools for deployment and manage-
ment outside of the Configurator usage.

If configuration resources are used in an OSGi repository, in order to integrate with querying and
the resolution process, the configuration resources should define the appropriate capabilities.

In addition to the common requirements and capabilities, a standalone configuration resource must
declare the following capabilities when in an OSGi repository:

• An osgi .content capability. The mime type of the configuration resource should be appl ica-
t ion/vnd.osgi .configurat ion+json.

• An osgi . identity capability. This capability requires that each resource define a symbolic
name and version. These can be obtained from the mandatory :configurator:symbol ic-name
and :configurator:vers ion keys in the configuration resource. As type attribute the string
osgi .configurat ion must be used.

150.12 org.osgi.service.configurator

org.osgi.service.configurator Configurator Specification Version 1.0

Page 806 OSGi Enterprise Release 7

Configurator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.configurator; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.configurator; vers ion="[1.0,1.1)"

150.12.1 Summary

• ConfiguratorConstants - Defines standard constants for the Configurator services.

150.12.2 public final class ConfiguratorConstants
Defines standard constants for the Configurator services.

150.12.2.1 public static final String CONFIGURATOR_BINARIES = "configurator.binaries"

Framework property specifying the directory to be used by the Configurator to store binary files.

If a value is specified, the Configurator will write all binaries to the given directory. Therefore the
Configurator bundle needs read and write access to this directory.

If this property is not specified, the Configurator will store all binary files in its bundle private data
area.

150.12.2.2 public static final String CONFIGURATOR_EXTENDER_NAME = "osgi.configurator"

The name of the extender capability attribute for the Configurator

150.12.2.3 public static final String CONFIGURATOR_INITIAL = "configurator.initial"

Framework property specifying initial configurations to be applied by the Configurator on startup.

If the value of this property starts with a '{' (ignoring leading whitespace) it is interpreted as JSON
and directly feed into the Configurator.

Otherwise the value is interpreted as a comma separated list of URLs pointing to JSON documents.

150.12.2.4 public static final String CONFIGURATOR_SPECIFICATION_VERSION = "1.0"

The version of the extender capability for the Configurator specification

150.12.2.5 public static final String POLICY_DEFAULT = "default"

Value for defining the default policy.

See Also PROPERTY_POLICY

150.12.2.6 public static final String POLICY_FORCE = "force"

Value for defining the force policy.

See Also PROPERTY_POLICY

150.12.2.7 public static final String PROPERTY_POLICY = ":configurator:policy"

Configuration property for the configuration policy.

Allowed values are POLICY_DEFAULT and POLICY_FORCE

See Also POLICY_DEFAULT, POLICY_FORCE

Configurator Specification Version 1.0 org.osgi.service.configurator.annotations

OSGi Enterprise Release 7 Page 807

150.12.2.8 public static final String PROPERTY_PREFIX = ":configurator:"

Prefix to mark properties as input for the Configurator when processing a configuration resource.

150.12.2.9 public static final String PROPERTY_RANKING = ":configurator:ranking"

Configuration property for the configuration ranking.

The value of this property must be convertible to a number.

150.12.2.10 public static final String PROPERTY_RESOURCE_VERSION = ":configurator:resource-version"

Global property in the configuration resource specifying the version of the resource format.

Currently only version 1 is defined for the JSON format and therefore the only allowed value is 1 for
this property. If this property is not specified, 1 is assumed.

150.12.2.11 public static final String PROPERTY_SYMBOLIC_NAME = ":configurator:symbolic-name"

Global property in the configuration resource specifying the symbolic name of the configuration re-
source. If not specified the symbolic name of the bundle containing the resource is used. Mandatory
for configuration resources that do not reside in a bundle

150.12.2.12 public static final String PROPERTY_VERSION = ":configurator:version"

Global property in the configuration resource specifying the version of the resource. If not specified
the version of the bundle containing the resource is used. Mandatory for configuration resources
that do not reside in a bundle.

150.13 org.osgi.service.configurator.annotations

Configurator Annotations Package Version 1.0.

This package contains annotations that can be used to require the Configurator extender.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

150.13.1 Summary

• RequireConfigurator - This annotation can be used to require the Configurator extender.

150.13.2 @RequireConfigurator
This annotation can be used to require the Configurator extender. It can be used directly, or as a
meta-annotation.

This annotation allows users to define custom locations that should be searched for configuration
files using RequireConfigurator.value()

Retention CLASS

Target TYPE , PACKAGE

150.13.2.1 String[] value default {}

□ This attribute can be used to define one or more locations that the configurator must search, in or-
der, for configuration files.

If no locations are defined then the Configurator default of /OSGI-INF/configurator will be used.

Returns A list of bundle locations containing configuration files

org.osgi.service.configurator.namespace Configurator Specification Version 1.0

Page 808 OSGi Enterprise Release 7

150.14 org.osgi.service.configurator.namespace

Configurator Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

150.14.1 Summary

• Configurat ionNamespace - Configuration Capability and Requirement Namespace.

150.14.2 public final class ConfigurationNamespace
extends Namespace
Configuration Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

150.14.2.1 public static final String CONFIGURATION_NAMESPACE = "osgi.configuration"

Namespace name for configuration capabilities and requirements.

Also, the capability attribute used to specify the name of the extension.

150.14.2.2 public static final String FACTORY_PID_ATTRIBUTE = "service.factoryPid"

The capability attribute contains the factory PID if this is a factory configuration. The value of this
attribute must be of type String.

150.14.2.3 public static final String SERVICE_PID_ATTRIBUTE = "service.pid"

The capability attribute contains the PID of the configuration. The value of this attribute must be of
type String.

150.15 References

[1] JSON (JavaScript Object Notation)
https://www.json.org

[2] JSMin (The JavaScript Minifier)
https://www.crockford.com/javascript/jsmin.html

https://www.json.org
https://www.crockford.com/javascript/jsmin.html

JAX-RS Whiteboard Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 809

151 JAX-RS Whiteboard Specification

Version 1.0

151.1 Introduction
REpresentational State Transfer (REST) is a simple pattern for producing Web Services. RESTful ser-
vices use URI pattern matching to match a particular web resource. Different HTTP verbs, for exam-
ple GET and DELETE , map to different operations on that resource. Standard HTTP response codes
are used to communicate the result of an operation, potentially including a response body if the op-
eration returns a result.

The [1] Java API for RESTful Web Services Specification defines a set of annotation mappings which al-
low Plain Old Java Objects (POJOs) to be directly exposed as RESTful web resources; these resources
can also be grouped together using a JAX-RS Appl icat ion . Furthermore the specification defines a
plugable model for extending the behavior of the application and the features of the JAX-RS contain-
er itself. For example an extension may define specific error responses that should be sent when par-
ticular exceptions occur, or an extension may add support for serializing responses to a different for-
mat. The OSGi JAX-RS Whiteboard Specification provides a light and convenient way of using these
POJOs, applications and extensions in an OSGi environment through the use of the [3] Whiteboard
Pattern.

The JAX-RS Whiteboard specification supports:

• Registering Resources - Registering a JAX-RS annotated POJO in the Service Registry makes it avail-
able to be bound to an endpoint and to start responding to incoming requests.

• Registering Applications - Registering a JAX-RS Appl icat ion in the Service Registry makes it avail-
able to be bound to an endpoint and to start responding to incoming requests.

• Registering Extensions - The JAX-RS specification defines a variety of plugable extensions. JAX-RS
extensions can be registered in the Service Registry to include them in the handling pipeline.

• Requiring Extensions - Sometimes JAX-RS resources, or even JAX-RS extensions, depend upon the
presence of another extension. For example a JAX-RS resource and a JAX-RS exception mapper
may both depend on a JSON serializer. JAX-RS Whiteboard services may define preconditions
that must be satisfied before they can be bound.

JAX-RS Whiteboard implementations must support at least version 2.1 of the JAX-RS API.

151.1.1 Entities
This specification defines the following entities:

• JAX-RS Whiteboard service - An object registered in the Service Registry providing the necessary
Whiteboard service properties defined by this specification. JAX-RS Whiteboard services may be
resource, application or extension services

• JAX-RS Whiteboard implementation - An implementation that provides one or more JAX-RS White-
boards.

• JAX-RS Whiteboard - A runtime instance that processes JAX-RS Whiteboard services. Each JAX-RS
Whiteboard service may be processed by multiple JAX-RS Whiteboards. Different JAX-RS White-
boards provided by the same JAX-RS Whiteboard implementation may configured differently, for
example using different ports or root contexts.

The JAX-RS Whiteboard JAX-RS Whiteboard Specification Version 1.0

Page 810 OSGi Enterprise Release 7

• JAX-RS Service Runtime service - A service providing runtime introspection into a JAX-RS White-
board instance.

• JAX-RS Resource Service - A service that provides one or more RESTful resource methods which
map to incoming HTTP requests.

• JAX-RS Application Service - A service that provides a javax.ws.rs .core.Appl icat ion to be hosted by
a JAX-RS Whiteboard.

• JAX-RS Extension Service - A service that extends the functionality of a JAX-RS Whiteboard.
• Static Resources - JAX-RS resources that are included programmatically in a JAX-RS Whiteboard

application, rather than being added at runtime by the whiteboard.

Figure 151.1 JAX-RS Whiteboard Overview Diagram

Resource

Extension

Implementation

JAX-RS Service
Runtime

JAX-RS
Whiteboard

JAX-RS
Whiteboard

JAX-RS
Whiteboard

JAX-RS Service
Runtime

JAX-RS

JAX-RS

Application
JAX-RS

The Figure 151.1 shows an OSGi framework running a JAX-RS Whiteboard Implementation bun-
dle. This bundle has been configured to provide two JAX-RS whiteboards, each of which has a corre-
sponding JAX-RS Service Runtime Service. The various JAX-RS Whiteboard services available in the
framework are discovered and processed by both whiteboards.

151.2 The JAX-RS Whiteboard
An important principle of the JAX-RS Whiteboard specification is that an OSGi framework may
contain many active JAX-RS Whiteboards at any time, even if there is only a single JAX-RS White-
board implementation present in the framework. In addition to providing a web endpoint with
which to register Whiteboard services, a JAX-RS Whiteboard provides a holder for JAX-RS Applica-
tions.

All JAX-RS Whiteboards have a default application which is used to register resources that do not
target an existing application. In this respect a JAX-RS whiteboard application shares some similar-
ities with a Servlet Context in the Http Whiteboard Specification on page 685. Resources registered
with a JAX-RS Whiteboard are always registered as part of an application. The generated name of the
default application is .default , and it is mapped to the root context of the JAX-RS Whiteboard.

A JAX-RS Whiteboard implementation must create a JAX-RS Whiteboard instance, however it is ex-
pected that most implementations will permit multiple JAX-RS whiteboards to be configured. These
instances may differ significantly, or may simply offer the same capabilities on a different port.

For details on the association process between JAX-RS Whiteboard services and a JAX-RS White-
board see Common Whiteboard Properties on page 692.

JAX-RS Whiteboard Specification Version 1.0 The JAX-RS Whiteboard

OSGi Enterprise Release 7 Page 811

151.2.1 The JAX-RS Service Runtime Service
The JaxrsServiceRuntime service represents the runtime state information of a JAX-RS Whiteboard
instance. This information is provided through Data Transfer Objects (DTOs). The architecture of
OSGi DTOs is described in OSGi Core Release 7.

Each JAX-RS Whiteboard implementation registers exactly one JaxrsServiceRuntime service
per JAX-RS Whiteboard. The service properties of the JAX-RS Service Runtime Service can be
used to target JAX-RS Whiteboard services at specific JAX-RS whiteboards, as described by the
osgi . jaxrs .whiteboard.target property in Common Whiteboard Properties on page 812.

The JaxrsServiceRuntime provides service registration properties to declare its underlying JAX-RS
Whiteboard. These service properties can include implementation-specific key-value pairs. They al-
so include the following:

Table 151.1 Service properties for the JaxrsServiceRuntime service

Service Property Name Type Description
osgi . jaxrs .endpoint Str ing+ Endpoint(s) where this JAX-RS Whiteboard is listening. Registered

Whiteboard services are made available here. Values could be provided
as URLs e.g. http://192.168.1.10:8080/ or relative paths, e.g. /myapp/ .
Relative paths may be used if the scheme and authority parts of the URLs
are not known, for example if the JAX-RS Whiteboard is delegating to a
bridged Http Service implementation. If the JAX-RS Whiteboard Service
is serving the root context and scheme and authority are not known, the
value of the property is / . Each entry must end with a slash.

See JAX_RS_SERVICE_ENDPOINT .
service.changecount Long Whenever the DTOs available from the JAX-RS Service Runtime service

change, the value of this property will increase.

This allows interested parties to be notified of changes to the DTOs by
observing Service Events of type MODIFIED for the JaxrsServiceRuntime
service. See org.osgi .f ramework.Constants.SERVICE_CHANGECOUNT in
OSGi Core Release 7.

151.2.2 Inspecting the Runtime DTOs
The JAX-RS Service Runtime service provides information about registered Whiteboard services
through the RuntimeDTO .

The Runtime DTO provides information about services that have been successfully registered as
well as information about the JAX-RS Whiteboard services that were not successfully registered.
JAX-RS Whiteboard services that have the required properties set but cannot be processed, are re-
flected in the failure DTOs. JAX-RS Whiteboard services of interfaces described in this specification
that do not have the required properties set are ignored and not reflected in the failure DTOs.

The Runtime DTO can be obtained using the getRuntimeDTO() method. The Runtime DTO returned
provides a snapshot of the state of the JAX-RS Runtime, including the JAX-RS Whiteboard resources,
extensions and applications that are active in each registered application. The Runtime DTO also in-
cludes information about Whiteboard services which could not be activated.

151.2.2.1 DTO properties

When whiteboard services are registered with the whiteboard they must be introspected and this
information reflected in the DTO(s) for that service. This introspection will include looking for an-
notations such as @GET and @Path both at a class and method level. The values associated with
these annotations must then be appropriately combined, for example when @Path is declared on a
type and method level, and recorded in the DTO.

Common Whiteboard Properties JAX-RS Whiteboard Specification Version 1.0

Page 812 OSGi Enterprise Release 7

151.2.2.2 Failure DTOs

There are a variety of reasons that whiteboard services may not be able to be used by the white-
board. For example, if the whiteboard service cannot be retrieved from the service registry, or if the
whiteboard service provides an invalid service property value, such as a malformed filter.

In these cases the failed services are represented in the Runtime DTO under one of the failed DTO
properties. Depending upon the failure reason one or more of the properties of the failed DTO may
be unavailable. For example if the service cannot be retrieved from the service registry then it can-
not be introspected for annotations. A failure DTO will always contain the service id for the failed
service and the failure reason. The whiteboard implementation must then fill in other DTO proper-
ties on a best effort basis.

151.2.3 Relation to the Servlet Container
Implementations of this specification will often be backed by existing servlet containers, such as
the OSGi Http Whiteboard, or a Java EE application server. There may also exist implementations
which bridge into a servlet container into which the OSGi Framework has been deployed as a Web
Application.

In bridged situations the JAX-RS Whiteboard implementation will have limited facilities for creat-
ing new JAX-RS whiteboards, and may also have limited information about its environment.

Information about the surrounding Servlet Container, including ServletContext information and
HttpSession data, is available to JAX-RS Whiteboard resources using standard JAX-RS injection be-
havior.

@GET
@Path("{name}")
public String interrogateSession(@PathParam("name") String name,
 @Context HttpServletRequest req) {
 HttpSession s = req.getSession();
 return String.valueOf(s.getAttribute(name));
}

A JAX-RS Whiteboard implementation needs to ensure that Http Sessions are not shared amongst
different JAX-RS Whiteboards, or amongst different JAX-RS Whiteboard applications. That is,
HttpServletRequest.getSession() calls must provide different sessions for each whiteboard applica-
tion with which a JAX-RS whiteboard service is associated.

151.2.4 Isolation between JAX-RS Whiteboards
Even when they are created by the same JAX-RS Whiteboard implementation, each JAX-RS White-
board instance is separate, and isolated from other instances. Importantly, JAX-RS Whiteboard ser-
vices targeted to one JAX-RS Whiteboard application must not be visible in any other Whiteboard
or applications to which they are not targeted.

This isolation restriction is critical, as it ensures that different JAX-RS Whiteboard applications can
be configured with different, potentially overlapping, incompatible extension features.

151.3 Common Whiteboard Properties
JAX-RS Whiteboard services support common service registration properties to associate them with
a JAX-RS Whiteboard. These properties apply to whiteboard resources, extensions and applications
except where explicitly stated otherwise. Each service property has an associated Component Prop-
erty Type annotation that can be used to easily apply the property to a Declarative Services Compo-
nent.

JAX-RS Whiteboard Specification Version 1.0 Common Whiteboard Properties

OSGi Enterprise Release 7 Page 813

Table 151.2 Common properties

Service Property Type Description
osgi . jaxrs .name

JaxrsName

Str ing

optional

A user defined name that can be used to identify a JAX-RS white-
board service. Names must follow OSGi symbolic name rules, and
also must not start with the prefixes '.' or 'osgi .' .

If no name is defined for a JAX-RS whiteboard service then one is
generated for it. This generated name will start with a '.' . The pre-
fix osgi . is currently unused, but reserved for future versions of this
specification.

If a JAX-RS service is registered with an illegal name then it is not
bound and this is reflected in the failure DTOs. If two JAX-RS ser-
vices are registered with the same name (even if they are advertised
as different types) then only the higher ranked service is bound and
the lower ranked service(s) are reflected in the failure DTOs. See
JAX_RS_NAME .

osgi . jaxrs .appl icat ion.select†

JaxrsAppl icat ionSelect

Str ing

optional

An LDAP-style filter to select the JAX-RS Application(s) with which
this Whiteboard service should be associated. Any service proper-
ty of the Application can be filtered on. If this filter is not defined
then the default Application is used. The default application can al-
so be specifically targeted using the application name .default .

For example, to select an Application with name myApp provide
the following filter:

(osgi.jaxrs.name=myApp)

To select all Applications in the whiteboard provide the following
value:

(osgi.jaxrs.name=*)

If no matching application exists this is reflected in the failure
DTOs. See JAX_RS_APPLICATION_SELECT .

† Note that this property is not valid for JAX-RS Application ser-
vices.

osgi . jaxrs .extension.select

JaxrsExtensionSelect

Str ing+

optional

A set of LDAP-style filters used to express dependencies on one
or more extension services. If a filter is provided then the JAX-RS
Whiteboard attempts to match that filter against the service prop-
erties of the Whiteboard runtime, the service properties of the
whiteboard application, and each of the extension services current-
ly active in the application. This search may occur in any order. If
all of the supplied filters are matched then the whiteboard service
is registered into the JAX-RS Whiteboard application.

For example, to require an extension which provides JSON serial-
ization advertising property name ser ia l ize.to with value JSON pro-
vide the following filter:

(serialize.to=JSON)

A more detailed version of this example is available in A JAX-RS
Whiteboard Extension Example on page 822

If any filter(s) fail to match then this is reflected in the failure
DTOs. See JAX_RS_EXTENSION_SELECT .

Registering JAX-RS Resources JAX-RS Whiteboard Specification Version 1.0

Page 814 OSGi Enterprise Release 7

Service Property Type Description
osgi . jaxrs .whiteboard.target

JaxrsWhiteboardTarget

Str ing

optional

The value of this service property is an LDAP-style filter expres-
sion to select the JAX-RS Whiteboard(s) to handle this White-
board service. The LDAP filter is used to match JaxrsServiceRun-
t ime services. Each JAX-RS Whiteboard exposes exactly one
JaxrsServiceRuntime service. This property is used to associate
the Whiteboard service with the JAX-RS Whiteboard that reg-
istered the JaxrsServiceRuntime service. If this property is not
specified then the service will target all JAX-RS Whiteboards. See
JAX_RS_WHITEBOARD_TARGET .

151.4 Registering JAX-RS Resources
JAX-RS resources can be registered with the JAX-RS Whiteboard by registering them as Whiteboard
services. This means that the resource POJO implementations are registered in the Service Registry.
As JAX-RS resources are POJOs they may be registered using any valid service interface, including
Object . The JAX-RS container will then use reflection to discover methods and annotations on the
resource object, just as it would outside of OSGi.

As JAX-RS resources have no common interface type they are instead registered with the
osgi . jaxrs .resource service property with a value of "true" . This property serves as a marker to the
JAX-RS whiteboard runtime, indicating that this OSGi service should be hosted as a JAX-RS White-
board resource.

151.4.1 JAX-RS Resource mapping
JAX-RS resources use the Path annotation to bind themselves to particular URIs within the JAX-
RS container. The path annotation can be applied to the resource class, and to individual resource
methods. For example the following JAX-RS resource:

@Path("foo")
public class Foo {

 private final List<String> entries =
 Arrays.asList("fizz", "buzz", "fizzbuzz");

 @GET
 public List<String> getFoos() {
 return Collections.unmodifiableList(entries);
 }

 @GET
 @Path("{name}")
 public String getFoo(@PathParam("name") String name) {
 if(entries.contains(name)) {
 return "A foo called " + name;
 }
 throw new IllegalArgumentException(“No foo called “ + name);
 }

}

This JAX-RS resource defines two resource methods. The Path annotation applied to the class sets
the base URI for all methods in the resource. The getFoos() method is therefore bound to the URI

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Resources

OSGi Enterprise Release 7 Page 815

foo . The Path annotation on the getFoo() method makes this method a sub-resource which captures
the next token in the URI. This method is therefore bound to URIs of the form foo/buzz .

When used as an OSGi JAX-RS Whiteboard service a JAX-RS resource follows the same mapping
rules, but the base context(s) it uses are determined by the Application(s) to which it is mapped. For
example, when mapped to the default application of a whiteboard with endpoint http://127.0.0.1/
the getFoos() method would be available at http://127.0.0.1/foo .

151.4.1.1 Clashing resource mappings

Resource services bound to a JAX-RS whiteboard application share a single URI namespace with oth-
er resources in the application (including any existing static resources). When JAX-RS services are
bound it is possible that one or more methods on these services will map to the same URI. This situ-
ation is permitted by the JAX-RS specification which defines a detailed selection algorithm.

When clashes occur in the JAX-RS whiteboard then resources supplied using the service whiteboard
must be preferred to static resources contained in the application. Otherwise resource method selec-
tion follows the normal rules defined in the JAX-RS specification.

151.4.2 JAX-RS Whiteboard Resource Lifecycle
A key tenet of JAX-RS is that all resource objects are stateless. In the JAX-RS specification resources
therefore have one of two scopes, they are either singleton, or request-scoped. Singleton resources
are created once, potentially outside the JAX-RS container, and request-scoped resources are created
on-demand for each request, then discarded afterwards.

Typically JAX-RS developers are encouraged to write request-scoped resources, as this makes it dif-
ficult to accidentally write stateful components. In OSGi, however, it is more common to write sin-
gleton services. On demand instances of OSGi services can be created, but only if the service is regis-
tered as a prototype scope.

The JAX-RS whiteboard implementation is responsible for managing the mismatch between the
OSGi service lifecycle model and the JAX-RS resource lifecycle model. If the JAX-RS whiteboard
resource is registered as prototype scope then the implementation must treat the resources as re-
quest-scoped, creating a new service instance for each request and releasing it when the request
completes. Otherwise the JAX-RS whiteboard service must be registered as a singleton scope re-
source within the application. Singleton scope whiteboard resources must be released by the JAX-RS
whiteboard when the application with which they have been registered is removed from the white-
board, even if this is only a temporary situation.

If a failure occurs when getting the resource service this will prevent the service from being used,
which is reflected using a failure DTO. In such a case the system treats the resource as unusable.

When multiple JAX-RS Whiteboard implementations are present all of them can potentially
process the whiteboard resources. In such situations it can be useful to associate the servlet with a
specific whiteboard by specifying the osgi .http.whiteboard.target property on the service.

151.4.2.1 Resource Context Injection

JAX-RS resources may have objects injected into them by the JAX-RS container. These objects may be
related to an incoming request, for example an HTTP header value, or part of the container runtime.
Injected resources are annotated with a JAX-RS annotation, for example @Context , and may be in-
jected as method parameters, or as fields in the object.

If the JAX-RS injected objects are passed as method parameters then the resource object may be a
singleton. If, however, the objects are injected into fields by the JAX-RS container then the resource
should be declared as a prototype scope. JAX-RS Whiteboard implementations may support field in-
jection for singleton resources, however this behavior is non portable, and may lead to errors at run-
time when using other implementations.

Registering JAX-RS Resources JAX-RS Whiteboard Specification Version 1.0

Page 816 OSGi Enterprise Release 7

151.4.2.2 Request-Scoped Resources

Request-scoped resources are created on demand for a request and then discarded afterwards. Criti-
cally for OSGi services the JAX-RS whiteboard must not release a prototype scope service until after
the response has completed. If the resource makes use of a JAX-RS AsyncResponse , SseEventSink or
a StreamingOutput then this may be some time after the return of resource method, and potentially
on a different thread.

JAX-RS whiteboard implementations must therefore take special care not to release request scoped
instances until they are completely finished.

151.4.2.3 Asynchronous Responses

JAX-RS supports asynchronous responses either for single-valued results, or for streams of data.

Single valued results are provided by the AsyncResponse type which is injected into resource meth-
ods using the @Suspended annotation. If the resource is request scoped then the resource must not
be released until after the AsyncResponse has completed.

The following example demonstrates the use of the AsyncResponse :

@Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 public class MyResource {

 @Path(“foo”)
 @GET
 public void getFoo(@Suspended AsyncResponse async) {
 Promise<String> p = doLongRunningTaskAsynchronously();
 p.onSuccess(v -> async.resume(v))
 .onFailure(t -> async.resume(t));
 }
}

Multi-valued results in JAX-RS are handled using Server Sent Events. To send Server Sent Events a
JAX-RS resource must declare its produced media type appropriately, and inject its resource method
with a SseEventSink . The resource must also gain access to a Sse to use as a factory for Outbound
Server Sent Events. If the resource is request scoped then the resource must not be released until af-
ter the SseEvent has closed.

The following example demonstrates the use of the Server Sent Events:

@Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 public class MyResource {

 @Context
 Sse sse;

 @GET
 @Produces(MediaType.SERVER_SENT_EVENTS)
 public void getFoo(@Context SseEventSink sink) {
 PushStream<String> p = getStreamOfMessages();
 p.map(sse::newEvent)
 .forEach(e -> sink::send)
 .onResolve(sink::close);
 }

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Resources

OSGi Enterprise Release 7 Page 817

}

151.4.3 Resource Service Properties
The following table describes the properties that can be used by JAX-RS resources registered as
Whiteboard services. Additionally, the common properties listed in Table 151.2 on page 813 are
supported.

Table 151.3 Service properties for JAX-RS Whiteboard resource services.

Service Property Type Description
osgi . jaxrs .resource

JaxrsResource

Str ing /
Boolean

required

Declares that this service must be processed by the JAX-RS white-
board when set to true . See JAX_RS_RESOURCE .

151.4.4 A JAX-RS Whiteboard Resource Example
The following example code uses Declarative Services annotations to register a JAX-RS Whiteboard
service.

@Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 public class MyResource {

 @GET
 @Path("hello")
 @Produces("text/plain")
 public String sayHello(){
 return "Hello World!";
 }
 }

This example registers the resource method at: /hel lo . Requests for http://www.acme.com/hel lo
map to the resource method, which is called to process the request.

To associate the above example resource with another application add the following service proper-
ty:

osgi.jaxrs.application.select=(osgi.jaxrs.name=myApp)

This can also be added using the property annotation:

@JaxrsApplicationSelect("(osgi.jaxrs.name=myApp)")

Setting this property requires a JAX-RS application named myApp to be registered:

@Component(service=Application.class)
@JaxrsName("myApp")
@JaxrsApplicationBase("foo")
public class MyApplication extends Application {}

Now the whiteboard resource will be available at http://www.acme.com/foo/hel lo as configured by
the custom JAX-RS application.

Registering JAX-RS Extensions JAX-RS Whiteboard Specification Version 1.0

Page 818 OSGi Enterprise Release 7

151.5 Registering JAX-RS Extensions
JAX-RS extensions can be registered with the JAX-RS Whiteboard by registering them as White-
board services. This means that the extension implementations are registered in the Service Reg-
istry. It is relatively common for a single extension type to provide more than one extension inter-
face, for example MessageBodyReader and MessageBodyWriter are often provided by a single ob-
ject.

Extension services must be registered with the JAX-RS application that they target using only the
interfaces that they advertise in the OSGi service registry. If, for example, an extension service ob-
ject implements MessageBodyReader and ContainerRequestFi l ter but only advertises Message-
BodyReader in its service registration then it must only be used as a MessageBodyReader

The following JAX-RS extension interfaces are supported by this specification:

• ContainerRequestFi l ter and ContainerResponseFi lter - these extensions are used to alter the
HTTP request and response parameters.

• ReaderInterceptor and Writer Interceptor - these extensions are used to alter the incoming or out-
going objects for the call.

• MessageBodyReader and MessageBodyWriter - these extensions are used to deserialize/serialize
objects to the wire for a given media type, for example appl icat ion/json .

• ContextResolver extensions are used to provide objects for injection into other JAX-RS resources
and extensions.

• ExceptionMapper extensions are used to map exceptions thrown by JAX-RS resources into re-
sponses.

• ParamConverterProvider extensions are used to map rich parameter types to and from String val-
ues.

• Feature and DynamicFeature - these extensions are used as a way to register multiple extension
types with the JAX-RS container. Dynamic Features further allow the extensions to be targeted to
specific resources within the JAX-RS container.

As JAX-RS extensions have many possible interface types, none of which are defined by this specifi-
cation, they must be registered with the osgi . jaxrs .extension service property with a value of true .
This property serves as a marker to the JAX-RS whiteboard runtime, indicating that this OSGi ser-
vice should be used as a JAX-RS Whiteboard extension.

If the osgi . jaxrs .extension is added to a service which does not advertise any of the JAX-RS extension
types then this is an error, and must result in a failure DTO being created.

151.5.1 Name Binding and JAX-RS Extensions
By default JAX-RS extensions are applied to every request, however sometimes they are only need-
ed for a subset of resource methods. In this case a NameBinding annotation can be used to apply the
extension to a subset of resource methods. The following example declares a binding annotation
called FizzBuzz and uses it to bind an extension which replaces occurrences of "fizz" with "fizzbuzz".

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@NameBinding
public @interface FizzBuzz{}

@Component
@JaxrsExtension
@FizzBuzz
public class FizzBuzzReplacer implements WriterInterceptor {

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Extensions

OSGi Enterprise Release 7 Page 819

 public void aroundWriteTo(WriterInterceptorContext ctx) {
 Object entity = ctx.getEntity();

 if(entity != null) {
 ctx.setEntity(entity.toString()
 .replace("fizz", "fizzbuzz"));
 }
 ctx.proceed();
 }
}

@Component(service=FizzResource.class)
@JaxrsResource
@Path("fizzbuzz")
public class FizzResource {

 @GET
 @FizzBuzz
 public String getFoos() {
 return "fizz, buzz, fizzbuzz";
 }
}

The result of an http request to the f izzbuzz URI will be fizzbuzz, buzz, fizzbuzzbuzz

The JAX-RS whiteboard implementation must support the use of NameBinding to limit the scope of
applied whiteboard extensions.

151.5.2 Extension ordering
JAX-RS filters can be annotated with @PreMatching to indicate that they should be applied before
the JAX-RS container works out which resource should be called by the incoming request. These fil-
ters can therefore change the request such that it maps to a different resource than it would have be-
fore the filter’s operation. Pre-matching filters cannot use NameBinding as no corresponding named
resource is available to the runtime when they operate.

When used in the OSGi JAX-RS Whiteboard JAX-RS extensions follow the same ordering rules as de-
fined by the JAX-RS specification. Where more than one extension of a particular type is available
then they are ordered according to their javax.annotation.Pr ior ity . If two extensions of the same
type have the same priority then the whiteboard implementation must break the tie by ordering the
extensions according to the natural ordering of their service references, with static extensions being
ranked below all whiteboard services.

The extension processing flow is as follows:

1. Server receives a request
2. Pre-matching ContainerRequestFi l ters are executed. Changes made here can affect which re-

source method is chosen
3. The Server matches the request to a resource method
4. Post-matching ContainerRequestFilters are executed. This includes execution of all filters which

match the incoming path and any name-bound filters.
5. ReaderInterceptors which match the incoming path are applied to the incoming request body. If

the request has no body then the ReaderInterceptors are not called.
6. The list of MessageBodyReaders applicable to the path and incoming content type are tried ac-

cording to the standard ordering rules. The first MessageBodyReader which states that it can de-

Registering JAX-RS Extensions JAX-RS Whiteboard Specification Version 1.0

Page 820 OSGi Enterprise Release 7

serialize the entity “wins” and is used to create the entity object. If the incoming request has no
body then no MessageBodyReaders are called.

7. If the resource is request scoped then it is instantiated and injected with relevant types from any
defined ContextResolvers. These are queried in order for each of the injectable fields.

8. The resource method is executed, passing any injected parameters from the request, and from
any ContextResolvers. These are queried in turn for each of the injectable parameters.

9. ContainerResponseFi lters are executed passing the method's response when it is complete. This
includes execution of all filters, in order, which match the incoming path and any name-bound
filters. Note that if an AsyncResponse is used then the response may not complete on the same
thread as the incoming request.

10. Writer Interceptor s which match the incoming path are applied to the outgoing response
stream. If the response has no body then the WriterInterceptors are not called.

11. The list of MessageBodyWriters applicable to the path and outgoing content type are tried ac-
cording to the standard ordering rules. The first writer which states that it can serialize the enti-
ty “wins” and is used to write out the entity object. If there is no response body then no writers
are called.

12. The Server response is flushed and committed. If the resource that created the response was re-
quest scoped then it must only be released once the response is complete. Note that this may be
at some point in the future, and on a different thread if the resource is using an AsyncResponse

151.5.3 Extension dependencies
The osgi . jaxrs .extension.select property described in Common Whiteboard Properties on page 812
applies to extensions as well as JAX-RS resources. This is because one extension may depend on an-
other.

The most common reason for an extension to have a dependency is for a context injection depen-
dency. Dependencies are often provided by a ContextResolver so that they can be injected into
another extension. The following example demonstrates a simple dependency on a Jackson Ob-
jectMapper.

@JaxrsExtension
@JaxrsName("configProvider")
@Component
public class ConfigProvider implements ContextResolver {

 private ObjectMapper mapper = new ObjectMapper();

 public <T> getContext(Class<T> clazz) {
 if(ObjectMapper.class.equals(clazz)) {
 return mapper;
 }
 return null;
 }
}

@JaxrsExtension
@JaxrsExtensionSelect("(osgi.jaxrs.name=configProvider)")
@Component(scope=ServiceScope.PROTOTYPE)
public class ConfiguredExtension implements WriterInterceptor {

 @Context
 private Providers providers;

 public void aroundWriteTo(WriterInterceptorContext ctx) {

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Extensions

OSGi Enterprise Release 7 Page 821

 Object entity = ctx.getEntity();

 if(entity != null) {
 ObjectMapper mapper = providers
 .getContextResolver(ObjectMapper.class)
 .getContext(ObjectMapper.class);

 ctx.setEntity(mapper.writeValueAsString(entity));
 }
 ctx.proceed();
 }
}

151.5.4 Built in extensions
Depending on the capabilities of the JAX-RS whiteboard implementation, and any statically defined
extensions that make up a JAX-RS Whiteboard application, there may be numerous non standard
extensions available. These extensions must be represented using service properties on the JAX-RS
Service Runtime, or the whiteboard application as appropriate. This is why the extension select fil-
ters must also be matched against the JAX-RS Service Runtime service and the whiteboard applica-
tion being targeted.

151.5.5 JAX-RS Whiteboard Extension Lifecycle
JAX-RS extensions have a different lifecycle from JAX-RS resources, within a single application a
JAX-RS extension always behaves as a singleton. If a JAX-RS whiteboard extension is registered as
prototype scope then the whiteboard implementation must obtain a separate instance for every ap-
plication to which the extension is applied. Whiteboard extension services must be released by the
JAX-RS whiteboard when the application with which they have been registered is removed from the
whiteboard, even if this is only a temporary situation.

JAX-RS extensions often require configuration, and need to be configured differently for different
applications. This configuration is typically provided by a JAX-RS ContextResolver and injected in-
to fields of the extension by the JAX-RS container. It is therefore highly recommended that JAX-RS
Whiteboard extensions are always registered as prototype scope, so that separate instances can be
created for each whiteboard application.

If an extension is registered as a singleton service then it should not rely on any fields being inject-
ed by the JAX-RS Whiteboard implementation. JAX-RS Whiteboard implementations may support
field injection for singleton extensions, however this behavior is non portable, and may lead to er-
rors at runtime when using other implementations.

151.5.6 Extension Service Properties
The following table describes the properties that can be used by JAX-RS extensions registered as
Whiteboard services. Additionally, the common properties listed in Table 151.2 on page 813 are
supported.

Table 151.4 Service properties for JAX-RS Whiteboard extension services.

Service Property Type Description
osgi . jaxrs .extension

JaxrsExtension

Str ing /
Boolean

required

Declares that this service must be processed by the JAX-RS white-
board when set to true . See JAX_RS_EXTENSION .

Registering JAX-RS Applications JAX-RS Whiteboard Specification Version 1.0

Page 822 OSGi Enterprise Release 7

151.5.7 A JAX-RS Whiteboard Extension Example
The following example code uses Declarative Services annotations to register a require JAX-RS
Whiteboard extension which provides JSON support, and requires the extension from a JAX-RS
whiteboard resource.

@Component(property="serialize.to=JSON")
@JaxrsExtension
public class JsonProvider implements MessageBodyReader,
 MessageBodyWriter {
 ...
}

 @Component(service = Object.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 @JaxrsExtensionSelect("(serialize.to=JSON)")
 public class MyResource {

 @GET
 @Path("hello")
 @Produces(MediaType.APPLICATION_JSON)
 public List<String> getList(){
 return Arrays.asList("Hello", "World!");
 }
 }

151.6 Registering JAX-RS Applications
The JAX-RS specification defines the concept of an Appl icat ion . An application is an object which
collects together one or more JAX-RS resources and extensions, and provides them to the JAX-RS
container. These resources may be provided as pre-instantiated singletons, or as Class objects to be
reflectively instantiated.

The OSGi JAX-RS whiteboard supports direct registration of Applications for two reasons:

• To support the use of legacy JAX-RS applications with the whiteboard
• To provide simple scoping of JAX-RS resources and extensions within a whiteboard, in this sce-

nario it can be desirable to register an otherwise empty Application. This application can then be
targeted by whiteboard services using the osgi . jaxrs .appl icat ion.select property.

Appl icat ions can be registered with the JAX-RS Whiteboard by registering them as Whiteboard ser-
vices which advertise themselves using the JAX-RS Appl icat ion type. In addition the whiteboard
services must provide a osgi . jaxrs .appl icat ion.base property. The value of this property is the URI
path relative to the root whiteboard context at which the application will be registered. Note that
the value of any Appl icat ionPath annotation will be applied by the container in addition to the
osgi . jaxrs .appl icat ion.base .

Each registered Whiteboard Application service is provided as a separate application within the
whiteboard, and is isolated from other applications, including the default application. Whiteboard
applications may be empty, may include zero or more static resources, and may include zero or
more static extensions.

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Applications

OSGi Enterprise Release 7 Page 823

151.6.1 Application shadowing
The base URI for each application within the whiteboard must be unique. If two or more applica-
tions targeting the same whiteboard are registered with the same base URI then only the highest
ranked service will be made available. All other application services with that URI will have a fail-
ure DTO created for them. The same rules also apply to the osgi . jaxrs .name property, with the high-
est ranked service shadowing other applications with the same name.

The default application is implicitly created by the whiteboard and has the name .default . The de-
fault application has a lower ranking than all registered services. Therefore an application regis-
tered with a base of / will shadow a default application bound at / .

A whiteboard application service may set an osgi . jaxrs .name of .default to replace the default appli-
cation. This technique may be used to rebind the default application to a base uri other than / .

If a whiteboard application fails (for example if the service get fails), or cannot be immediately de-
ployed (for example if it has an unsatisfied osgi . jaxrs .extension.select) then any applications that it
shadows are still shadowed and relevant failure DTOs are created for all of the applications.

151.6.2 Application Extension Dependencies
It is possible for an application to require additional whiteboard extensions before it is eligible to be
hosted by the whiteboard. When making this determination the Whiteboard implementation must
perform a dry-run validation of the osgi . jaxrs .extension.select filter, applying all of the whiteboard
extensions targeted to the application before determining whether the application's requirements
are met.

151.6.3 Application Service Properties
The following table describes the properties that can be used by JAX-RS applications registered as
Whiteboard services. Additionally, the common properties listed in Table 151.2 on page 813 are
supported, except for the osgi . jaxrs .appl icat ion.select property.

Table 151.5 Service properties for JAX-RS Whiteboard application services.

Service Property Type Description
osgi . jaxrs .appl icat ion.base

JaxrsAppl icat ionBase

Str ing

required

Declares that this service must be processed by the JAX-RS white-
board, and defines the URI, relative to the root context of the
whiteboard, at which the Application should be registered. See
JAX_RS_APPLICATION_BASE .

151.6.4 Accessing the Application service properties
In JAX-RS the @Context annotation may be used to inject the Appl icat ion instance into a resource
or extension. Application configuration properties can also be injected using the Configurat ion
type.

When using the JAX-RS Whiteboard it can also be necessary to access the service properties as-
sociated with the application hosting the resource, for example to allow customization of the
resource's response. To this end, the JAX-RS whiteboard implementation must make the Applica-
tion service properties available as a Map in the configuration. The key used to store this map is
osgi . jaxrs .appl icat ion.servicePropert ies , and it can be found in any injected Configurat ion instance.

Furthermore, for Feature and DynamicFeature extensions the application service properties must be
visible in the FeatureContext passed to the extension when applying it to the application. The Fea-
tureContext interface provides programmatic access to the Configurat ion for the application, so this
visibility is achieved in the same manner as for an injected Configuration instance.

In the case where the hosting application is not an OSGi service, for example a Whiteboard
implementation may choose to provide its default application as an internal detail, then the

Advertising JAX-RS Endpoints JAX-RS Whiteboard Specification Version 1.0

Page 824 OSGi Enterprise Release 7

osgi . jaxrs .appl icat ion.servicePropert ies map must exist containing the osgi . jaxrs .name of the ap-
plication and the service properties associated with the JaxrsServiceRuntime service.

151.6.5 A JAX-RS Whiteboard Application Example
The following example code uses Declarative Services annotations to register a JAX-RS Whiteboard
application, and shows how to target an additional whiteboard resource to that application.

@Component(service=Application.class)
@JaxrsApplicationBase("example")
@JaxrsName("myApp")
public class MyApplication extends Application {
 public Set<Class<?>> getClasses() {
 return new HashSet<>(Arrays.asList(StaticResource.class));
 }
}

 @Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 @JaxrsApplicationSelect("(osgi.jaxrs.name=myApp)")
 public class MyResource {

 @GET
 @Path("hello")
 @Produces("text/plain")
 public List<String> getList(){
 return Arrays.asList("Hello", "World!");
 }
 }

The MyResource service will be available at http://www.acme.com/example/hel lo

151.7 Advertising JAX-RS Endpoints
All JAX-RS Whiteboard services may be registered with an optional osgi . jaxrs .name property. For
Whiteboard resources and applications (but not extensions), if the registered service has set this
property then the JAX-RS container must register a JaxrsEndpoint service identifying the URI(s) that
can be used to access the service.

The endpoint service must declare the following properties:

Table 151.6 Service properties for JAX-RS Whiteboard application services.

Service Property Name Type Description
osgi . jaxrs .name Str ing

required

The name of the JAX-RS bean or application that has been regis-
tered.

osgi . jaxrs .ur i L ist<Str ing>

required

The URI(s) that can be used to access the JAX-RS resource or ap-
plication

service.exported. interfaces Str ing

required

Set appropriately to export the Endpoint service using OSGi Re-
mote Services.

osgi . jaxrs .bundle.symbol icname Str ing

required

Set to the symbolic name of the bundle that provided the JAX-
RS whiteboard service.

JAX-RS Whiteboard Specification Version 1.0 Whiteboard Error Handling

OSGi Enterprise Release 7 Page 825

Service Property Name Type Description
osgi . jaxrs .bundle. id Long

required

Set to the id of the bundle that provided the JAX-RS service

osgi . jaxrs .bundle.version Version

required

Set to the version of the bundle that provided the JAX-RS ser-
vice

osgi . jaxrs .service. id Long

required

Set to the service id of the JAX-RS service

151.8 Whiteboard Error Handling
There are a number of error cases where the JAX-RS whiteboard may be unable to correctly register
a resource. All of these cases must result in a failure DTO being created with the appropriate error
code.

• Failure to obtain a service instance - In the case where a published service is unable to obtained by
the JAX-RS whiteboard then the service is blacklisted by the container. A failure DTO is made
available from the JaxrsServiceRuntime representing the blacklisted service object.

• Invalid service objects - JAX-RS extension and Application objects are required to advertise certain
interfaces, or to extend certain types. If a service advertises itself using a JAX-RS whiteboard ser-
vice property, but fails to advertise an appropriate JAX-RS type, or fails to provide any resource
methods then this is an error and the service must be blacklisted by the container. A failure DTO
is available from the JaxrsServiceRuntime representing the blacklisted service object.

• Overlapping Application mappings - As with resources in a single application it is possible that
two JAX-RS resources will register for the same path across applications. In this case the appli-
cation with the longer base URI is shadowed, and a failure DTO is available from the JaxrsSer-
viceRuntime representing the shadowed Application. Note that determining when two JAX-RS
applications overlap requires an analysis of the resource paths and all of sub-resource paths. If
any of these paths clash then the entirety of the shadowed application must be unregistered and
marked as a failure. It is an implementation error for some application resource paths to be avail-
able while others are shadowed.

• Class-Space Compatibility - Much of the JAX-RS mapping definition is handled using annotations
with runtime visibility. As JAX-RS beans are POJOs there is no guarantee of class-space compat-
ibility when the JAX-RS implementation searches for whiteboard services. The JAX-RS white-
board must therefore confirm that the registered service shares the correct view of the JAX-RS
packages. If the class space is not consistent then the JAX-RS whiteboard container must not reg-
ister the services, but instead should create a failure DTO indicating that the JAX-RS object is un-
able to be registered due to an incompatible class-space.

• Missing Required Extensions - If a JAX-RS resource or extension requires one or more extensions us-
ing a osgi . jaxrs .extension.select filter then at any given time it is possible that the JAX-RS con-
tainer will not be able to host the resource. At this time a failure DTO must be created for the rel-
evant resource or extension service.

151.9 The JAX-RS Client API
The JAX-RS specification includes a client API for making REST requests. The normal mechanism
for obtaining a Client is to use a ClientBui lder , which is instantiated using a static factory method.
Static factory methods require the reflective loading of classes and suffer from significant lifecycle
issues, as there is no way to force indirectly wired objects to be discarded if the implementation bun-
dle is stopped or uninstalled.

The JAX-RS Client API JAX-RS Whiteboard Specification Version 1.0

Page 826 OSGi Enterprise Release 7

JAX-RS implementations must therefore register their ClientBuilder implementations as OSGi ser-
vices for bundles to use in making Client instances. The ClientBuilder must be registered as a pro-
totype scoped service. This allows bundles to configure multiple separate Client instances, and en-
sures that separate bundles will never accidentally provide conflicting configuration to the same
ClientBuilder instance.

151.9.1 Client Filters, Interceptors, Readers and Writers
While Container extensions can be made available using whiteboard services, the same is not true
for Clients. There are two main reasons for this:

1. There is no simple way to scope the filters and interceptors that would be applied to a given
client. In a multi-tenant environment this could lead to unexpected behaviors.

2. Clients are not, in general, expected to be extended by third parties. The Client model is de-
signed to be used by a bundle when making requests from a REST API. If further requests need
to be made by a different bundle then it should create and configure a separate client. This is dif-
ferent from the whiteboard server, where one container port may host several distinct sets of re-
sources.

In order to add filters, interceptors, readers and writers to the JAX-RS client users should use the
ClientBui lder#register() method when building their client.

151.9.2 Reactive Clients
The JAX-RS client API supports both synchronous and asynchronous calls. In JAX-RS 2.1 the asyn-
chronous behavior of the client was extended using the RxInvoker (reactive invoker) interface. All
clients are required to support a reactive invoker which returns CompletionStage instances, howev-
er in OSGi the common representation of an asynchronous return is the Promise . This specification
therefore provides the PromiseRxInvoker interface which can be used to obtain Promises from the
JAX-RS client.

It is the responsibility of the JAX-RS whiteboard implementation to create instances of PromiseRxIn-
voker . The exact mechanism by which instances are created is undefined, however it is possible to
register a portable factory to create PromiseRxInvoker instances by implementing the RxInvoker-
Provider interface and registering this type with the JAX-RS client. This portable implementation,
however, is forced to use a blocking model by the underlying JAX-RS API, and so implementations
may choose to implement a more optimized non-blocking model using internal types.

Clients of this specification may make use of the PromiseRxInvoker using normal JAX-RS idioms. For
example:

Client client = clientBuilder.build();
Promise<String> p = client.target(REST_SERVICE_URL)
 .path("/foo")
 .path("/{name}")
 .resolveTemplate("name", buzz)
 .request()
 .rx(PromiseRxInvoker.class)
 .get(String.class);

151.9.3 Consuming Server Sent Events
In JAX-RS 2.1 support was added for Server Sent Events. These events are consumed by a REST client
using the SseEventSource . The SseEventSource is not created by a JAX-RS client instance, but is
normally created using a static factory method, which does not work in a modular environment.
Therefore the JAX-RS whiteboard implementation must register a SseEventSourceFactory service in
the service registry. This object serves as a factory for the JAX-RS SSE types.

JAX-RS Whiteboard Specification Version 1.0 Portability and Interoperability

OSGi Enterprise Release 7 Page 827

Note that the SseEventSource has no way to register filters or message body processors. All of the
filters and necessary processors must be registered with the JAX-RS client that is used to create the
WebTarget used when building the SseEventSource. A client may therefore consume Server Sent
Events in the following way:

Client client = clientBuilder.build();

WebTarget target = client.target(REST_SERVICE_URL)
 .path("/foo")
 .path("/{name}")
 .resolveTemplate("name", buzz);

SseEventSource source = sseFactory.newSource(target);;

source.register(event -> doSomething(event));

source.open();

A SseEventSource may easily be converted into a PushEventSource (and consequently a
PushStream) as follows. Note that the implementation does not respond to back-pressure requests
and should typically be used with a buffer.

SseEventSource source = sseBuilder.newSource(target);

PushEventSource<InboundSseEvent> pes = pec ->
 source.register(e -> {
 try {
 if(pec.accept(PushEvent.data(e)) < 0) {
 source.close();
 }
 } catch (Exception e) {
 try {
 pec.accept(PushEvent.error(e));
 } finally {
 source.close();
 }
 }
 },
 t -> pec.accept(PushEvent.error(t)),
 () -> pec.accept(PushEvent.close()));
 source.open();
 return source;
 };

151.10 Portability and Interoperability
The extensions defined by the JAX-RS specification make JAX-RS runtimes highly plugable, and it
is common to extend the behavior of an application using this model. In many cases the custom
behaviors are specific to a particular use case, for example mapping a specific exception into a Re-
sponse , and there is no need for portability. In some common cases, however, there are extensions
that can be used across a great many applications.

In order to ensure that a JAX-RS whiteboard application can make use of a common extension ser-
vice in a portable way this specification defines standard service property names that should be reg-

Portability and Interoperability JAX-RS Whiteboard Specification Version 1.0

Page 828 OSGi Enterprise Release 7

istered, as appropriate, by whiteboard extension services, whiteboard applications with static exten-
sions, and JAX-RS whiteboard implementations that provide built-in extension capabilities.

151.10.1 Media Type support
A common use of the JAX-RS extension mechanism is to provide support for additional media types,
both for consuming incoming requests and for producing responses. All JAX-RS whiteboards must
implicitly support text/plain and appl icat ion/xml (using JAXB), however commonly used media
types, such as appl icat ion/json must be provided as an extension.

To ensure that whiteboard resources can depend on support for a particular media type in a portable
way this specification defines the osgi . jaxrs .media.type property. This property key should be regis-
tered with one or more media types that are supported, and may be provided by:

• A Whiteboard extension - if the extension provides general purpose support for reading from
and writing to a media type then it should register this property.

• A Whiteboard application - if the application provides general purpose support for reading from
and writing to a media type using a static extension then it should register this property.

• A JAX-RS Whiteboard implementation - if the implementation provides general purpose built-in
support for reading from and writing to a media type then it should register this property. If the
built-in extension is always available then it should also be advertised by the osgi.service Capabili-
ty on page 830 for the JaxrsServiceRuntime.

The term general purpose is used to indicate that the media type support must not require im-
plementation specific mapping metadata (for example annotations) and should, at a mini-
mum, work with the OSGi scalar types and DTOs. The property key is available as a constant in
JAX_RS_MEDIA_TYPE .

151.10.1.1 Media Type names, wildcards and suffixes

Where possible the value(s) of the osgi . jaxrs .media.type property should use the IANA registered
names of the media type(s) supported, for example appl icat ion/json . Officially registered media
types are available from [4] IANA Media Type Registrations. If there is no officially registered media
type then a vendor type should be used. Personal types may also be used, however due to the lack of
portability afforded by personal types it is recommended that a non-standard property key is used
for personal types.

Wildcard types (containing a *) are often used by extensions to indicate that they can create a vari-
ety of different media types. Rarely this is because the extension can serialize into multiple different
formats. More typically this is because the extension can serialize into a format which has multiple
names, or multiple formats which use the same basic serialization. Suffixes can further modify this
behavior, for example VCards may be serialized as XML using appl icat ion/vcard+xml or as JSON us-
ing appl icat ion/vcard+json.

Wildcard types must not be used as values for the osgi . jaxrs .media.type property as these do not
provide sufficient information for whiteboard resources to reliably select a media type provider.
Where a provider wishes to advertise support for a general suffix, for example +json or +cbor then
the provider must advertise the primary media type associated with the suffix; in the supplied ex-
ample these would be appl icat ion/json and appl icat ion/cbor. Clients wishing to use suffixed types
should therefore also depend on the primary media type, not the suffixed type, if they wish to be
portable. Where greater specificity is required it is recommended that the extension be selected
based on additional custom properties. This should also be used for suffixes that have no primary
type, for example +der . Official media type registrations are available from [5] IANA Media Type Suf-
fix Registrations

JAX-RS Whiteboard Specification Version 1.0 Capabilities

OSGi Enterprise Release 7 Page 829

151.10.1.2 Media Type Selection Example

The most commonly required media type for JAX-RS services is appl icat ion/json . To this end this
specification defines a Component Property annotation JSONRequired which can be applied to a
Declarative Services component to express:

• An extension requirement for runtime appl icat ion/json media type support
• A requirement for the JAX-RS whiteboard
• An optional active time requirement for appl icat ion/json media type support, for use in applica-

tion resolution/assembly.

Custom third-party annotations can easily be created to support additional media types as neces-
sary, and are used as follows:

@Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 @JSONRequired
 @Produces(MediaType.APPLICATION_JSON)
 public class MyResource {

 @Path(“foo”)
 @GET
 public List<String> getFoos() {
 return Arrays.asList("foo", "bar", "baz");
 }
}

A corresponding component property type (JaxrsMediaType) exists for use on a JAX-RS whiteboard
extension or application service which provides media type support. This can be used to declare
that one or more media types are supported.

@Component(scope = ServiceScope.PROTOTYPE)
 @JaxrsExtension
 @JaxrsMediaType(MediaType.APPLICATION_JSON)
 public class MyFeature implements Feature {

 public boolean configure(FeatureContext context) {
 context.register(MyJSONCodec.class);
 return true;
 }
}

151.11 Capabilities

151.11.1 osgi.implementation Capability
The JAX-RS Whiteboard implementation bundle must provide the osgi . implementation capabili-
ty with name osgi . jaxrs . This capability can be used by provisioning tools and during resolution to
ensure that a JAX-RS Whiteboard implementation is present to process the Whiteboard services de-
fined in this specification. The capability must also declare a uses constraint for the javax.ws.rs .*
specification packages, and for the and OSGi JAX-RS Whiteboard package. The version of this capa-
bility must match the version of this specification:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.jaxrs";

Security JAX-RS Whiteboard Specification Version 1.0

Page 830 OSGi Enterprise Release 7

 uses:="javax.ws.rs, javax.ws.rs.client, javax.ws.rs.container,
 javax.ws.rs.core, javax.ws.rs.ext, javax.ws.rs.sse,
 org.osgi.service.jaxrs.whiteboard";
 version:Version="1.0"

This capability must follow the rules defined for the osgi.implementation Namespace on page 635.

151.11.2 osgi.contract Capability
The JAX-RS Whiteboard implementation must provide a capability in the osgi .contract namespace
with name JavaJAXRS if it exports the JAX-RS specification packages. See [5] Portable Java Contract De-
finitions.

Providing the osgi .contract capability enables developer to build portable bundles for packages that
are not versioned under OSGi Semantic Versioning rules. For more details see osgi.contract Namespace
on page 633.

If the JAX-RS API is provided by another bundle, the JAX-RS Whiteboard implementation must be a
consumer of the API and require the contract.

151.11.3 osgi.service Capability
The bundle providing the JaxrsServiceRuntime service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service. jaxrs .runtime and org.osgi .service. jaxrs .runtime.dto packages:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.jaxrs.runtime.JaxrsServiceRuntime";
 uses:="org.osgi.service.jaxrs.runtime,org.osgi.service.jaxrs.runtime.dto"

The bundle providing the javax.ws.rs .c l ient.Cl ientBui lder service must also provide a capability in
the osgi .service namespace representing this service. This capability must declare that the service is
prototype scope, and that there is a uses constraint for the javax.ws.rs .c l ient package:

Provide-Capability: osgi.service;
 objectClass:List<String>="javax.ws.rs.client.ClientBuilder";
 uses:="javax.ws.rs.client,org.osgi.service.jaxrs.client";
 service.scope="prototype"

The bundle providing the org.osgi .service. jaxrs .c l ient.SseEventSourceFactory service must also
provide a capability in the osgi .service namespace representing this service. This capability must
declare a uses constraint for the org.osgi .service. jaxrs .c l ient package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.jaxrs.client.SseEventSourceFactory";
 uses:="org.osgi.service.jaxrs.client"

These capabilities must follow the rules defined for the osgi.service Namespace on page 635.

151.12 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

151.12.1 Service Permissions
Bundles that need to register JAX-RS Whiteboard services must be granted
ServicePermission[interfaceName, REGISTER] where interface name is the relevant JAX-RS White-
board service interface name.

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.client

OSGi Enterprise Release 7 Page 831

The Http Whiteboard implementation must be granted ServicePermission[*, GET] to retrieve the
JAX-RS Whiteboard services from the service registry.

151.12.2 Runtime Introspection
Bundles that need to introspect the state of the JAX-RS runtime will need
ServicePermission[org.osgi .service. jaxrs .runtime. JaxrsServiceRuntime, GET] to obtain the JAX-RS
Service Runtime service and access the DTO types.

151.12.3 Calling JAX-RS Whiteboard Services
This specification does not require that the JAX-RS Whiteboard implementation is granted All Per-
mission or wraps calls to the JAX-RS Whiteboard services in a doPriv i leged block. Therefore, it is the
responsibility of the JAX-RS Whiteboard services to use a doPriv i leged block when performing privi-
leged operations.

151.13 org.osgi.service.jaxrs.client

JAX-RS Client Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jaxrs .c l ient; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .c l ient; vers ion="[1.0,1.1)"

151.13.1 Summary

• PromiseRxInvoker - A specialization of the RxInvoker which creates Promise instances.
• SseEventSourceFactory - A factory for SseEventSource instances.

151.13.2 public interface PromiseRxInvoker
extends RxInvoker<Promise>
A specialization of the RxInvoker which creates Promise instances.

Bundles may obtain an instance of a PromiseRxInvoker using a ClientBuilder obtained from the ser-
vice registry and calling the javax.ws.rs.client.Invocation.Builder.rx(Class) method.

Provider Type Consumers of this API must not implement this type

151.13.2.1 public Promise<Response> delete()

151.13.2.2 public Promise<R> delete(Class<R> arg0)

Type Parameters <R>

151.13.2.3 public Promise<R> delete(GenericType<R> arg0)

Type Parameters <R>

151.13.2.4 public Promise<Response> get()

org.osgi.service.jaxrs.client JAX-RS Whiteboard Specification Version 1.0

Page 832 OSGi Enterprise Release 7

151.13.2.5 public Promise<R> get(Class<R> arg0)

Type Parameters <R>

151.13.2.6 public Promise<R> get(GenericType<R> arg0)

Type Parameters <R>

151.13.2.7 public Promise<Response> head()

151.13.2.8 public Promise<R> method(String arg0, Class<R> arg1)

Type Parameters <R>

151.13.2.9 public Promise<R> method(String arg0, Entity<?> arg1, Class<R> arg2)

Type Parameters <R>

151.13.2.10 public Promise<R> method(String arg0, Entity<?> arg1, GenericType<R> arg2)

Type Parameters <R>

151.13.2.11 public Promise<Response> method(String arg0, Entity<?> arg1)

151.13.2.12 public Promise<R> method(String arg0, GenericType<R> arg1)

Type Parameters <R>

151.13.2.13 public Promise<Response> method(String arg0)

151.13.2.14 public Promise<Response> options()

151.13.2.15 public Promise<R> options(Class<R> arg0)

Type Parameters <R>

151.13.2.16 public Promise<R> options(GenericType<R> arg0)

Type Parameters <R>

151.13.2.17 public Promise<R> post(Entity<?> arg0, Class<R> arg1)

Type Parameters <R>

151.13.2.18 public Promise<R> post(Entity<?> arg0, GenericType<R> arg1)

Type Parameters <R>

151.13.2.19 public Promise<Response> post(Entity<?> arg0)

151.13.2.20 public Promise<R> put(Entity<?> arg0, Class<R> arg1)

Type Parameters <R>

151.13.2.21 public Promise<R> put(Entity<?> arg0, GenericType<R> arg1)

Type Parameters <R>

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.runtime

OSGi Enterprise Release 7 Page 833

151.13.2.22 public Promise<Response> put(Entity<?> arg0)

151.13.2.23 public Promise<Response> trace()

151.13.2.24 public Promise<R> trace(Class<R> arg0)

Type Parameters <R>

151.13.2.25 public Promise<R> trace(GenericType<R> arg0)

Type Parameters <R>

151.13.3 public interface SseEventSourceFactory
A factory for SseEventSource instances.

Bundles may obtain an instance of a SseEventSourceFactory using the service registry. This service
may then be used to construct SseEventSource instances for the supplied WebTarget.

Provider Type Consumers of this API must not implement this type

151.13.3.1 public SseEventSource.Builder newBuilder(WebTarget target)

target The web target to consume events from

□ Create a new javax.ws.rs.sse.SseEventSource.Builder

Returns a builder which can be used to further configure the event source

151.13.3.2 public SseEventSource newSource(WebTarget target)

target The web target to consume events from

□ Create a new SseEventSource

Returns a configured event source

151.14 org.osgi.service.jaxrs.runtime

JAX-RS Runtime Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jaxrs .runtime; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .runtime; vers ion="[1.0,1.1)"

151.14.1 Summary

• JaxrsEndpoint - A JaxrsEndpoint service represents a registered JAX-RS whiteboard resource or
application.

• JaxrsServiceRuntime - The JaxrsServiceRuntime service represents the runtime information of a
JAX-RS Whiteboard implementation.

• JaxrsServiceRuntimeConstants - Defines standard names for JAX-RS Runtime Service constants.

org.osgi.service.jaxrs.runtime JAX-RS Whiteboard Specification Version 1.0

Page 834 OSGi Enterprise Release 7

151.14.2 public interface JaxrsEndpoint
A JaxrsEndpoint service represents a registered JAX-RS whiteboard resource or application.

It provides access to service properties representing the service, and the URI at which it is available.

Provider Type Consumers of this API must not implement this type

151.14.2.1 public static final String JAX_RS_BUNDLE_ID = "osgi.jaxrs.bundle.id"

A service property providing the bundle id of the bundle which registered the whiteboard service.

151.14.2.2 public static final String JAX_RS_BUNDLE_SYMBOLICNAME = "osgi.jaxrs.bundle.symbolicname"

A service property providing the symbolic name of the bundle which registered the whiteboard ser-
vice.

151.14.2.3 public static final String JAX_RS_BUNDLE_VERSION = "osgi.jaxrs.bundle.version"

A service property providing the bundle version of the bundle which registered the whiteboard ser-
vice.

151.14.2.4 public static final String JAX_RS_SERVICE_ID = "osgi.jaxrs.service.id"

A service property providing the service id of the whiteboard service.

151.14.2.5 public static final String JAX_RS_URI = "osgi.jaxrs.uri"

A service property representing the URI(s) at which this resource or application is available.

151.14.3 public interface JaxrsServiceRuntime
The JaxrsServiceRuntime service represents the runtime information of a JAX-RS Whiteboard im-
plementation.

It provides access to DTOs representing the current state of the service.

The JaxrsServiceRuntime service must be registered with the
JaxrsServiceRuntimeConstants.JAX_RS_SERVICE_ENDPOINT service property.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

151.14.3.1 public RuntimeDTO getRuntimeDTO()

□ Return the runtime DTO representing the current state.

Returns The runtime DTO.

151.14.4 public final class JaxrsServiceRuntimeConstants
Defines standard names for JAX-RS Runtime Service constants.

151.14.4.1 public static final String JAX_RS_SERVICE_ENDPOINT = "osgi.jaxrs.endpoint"

JAX-RS Runtime Service service property specifying the endpoints upon which the JAX-RS imple-
mentation is available.

An endpoint value is a URL or a relative path, to which the JAX-RS Whiteboard implementation is
listening. For example, http://192.168.1.10:8080/ or /myapp/ . A relative path may be used if the
scheme and authority parts of the URL are not known, e.g. if a bridged Http Whiteboard implemen-
tation is used. If the JAX-RS Whiteboard implementation is serving the root context and neither
scheme nor authority is known, the value of the property is "/". Both, a URL and a relative path, must
end with a slash.

A JAX-RS Whiteboard implementation can be listening on multiple endpoints.

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.runtime.dto

OSGi Enterprise Release 7 Page 835

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

151.15 org.osgi.service.jaxrs.runtime.dto

JAX-RS Runtime DTO Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jaxrs .runtime.dto; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .runtime.dto; vers ion="[1.0,1.1)"

151.15.1 Summary

• Appl icat ionDTO - Represents a JAX-RS Application service.
• BaseAppl icat ionDTO - Represents common information about a JAX-RS application service.
• BaseDTO - Represents common information about a JAX-RS service.
• BaseExtensionDTO - Represents common information about a JAX-RS extension service.
• DTOConstants - Defines standard constants for the DTOs.
• ExtensionDTO - Represents a JAX-RS Filter service currently being hosted by the JaxrsSer-

viceRuntime
• Fai ledAppl icat ionDTO - Represents a JAX-RS service which is currently not being used due to a

problem.
• Fai ledExtensionDTO - Represents a JAX-RS Extension service which is currently not being used

due to a problem.
• Fai ledResourceDTO - Represents a JAX-RS resource service which is currently not being used

due to a problem.
• ResourceDTO - Represents common information about a JAX-RS resource service.
• ResourceMethodInfoDTO - Represents information about a JAX-RS resource method.
• RuntimeDTO - Represents the state of a JAX-RS Service Runtime.

151.15.2 public class ApplicationDTO
extends BaseApplicationDTO
Represents a JAX-RS Application service.

Concurrency Not Thread-safe

151.15.2.1 public ResourceMethodInfoDTO[] resourceMethods

The RequestPaths handled by statically defined resources in this Application

151.15.2.2 public ApplicationDTO()

151.15.3 public abstract class BaseApplicationDTO
extends BaseDTO
Represents common information about a JAX-RS application service.

Concurrency Not Thread-safe

org.osgi.service.jaxrs.runtime.dto JAX-RS Whiteboard Specification Version 1.0

Page 836 OSGi Enterprise Release 7

151.15.3.1 public String base

The base URI of the resource defined by JaxrsWhiteboardConstants.JAX_RS_APPLICATION_BASE.

151.15.3.2 public ExtensionDTO[] extensionDTOs

Returns the representations of the dynamic JAX-RS extension services associated with this Applica-
tion. The returned array may be empty if this application is currently not associated with any JAX-
RS extension services.

151.15.3.3 public ResourceDTO[] resourceDTOs

Returns the representations of the dynamic JAX-RS resource services associated with this Applica-
tion. The returned array may be empty if this application is currently not associated with any JAX-
RS Resource services.

151.15.3.4 public BaseApplicationDTO()

151.15.4 public abstract class BaseDTO
extends DTO
Represents common information about a JAX-RS service.

Concurrency Not Thread-safe

151.15.4.1 public String name

The name of the service if it set one using JaxrsWhiteboardConstants.JAX_RS_NAME, otherwise
this value will contain the generated name for this service

151.15.4.2 public long serviceId

Service property identifying the JAX-RS service

151.15.4.3 public BaseDTO()

151.15.5 public abstract class BaseExtensionDTO
extends BaseDTO
Represents common information about a JAX-RS extension service.

Concurrency Not Thread-safe

151.15.5.1 public String[] extensionTypes

The extension types recognized for this service.

151.15.5.2 public BaseExtensionDTO()

151.15.6 public final class DTOConstants
Defines standard constants for the DTOs. The error codes are defined to take the same values as used
by the Http Service Whiteboard

151.15.6.1 public static final int FAILURE_REASON_DUPLICATE_NAME = 6

The service is registered in the service registry with the JaxrsWhiteboardConstants.JAX_RS_NAME
property and a service with that name already exists in the runtime

151.15.6.2 public static final int FAILURE_REASON_NOT_AN_EXTENSION_TYPE = 4

The extension service is registered in the service registry but the service is not registered using a rec-
ognized extension type

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.runtime.dto

OSGi Enterprise Release 7 Page 837

151.15.6.3 public static final int FAILURE_REASON_REQUIRED_APPLICATION_UNAVAILABLE = 7

The service is registered in the service registry with the
JaxrsWhiteboardConstants.JAX_RS_APPLICATION_SELECT property and the filters is not matched
by any running application.

151.15.6.4 public static final int FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE = 5

The service is registered in the service registry with the
JaxrsWhiteboardConstants.JAX_RS_EXTENSION_SELECT property and one or more of the filters is
not matched.

151.15.6.5 public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 2

The service is registered in the service registry but getting the service fails as it returns nul l .

151.15.6.6 public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 1

Service is shadowed by another service.

For example, a service with the same service properties but a higher service ranking.

151.15.6.7 public static final int FAILURE_REASON_UNKNOWN = 0

Failure reason is unknown.

151.15.6.8 public static final int FAILURE_REASON_VALIDATION_FAILED = 3

The service is registered in the service registry but the service properties are invalid.

151.15.7 public class ExtensionDTO
extends BaseExtensionDTO
Represents a JAX-RS Filter service currently being hosted by the JaxrsServiceRuntime

Concurrency Not Thread-safe

151.15.7.1 public String[] consumes

The media types consumed by this service, if provided in an Consumes annotation

151.15.7.2 public ResourceDTO[] filteredByName

The resourceDTOs that are mapped to this extension using a NameBinding annotation

151.15.7.3 public String[] nameBindings

The full names of the NameBinding annotations applied to this extension, if any

151.15.7.4 public String[] produces

The media types produced by this service, if provided in an Produces annotation

151.15.7.5 public ExtensionDTO()

151.15.8 public class FailedApplicationDTO
extends BaseApplicationDTO
Represents a JAX-RS service which is currently not being used due to a problem.

The service represented by this DTO is not used due to a failure, but the
BaseApplicationDTO.extensionDTOs and BaseApplicationDTO.resourceDTOs may be non-empty if
whiteboard services have been associated with this failed application.

Concurrency Not Thread-safe

org.osgi.service.jaxrs.runtime.dto JAX-RS Whiteboard Specification Version 1.0

Page 838 OSGi Enterprise Release 7

151.15.8.1 public int failureReason

The reason why the resource represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_VALIDATION_FAILED,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE,
DTOConstants.FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE

151.15.8.2 public FailedApplicationDTO()

151.15.9 public class FailedExtensionDTO
extends BaseExtensionDTO
Represents a JAX-RS Extension service which is currently not being used due to a problem.

Concurrency Not Thread-safe

151.15.9.1 public int failureReason

The reason why the extension represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_VALIDATION_FAILED,
DTOConstants.FAILURE_REASON_NOT_AN_EXTENSION_TYPE,
DTOConstants.FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE

151.15.9.2 public FailedExtensionDTO()

151.15.10 public class FailedResourceDTO
extends BaseDTO
Represents a JAX-RS resource service which is currently not being used due to a problem.

Concurrency Not Thread-safe

151.15.10.1 public int failureReason

The reason why the resource represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_VALIDATION_FAILED,
DTOConstants.FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE

151.15.10.2 public FailedResourceDTO()

151.15.11 public class ResourceDTO
extends BaseDTO
Represents common information about a JAX-RS resource service.

Concurrency Not Thread-safe

151.15.11.1 public ResourceMethodInfoDTO[] resourceMethods

The RequestPaths handled by this resource

151.15.11.2 public ResourceDTO()

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.runtime.dto

OSGi Enterprise Release 7 Page 839

151.15.12 public class ResourceMethodInfoDTO
extends DTO
Represents information about a JAX-RS resource method. All information is determined by reading
the relevant annotations, from the JAX-RS type and not interpreted further. Dynamic information,
or information provided in other ways may not be represented in this DTO.

Concurrency Not Thread-safe

151.15.12.1 public String[] consumingMimeType

The mime-type(s) consumed by this resource method, null if Consumes is not defined

151.15.12.2 public String method

The HTTP verb being handled, for example GET, DELETE, PUT, POST, HEAD, OPTIONS, null if no
HttpMethod is defined

151.15.12.3 public String[] nameBindings

The NameBinding annotations that apply to this resource method, if any

151.15.12.4 public String path

The path of this resource method. Placeholder information present in the URI pattern will not be in-
terpreted and simply returned as defined.

151.15.12.5 public String[] producingMimeType

The mime-type(s) produced by this resource method, null if Produces is not defined

151.15.12.6 public ResourceMethodInfoDTO()

151.15.13 public class RuntimeDTO
extends DTO
Represents the state of a JAX-RS Service Runtime.

Concurrency Not Thread-safe

151.15.13.1 public ApplicationDTO[] applicationDTOs

Returns the representations of the JAX-RS Application services associated with this Runtime. The re-
turned array may be empty if this whiteboard is currently not associated with any JAX-RS applica-
tion services.

151.15.13.2 public ApplicationDTO defaultApplication

Returns the current state of the default application for this Runtime.

151.15.13.3 public FailedApplicationDTO[] failedApplicationDTOs

Returns the representations of the JAX-RS extension services targeted to this runtime but currently
not used due to some problem. The returned array may be empty.

151.15.13.4 public FailedExtensionDTO[] failedExtensionDTOs

Returns the representations of the JAX-RS extension services targeted to this runtime but currently
not used due to some problem. The returned array may be empty.

151.15.13.5 public FailedResourceDTO[] failedResourceDTOs

Returns the representations of the JAX-RS resource services targeted to this runtime but currently
not used due to some problem. The returned array may be empty.

org.osgi.service.jaxrs.whiteboard JAX-RS Whiteboard Specification Version 1.0

Page 840 OSGi Enterprise Release 7

151.15.13.6 public ServiceReferenceDTO serviceDTO

The DTO for the corresponding JaxrsServiceRuntime . This value is never nul l .

151.15.13.7 public RuntimeDTO()

151.16 org.osgi.service.jaxrs.whiteboard

JAX-RS Whiteboard Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jaxrs .whiteboard; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .whiteboard; vers ion="[1.0,1.1)"

151.16.1 Summary

• JaxrsWhiteboardConstants - Defines standard constants for the JAX-RS Whiteboard services.

151.16.2 public final class JaxrsWhiteboardConstants
Defines standard constants for the JAX-RS Whiteboard services.

151.16.2.1 public static final String JAX_RS_APPLICATION_BASE = "osgi.jaxrs.application.base"

Service property specifying the base URI mapping for a JAX-RS application service.

The specified uri is used to determine whether a request should be mapped to the resource. Services
without this service property are ignored.

The value of this service property must be of type Str ing , and will have a "/" prepended if no "/" ex-
ists.

If two applications are registered with the same base uri then the lower ranked service is failed with
a cause of DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

151.16.2.2 public static final String JAX_RS_APPLICATION_SELECT = "osgi.jaxrs.application.select"

Service property specifying the target application for a JAX-RS resource or extension service.

The specified filter is used to determine whether a resource should be included in a particular appli-
cation. Services without this service property are bound to the default Application.

If a filter property is registered and no application running in the white-
board matches the filter then the service will be failed with a cause of
DTOConstants.FAILURE_REASON_REQUIRED_APPLICATION_UNAVAILABLE

The value of this service property must be of type Str ing , and be a valid OSGi filter.

151.16.2.3 public static final String JAX_RS_APPLICATION_SERVICE_PROPERTIES =
"osgi.jaxrs.application.serviceProperties"

The property key which can be used to find the application service properties inside an injected
Configuration

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.whiteboard

OSGi Enterprise Release 7 Page 841

151.16.2.4 public static final String JAX_RS_DEFAULT_APPLICATION = ".default"

The name of the default JAX-RS application in every Whiteboard instance.

151.16.2.5 public static final String JAX_RS_EXTENSION = "osgi.jaxrs.extension"

Service property specifying that a JAX-RS resource should be processed by the whiteboard.

The value of this service property must be of type Str ing or Boolean and set to "true" or true .

A service providing this property must be registered as one or more of the following types:

• MessageBodyReader
• MessageBodyWriter
• ContainerRequestFilter
• ContainerResponseFilter
• ReaderInterceptor
• WriterInterceptor
• ContextResolver
• ExceptionMapper
• ParamConverterProvider
• Feature
• DynamicFeature

If a service with this property does not match any of the defined types then it is registered as a fail-
ure DTO with the error code DTOConstants.FAILURE_REASON_NOT_AN_EXTENSION_TYPE,

151.16.2.6 public static final String JAX_RS_EXTENSION_SELECT = "osgi.jaxrs.extension.select"

A Service property specifying one or more target filters used to select the set of JAX-RS extension ser-
vices required to support this whiteboard service.

A JAX-RS Whiteboard service may require one or more extensions to be available so that it can func-
tion. For example a resource which declares that it @Produces("text/ json") requires a MessageBody-
Writer which supports JSON to be available.

This service property provides a String+ set of LDAP filters which will be applied to the service prop-
erties of all extensions available in the JAX-RS container. If all of the filters are satisfied then this ser-
vice is eligible to be hosted by the JAX-RS container.

This service property may be declared by any JAX-RS whiteboard service, whether it is a resource, or
an extension.

If this service property is not specified, then no extensions are required.

If one or more filter properties are registered and no suitable
extension(s) are available then the service will be failed with a cause of
DTOConstants.FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE

The value of this service property must be of type Str ing and be a valid filter string.

151.16.2.7 public static final String JAX_RS_MEDIA_TYPE = "osgi.jaxrs.media.type"

A service property specifying that a JAX-RS extension service, JAX-RS application service, or JAX-
RS Whiteboard implementation provides support for reading from and writing to a specific media
type.

The value of this property will be one or more media type identifiers, and where possible IANA reg-
istered names, such as appl icat ion/json should be used. The value must not be a wildcard type. Sup-
port for multiple media types that use the same suffix should be supported by registering the media
type associated with the suffix.

org.osgi.service.jaxrs.whiteboard.annotations JAX-RS Whiteboard Specification Version 1.0

Page 842 OSGi Enterprise Release 7

151.16.2.8 public static final String JAX_RS_NAME = "osgi.jaxrs.name"

Service property specifying the name of a JAX-RS whiteboard service.

This name is provided as a property on the registered Endpoint service so that the URI for a particu-
lar JAX-RS service can be identified. If this service property is not specified, then no Endpoint infor-
mation will be registered for this resource.

Resource names must be unique among all services associated with a single Whiteboard implemen-
tation. If a clashing name is registered then the lower ranked service will be failed with a cause of
DTOConstants.FAILURE_REASON_DUPLICATE_NAME

The value of this service property must be of type Str ing .

151.16.2.9 public static final String JAX_RS_RESOURCE = "osgi.jaxrs.resource"

Service property specifying that a JAX-RS resource should be processed by the whiteboard.

The value of this service property must be of type Str ing or Boolean and set to "true" or true .

151.16.2.10 public static final String JAX_RS_WHITEBOARD_IMPLEMENTATION = "osgi.jaxrs"

The name of the implementation capability for the JAX-RS Whiteboard specification

151.16.2.11 public static final String JAX_RS_WHITEBOARD_SPECIFICATION_VERSION = "1.0.0"

The version of the implementation capability for the JAX-RS Whiteboard specification

151.16.2.12 public static final String JAX_RS_WHITEBOARD_TARGET = "osgi.jaxrs.whiteboard.target"

Service property specifying the target filter to select the JAX-RS Whiteboard implementation to
process the service.

A JAX-RS Whiteboard implementation can define any number of service properties which can be
referenced by the target filter. The service properties should always include the osgi.jaxrs.endpoint
service property if the endpoint information is known.

If this service property is not specified, then all JAX-RS Whiteboard implementations can process
the service.

The value of this service property must be of type Str ing and be a valid filter string.

151.17 org.osgi.service.jaxrs.whiteboard.annotations

JAX-RS Whiteboard Annotations Package Version 1.0.

This package contains annotations that can be used to require the JAX-RS Whiteboard implementa-
tion.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

151.17.1 Summary

• RequireJaxrsWhiteboard - This annotation can be used to require the JAX-RS Whiteboard imple-
mentation.

151.17.2 @RequireJaxrsWhiteboard
This annotation can be used to require the JAX-RS Whiteboard implementation. It can be used di-
rectly, or as a meta-annotation.

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.whiteboard.propertytypes

OSGi Enterprise Release 7 Page 843

This annotation is applied to several of the JAX-RS Whiteboard component property annotations
meaning that it does not normally need to be applied to Declarative Services components which use
the JAX-RS Whiteboard.

Retention CLASS

Target TYPE , PACKAGE

151.18 org.osgi.service.jaxrs.whiteboard.propertytypes

JAX-RS Whiteboard Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jaxrs .whiteboard; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .whiteboard; vers ion="[1.0,1.1)"

151.18.1 Summary

• JaxrsAppl icat ionBase - Component Property Type for the osgi . jaxrs .appl icat ion.base service
property.

• JaxrsAppl icat ionSelect - Component Property Type for the osgi . jaxrs .appl icat ion.select service
property.

• JaxrsExtension - Component Property Type for the osgi . jaxrs .extension service property.
• JaxrsExtensionSelect - Component Property Type for the osgi . jaxrs .extension.select service

property.
• JaxrsMediaType - Component Property Type for the osgi . jaxrs .media.type service property.
• JaxrsName - Component Property Type for the osgi . jaxrs .name service property.
• JaxrsResource - Component Property Type for the osgi . jaxrs .resource service property.
• JaxrsWhiteboardTarget - Component Property Type for the osgi . jaxrs .whiteboard.target service

property.
• JSONRequired - Component Property Type for requiring JSON media type support using the

JaxrsWhiteboardConstants.JAX_RS_MEDIA_TYPE service property.

151.18.2 @JaxrsApplicationBase
Component Property Type for the osgi . jaxrs .appl icat ion.base service property.

This annotation can be used on a JAX-RS resource or extension to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_APPLICATION_BASE service
property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.2.1 String value

□ Service property providing a base context URI for a JAX-RS whiteboard application.

Returns The base URI for this application.

org.osgi.service.jaxrs.whiteboard.propertytypes JAX-RS Whiteboard Specification Version 1.0

Page 844 OSGi Enterprise Release 7

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_APPLICATION_BASE

151.18.2.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.3 @JaxrsApplicationSelect
Component Property Type for the osgi . jaxrs .appl icat ion.select service property.

This annotation can be used on a JAX-RS resource or extension to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_APPLICATION_SELECT ser-
vice property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.3.1 String value

□ Service property providing an OSGi filter identifying the application(s) to which this service should
be bound.

Returns The filter for selecting the applications to bind to.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_APPLICATION_SELECT

151.18.3.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.4 @JaxrsExtension
Component Property Type for the osgi . jaxrs .extension service property.

This annotation can be used on a JAX-RS service to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_EXTENSION service property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.4.1 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.5 @JaxrsExtensionSelect
Component Property Type for the osgi . jaxrs .extension.select service property.

This annotation can be used on a JAX-RS resource or extension to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_EXTENSION_SELECT service
property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.5.1 String[] value

□ Service property providing one or more OSGi filters identifying the extension(s) or application fea-
tures which this service requires to work.

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.whiteboard.propertytypes

OSGi Enterprise Release 7 Page 845

Returns The filters for selecting the extensions to require.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_EXTENSION_SELECT

151.18.5.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.6 @JaxrsMediaType
Component Property Type for the osgi . jaxrs .media.type service property.

This annotation can be used on a JAX-RS extension or application to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_MEDIA_TYPE service proper-
ty.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.6.1 String[] value

□ Service property identifying the name(s) of media types supported by this service.

Returns The JAX-RS media types supported.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_MEDIA_TYPE

151.18.6.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.7 @JaxrsName
Component Property Type for the osgi . jaxrs .name service property.

This annotation can be used on a JAX-RS service to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_NAME service property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.7.1 String value

□ Service property identifying the name of a JAX-RS service for processing by the whiteboard.

Returns The JAX-RS service name.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_NAME

151.18.7.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.8 @JaxrsResource
Component Property Type for the osgi . jaxrs .resource service property.

This annotation can be used on a JAX-RS resource to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_RESOURCE service property.

See Also Component Property Types

Retention CLASS

References JAX-RS Whiteboard Specification Version 1.0

Page 846 OSGi Enterprise Release 7

Target TYPE

151.18.8.1 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.9 @JaxrsWhiteboardTarget
Component Property Type for the osgi . jaxrs .whiteboard.target service property.

This annotation can be used on a JAX-RS resource or extension to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_WHITEBOARD_TARGET ser-
vice property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.9.1 String value

□ Service property providing an OSGi filter identifying the whiteboard(s) to which this service should
be bound.

Returns The filter for selecting the whiteboards to bind to.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_WHITEBOARD_TARGET

151.18.9.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.10 @JSONRequired
Component Property Type for requiring JSON media type support using the
JaxrsWhiteboardConstants.JAX_RS_MEDIA_TYPE service property.

This annotation can be used on a JAX-RS resource to declare require that JSON support is available
before the resource becomes active. It also adds an optional Requirement for a service providing this
media type to aid with provisioning.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.10.1 String osgi_jaxrs_extension_select default "(osgi.jaxrs.media.type=application/json)"

□ Provides an extension selection filter for an extension supporting the JSON media type

Returns A filter requiring an osgi . jaxrs .media.type of appl icat ion/json

151.18.10.2 String FILTER = "(osgi.jaxrs.media.type=application/json)"

A filter requiring an osgi . jaxrs .media.type of appl icat ion/json

151.19 References
[1] Java API for RESTful Web Services Specification

https://jcp.org/en/jsr/detail?id=370

[2] Portable Java Contract Definitions
https://www.osgi.org/portable-java-contract-definitions/

https://jcp.org/en/jsr/detail?id=370
https://www.osgi.org/portable-java-contract-definitions/

JAX-RS Whiteboard Specification Version 1.0 References

OSGi Enterprise Release 7 Page 847

[3] Whiteboard Pattern
https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

[4] IANA Media Type Registrations
https://www.iana.org/assignments/media-types/media-types.xhtml

[5] IANA Media Type Suffix Registrations
https://www.iana.org/assignments/media-type-structured-suffix/media-type-structured-suffix.xhtml

https://www.osgi.org/wp-content/uploads/whiteboard1.pdf
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-type-structured-suffix/media-type-structured-suffix.xhtml

References JAX-RS Whiteboard Specification Version 1.0

Page 848 OSGi Enterprise Release 7

CDI Integration Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 849

152 CDI Integration Specification

Version 1.0

152.1 Introduction
Contexts and Dependency Injection ([1] CDI) is the standard dependency injection technology for Java. [2]
CDI 2.0 is the current version.

The CDI specification is a composition of the following high level features:

• A well-defined life cycle for stateful objects bound to life cycle contexts,
where the set of contexts is extensible

• A sophisticated, typesafe dependency injection mechanism, including the
ability to select dependencies at either development or deployment time,
without verbose configuration

• Support for Java EE modularity and the Java EE component architecture - the
modular structure of a Java EE application is taken into account when resolv-
ing dependencies between Java EE components

• Integration with the Unified Expression Language (EL), allowing any contex-
tual object to be used directly within a JSF or JSP page

• The ability to decorate injected objects
• The ability to associate interceptors to objects via typesafe interceptor bind-

ings
• An event notification model
• A web conversation context in addition to the three standard web contexts

defined by the Java Servlets specification
• A Service Provider Interface (SPI) allowing portable extensions to integrate

cleanly with the container

—CDI

This specification describes how OSGi is integrated into the CDI programming model and the inter-
action with these features.

152.1.1 Essentials

• Dependency Injection - Provide an advanced dependency injection framework for bundles that can
create and wire objects and services together into an application.

• Extender Model - Enable the configuration of components inside a bundle based on configuration
data provided by the bundle developer. The life cycle of these components is controlled by the
extender based on the extended bundle's state.

• Unencumbered - Does not require any special bundle activator or other code to be written inside
the bundle in order to have components instantiated and configured.

• Services - Enable the usage of OSGi services as injected dependencies.
• Configuration - Enable the usage of Configuration Admin configuration objects as injected depen-

dencies.

Introduction CDI Integration Specification Version 1.0

Page 850 OSGi Enterprise Release 7

• Dependencies - Allow components to depend on configuration objects and services and to register
services, with the full breadth of the OSGi capabilities.

• Reactive - It must be possible to react to changes in the external dependencies with different poli-
cies.

• Introspection - It must be possible to introspect the service components.
• Business Logic - A focus on writing business logic by using the features of CDI and reusable func-

tionality provided by extensions.
• Familiarity - Familiar to Java developers knowledgeable in CDI.

152.1.2 Entities

• CDI Entities
• CDI - Contexts and Dependency Injection 2.0.
• Bean - A Java class that satisfies the criteria of a bean as defined in CDI and which provides

contextual objects that define application state and/or logic.
• Producer - A producer method or field acts as a source of objects to be injected. It is an alterna-

tive to beans.
• Contextual Instance - The object instances produced by beans or producers within a given con-

text.
• Context - A Service Provider Interface (SPI) defining the life cycle for a set of contextual in-

stances. The context also determines which contextual instances of beans are visible to the
contextual instances of other beans.

• Scope - A (CDI) scope identifies a particular Context implementation. All beans have a scope
and are therefore bound to a particular context implementation. A scope is represented by
an annotation type. Any contextual instances produced from the bean exist within a context
identified by the scope.

• Injection Point - A location in a contextual instance or producer which is the target for injection
for a contextual instance.

• Qualifier - An annotation used to define a quality used for matching. Qualifiers are applied to
injection points, beans, producers (among other things). CDI finds beans matching an injec-
tion point's type then makes sure the qualifiers of the bean match all those on the injection
point.

• Stereotype - An annotation meta-annotated with javax.enterpr ise. inject .Stereotype used to
define a recurring role by aggregating a CDI scope and various other aspects into a reusable
unit.

• Decorators and Interceptors - Actors that intercept certain method invocations of contextual in-
stances.

• Portable Extension - A portable extension uses the CDI SPI to provide additional and reusable
functionality to a set of CDI beans.

• CDI Container - For each CDI bundle, required portable extensions are loaded , metadata and
bean classes are analyzed to create a bean injection graph. This process is encapsulated by a
CDI container.

• Entities defined by this specification
• CDI Bundle - An OSGi bundle containing CDI beans.
• CDI Extension Bundle - A bundle providing one or more portable extensions.
• CDI Component Runtime (CCR) - The actor that manages the CDI containers and their life cycle

and allows introspection of CDI containers.
• Configuration Object - Configuration Admin object which implements the Configurat ion inter-

face and contains configuration data.

CDI Integration Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 851

• Factory Configuration Object - A Configuration Object having a factory PID whose instances for
which there can be 0 or N are under the control of Configuration Admin, all sharing the same
factory PID.

• Single Configuration Object - A configuration object that has no factory PID and remains singu-
larly independent from all other configuration objects.

• Component - A set of beans whose life cycle is derived from it's dependencies.
• Dependency - A configuration object or service upon which beans depend. These dependencies

are dynamic in that their life cycle is independently controlled by other actors within the OS-
Gi Framework and CCR must properly accommodate for this.

• Configuration Template - The static metadata describing a configuration object dependency.
• Reference Template - The static metadata describing a reference dependency.
• Component Template - The static definition of a component combining all the metadata defined

by its beans, and its dependencies. The component template does not change between restarts
of the CDI bundle.

• Component Scope - A (CDI) scope defined by this specification that represents the granular life
cycle associated with a set of dependencies.

• Component Instance - A runtime instance of the component template which observes and re-
acts to the state of the OSGi Framework based on the metadata of the component template.

• Container Component - A component encompassing all beans in the CDI container not in the
component scope. The container component results in a single component instance.

• Single Component - A component that encompasses beans that have the Component Scope,
whose dependencies may include single configuration objects and services. A single compo-
nent results in a single component instance.

• Factory Component - A component that encompassed beans having the Component Scope, that
are driven by factory configuration objects and whose dependencies may include single con-
figuration objects and services. A factory component results in any number of component in-
stances, one for every factory configuration object.

152.1.3 Synopsis
The CDI Extender reads CDI metadata from started CDI bundles. These metadata are in the form
of XML documents, annotation types and requirements which define the set of beans available to
the CDI container. Beans express dependencies on OSGi configuration objects and services and are
assembled into components. The life cycle of a component is driven from the dependencies of its
beans.

There are three types of components:

• Container Component - Consists of beans not in the component scope. There is exactly one contain-
er component per CDI bundle. It's life cycle is synonymous with the CDI container. The con-
tainer component must be completely satisfied before other component types can be satisfied.
The container component may provide multiple services. Altering the state of the container
component's static dependencies results in the entire CDI container, and all other component
types being destroyed and recreated.

• Single Component - A Single Component begins with a bean annotated by the @SingleComponent
annotation and is further enhanced by other beans in it's injection graph that are component
scoped. A single component may provide immediate functionality or a service resulting in an
immediate instance or a single service registration. Unlike the container component, single com-
ponents may be created, destroyed and react to changes in the state of it's dependencies in isola-
tion, without affecting the entire CDI container. A single component's life cycle is driven first by
the container component which must be satisfied and second by it's dependencies.

• Factory Component - A Factory Component begins with a bean annotated by the @FactoryCompo-
nent annotation and is further enhanced by other beans in it's injection graph that are compo-
nent scoped. A factory component may provide immediate functionality or a service, resulting in

Components CDI Integration Specification Version 1.0

Page 852 OSGi Enterprise Release 7

one immediate instance or service registration. Unlike the container component, factory compo-
nents may be created, destroyed and react to changes in the state of it's dependencies in isolation,
without affecting the entire CDI container. A factory component's life cycle is driven first by the
container component which must be satisfied, secondly by factory configuration which result in
one component instance per factory configuration object, and finally by it's dependencies.

Figure 152.1 CCR Model

O
SGi

Container
Component

O
SGi

Single
Component

O
SGi

Factory
Component

O
SGi

Component
1 0..n

1

1

CDIBean

describes

O
SGi

Component
Template

1 0..n

1

0..n

O
SGi

Dependency
Template

satisfies

O
SGi

Configuration

O
SGi

Service

O
SGi

Component
Instance 1 0..n

1

0..n

O
SGi

Dependency

CDIContext
Instance

152.2 Components
A traditional CDI application is composed of beans that have a well-defined life cycle based on the
CDI scope they declare. This specification defines a component model in terms of beans and scopes
as they are defined in the CDI specification in order to act as a good CDI citizen.

Components are defined by this specification to have the following characteristics:

• Components exist within a CDI bundle.
• Components are defined by collections of beans (referred to as component beans).
• Components may have dependencies on configuration objects and services. These dependencies

are described using annotations defined by this specification.
• Components have properties, referred to as component properties. Some of these are defined by this

specification and must be present. Others are aggregated from various configuration sources as
defined in Component Properties on page 861.

CDI Integration Specification Version 1.0 Component Scope

OSGi Enterprise Release 7 Page 853

• Components have unique names within the CDI bundle.
• Components produce one or more component instances. Component instances are the runtime

representation of the component. They independently react to the state of the dependencies de-
clared by their component beans.

152.3 Component Scope
This specification uses the facilities of CDI [8] Scopes and contexts to define a life cycle for beans
specifically for supporting a relationship with OSGi dependencies.

Associated with every CDI scope is an object implementing javax.enterpr ise.context.spi .Context or
javax.enterpr ise.context.spi .AlterableContext . The life cycle and visibility rules for said scope are
defined by this implementation which collaborates with the CDI container to create or destroy con-
textual instances. Contextual instances associated with the scope exist within a context which acts as
a cache, creating new or returning existing contextual instances as needed. These contexts are man-
aged by CCR in conjunction with the CDI container.

Figure 152.2 CDI Scope Model

<<annotation>>
Scope

identifies

Context
Implementation

<<interface>>
Context

1

0..n
Context
Instance 1

0..n

Contextual
Instance

The component scope is a [9] Pseudo-scope identified by the @ComponentScoped annotation. The com-
ponent scope allows component instances to use component beans to create or destroy contextual in-
stances when dependencies are satisfied or unsatisfied without interfering with the life cycle of oth-
er component instances (including the container component).

The context implementation must be registered with the CDI container using the CDI SPI. For ex-
ample:

void afterBeanDiscovery(
 @Observes javax.enterprise.inject.spi.AfterBeanDiscovery abd) {

 Context ctx = ...

Component Scope CDI Integration Specification Version 1.0

Page 854 OSGi Enterprise Release 7

 abd.addContext(ctx);
}

The ComponentScoped annotation must be registered with the CDI container using the CDI SPI.
For example:

void beforeBeanDiscovery(
 @Observes javax.enterprise.inject.spi.BeforeBeanDiscovery bbd) {

 bbd.addScope(ComponentScoped.class, false, false);
}

152.3.1 Contexts
The creation and destruction of the component scope's contexts must adhere to the following
process:

• The following steps are taken to create a context:
1. the context is made active - The method javax.enterpr ise.context.spi .Context. isActive() must

return true .
2. contextual instances are created and injected - Contextual instances can be retrieved by calling

javax.enterpr ise.context.spi .Context.get(. . .) .
3. the @Initialized event is fired - On success of step 2, the CDI event

@Init ia l ized(ComponentScoped.class) is fired synchronously. See Table 152.1.

When the component is a single component, the event payload is the contextual instance of
the bean marked @SingleComponent .

When the component is a factory component the event payload is the contextual instance of
the bean marked @FactoryComponent .

Any qualifiers defined on the bean of the contextual instance must be attached to the event.

On failure of step 2, errors are logged and made available in errors.
4. the context is deactivated - The method javax.enterpr ise.context.spi .Context. isActive() must

return fa lse .
• The following steps are taken to destroy a context:

1. the context is made active - The method javax.enterpr ise.context.spi .Context. isActive() must
return true .

2. the @BeforeDestroy is fired - The CDI event @BeforeDestroy(ComponentScoped.class) is fired
synchronously. See Table 152.1.

When the component is a single component the event payload is the contextual instance of the
bean marked @SingleComponent .

When the component is a factory component the event payload is the contextual instance of
the bean marked @FactoryComponent .

Any qualifiers defined on the bean of the contextual instance must be attached to the event.
3. contextual instances are destroyed - Any exceptions are logged.
4. the context is deactivated - The method javax.enterpr ise.context.spi .Context. isActive() must

return fa lse .
5. the context is destroyed
6. the @Destroyed event is fired - The CDI event @Destroyed(ComponentScoped.class) is fired

synchronously. See Table 152.1.

When the component is a single component the event payload is the contextual instance of the
bean marked @SingleComponent .

CDI Integration Specification Version 1.0 Component Scope

OSGi Enterprise Release 7 Page 855

When the component is a factory component the event payload is the contextual instance of
the bean marked @FactoryComponent .

Any qualifiers defined on the bean of the contextual instance must be attached to the event.

Note that the object may not be usable during this event because the context under which it
was created is already destroyed.

Table 152.1 Component Context Events

Event Qualifier Condition
@Init ia l ized(ComponentScoped.class) when a context is initialized and ready

for use
@BeforeDestroy(ComponentScoped.class) when a context is about to be de-

stroyed, but before actual destruction
@Destroyed(ComponentScoped.class) after a context is destroyed

152.3.1.1 When Contexts are Created

A context is created under each of the following conditions:

1. Immediate instance - A component instance that does not provide a service requires the immedi-
ate creation of a context.

2. Singleton scoped service from a @SingleComponent - A single component instance that provides a
singleton scoped service requires the immediate creation of a context.

The service object is the contextual instance of the bean marked @SingleComponent obtained
from the context.

3. Singleton scoped service from a @FactoryComponent - A factory component instance that provides
a singleton scoped service requires the immediate creation of a context for each factory configu-
ration object.

The service object is the contextual instance of the bean marked @FactoryComponent obtained
from the context.

4. Bundle scoped service - A component instance that provides a bundle scope service requires the
creation of a context when the ServiceFactory.getService() method is called.

If the component is a single component, the service object is the contextual instance of the bean
marked @SingleComponent obtained from the context.

If the component is a factory component, the service object is the contextual instance of the bean
marked @FactoryComponent obtained from the context.

The context is released and destroyed when the ServiceFactory.ungetService() method is called.
5. Prototyped scoped service - A component instance that provides a prototype scope service requires

the creation of a context when the PrototypeServiceFactory.getService() method is called.

If the component is a single component, the service object is the contextual instance of the bean
marked @SingleComponent obtained from the context.

If the component is a factory component, the service object is the contextual instance of the bean
marked @FactoryComponent obtained from the context.

The context is released and destroyed when the PrototypeServiceFactory.ungetService()
method is called.

In addition to the cases specified above, all contexts produced by an immediate component or by
the service registration are released and destroyed when the component instance is no longer satis-
fied or when the CDI container is destroyed.

Container Component CDI Integration Specification Version 1.0

Page 856 OSGi Enterprise Release 7

152.4 Container Component
The container component is composed of all the beans available to the CDI container which are not
ComponentScoped.

The container component draws it's name from the CDI container id. By default, the CDI container
id is equal to the Bundle-Symbol icName of the CDI bundle prefixed by 'osgi .cdi . '.

containerId ::= 'osgi.cdi.' bsn
bsn ::= < Bundle-SymbolicName >

The container id can be specified using the container.id attribute of the CDI extender requirement
in the bundle manifest. The value must follow the Bundle-Symbol icName syntax. For example:

Require-Capability:
 osgi.extender;
 filter:=”(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0.0)))”;
 container.id="my.id"

152.4.1 Container Component Configuration
The container component must be configurable using it's container id as a PID; referred to as the
container PID.

containerPID ::= < container id >

Given a bundle with Bundle-Symbol icName equal to com.acme.bar which does not set the
container. id attribute in the requirement, the container id would be:

osgi.cdi.com.acme.bar

From the requirement example above where the container id is set to my.id , the container PID
would be:

my.id

The configuration object used to satisfy the container PID must be a single configuration object.
However the configuration policy for this configuration object is optional and is not required to satis-
fy the container component.

152.4.2 Container Component Life Cycle
The container component is largely synonymous with the CDI container. When the dependencies
of the container component are satisfied the CDI container completes it's initialization process and
subsequently is fully functional. When the dependencies of the container component are no longer
satisfied the CDI container is shutdown and all contextual instances are destroyed.

A container component with no beans would be immediately satisfied since it specifies no depen-
dencies.

152.5 Standard Definitions

152.5.1 Annotation Inheritance
Annotations are not inherited unless meta-annotated by @java. lang.annotation. Inherited .

CDI Integration Specification Version 1.0 Single Component

OSGi Enterprise Release 7 Page 857

152.5.2 Code Examples
This specification provides several source code examples. In order to avoid repetition the following
Java types are defined and re-used throughout:

interface Dog {}

interface Hound extends Dog {}

abstract class BassetHound implements Hound {}

class Spot extends BassetHound {}

class Buddy implements Hound {}

152.6 Single Component
A Single Component begins with and is rooted by a bean annotated by the @SingleComponent anno-
tation. It is further enhanced by beans in it's injection graph that are @ComponentScoped which
are discovered according to CDI's rules for [7] Typesafe Resolution starting from the @SingleCompo-
nent bean and recursing through all injection points until all injection points are resolved.

Resolution results which contain non-root beans marked with @SingleComponent or @Facto-
ryComponent result in a definition error.

Any failed resolutions result in a definition error.

Applying any scope besides @ComponentScoped to a bean marked with @SingleComponent re-
sults in a definition error.

Any @ComponentPropert ies or @Reference injection point that is resolved by beans which are
not provided by CCR results in a definition error.

A single component has an implicit dependency on the container component. Therefore it may nev-
er be satisfied until the container component is satisfied.

152.6.1 Single Component Naming
The @SingleComponent annotation is a stereotype which carries the @javax. inject .Named meta-an-
notation. This indicates that the default component name is:

“the unqualified class name of the bean class, after converting the first character
to lower case”

—CDI

For example:

// component.name = fido
@SingleComponent
class Fido {}

However, the name may be specified by adding @javax. inject .Named directly to the bean and speci-
fying a value whose syntax follows cname defined by the [11] General Syntax Definitions.

// component.name = Champ
@SingleComponent
@Named("Champ")
class Fido {}

Single Component CDI Integration Specification Version 1.0

Page 858 OSGi Enterprise Release 7

152.6.2 Single Component Configuration
By default a single component must be configurable by using it's component name, prefixed by
the container PID and a period (.), as a configuration PID. This component PID will be represented
throughout the remained of the specification by the symbol Φ (capital Phi).

Φ ::= containerPID '.' compName
containerPID ::= < container PID >
compName ::= < component name >

A single component may change or add additional PIDs on which it depends. When multiple PIDs
are referenced the order is relevant and affects the aggregation of the configuration objects into a
flattened dictionary of component properties. Later PIDs take precedence over earlier PIDs. Also, it
must be possible to reposition the component PID within the order. The PID annotation is used to
control both referenced PIDs and their order.

The following is an example of a component that is configurable by it's component PID:

// component pids = [Φ]
@SingleComponent
class Fido {}

An example of a component replacing it's component PID with a specific PID:

// component pids = [com.acme.foo]
@SingleComponent
@PID("com.acme.foo")
class Fido {}

An example of multiple PIDs:

// component pids = [com.acme.foo, com.gamma.bar]
@SingleComponent
@PID("com.acme.foo")
@PID("com.gamma.bar")
class Fido {}

See Component Properties on page 861 for how multiple component PIDs are merged into compo-
nent properties.

Using @PID without arguments refers to the component PID:

// component pids = [Φ]
@SingleComponent
@PID
class Fido {}

This allows the component PID to be included anywhere in the order:

// component pids = [com.acme.foo, Φ, com.gamma.bar]
@SingleComponent
@PID("com.acme.foo")
@PID
@PID("com.gamma.bar")
class Fido {}

Each @PID annotation may specify a policy for the configuration object. The property policy is used
to specify the value. The possible values are:

• OPTIONAL - A configuration object is not required. This is the default policy.

CDI Integration Specification Version 1.0 Factory Component

OSGi Enterprise Release 7 Page 859

• REQUIRED - A configuration object is required.

// component pids = [com.acme.foo, Φ, com.gamma.bar]
@SingleComponent
@PID(value = "com.acme.foo", policy = Policy.REQUIRED)
@PID
@PID("com.gamma.bar")
class Fido {}

It is a definition error to refer to the same PID more than once.

The configuration objects used to satisfy the single component's referenced PIDs must be single con-
figuration objects.

152.7 Factory Component
A Factory Component begins with and is rooted by a bean annotated by the @FactoryComponent an-
notation. It is further enhanced by beans in it's injection graph that are @ComponentScoped which
are discovered according to CDI's rules for [7] Typesafe Resolution starting from the @FactoryCompo-
nent bean and recursing through all injection points until all injection points are resolved.

The @FactoryComponent annotation indicates that the component is bound to the life cycle of fac-
tory configuration objects associated with the factory PID specified in it's value property (or it's de-
fault component factory PID). Each factory configuration object associated with this factory PID re-
sults in a new component instance. The component properties of the component instance are supple-
mented by the properties of the factory configuration object.

Resolution results which contain a non-root bean marked with @SingleComponent or @Facto-
ryComponent result in a definition error.

Any failed resolutions result in a definition error.

Applying any scope besides @ComponentScoped to a bean marked with @FactoryComponent re-
sults in a definition error.

Any @ComponentPropert ies or @Reference injection point that is resolved by beans which are
not provided by CCR results in a definition error.

A factory component has an implicit dependency on the container component. Therefore it may
never be satisfied until the container component is satisfied.

152.7.1 Factory Component Naming
The @FactoryComponent annotation is a stereotype which carries the @javax. inject .Named meta-
annotation. This indicates that the default component name is:

“the unqualified class name of the bean class, after converting the first character
to lower case”

—CDI

For example:

// component.name = fido
@FactoryComponent
class Fido {}

However, the name may be specified by adding @javax. inject .Named directly to the bean and speci-
fying a value whose syntax follows cname defined by the [11] General Syntax Definitions.

// component.name = Champ

Factory Component CDI Integration Specification Version 1.0

Page 860 OSGi Enterprise Release 7

@FactoryComponent
@Named("Champ")
class Fido {}

152.7.2 Factory Component Configuration
By default a factory component must be configurable by using it's component name, prefixed by
the container PID and a period (.), as a factory PID. This component factory PID will be represented
throughout the remained of the specification by the symbol Σ (capital Sigma).

Σ ::= containerPID '.' compName
containerPID ::= < container PID >
compName ::= < component name >

An example of a factory component that is configurable by it's component factory PID:

// component pids = [Σ]
@FactoryComponent
class Fido {}

A factory component may specify a factory PID using it's value property. The value must conform to
the syntax defined for the Bundle-Symbol icName header.

An example of a factory component specifying a factory PID:

// component pids = [com.acme.foo-####]
@FactoryComponent("com.acme.foo")
class Fido {}

A factory component may change or add additional PIDs on which it depends. When multiple PIDs
are referenced the order is relevant and affects the aggregation of the configuration objects into a
flattened dictionary of component properties. Later PIDs take precedence over earlier PIDs. The PID
annotation is used to control both referenced PIDs and their order.

An example of multiple PIDs:

// component pids = [com.gamma.bar, com.acme.foo-####]
@FactoryComponent("com.acme.foo")
@PID("com.gamma.bar")
class Fido {}

Each @PID annotation may specify a policy for the configuration dependency. The property policy
is used to specify the value. The possible values are:

• OPTIONAL - A configuration object is not required. This is the default policy.
• REQUIRED - A configuration object is required.

// component pids [com.acme.foo, com.gamma.bar, Σ]
@FactoryComponent
@PID(value = "com.acme.foo", policy = Policy.REQUIRED)
@PID("com.gamma.bar")
class Fido {}

See Component Properties on page 861 for how multiple component PIDs are merged into compo-
nent properties.

The component factory PID always reserves the highest precedence among specified PIDs and is po-
sitioned last in PID ordering for the purpose of aggregation

A factory component can only reference a single factory PID.

Notwithstanding the factory PID, it is a definition error to refer to the same PID more than once.

CDI Integration Specification Version 1.0 Component Properties

OSGi Enterprise Release 7 Page 861

The configuration object used to satisfy the factory component's component factory PID must be a
factory configuration object.

Configuration objects used to satisfy the PIDs referred to by the @PID annotations must be single
configuration objects.

152.8 Component Properties
Each component instance is associated with a set of component properties. Component properties are
specified in the following configuration sources (in order of precedence, where the properties provided
by later lines overwrite those of earlier lines):

1. Properties specified as Bean Property Types on the bean annotated with @SingleComponent or
@FactoryComponent must be treated according to Bean Property Types on page 863.

2. Properties provided by single configuration objects whose PIDs are matched to and are
processed in the order they are specified by the component.

3. Properties provided by a factory configuration object whose PID matches to the factory PID
specified by the factory component.

The precedence behavior allows certain default values to be specified in component metadata while
allowing properties to be replaced and extended by a configuration object.

Normally, a property value from a higher precedence configuration source replace a property val-
ue from a lower precedence configuration source. However, the service.pid property values receive
different treatment. For the service.pid property, if the property appears multiple times in the con-
figuration sources, CCR must aggregate all the values found into a Collect ion<Str ing> having an it-
eration order such that the first item in the iteration is the property value from the lowest prece-
dence configuration source and the last item in the iteration is the property value from the high-
est precedence configuration source. If the component refers to multiple PIDs, then the order of the
service.pid property values collected from the corresponding configuration objects must match the
order in which the PIDs are specified by the component. The values of the service.pid component
property are the values as they come from the configuration sources and may container more values
than those referred to by the component.

CCR always adds the following component properties, which cannot be overridden:

• component.name - The component name. The syntax for the component.name follows cname
defined by the [11] General Syntax Definitions.

• component. id - A unique value (Long) that is larger than all previously assigned values. These
values are not persistent across restarts of CCR.

152.8.1 Reference Properties
This specification defines some component properties which are associated with a specific refer-
ence. These are called reference properties. The name of a reference property for a reference is the
name of the reference appended with a full stop ('.' \u002E) and a suffix unique to the reference
property. Reference properties can be set wherever component properties can be set.

All component property names starting with a reference name followed by a full stop ('.' \u002E)
are reserved for use by this specification.

Following are the reference properties defined by this specification.

152.8.1.1 Target Property

The target property is a reference property which aids in the selection of target services for the refer-
ence. See Reference Injection Points on page 872. The name of a target property is the name of a refer-
ence appended with .target .

Component Properties CDI Integration Specification Version 1.0

Page 862 OSGi Enterprise Release 7

target ::= refName '.target'
refName ::= < reference name >

For example, the target property for a reference with the name http

@Inject
@Reference
Http http;

would have the name http.target . The value of a target property is a filter String used to select target
services for the reference.

http.target=(context.name=foo)

A default target property value can also be set by the @Reference.target property.

The target property value must be a valid filter String according to [12] Filter Syntax. Invalid filters
result in unmatchable reference filters.

CCR must support the target property for all references.

152.8.1.2 Minimum Cardinality Property

The initial minimum cardinality of a reference is specified by the optionality of the reference. The
minimum cardinality of a reference cannot exceed the multiplicity: a scalar reference has a multi-
plicity of 1 and a java.ut i l .L ist or java.ut i l .Col lect ion reference has a multiplicity of n.

The minimum cardinality property is a reference property which can be used to raise the minimum
cardinality of a reference from its initial value. That is, a 0..1 cardinality can be raised to a 1. .1 cardi-
nality by setting the reference's minimum cardinality property to 1 . A 0..n cardinality can be raised
to a m..n cardinality by setting the reference's minimum cardinality property to m such that m is a
positive integer. The minimum cardinality of a reference cannot be lowered. A mandatory reference
cannot be reduced to optional through this property. That is, a 1. .1 cardinality can not be lowered to
a 0..1 cardinality because the component was written to expect at least one bound service.

The name of a minimum cardinality property is the name of a reference appended with
.cardinal ity.minimum .

minimumCardinality ::= refName '.cardinality.minimum'
refName ::= < reference name >

For example, the minimum cardinality property for a reference with the name http

@Inject
@Reference
Http http;

would have the name http.cardinal ity.minimum .

http.cardinality.minimum=3

The value of a minimum cardinality property must be a positive integer or a value that can be co-
erced into a positive integer using the conversions defined by the Converter Specification on page
985. If the numerical value of the minimum cardinality property is not valid for the reference's
cardinality or the minimum cardinality property value cannot be coerced into a numerical value,
then the minimum cardinality property must be ignored and a warning message logged.

Attempts to reduce the initial minimum cardinality will result in a warning message to be logged
and the value to be otherwise ignored.

CCR must support the minimum cardinality property for all references.

CDI Integration Specification Version 1.0 Bean Property Types

OSGi Enterprise Release 7 Page 863

152.9 Bean Property Types
Component properties can be defined and accessed through a user defined annotation type, called
a bean property type, containing the property names, property types and default values. A bean prop-
erty type allows properties to be defined and accessed in a type safe manner. Bean Property Types
must be annotated with the BeanPropertyType meta-annotation.

The following example shows the definition of a bean property type called Props which defines
three properties where the name of the property is the name of the method, the type of the proper-
ty is the return type of the method and the default value for the property is the default value of the
method.

@BeanPropertyType
public @interface Props {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

Bean Property Types can be used in several ways:

• Bean Property Types can be used along side the SingleComponent or FactoryComponent annota-
tions to provide component properties.

• Bean Property Types can be used on Appl icat ionScoped or Dependent scoped beans, where the
Service annotation is applied to provide service properties.

• Bean Property Types can be used on fields and methods annotated with @Produces , where the
Service annotation is applied, to provide service properties.

• Bean Property Types can be used on injection points where the Reference annotation is applied,
to provide target filter properties. Target filter properties can only provide AND filters.

• Bean Property Types can be used on injection points as the injection point type where the Com-
ponentProperties annotation is applied to provide type safe coercion of component properties.

Each use defines property names, types and values.

The following example shows a component bean annotated with the example Props bean property
type which specifies a property value for the component which is different than the default value.
The example also shows an injection point method taking the example Props bean property type as
the injection point type and the method implementation accesses component property values by in-
voking methods on the bean property type object.

@SingleComponent
@Props(names="myapp")
public class MyBean {
 @Inject
 void activate(Props props) {
 if (props.enabled()) {
 // do something
 }
 for (String name : props.names()) {
 // do something with each name
 }
 }
}

Bean Property Types must be defined as annotation types. This is done for several reasons. First,
the limitations on annotation type definitions make them well suited for Bean Property Types. The

Bean Property Types CDI Integration Specification Version 1.0

Page 864 OSGi Enterprise Release 7

methods must have no parameters and the return types supported are limited to a set which is well
suited for component properties. Second, annotation types support default values which is useful
for defining the default value of a component property. Finally, as annotations, they can be used to
annotate bean classes.

At runtime, when CCR needs to provide injection points an object whose type is a bean property
type, CCR must construct an instance of the bean property type whose methods are backed by the
values of the component properties. This object can then be used to obtain the property values in a
type safe manner.

152.9.1 Bean Property Type Mapping
Each method of a bean property type is mapped to a component property. The property name is
derived from the method name. Certain common property name characters, such as full stop ('.'
\u002E) and hyphen-minus (' - ' \u002D) are not valid in Java identifiers. So the name of a method
must be converted to its corresponding property name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are converted to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are converted to a

single dollar sign.
• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-

other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.
• If the bean property type declares a PREFIX_ field whose value is a compile-time constant String,

then the property name is prefixed with the value of the PREFIX_ field.

Table 152.2 contains some name mapping examples.

Table 152.2 Bean Property Type Name Mapping Examples

Bean Property Type Method Name Component Property Name
myProperty143 myProperty143
$new new
my$$prop my$prop
dot_prop dot.prop
_secret .secret
another__prop another_prop
three___prop three_.prop
four_$__prop four._prop
five_$_prop five. .prop
six$_$prop six-prop
seven$$_$prop seven$.prop

However, if the bean property type is a single-element annotation, see 9.7.3 in [16] The Java Language
Specification, Java SE 8 Edition, then the property name for the value method is derived from the name
of the bean property type rather than the name of the method.

In this case, the simple name of the bean property type, that is, the name of the class without any
package name or outer class name, if the bean property type is an inner class, must be converted to
the property name as follows:

CDI Integration Specification Version 1.0 Bean Property Types

OSGi Enterprise Release 7 Page 865

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each upper case character is converted to lower case.
• All other characters are unchanged.
• If the bean property type declares a PREFIX_ field whose value is a compile-time constant String,

then the property name is prefixed with the value of the PREFIX_ field.

Table 152.3 contains some mapping examples for the value method.

Table 152.3 Single-Element Annotation Mapping Examples for value Method

Bean Property Type Name value Method Component Property Name
ServiceRanking service.ranking
Some_Name some_name
OSGiProperty osgi .property

If the bean property type is a marker annotation, see 9.7.2 in [16] The Java Language Specification, Java
SE 8 Edition, then the property name is derived from the name of the bean property type, as is de-
scribed above for single-element annotations, and the value of the property is Boolean.TRUE . Mark-
er annotations can be used to annotate component beans to set a component property to the value
Boolean.TRUE . However, since marker annotations have no methods, they are of no use as injection
point types.

The property type can be directly derived from the type of the method. All types supported for anno-
tation elements can be used except for annotation types. Method types of an annotation type or ar-
ray thereof are not supported.

If the method type is Class or Class[] , then the property type must be Str ing or Str ing[] , respectively,
whose values are fully qualified class names in the form returned by the Class.getName() method.

If the method type is an enumeration type or an array thereof, then the property type must be Str ing
or Str ing[] , respectively, whose values are the names of the enum constants in the form returned by
the Enum.name() method.

152.9.2 Coercing Bean Property Type Values
When a bean property type is used as an injection point type alone with @ComponentPropert ies ,
CCR must create a contextual instance that implements the bean property type and maps the meth-
ods of the bean property type to component properties. The name of the method is converted to the
property name as described in Bean Property Type Mapping on page 864. The property value may
need to be coerced to the type of the method. In Table 152.4, the columns are source types, that is,
the type of the component property value, and the rows are target types, that is, the method types.
The property value is v; number is a primitive numerical type and Number is a wrapper numerical
type. An invalid coercion is represented by throw . Such a coercion attempt must result in throwing
a Bean Property Exception when the bean property type method is called. Any other coercion error,
such as parsing a non-numerical String to a number or the inability to coerce a String into a Class or
enum object, must be wrapped in a Bean Property Exception and thrown when the bean property
type method is called.

Table 152.4 Coercion From Property Value to Method Type

target \ source String Boolean Character Number Collection/array
String v v. toString() v. toString() v. toString() If v has no elements, nul l ; other-

wise the first element of v is co-
erced.

Bean Property Types CDI Integration Specification Version 1.0

Page 866 OSGi Enterprise Release 7

target \ source String Boolean Character Number Collection/array
boolean Boolean. parse-

Boolean(v)
v. booleanVal-
ue()

v. charValue() !
= 0

v. doubleVal-
ue() != 0

If v has no elements, fa lse ; other-
wise the first element of v is co-
erced.

char v. length() > 0 ?
v. charAt(0) : 0

v. booleanVal-
ue() ? 1 : 0

v. charValue() (char) v. intVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

number Number.
parseNumber(
v)

v. booleanVal-
ue() ? 1 : 0

(number) v.
charValue()

v. numberVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

Class Bundle. load-
Class(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

EnumType EnumType. val-
ueOf(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

annotation type throw throw throw throw throw
array A single element array is created and v is coerced into the single el-

ement of the new array.
An array the size of v is created
and each element of v is coerced
into the corresponding element
of the new array.

Component properties whose names do not map to bean property type methods are ignored. If
there is no corresponding component property for a bean property type method, the bean property
type method must:

• Return 0 for numerical and char method types.
• Return fa lse for boolean method type.
• Return nul l for String, Class, and enum.
• Return an empty array for array method types.
• Throw a BeanPropertyException for annotation method types.

152.9.3 Standard Bean Property Types
Bean Property Types for standard service properties are specified in the
org.osgi.service.cdi.propertytypes package.

The ServiceDescription bean property type can be used to add the service.descr ipt ion component
property, service property or target filter. The ServiceRanking bean property type can be used to add
the service.ranking component property, service property or target filter. The ServiceVendor bean
property type can be used to add the service.vendor component property, service property or target
filter. For example, using these Bean Property Types as annotations:

@FactoryComponent
@ServiceDescription(”My Acme Service implementation”)
@ServiceRanking(100)
@ServiceVendor("My Corp")
public class MyBean implements AcmeService {}

will result in the following component properties:

service.description=My Acme Service implementation # String
service.ranking=100 # Integer
service.vendor=My Corp # String

CDI Integration Specification Version 1.0 Providing Services

OSGi Enterprise Release 7 Page 867

The ExportedService bean property type can be used to specify service properties for remote ser-
vices.

152.10 Providing Services
A key aspect of working with OSGi is the ability to provide services. Services are published to the
service registry specifying service types. The @Service annotation provides this capability to CCR
and serves a dual role; the first of which is indicating that a bean publishes a service, the second in-
dicating the service types. @Service can be applied in any one of the following ways:

152.10.1 @Service applied to bean class
Applying the @Service annotation to the bean class indicates the set of service types will be one of
(in order of precedence):

1. the specified type(s) - When providing a specified value, these are the types under which the ser-
vice is published.

// service types = [BassetHound, Dog]
@Service({BassetHound.class, Dog.class})
class Spot {}

2. directly implemented interfaces - These are the interfaces for which the bean class directly specifies
an implements clause.

// service types = [Hound]
@Service
class Fido implements Hound {}

3. bean class - The class of the bean itself is the type under which the service is published.

// service types = [Fido]
@Service
class Fido

The @Service annotation is never inherited. CCR ignores instances of the annotation on super class-
es, interfaces or super interfaces for this purpose.

152.10.2 @Service applied to type use
A convenient readability optimization is to apply the @Service annotation on type_use. This is to
say that it may be applied to extends and/or implements clauses. For example:

// service types = [BassetHound]
class Fido extends @Service BassetHound {}

Or:

// service types = [Hound]
class Fido implements @Service Hound {}

The two approaches can be combined. @Service annotations are collected so that the service is pub-
lished with all collected types:

// service types = [BassetHound, Hound]
class Fido extends @Service BassetHound implements @Service Hound {}

Providing Services CDI Integration Specification Version 1.0

Page 868 OSGi Enterprise Release 7

In this scenario, any use of the @Service.value property will result in a definition error.

Applying @Service to both bean class, and type use will result in a definition error.

152.10.3 @Service applied to Producers
Applying the @Service annotation to producer methods or fields indicates the set of service types
as described in the following table (earlier rows take precedence over later rows).

Table 152.5 @Service applied to Producers

Case Description
the type(s) specified by
@Service.value

When providing a specified @Service.value , these are the types
under which the service is published.

// service types = [BassetHound, Dog]
@Produces
@Service({BassetHound.class, Dog.class})
Spot getSpot() {
 return new Spot();
}

the returned interface In the case of a producer method, if the return type is an interface,
this type is used as the service type.

// service types = [Dog]
@Produces
@Service
Dog getDog() {
 return new Spot();
}

all directly implemented inter-
faces of returned type

In the case of a producer method, if the return type is a concrete
type, use any interfaces directly implemented by the concrete
type.

// service types = [Hound]
@Produces
@Service
Buddy getBuddy() {
 return new Buddy();
}

the return type In the case of a producer method, if the return type is a concrete
type which does not directly implement any interfaces, use the
concrete type.

class Fido {}

// service types = [Fido]
@Produces
@Service
Fido getFido() {
 return new Fido();
}

CDI Integration Specification Version 1.0 Providing Services

OSGi Enterprise Release 7 Page 869

Case Description
the field interface In the case of a producer field, if the field type is an interface this

type is used as the service type.

// service types = [Dog]
@Produces
@Service
Dog dog = new Spot();

all directly implemented inter-
faces of the field type

In the case of a producer field, if the field type is a concrete type
use any interfaces directly implemented by the concrete type.

// service types = [Hound]
@Produces
@Service
Buddy buddy = new Buddy();

the field type In the case of a producer field if the field type is a concrete type
which does not directly implement any interfaces use the con-
crete type.

class Fido {}

// service types = [Fido]
@Produces
@Service
Fido fido = new Fido();

152.10.4 @Service Type Restrictions
Regardless of the source, no service type may be a generic type. A generic type found in the set of ser-
vice types will result in a definition error.

Service types must be a subset of bean types, including types restricted by the use of the
@javax.enterpr ise. inject .Typed annotation. This restriction is required to support CDI features like
Decorators and Interceptors.

Using the @Service annotation on injection points will result in a definition error.

152.10.5 Service Properties
The main source of service properties is Component Properties on page 861.

When CCR registers a service on behalf of a component instance, CCR must follow the recommen-
dations in Property Propagation on page 93 and must not propagate private configuration properties.
That is, the service properties of the registered service must be all the component properties of the
component configuration whose property names do not start with full stop ('.' \u002E).

Component properties whose names start with full stop are available to the component instance
but are not available as service properties of the registered service.

152.10.5.1 Container component service properties

In addition to component properties, services provided by the container component obtain addi-
tional service properties from Bean Property Types on the bean or producer providing the service.
See Bean Property Types on page 863.

Providing Services CDI Integration Specification Version 1.0

Page 870 OSGi Enterprise Release 7

152.10.6 Service Scope
Service scope represents the scope of the registered service object. There are three scopes supported
by the OSGi Framework. Each can be represented in CCR.

• Bundle scope - In order to specify a bundle scoped service, the @ServiceInstance annotation is
specified on the bean class, producer method or producer field with the value BUNDLE.

@Service
@ServiceInstance(ServiceScope.BUNDLE)
class Fido implements Hound {}

• Prototype scope - In order to specify a prototype scoped service, the @ServiceInstance annotation
is specified on the bean class, producer method or producer field with the value PROTOTYPE.
The service object is the contextual instance created by the producer or bean.

@Service
@ServiceInstance(ServiceScope.PROTOTYPE)
class Fido implements Hound {}

• Singleton scope - Unless otherwise specified, services are singleton scoped but the scope can be
explicitly expressed if the @ServiceInstance annotation is specified on the bean class, produc-
er method or producer field with the value SINGLETON. The service object is the contextual in-
stance created by the producer or bean.

@Service
@ServiceInstance(ServiceScope.SINGLETON) // equal to omitting the annotation
class Fido implements Hound {}

152.10.7 Container Component Services
Beans, producer methods and producer fields that are @Applicat ionScoped result in contextual in-
stances that are shared throughout the CDI container. Therefore they can only provide singleton
scoped services. Each such case results in a single service registration. The service object is the con-
textual instance created by the producer or bean. However, @Applicat ionScoped beans can imple-
ment org.osgi .f ramework.ServiceFactory or org.osgi .f ramework.PrototypeServiceFactory in order
to provide bundle or prototype scoped service objects.

Beans, producer methods and producer fields that are @Dependent result in contextual instances
which are never shared in that a new contextual instance is created for each caller. Therefore they
can provide services of all scopes as outlined in Service Scope on page 870. The service object is a
contextual instance created by the producer or bean on each request for a service object.

The use of @ServiceInstance on @Applicat ionScoped beans will result in a definition error.

152.10.8 Single Component Services
Single components can only apply the @Service annotation to beans marked with @SingleCom-
ponent .

A single component providing a service results in a single service registration.

Service objects provided by the service registration are defined by the creation of contexts. In all cas-
es, the service object provided is the contextual instance of the bean marked @SingleComponent
obtained from the context.

CDI Integration Specification Version 1.0 Component Property Injection Points

OSGi Enterprise Release 7 Page 871

152.10.9 Factory Component Services
Factory components can only apply the @Service annotation to beans marked with @Facto-
ryComponent .

A factory component providing a service results in one service registration for every factory config-
uration object associated with the factory PID of the component.

Service objects provided by the service registration are defined by the creation of contexts. In all cas-
es, the service object provided is the contextual instance of the bean marked @FactoryComponent
obtained from the context.

152.11 Component Property Injection Points
A bean specifies injection of component properties using the @ComponentProperties annotation at
an injection point.

The type typically associated with component properties is java.ut i l .Map<Str ing, Object> :

@Inject
@ComponentProperties
Map<String, Object> componentProperties;

However, component properties can be automatically converted to any type compatible with the
conversions defined by the Converter Specification on page 985.

Given the following configuration properties:

pool.name (String)
min.threads (int)
max.threads (int)
keep.alive.timeout (long)

The following example demonstrates conversion of component properties into a type safe object
with defaults.

public static @interface PoolConfig {
 String pool_name();
 int min_threads() default 2;
 int max_threads() default 10;
 long keep_alive_timeout() default 500;
}

@Inject
@ComponentProperties
PoolConfig poolConfig;

Using @Reference in conjunction with @ComponentPropert ies will result in a definition error.

152.11.1 Coordinator Support
The Coordinator Service Specification on page 499 defines a mechanism for multiple parties to collab-
orate on a common task without a priori knowledge of who will collaborate in that task. Like Config-
uration Admin Service Specification on page 85, CCR must participate in such scenarios to coordinate
with provisioning or configuration tasks.

If configuration changes occur and an implicit coordination exists, CCR must delay taking action
on the configuration changes until the coordination terminates, regardless of whether the coordina-
tion fails or terminates regularly.

Reference Injection Points CDI Integration Specification Version 1.0

Page 872 OSGi Enterprise Release 7

152.12 Reference Injection Points
Any injection point annotated with @Reference declares a service dependency.

152.12.1 Reference injection point types
Injection points specifying @Reference are limited to one of the following injection point types as rep-
resentations of the dependent service(s). Given that type S is a type under which a service is pub-
lished, the following injection point types are supported:

Table 152.6 Reference injection point types

Injection Point Type Description
S // S = Dog

@Inject
@Reference
Dog dog;

org.osgi .f ramework.ServiceReference<S> // S = Dog
@Inject
@Reference
ServiceReference<Dog> dog;

java.ut i l .Map<Str ing, ? | Object> In this case the @Reference annotation must
specify service type S using it's value property.

// S = Dog
@Inject
@Reference(Dog.class)
Map<String, Object> dogProperties;

Failure to specify the type in this scenario results
in a definition error.

java.ut i l .Map.Entry<Map<Str ing, ? | Object>, S> Represents a tuple containing the map of service
properties as the key and the service instance as
the value.

// S = Dog
@Inject
@Reference
Map.Entry<Map<String, ?>, Dog> dog;

BeanServiceObjects<S> // S = Dog
@Inject
@Reference
BeanServiceObjects<Dog> dogs;

S must be a concrete service type. The OSGi service registry does not support generics, therefore S
cannot specify a generic type.

A definition error will result if any other types are used with injection points marked @Reference
unless otherwise specified by this specification.

CDI Integration Specification Version 1.0 Reference Injection Points

OSGi Enterprise Release 7 Page 873

152.12.2 Reference Service scope
For a bound service, CCR must get the service object from the OSGi Framework's service registry us-
ing the getService method on the component's Bundle Context. If the service object for a bound ser-
vice has been obtained and the service becomes unbound, CCR must unget the service object using
the ungetService method on the component's Bundle Context and discard all references to the ser-
vice object. This ensures that the bundle will only be exposed to a single instance of the service ob-
ject at any given time.

For a bound service of a reference where the PrototypeRequired annotation was specified, only ser-
vices registered with prototype service scope can be considered as target services. This ensures that
each component instance can be exposed to a single, distinct instance of the service object. Using
@PrototypeRequired effectively adds service.scope=prototype to the target property of the refer-
ence. A service that does not use prototype service scope cannot be used as a bound service for a ref-
erence with @PrototypeRequired since the service cannot provide a distinct service object for each
component instance.

@Inject
@PrototypeRequired
@Reference
Hound hound;

152.12.3 Bean Service Objects
A Bean Service Objects for the bound service, can be used to obtain the actual service object or ob-
jects. This approach is useful when the referenced service has prototype service scope and the com-
ponent instance needs multiple service objects for the service.

@Inject
@PrototypeRequired
@Reference
BeanServiceObjects<Hound> hounds;

The @PrototypeRequired annotation is optional. See Service Scope on page 870.

152.12.4 Reference Greediness
References are greedy by default which means that higher ranking matches are immediately bound.
Use the @Reluctant annotation to indicate that higher ranking matches should not bind once the
reference has been resolved. Note that in the case of static references the component will be de-
stroyed and recreated in order to immediately apply the better match. In the case of the container
component, this will result in the entire CDI container being destroyed and recreated.

A static, greedy reference:

@Inject
@Reference
Hound hound;

A static, reluctant reference:

@Inject
@Reluctant
@Reference
Hound hound;

Reference Injection Points CDI Integration Specification Version 1.0

Page 874 OSGi Enterprise Release 7

152.12.5 Service Type
As demonstrated earlier, it's possible to specify the service type of the reference by using
@Reference.value() property. This supports use cases like java.ut i l .Map<Str ing, ?> where the ser-
vice type cannot be determined.

@Inject
@Reference(Hound.class)
Map<String, Object> properties;

This makes it possible to target a more specific service type. A reference injection point whose type
is Dog may target a service of type BassetHound :

@Inject
@Reference(BassetHound.class)
Dog dog;

The injection point type must be compatible with the service type. Otherwise a definition error will
result.

152.12.6 Any Service Type
A special exception to the service type rules is defined when the special marker type Reference.Any
is set as @Reference.value . This allows for any service to match the reference. However, the follow-
ing criteria must be satisfied:

1. @Reference.value must specify the single value Reference.Any.class
2. @Reference.target must specify a valid, non-empty filter value
3. The injection point service type must be java. lang.Object . For example:

@Inject
@Reference(value = Reference.Any.class, target = "(foo=bar)")
Optional<Object> match;

or

@Inject
@Reference(value = Reference.Any.class, target = "(foo=bar)")
List<Object> matches;

Note that there may be performance impacts resulting from matching too broad a set of services.
By definition the above list example with a target filter equal to (service. id=*) is perfectly valid
but will match all services in the registry which will likely neither be very useful nor perfor-
mant.

152.12.7 Target Filter
Target services for a reference are constrained by the reference's service type and the target property.
A default target filter can be applied by specifying @Reference.target() property.

For example, a component wants to track all Dog services that have a service property
service.vendor whose value is equal to Acme, Ltd. :

@Inject
@Reference(target = "(service.vendor=Acme, Ltd.)")
Collection<Dog> dogs;

CDI Integration Specification Version 1.0 Reference Injection Points

OSGi Enterprise Release 7 Page 875

152.12.7.1 Bean Property Types as target filters

Annotations meta-annotated with BeanPropertyType appearing on an injection point in conjunc-
tion with the @Reference annotation will further enhance the target filter as described by the rules
for converting Bean Property Types on page 863 to a map of properties assembled into a filter
String according to the following steps:

1. any key=array pairs are flattened into many key=scalar pairs, one pair for each array value
2. format every key=scalar pair using the production

pair ::= '(' pairKey '=' pairScalar ')'
pairKey ::= < key >
pairScalar ::= < scalar >

If scalar must contain one of the characters reverse solidus (' \ ' \u005C), asterisk ('* ' \u002A),
parentheses open (' (' \u0028) or parentheses close (') ' \u0029), then these characters must be
preceded with the reverse solidus (' \ ' \u005C) character. Spaces are significant in scalar . Space
characters are defined by Character. isWhiteSpace()

3. concatenate all results of step 2. into a single String
4. append the value of @Reference.target() to the result of step 3.
5. format the result of step 4. using the production

target ::= '(' '&' step4 ')'
step4 ::= < result of step 4. >

Given the following example:

enum Tricks {
 SIT, STAND, SHAKE_PAW, TREAT_ON_NOSE
}
@Repeatable(...)
@BeanPropertyType
@interface Trick {
 Tricks value();
}

@Inject
@Reference(target = "(service.vendor=Acme Kennels, Ltd.)")
@Trick(SIT)
@Trick(TREAT_ON_NOSE)
Dog dog;

The target filter will be:

(&(trick=sit)(trick=treat_on_nose)(service.vendor=Acme Kennels, Ltd.))

152.12.8 Reference Names
The @javax. inject .Named annotation may be used to specify a name to serve as the base of the com-
ponent properties used to configure the reference. If not specified the name of the reference will be
derived from the fully qualified class name of the class defining the reference injection point and
the reference injection point.

The production for generated names is:

name ::= prefix '.' suffix

Reference Injection Points CDI Integration Specification Version 1.0

Page 876 OSGi Enterprise Release 7

prefix ::= named | qname
named ::= < @Named.value >
suffix ::= field | ctor | method
field ::= < name of field >
ctor ::= 'new' pIndex
method ::= mName pIndex
mName ::= < method name >
pIndex ::= < index of @Reference parameter >

It is a definition error to have two references with the same name.

It is a definition error to specify the @javax. inject .Named annotation with no value.

In the following example the reference name is example.F ido.mate and the target and
minimum cardinality properties of the reference will be example.F ido.mate.target and
example.F ido.mate.cardinal ity.minimum respectively:

package example;

@SingleComponent
class Fido {
 @Inject
 @Reference
 Dog mate;
}

In the following example the reference name is foo and the target and minimum cardinality proper-
ties of the reference will be foo.target and foo.cardinal ity.minimum respectively:

package example;

@SingleComponent
class Fido {
 @Inject
 @Named("foo")
 @Reference
 Dog mate;
}

152.12.9 Static References
Static references are the most common form of reference injection point. Static means that their
values do not change during the lifetime of the component instance which means that in order to
change the service bound to the reference injection point, the entire component instance must be
destroyed and recreated.

The following are more examples of static reference injection points:

@Inject
@Reference
Dog dog;

@Inject
@Reference(BassetHound.class)
Map<String, Object> props;

@Inject
void setHounds(@Reference BeanServiceObjects<Hound> hounds) {...}

CDI Integration Specification Version 1.0 Reference Injection Points

OSGi Enterprise Release 7 Page 877

@Inject
@Reference
ServiceReference<Spot> spot;

Static reference injection points are mandatory by default. They require a number of services equal
to or greater than their minimum cardinality to be available in order for the component instance to
resolve.

152.12.10 Static Optional References
Optional reference injection points allow a component instance to become resolved when fewer
matching services are found than required by the reference's minimum cardinality. The injection
point type must be java.ut i l .Optional<R> where R is one of the supported reference injection point
types.

The following are examples of static optional references:

@Inject
@Reference
Optional<Dog> dog;

@Inject
@Reference(BassetHound.class)
Optional<Map<String, Object>> props;

@Inject
void setHounds(@Reference Optional<BeanServiceObjects<Hound>> hounds) {...}

@Inject
@Reference
Optional<ServiceReference<Spot>> spot;

As with other static references, static means that their values do not change during the lifetime of
the component instance which means that in order to change the service bound to the reference in-
jection point, the entire component instance must be destroyed and recreated.

152.12.11 Static Multi-cardinality References
Multi-cardinality references are specified using an injection point type of java.ut i l .Col lect ion<R> , or
java.ut i l .L ist<R> where R is one of the supported reference injection point types. Repeating the static
examples as multi-cardinality references, we get:

@Inject
@Reference
List<Dog> dogs;

@Inject
@Reference(BassetHound.class)
Collection<Map<String, Object>> props;

@Inject
void setHounds(@Reference List<BeanServiceObjects<Hound>> hounds) {...}

@Inject
@Reference
Collection<ServiceReference<Spot>> spots;

Reference Injection Points CDI Integration Specification Version 1.0

Page 878 OSGi Enterprise Release 7

Multi-cardinality references are naturally optional since the default value of the minimum cardinali-
ty property is 0 . See Minimum Cardinality Property on page 862.

As with other static references, static means that their values do not change during the lifetime of
the component instance which means that in order to change the services bound to the reference in-
jection point, the entire component instance must be destroyed and recreated.

152.12.12 Default Minimum Cardinality
As stated in Minimum Cardinality Property on page 862 every reference has a configurable refer-
ence property name.cardinal ity.minimum . However, there are cases where it is appropriate to spec-
ify a non-zero default minimum cardinality. The MinimumCardinality annotation provides this
functionality.

The following is an example of setting the minimum cardinality:

@Inject
@MinimumCardinality(3)
@Reference
List<Dog> guards;

The value must be a positive integer.

Specifying this annotation on a unary reference results in a definition error.

152.12.13 Dynamic References
Dynamic reference injection points are specified using an injection point type of
javax. inject .Provider<R> where R is one of the supported reference injection point types,
java.ut i l .Optional<R> , java.ut i l .Col lect ion<R> , or java.ut i l .L ist<R> .

The following are examples of dynamic references:

@Inject
@Reference
Provider<Dog> dog;

@Inject
@Reference(BassetHound.class)
Provider<Collection<Map<String, Object>>> props;

@Inject
void setHounds(
 @Reference
 Provider<List<BeanServiceObjects<Hound>>> hounds
) {...}

@Inject
@Reference
Provider<Optional<ServiceReference<Spot>>> spots;

The evaluation of javax. inject .Provider.get() is performed such that each invocation may produce a
different result except for returning nul l .

Specifying the @MinimumCardinal ity annotation with a non-zero value on a dynamic, multi-cardi-
nality reference results in the component not being resolved until the number of matching services
becomes equal to or greater than the specified minimum cardinality.

CDI Integration Specification Version 1.0 Interacting with Service Events

OSGi Enterprise Release 7 Page 879

152.13 Interacting with Service Events
It is often necessary to observe the addition, modification and removal of services from the service
registry. This specification provides 3 special bean types, referred to as binder types, which make it
possible to bind methods to coordinate across the service events of set of services. The type argu-
ment S indicates the service type expected unless further reduced as described by Service Type on
page 874. Bean Property Types may also be used to expand the target filter as defined in Bean Prop-
erty Types as target filters on page 875.

• BindService<S> - The BindService bean allows for coordination of service events when the ser-
vice instance is required.

• BindBeanServiceObjects<S> - The BindBeanServiceObjects bean allows for coordination of ser-
vice events when bean service objects are required.

• BindServiceReference<S> - The BindServiceReference bean allows for coordination of service
events when the service reference is required.

These bean types declare a builder style interface for binding the necessary methods to coordinate
the events. The following example binds service event methods over the set of services whose type
is Dog and having the service property service.vendor=Acme Inc. :

@Inject
@ServiceVendor("Acme Inc.")
void bindDogs(BindService<Dog> binder) {
 binder.
 adding(this::adding).
 modified(this::modified).
 removed(this::removed).
 bind();
}

void adding(Dog dog, Map<String,Object> properties) {...}
void modified(Dog dog, Map<String,Object> properties) {...}
void removed(Dog dog, Map<String,Object> properties) {...}

The terminal bind() method must be called to inform CCR that the bind process is complete. Bind-
ing a subset of methods is allowed. Only the last bind method specified for any given service event
will be used. For example, given the following invocation:

@Inject
void bindDogs(BindService<Dog> binder) {
 binder.
 adding(this::addingA).
 adding(this::addingB).
 bind();
}

only the method addingB will be used.

An example of a binder type injected into a field:

@Inject
void bindDogs(BindBeanServiceObjects<Dog> binder) {
 binder.
 adding(this::adding).
 removed(this::removed).

CDI Component Runtime CDI Integration Specification Version 1.0

Page 880 OSGi Enterprise Release 7

 bind();
}

void adding(BeanServiceObjects<Dog> dogs) {...}
void removed(BeanServiceObjects<Dog> dogs) {...}

Binder objects are @Dependent objects and are not thread safe. They are intended to be used during
the creation phase of component beans before the end of the [10] @PostConstruct method. Executing
any binder object method after this time will result in unspecified behavior.

152.14 CDI Component Runtime
CDI Component Runtime (CCR) is the actor that manages the CDI containers and their life cycle
and allows for their introspection.

152.14.1 Relationship to the OSGi Framework
CCR must have access to the Bundle Context of any CDI bundle. CCR needs access to the Bundle
Context for the following reasons:

• To be able to register and get services on behalf of a CDI bundle.
• To interact with the Configuration Admin on behalf of a CDI bundle.
• To interact with the Log Service on behalf of a CDI bundle.
• To make the Bundle Context available for injection in the CDI bundle's beans.

CCR should use the Bundle.getBundleContext() method to obtain the Bundle Context reference.

152.14.2 Injecting the Bundle Context
The Bundle Context of the CDI bundle can be injected. The injection point must be of type
org.osgi .f ramework.BundleContext and must not specify any qualifiers.

@Inject
BundleContext bundleContext;

152.14.3 Starting and Stopping CCR
When CCR is implemented as a bundle, any containers activated by CCR must be deactivated when
the CCR bundle is stopped. When the CCR bundle is started, it must process the CDI metadata de-
clared in CDI bundles. This includes bundles which are started and are awaiting lazy activation.

152.14.4 Logging Messages
When CCR must log a message to the Log Service, it must use a Logger named using the
component's name and associated with the CDI bundle. To obtain the Logger object, CCR must call
the LoggerFactory.getLogger(Bundle bundle, Str ing name, Class loggerType) method passing the
CDI bundle as the first argument and the name of the component as the second argument. If CCR
cannot know the component name, because the error is not associated with a component or the er-
ror occurred before the component template is processed, then CCR must use the bundle's Root Log-
ger, that is, the Logger named ROOT .

152.14.5 Bundle Activator Interaction
A CDI bundle may also declare a Bundle Activator. Such a bundle may also be marked for lazy ac-
tivation. Since CDI containers are activated by CCR and Bundle Activators are called by the OSGi

CDI Integration Specification Version 1.0 CDI Component Runtime

OSGi Enterprise Release 7 Page 881

Framework, a bundle using both a CDI container and a Bundle Activator must take care. The Bundle
Activator's start method must not rely upon CCR having activated the bundle's CDI container. How-
ever, the CDI container can rely upon the Bundle Activator's start method having been called. That
is, there is a happens-before relationship between the Bundle Activator's start method being run and
the CDI container being activated.

152.14.6 Introspection
CCR provides an introspection API for examining the runtime state of the CDI bundles processed
by CCR. CCR must register a CDIComponentRuntime service upon startup. The CDI Component
Runtime service provides methods to inspect CDI containers. The service uses Data Transfer Objects
(DTO) as arguments and return values. The rules for Data Transfer Objects are specified in OSGi Core
Release 7 on page 20.

The CDI Component Runtime service provides the following methods.

• getContainerDTOs(Bundle...) - For each specified bundle, if the bundle is active and processed by
CCR, and the bundle is a valid CDI bundle, the returned collection will contain a ContainerDTO
describing the CDI container.

• getContainerTemplateDTO(Bundle) - If the specified bundle is active and processed by CCR, and
the bundle is a valid CDI bundle, the method will return a ContainerTemplateDTO describing
the template metadata of the CDI container.

The runtime state of the containers can change at any time. So any information returned by these
methods only provides a snapshot of the state at the time of the method call.

There are a number of DTOs available via the CDI Component Runtime service.

CDI Component Runtime CDI Integration Specification Version 1.0

Page 882 OSGi Enterprise Release 7

Figure 152.3 CDI Component Runtime DTOs

0..n

0..n

0..n

1

(*)

(**)

0..n

0..n

0..1

Cdi Component
Runtime

Container DTO

Extension DTO

Bundle DTO

Component DTO

Component
Instance DTO

Configuration DTO

Reference DTO

Activation DTO

Service
Reference DTO

0..n

0..n

0..n

1..n

0..n

0..n

1

1

1

1

1

1

Container
Template DTO

Extension
Template DTO

Component
Template DTO

Configuration
Template DTO

Reference
Template DTO

Activation
Template DTO

 (*) CONTAINER = 1, SINGLE = 0..1, FACTORY = 0..n

 (**) CONTAINER = 0..n, SINGLE = 0..n, FACTORY = 1..n

The ContainerDTO specifies a changeCount field of type long . Whenever the DTOs bellow the Con-
tainerDTO change, CCR will increment the ContainerDTO 's changeCount. Whenever any Contain-
erDTO changes, CCR will update the service.changecount service property of the CDIComponen-
tRuntime service. CCR may use a single update to the service.changecount property to reflect up-
dates in multiple ContainerDTOs . See org.osgi .f ramework.Constants.SERVICE_CHANGECOUNT in
OSGi Core Release 7.

152.14.7 Logger Support
CCR provides special support for logging via the Log Service specification. CCR must provide @De-
pendent objects of type org.osgi .service. log.Logger and org.osgi .service. log.FormatterLogger .

To obtain the Logger object for injection, CCR must call the LoggerFactory.getLogger(Bundle
bundle, Str ing name, Class loggerType) method passing the bundle declaring the compo-
nent as the first argument, the fully qualified name of the injection point's declaring class

CDI Integration Specification Version 1.0 Capabilities

OSGi Enterprise Release 7 Page 883

as the second argument, and the type of the injection point; org.osgi .service. log.Logger or
org.osgi .service. log.FormatterLogger , as the third argument. The typical usage is:

@Inject
Logger logger;

@PostConstruct
void init() {
 logger.debug("Initialized");
}

Another example using method injection along with component properties (coerced to Config):

public static @interface Config {
 String component_name();
}

@Inject
void setup(@ComponentProperties Config config, Logger logger) {
 logger.trace(“Activating component {}”, config.component_name());
}

152.14.8 Disabling Components
All components in a CDI bundle are enabled by default. However, any component can be disabled
through configuration using the single configuration object associated with the container PID by
defining a property using the component name suffixed with .enabled . The value's type is boolean .

enabled ::= compName '.enabled'
compName ::= < component name >

The following is an example disabling a component whose name is foo :

foo.enabled=false

The container component can be disabled using it's component name, which is the container id. As a
result of disabling the container component, all components in the CDI bundle are also disabled.

152.14.9 Container Component and Service Cycles
There is no special support to allow service cycles within the container component. CDI provides ex-
isting mechanisms for wiring and collaborating within the CDI container. However, if an container
component defines a dynamic, optional reference, then a service subsequently provided by the con-
tainer component may satisfy the reference at some point when the container component is satis-
fied. However, if the reference is static and mandatory and the only potentially matching service is
one provided by the container component itself, then the container component would wait forever
for a service that will never arrive. This is simple design error. The information about unsatisfied ref-
erences is available from the CDIComponentRuntime service.

152.15 Capabilities
CCR must provide the following capabilities.

A capability in the osgi .extender namespace declaring an extender with the name osgi.cdi. In addi-
tion to the specification packages, this capability must declare a uses constraint for the javax. inject
package. For example:

Provide-Capability:

Capabilities CDI Integration Specification Version 1.0

Page 884 OSGi Enterprise Release 7

 osgi.extender;
 osgi.extender="osgi.cdi";
 version:Version="1.0";
 uses:="javax.inject, org.osgi.service.cdi, org.osgi.service.cdi.annotations,
 org.osgi.service.cdi.reference, org.osgi.service.cdi.runtime,
 org.osgi.service.cdi.runtime.dto,
 org.osgi.service.cdi.runtime.dto.template"

This capability must follow the rules defined for the osgi.extender Namespace on page 631.

A CDI bundle must require the osgi .extender capability from CCR. This requirement will wire the
bundle to the CCR implementation and ensure that CCR is using the same org.osgi .service.cdi .*
packages as the bundle if the bundle uses those packages.

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"

CCR must only process a CDI bundle if the bundle's wiring has a required wire for at least one
osgi .extender capability with the name osgi .cdi and the first of these required wires is wired to CCR.

When using the annotations Bean or Beans, the above requirement is automatically added to the
manifest when the code is processed by a supporting build tool capable of interpreting Bundle Anno-
tations defined in OSGi Core Release 7 on page 20.

The requirement may be specified directly on any class or package in the CDI bundle by using the
RequireCDIExtender annotation when the code is processed by a supporting build tool capable of
interpreting Bundle Annotations defined in OSGi Core Release 7 on page 20.

Specifying CDI bean descriptors - As specified in Bean Descriptors on page 885 a CDI bundle
must declare all CDI bean descriptors CCR is expected to operate on. This is done by adding the at-
tribute descr iptor , of type List<Str ing> , to the requirement.

Specifying the list of bean classes - As specified in Bean Discovery on page 885 a CDI bundle
must declare all bean classes CCR is expected to operate on. This is done by adding the attribute
beans , of type List<Str ing> , to the requirement.

A capability in the osgi . implementation namespace declaring an implementation with the name
osgi.cdi. In addition to the specification packages, this capability must also declare a uses constraint
for the javax.enterpr ise.* packages. For example:

Provide-Capability:
 osgi.implementation;
 osgi.implementation="osgi.cdi";
 version:Version="1.0";
 uses:="javax.enterprise.context, javax.enterprise.context.control,
 javax.enterprise.context.spi, javax.enterprise.event,
 javax.enterprise.inject, javax.enterprise.inject.literal,
 javax.enterprise.inject.spi, javax.enterprise.inject.spi.configurator,
 javax.enterprise.util, org.osgi.service.cdi,
 org.osgi.service.cdi.annotations,
 org.osgi.service.cdi.reference, org.osgi.service.cdi.runtime,
 org.osgi.service.cdi.runtime.dto,
 org.osgi.service.cdi.runtime.dto.template"

This capability must follow the rules defined for the osgi.implementation Namespace on page 635.

A capability in the osgi .service namespace representing the CDIComponentRuntime service. This
capability must also declare a uses constraint for the org.osgi .service.cdi . runtime package. For ex-
ample:

CDI Integration Specification Version 1.0 Relationship to CDI features

OSGi Enterprise Release 7 Page 885

Provide-Capability:
 osgi.service;
 objectClass:List<String>=
 "org.osgi.service.cdi.runtime.CDIComponentRuntime";
 uses:="org.osgi.service.cdi.runtime"

This capability must follow the rules defined for the osgi.service Namespace on page 635.

A capability in the osgi .service namespace for every service declared by the metadata in the CDI
bundle.

152.16 Relationship to CDI features
CDI has many features which may occasionally interact with the OSGi CDI integrations defined by
this specification.

152.16.1 Bean Descriptors
The [6] Packaging and deployment chapter of the CDI specification defines XML descriptors which are
used to control the CDI container. This specification expects that these descriptors be declared using
the osgi .cdi extender requirement attribute descr iptor of type List<Str ing> . For example:

Require-Capability:
 osgi.extender;
 filter:=”(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0.0)))”;
 descriptor:List<String>="META-INF/beans.xml"

If the attribute is not specified the default value of META-INF/beans.xml is used.

CCR must find descriptors by calling Bundle.getResources(Str ing) for each specified value. Note
that the accepted syntax for the values is the same as for java. lang.ClassLoader.getResources . See
osgi .cdi extender capability.

152.16.2 Bean Discovery
The CDI specification defines 3 bean discover modes which perform runtime class discovery:

• all - All classes in the jar are passed to the CDI container and processed.
• none - No classes in the jar are passed to the CDI container. It is assumed however that portable ex-

tensions may yet provide beans.
• annotated (default) - Only classes matching the definition of annotated beans as defined by the [4]

Default bean discovery mode are passed to the CDI container and processed.

This specification avoids runtime class analysis concern by ignoring the bean discovery mode speci-
fied or implied by the descriptors, requiring bean classes to be pre-calculated at build time such that
the CDI container receives a concrete list of classes to process.

It is expected that the aforementioned bean discover modes be implemented in build tooling and be
performed at build time.

A CDI bundle must specify the list of classes to process using the osgi .cdi extender requirement at-
tribute beans of type List<Str ing> . For example:

Require-Capability:
 osgi.extender;
 filter:=”(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0.0)))”;
 beans:List<String>="org.foo.Bar, org.foo.baz.Fum"

Relationship to CDI features CDI Integration Specification Version 1.0

Page 886 OSGi Enterprise Release 7

See osgi .cdi extender capability.

152.16.2.1 Build tool support

The bean descriptors specified by the CDI specification allow for narrowing the range of processed
classes by defining [5] Exclude f i l ters . While these filters are still considered, they are only applied
over the concrete list of classes passed from the beans attribute.

Build tools may opt to implement bean discover modes. Implementing the discovery mode all sim-
ply requires placing the names of all classes found in the bundle in the beans attribute. Implement-
ing the discovery mode annotated involves collecting the names of all classes matching the defini-
tion of annotated beans as defined by the [4] Default bean discovery mode and placing those in the
beans attribute.

Another option is to use the CLASS retention annotation defined by this specification.

The CLASS retention annotation Bean may be applied to a class to indicate to supporting build tools
it must be included in the beans list.

The CLASS retention annotation Beans may be applied to a package to indicate to supporting build
tools that all classes in the package must be included in the beans list.

Specifying a value indicates to supporting build tools that the specified classes in the package must
be included in the beans list.

152.16.3 Portable Extensions
CDI Portable Extensions use CDI's SPI which provides a powerful mechanism for extending the base
functionality of CDI. Portable extensions may add, modify or read bean and bean class metadata, de-
fine custom contexts, and much more. Through the SPI a portable extension can participate in all
aspects of the CDI Container's life cycle.

Portable extensions must be provided as OSGi services using the interface
javax.enterpr ise. inject .spi .Extension . Portable extension services must specify the service property
osgi .cdi .extension whose value is a name identifying the functionality provided by the portable ex-
tension.

Table 152.7 Portable Extension Service Properties

Service Property Type Description
osgi .cdi .extension String The name of the Portable Extension

For example, a portable extension service that provides an implementation of the [14] Java Transac-
tion API should specify the value of it's osgi .cdi .extension service property using the [15] Portable
Java Contract name specified for it, which is JavaJTA .

Portable Extension bundles must define a capability using the namespace osgi .cdi .extension
having an attribute osgi .cdi .extension whose value is the same as the name specified in the
osgi .cdi .extension service property of the portable extension service. The capability must also spec-
ify a version attribute of type Version . The capability must also specify a uses directive listing all of
the Java packages provided as part of the Portable Extension's API. If the portable extension imple-
ments an API specified as a Portable Java Contract the uses list should match the Portable Java Con-
tract.

Provide-Capability:
 osgi.cdi.extension;
 osgi.cdi.extension=JavaJTA;
 version:Version="1.2";
 uses:="javax.transaction,javax.transaction.xa"

CDI Integration Specification Version 1.0 Relationship to CDI features

OSGi Enterprise Release 7 Page 887

CDI bundles express a dependency on a portable extension by specifying a requirement in the
osgi .cdi .extension namespace whose f i l ter matches a portable extension capability. For example:

Require-Capability:
 osgi.cdi.extension;
 filter:=”(&(osgi.cdi.extension=JavaJTA)(version=1.2))”;

See osgi .cdi extender capability.

A Portable extension bundle must require the osgi . implementation capability from CCR. This re-
quirement will wire the extension bundle to the CCR implementation and ensure that CCR is using
the same javax.enterpr ise.* packages as the portable extension bundle.

Require-Capability:
 osgi.implementation;
 filter:="(&(osgi.implementation=osgi.cdi)(version>=1.0)(!(version>=2.0)))"

The requirement may be specified directly on any class in the portable extension bundle by using
the RequireCDIImplementation annotation when the code is processed by tooling capable of inter-
preting Bundle Annotations defined in OSGi Core Release 7 on page 20.

152.16.3.1 Portable Extension Services and Beans

Portable extension bundles intending to provide additional beans must do so programmatically us-
ing the SPI. Bean descriptors in the bundle providing the portable extension service are not visible
to the CDI container and therefore play no role in bean discovery.

152.16.3.2 Embedded Portable Extension

Portable extensions which are embedded in the CDI bundle are discoverable through the CDI speci-
fied service loader mechanism using the class loader of the CDI bundle.

152.16.4 Bean Manager
When the container component is satisfied CCR must published the CDI container's
javax.enterpr ise. inject .spi .BeanManager to the service registry using the ServiceContext of the CDI
bundle accompanied by the following service property:

Table 152.8 Bean Manager Service Properties

Service Property Type Description
osgi .cdi .container. id String The container id. The constant

CDI_CONTAINER_ID_PROPERTY exists
for convenience. See Container Compo-
nent on page 856.

The javax.enterpr ise. inject .spi .BeanManager must be unregistered when the container component
becomes unsatisfied.

152.16.5 Decorators and Interceptors
Decorators and Interceptors are used to wrap contextual instances with proxies to deliver ad-
ditional, targeted functionality. However, these features do not support [3] unproxyable bean
types. Attempting to apply either feature to a bean or producer having an unproxyable bean
type will result in a definition error. This limitation extends to CCR where applicable. The
@javax.enterpr ise. inject .Typed annotation is available to explicitly reduce the set of bean types,
making it possible to use either feature on beans having unproxyable types. Implementations of

Security CDI Integration Specification Version 1.0

Page 888 OSGi Enterprise Release 7

this specification must support the use of @javax.enterpr ise. inject .Typed when publishing ser-
vices.

Service objects are the product of beans and producers. As such they may be targeted by Decora-
tors and/or Interceptors and wrapped by proxies. Therefore the subset of types under which the
service is published must be a subset of the bean types, including further restrictions declared by
@javax.enterpr ise. inject .Typed . Service types not contained in the restricted set of bean types will
result in a definition error. See @Service Type Restrictions on page 869.

152.17 Security
When Java permissions are enabled, CCR must perform the following security procedures.

152.17.1 Service Permissions
CCR dependencies are built upon the existing OSGi service infrastructure. This means that Service
Permission applies regarding the ability to publish, find or bind services.

If a component specifies a service, that component cannot be satisfied unless the CDI bundle has
ServicePermission[<provides>, REGISTER] for each provided interface specified for the service.

If a component's reference does not specify optional cardinality, the reference cannot be satisfied
unless the CDI bundle has ServicePermission[<interface>, GET] for the specified interface in the
reference. If the reference specifies optional cardinality but the component's bundle does not have
ServicePermission[<interface>, GET] for the specified interface in the reference, no service must be
bound for this reference.

CCR must have ServicePermission[CDIComponentRuntime, REGISTER] permission to register the
CDIComponentRuntime service. Administrative bundles wishing to use the CDIComponentRun-
time service must have ServicePermission[CDIComponentRuntime, GET] permission. In general,
this permission should only be granted to administrative bundles to limit access to the potentially
intrusive methods provided by this service.

152.17.2 Required Admin Permission
CCR requires AdminPermission[*,CONTEXT] because it needs access to the CDI bundle's Bundle
Context object with the Bundle.getBundleContext() method.

152.17.3 Using hasPermission
CCR does all publishing, finding and binding of services on behalf of the component using the Bun-
dle Context of the CDI bundle. This means that normal stack-based permission checks will check
CCR and not the component's bundle. Since CCR is registering and getting services on behalf of a
CDI bundle, CCR must call the Bundle.hasPermission method to validate that a CDI bundle has the
necessary permission to register or get a service.

152.17.4 Configuration Multi-Locations and Regions
CCR must ensure a bundle has the proper Configurat ionPermission for a Configuration used by its
components when the Configuration has a multi-location. See Using Multi-Locations on page 103 for
more information on multi-locations and Regions on page 104 for more information on regions. If a
bundle does not have the necessary permission for a multi-location Configuration, then CCR must
act as if the Configuration does not exist for the bundle.

152.18 org.osgi.service.cdi

CDI Integration Specification Version 1.0 org.osgi.service.cdi

OSGi Enterprise Release 7 Page 889

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi ; vers ion="[1.0,1.1)"

152.18.1 Summary

• CDIConstants - Defines CDI constants.
• ComponentType - Define the possible values for ComponentTemplateDTO.type.
• Configurat ionPol icy - Defines the possible values for configuration policy.
• MaximumCardinal ity - Defines the possible values for maximum cardinality of dependencies.
• ReferencePol icy - Defines the possible values of the policy of a reference towards propagating

service changes to the CDI runtime
• ReferencePol icyOption - Defines the possible values of the policy of a satisfied reference to-

wards new matching services appearing.
• ServiceScope - Possible values for ActivationTemplateDTO.scope.

152.18.2 public class CDIConstants
Defines CDI constants.

Provider Type Consumers of this API must not implement this type

152.18.2.1 public static final String CDI_CAPABILITY_NAME = "osgi.cdi"

Capability name for CDI Integration.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

 Require-Capability: osgi.extender; «
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"

152.18.2.2 public static final String CDI_COMPONENT_NAME = "$"

Special string representing the name of a Component.

This string can be used with PID OR factory PID to specify the name of the component.

For example:

 @PID(CDI_COMPONENT_NAME)

152.18.2.3 public static final String CDI_CONTAINER_ID = "container.id"

The attribute of the CDI extender requirement declaring the container's id.

 Require-Capability: osgi.extender; «
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"; «
 container.id="my.container"

152.18.2.4 public static final String CDI_CONTAINER_ID_PROPERTY = "osgi.cdi.container.id"

The key used for the container id service property in services provided by CCR.

org.osgi.service.cdi CDI Integration Specification Version 1.0

Page 890 OSGi Enterprise Release 7

152.18.2.5 public static final String CDI_EXTENSION_PROPERTY = "osgi.cdi.extension"

A service property applied to javax.enterpr ise. inject .spi .Extension services, whose value is the
name of the extension.

152.18.2.6 public static final String CDI_SPECIFICATION_VERSION = "1.0.0"

Compile time constant for the Specification Version of CDI Integration.

Used in Version and Requirement annotations. The value of this compile time constant will change
when the specification version of CDI Integration is updated.

152.18.2.7 public static final String REQUIREMENT_BEANS_ATTRIBUTE = "beans"

The 'beans ' attribute on the CDI extender requirement.

The value of this attribute is a list of bean class names that will be processed by CCR. The default
value is an empty list. For example:

 Require-Capability: osgi.extender; «
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"; «
 beans:List<String>="com.acme.Foo,com.acme.bar.Baz"

152.18.2.8 public static final String REQUIREMENT_DESCRIPTOR_ATTRIBUTE = "descriptor"

The 'descr iptor ' attribute on the CDI extender requirement.

The value of this attribute is a list of bean CDI bean descriptor file paths to be searched on the Bun-
dle-ClassPath . For example:

 Require-Capability: osgi.extender; «
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"; «
 descriptor:List<String>="META-INF/beans.xml"

152.18.3 enum ComponentType
Define the possible values for ComponentTemplateDTO.type.

152.18.3.1 CONTAINER

The component is the Container Component.

152.18.3.2 SINGLE

The component is an Single Component.

152.18.3.3 FACTORY

The component is an Factory Component.

152.18.3.4 public static ComponentType valueOf(String name)

152.18.3.5 public static ComponentType[] values()

152.18.4 enum ConfigurationPolicy
Defines the possible values for configuration policy.

152.18.4.1 OPTIONAL

Defines the optional configuration policy.

152.18.4.2 REQUIRED

Defines the required configuration policy.

CDI Integration Specification Version 1.0 org.osgi.service.cdi

OSGi Enterprise Release 7 Page 891

152.18.4.3 public static ConfigurationPolicy valueOf(String name)

152.18.4.4 public static ConfigurationPolicy[] values()

152.18.5 enum MaximumCardinality
Defines the possible values for maximum cardinality of dependencies.

152.18.5.1 ONE

Defines a unary reference.

152.18.5.2 MANY

Defines a plural reference.

152.18.5.3 public static MaximumCardinality fromInt(int value)

value The integer representation of an upper cardinality boundary

□ Resolve an integer to an upper cardinality boundary.

Returns The enum representation of the upper cardinality boundary described by value

152.18.5.4 public int toInt()

□ Convert this upper cardinality boundary to an integer

Returns The integer representation of this upper cardinality boundary

152.18.5.5 public static MaximumCardinality valueOf(String name)

152.18.5.6 public static MaximumCardinality[] values()

152.18.6 enum ReferencePolicy
Defines the possible values of the policy of a reference towards propagating service changes to the
CDI runtime

152.18.6.1 STATIC

Reboot the CDI component that depends on this reference

152.18.6.2 DYNAMIC

Update the CDI reference

152.18.6.3 public static ReferencePolicy valueOf(String name)

152.18.6.4 public static ReferencePolicy[] values()

152.18.7 enum ReferencePolicyOption
Defines the possible values of the policy of a satisfied reference towards new matching services ap-
pearing.

152.18.7.1 GREEDY

Consume the matching service applying it's ReferencePolicy

152.18.7.2 RELUCTANT

Do not consume the matching service

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 892 OSGi Enterprise Release 7

152.18.7.3 public static ReferencePolicyOption valueOf(String name)

152.18.7.4 public static ReferencePolicyOption[] values()

152.18.8 enum ServiceScope
Possible values for ActivationTemplateDTO.scope.

152.18.8.1 SINGLETON

This activation will only ever create one instance

The instance is created after the parent component becomes satisfied and is destroyed before the
parent component becomes unsatisfied.

If ActivationTemplateDTO.serviceClasses is not empty the instance will be registered as an OSGi ser-
vice with service.scope=singleton .

152.18.8.2 BUNDLE

This activation will register an OSGi service with service.scope=bundle .

The service is registered just after all SINGLETON activations are set up and just before all SINGLE-
TON activations are torn down.

The ActivationTemplateDTO.serviceClasses is not empty when this scope is used.

152.18.8.3 PROTOTYPE

This activation will register an OSGi service with service.scope=prototype .

The service is registered just after all SINGLETON activations are set up and just before all SINGLE-
TON activations are torn down.

The ActivationTemplateDTO.serviceClasses is not empty when this scope is used.

152.18.8.4 public static ServiceScope valueOf(String name)

152.18.8.5 public static ServiceScope[] values()

152.19 org.osgi.service.cdi.annotations

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .annotat ions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi .annotat ions; vers ion="[1.0,1.1)"

152.19.1 Summary

• Bean - Annotation used to indicate that build tooling must be included the class in the osgi .cdi
beans list.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.annotations

OSGi Enterprise Release 7 Page 893

• BeanPropertyType - Identify the annotated annotation as a Bean Property Type.
• BeanPropertyType.Literal - Support inline instantiation of the BeanPropertyType annotation.
• Beans - Annotation used to indicate that build tooling must be included the specified classes in

the osgi .cdi beans list.
• ComponentPropert ies - Annotation used with Inject in order to have component properties in-

jected.
• ComponentPropert ies.L iteral - Support inline instantiation of the ComponentProperties anno-

tation.
• ComponentScoped - This scope is used to declare a bean who's lifecycle is determined by the

state of it's OSGi dependencies and the SingleComponent(s) and FactoryComponent(s) that may
reference it through injection.

• ComponentScoped.Literal - Support inline instantiation of the ComponentScoped annotation.
• FactoryComponent - Identifies a factory component.
• FactoryComponent.L iteral - Support inline instantiation of the FactoryComponent annotation.
• MinimumCardinal ity - Annotation used in conjunction with Reference to specify the minimum

cardinality reference property.
• MinimumCardinal ity.L iteral - Support inline instantiation of the MinimumCardinality annota-

tion.
• PID - Annotation used in collaboration with ComponentScoped to specify singleton configura-

tions and their policy.
• PID.Literal - Support inline instantiation of the PID annotation.
• PIDs - Annotation used in conjunction with ComponentScoped in order to associate configura-

tions with the component bean.
• PIDs.L iteral - Support inline instantiation of the PIDs annotation.
• PrototypeRequired - Used with @Reference, BindService, BindBeanServiceObjects and BindSer-

viceReference to indicate that the service must be service.scope=prototype .
• PrototypeRequired.Literal - Support inline instantiation of the PrototypeRequired annotation.
• Reference - Annotation used on injection points informing the CDI container that the injection

should apply a service obtained from the OSGi registry.
• Reference.Any - A marker type used in Reference.value to indicate that a reference injection

point may accept any service type(s).
• Reference.Literal - Support inline instantiation of the Reference annotation.
• Reluctant - Annotation used to indicate that the behavior of the reference should be reluctant.
• Reluctant.L iteral - Support inline instantiation of the Reluctant annotation.
• RequireCDIExtender - This annotation can be used to require the CDI Component Runtime ex-

tender.
• RequireCDIImplementation - This annotation can be used to require the CDI Component Run-

time implementation.
• Service - Annotation used to specify that a bean should be published as a service.
• Service.L iteral - Support inline instantiation of the Service annotation.
• ServiceInstance - Annotation used on beans, observer methods and observer fields to specify the

service scope for the service.
• ServiceInstance.Literal - Support inline instantiation of the ServiceInstance annotation.
• SingleComponent - Identifies a single component.
• SingleComponent.L iteral - Support inline instantiation of the SingleComponent annotation.

152.19.2 @Bean
Annotation used to indicate that build tooling must be included the class in the osgi .cdi beans list.

Retention CLASS

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 894 OSGi Enterprise Release 7

Target TYPE

152.19.3 @BeanPropertyType
Identify the annotated annotation as a Bean Property Type.

Bean Property Type can be applied to beans annotated with SingleComponent, FactoryComponent,
to beans annotated with ApplicationScoped or Dependent where the Service annotation is applied,
to methods and fields marked as Produces where the Service annotation is applied, or to injection
points where the Reference annotation is applied.

See Also Bean Property Types.

Retention RUNTIME

Target ANNOTATION_TYPE

152.19.4 public static final class BeanPropertyType.Literal
extends AnnotationLiteral<BeanPropertyType>
implements BeanPropertyType
Support inline instantiation of the BeanPropertyType annotation.

152.19.4.1 public static final BeanPropertyType INSTANCE

Default instance.

152.19.4.2 public Literal()

152.19.5 @Beans
Annotation used to indicate that build tooling must be included the specified classes in the osgi .cdi
beans list.

Retention CLASS

Target PACKAGE

152.19.5.1 Class<?>[] value default {}

□ Specify the list of classes from the current package. Specifying no value (or an empty array) indi-
cates to include all classes in the package.

152.19.6 @ComponentProperties
Annotation used with Inject in order to have component properties injected.

See "Component Properties".

Retention RUNTIME

Target FIELD , PARAMETER

152.19.7 public static final class ComponentProperties.Literal
extends AnnotationLiteral<ComponentProperties>
implements ComponentProperties
Support inline instantiation of the ComponentProperties annotation.

152.19.7.1 public static final ComponentProperties INSTANCE

Default instance.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.annotations

OSGi Enterprise Release 7 Page 895

152.19.7.2 public Literal()

152.19.8 @ComponentScoped
This scope is used to declare a bean who's lifecycle is determined by the state of it's OSGi dependen-
cies and the SingleComponent(s) and FactoryComponent(s) that may reference it through injection.

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.19.9 public static final class ComponentScoped.Literal
extends AnnotationLiteral<ComponentScoped>
implements ComponentScoped
Support inline instantiation of the ComponentScoped annotation.

152.19.9.1 public static final ComponentScoped INSTANCE

Default instance.

152.19.9.2 public Literal()

152.19.10 @FactoryComponent
Identifies a factory component.

Factory components MUST always be ComponentScoped. Applying any other scope will result in a
definition error.

See Also Factory Component

Retention RUNTIME

Target TYPE

152.19.10.1 String value default "$"

□ The configuration PID for the configuration of this Component.

The value specifies a configuration PID who's configuration properties are available at injection
points in the component.

A special string ("$") can be used to specify the name of the component as a configuration PID. The
CDI_COMPONENT_NAME constant holds this special string.

For example:

 @FactoryPID(CDI_COMPONENT_NAME)

152.19.11 public static final class FactoryComponent.Literal
extends AnnotationLiteral<FactoryComponent>
implements FactoryComponent
Support inline instantiation of the FactoryComponent annotation.

152.19.11.1 public static final FactoryComponent.Literal of(String pid)

pid the factory configuration pid

Returns an instance of FactoryComponent

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 896 OSGi Enterprise Release 7

152.19.11.2 public String value()

152.19.12 @MinimumCardinality
Annotation used in conjunction with Reference to specify the minimum cardinality reference prop-
erty.

Specifying the MinimumCardinality annotation with the value of 0 on a unary reference is a defini-
tion error.

Retention RUNTIME

Target FIELD , PARAMETER

152.19.12.1 int value default 1

□ The minimum cardinality of the reference.

The value must be a positive integer.

For example:

 @MinimumCardinal ity(3)

152.19.13 public static final class MinimumCardinality.Literal
extends AnnotationLiteral<MinimumCardinality>
implements MinimumCardinality
Support inline instantiation of the MinimumCardinality annotation.

152.19.13.1 public static final MinimumCardinality.Literal of(int value)

value the minimum cardinality

Returns an instance of MinimumCardinality

152.19.13.2 public int value()

152.19.14 @PID
Annotation used in collaboration with ComponentScoped to specify singleton configurations and
their policy.

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.19.14.1 String value default "$"

□ The configuration PID for the configuration of this Component.

The value specifies a configuration PID who's configuration properties are available at injection
points in the component.

A special string ("$") can be used to specify the name of the component as a configuration PID. The
CDI_COMPONENT_NAME constant holds this special string.

For example:

 @PID(CDI_COMPONENT_NAME)

CDI Integration Specification Version 1.0 org.osgi.service.cdi.annotations

OSGi Enterprise Release 7 Page 897

152.19.14.2 ConfigurationPolicy policy default OPTIONAL

□ The configuration policy associated with this PID.

Controls how the configuration must be satisfied depending on the presence and type of a corre-
sponding Configuration object in the OSGi Configuration Admin service. Corresponding configura-
tion is a Configuration object where the PID is equal to value.

If not specified, the configuration is not required.

152.19.15 public static final class PID.Literal
extends AnnotationLiteral<PID>
implements PID
Support inline instantiation of the PID annotation.

152.19.15.1 public static final PID.Literal of(String pid, ConfigurationPolicy policy)

pid the configuration pid

policy the policy of the configuration

Returns an instance of PID

152.19.15.2 public ConfigurationPolicy policy()

152.19.15.3 public String value()

152.19.16 @PIDs
Annotation used in conjunction with ComponentScoped in order to associate configurations with
the component bean.

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.19.16.1 PID[] value

□ The set of ordered configurations available to the component.

152.19.17 public static final class PIDs.Literal
extends AnnotationLiteral<PIDs>
implements PIDs
Support inline instantiation of the PIDs annotation.

152.19.17.1 public static PIDs of(PID[] pids)

pids array of PID

Returns an instance of PIDs

152.19.17.2 public PID[] value()

152.19.18 @PrototypeRequired
Used with @Reference, BindService, BindBeanServiceObjects and BindServiceReference to indicate
that the service must be service.scope=prototype .

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 898 OSGi Enterprise Release 7

152.19.19 public static final class PrototypeRequired.Literal
extends AnnotationLiteral<PrototypeRequired>
implements PrototypeRequired
Support inline instantiation of the PrototypeRequired annotation.

152.19.19.1 public static final PrototypeRequired INSTANCE

Default instance

152.19.19.2 public Literal()

152.19.20 @Reference
Annotation used on injection points informing the CDI container that the injection should apply a
service obtained from the OSGi registry.

*

See Also Reference Annotation

Retention RUNTIME

Target FIELD , PARAMETER

152.19.20.1 Class<?> value default Object.class

□ Specify the type of the service for this reference.

If not specified, the type of the service for this reference is derived from the injection point type.

If a value is specified it must be type compatible with (assignable to) the service type derived from
the injection point type, otherwise a definition error will result.

152.19.20.2 String target default ""

□ The target property for this reference.

If not specified, no target property is set.

152.19.21 public static final class Reference.Any
A marker type used in Reference.value to indicate that a reference injection point may accept any
service type(s).

The injection point service type must be specified as Object.

The value must be specified by itself.

For example:

 @Inject
 @Reference(value = Any.class, target = "(bar=baz)")
 List<Object> services;

152.19.21.1 public Any()

152.19.22 public static final class Reference.Literal
extends AnnotationLiteral<Reference>
implements Reference
Support inline instantiation of the Reference annotation.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.annotations

OSGi Enterprise Release 7 Page 899

152.19.22.1 public static final Reference.Literal of(Class<?> service, String target)

service

target

Returns instance of Reference

152.19.22.2 public String target()

152.19.22.3 public Class<?> value()

152.19.23 @Reluctant
Annotation used to indicate that the behavior of the reference should be reluctant. Used in conjunc-
tion with @Reference, BindService, BindServiceReference or BindBeanServiceObjects.

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.19.24 public static final class Reluctant.Literal
extends AnnotationLiteral<Reluctant>
implements Reluctant
Support inline instantiation of the Reluctant annotation.

152.19.24.1 public static final Reluctant INSTANCE

Default instance

152.19.24.2 public Literal()

152.19.25 @RequireCDIExtender
This annotation can be used to require the CDI Component Runtime extender. It can be used direct-
ly, or as a meta-annotation.

Retention CLASS

Target TYPE , PACKAGE

152.19.25.1 String[] descriptor default "META-INF/beans.xml"

□ Specify CDI bean descriptor file paths to be searched on the Bundle-ClassPath . For example:

 @RequireCDIExtender(descriptor = "META-INF/beans.xml")

Returns CDI bean descriptor file paths.

152.19.25.2 Class<?>[] beans default {}

□ Specify OSGi Beans classes to be used by the CDI container. For example:

 @RequireCDIExtender(beans = {com.foo.BarImpl.class, com.foo.impl.BazImpl.class})

Returns OSGi Beans classes to be used by the CDI container.

152.19.26 @RequireCDIImplementation
This annotation can be used to require the CDI Component Runtime implementation. It can be used
directly, or as a meta-annotation.

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 900 OSGi Enterprise Release 7

Retention CLASS

Target TYPE , PACKAGE

152.19.27 @Service
Annotation used to specify that a bean should be published as a service.

The behavior of this annotation depends on it's usage:

• on the bean type - publish the service using all implemented interfaces. If there are no imple-
mented interfaces use the bean class.

• on the bean's type_use(s) - publish the service using the collected interface(s).

Use of @Service on both type and type_use will result in a definition error.

Where this annotation is used affects how service scopes are supported:

• @SingleComponent, @FactoryComponent or @Dependent bean - The provided service can be
of any scope. The bean can either implement ServiceFactory or PrototypeServiceFactory or use
@Bundle or @Prototype to set it's service scope. If none of those options are used the service is a
singleton scope service.

• @ApplicationScoped bean - The provided service is a singleton scope service unless the bean im-
plements ServiceFactory or PrototypeServiceFactory. It cannot use @Bundle or @Prototype to
set it's service scope. Use of those annotations in this case will result in a definition error.

Retention RUNTIME

Target FIELD , METHOD , TYPE , TYPE_USE

152.19.27.1 Class<?>[] value default {}

□ Override the interfaces under which this service is published.

Returns the service types

152.19.28 public static final class Service.Literal
extends AnnotationLiteral<Service>
implements Service
Support inline instantiation of the Service annotation.

152.19.28.1 public static final Service.Literal of(Class<?>[] interfaces)

interfaces

Returns instance of Service

152.19.28.2 public Class<?>[] value()

152.19.29 @ServiceInstance
Annotation used on beans, observer methods and observer fields to specify the service scope for the
service. Used in conjunction with Service.

Retention RUNTIME

Target TYPE , FIELD , METHOD

152.19.29.1 ServiceScope value default SINGLETON

□ The scope of the service.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.propertytypes

OSGi Enterprise Release 7 Page 901

152.19.30 public static final class ServiceInstance.Literal
extends AnnotationLiteral<ServiceInstance>
implements ServiceInstance
Support inline instantiation of the ServiceInstance annotation.

152.19.30.1 public static ServiceInstance.Literal of(ServiceScope type)

type the type of the ServiceInstance

Returns an instance of ServiceInstance

152.19.30.2 public ServiceScope value()

152.19.31 @SingleComponent
Identifies a single component.

Single components MUST always be ComponentScoped. Applying any other scope will result in a
definition error.

See Also Single Component

Retention RUNTIME

Target TYPE

152.19.32 public static final class SingleComponent.Literal
extends AnnotationLiteral<SingleComponent>
implements SingleComponent
Support inline instantiation of the SingleComponent annotation.

152.19.32.1 public static final SingleComponent INSTANCE

Default instance.

152.19.32.2 public Literal()

152.20 org.osgi.service.cdi.propertytypes

Bean Property Types Package Version 1.0.

When used as annotations, bean property types are processed by CCR to generate default compo-
nent properties, service properties and target filters.

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .propertytypes; vers ion="[1.0,2.0)"

152.20.1 Summary

• BeanPropertyException - This Runtime Exception is thrown when a Bean Property Type method
attempts an invalid component property coercion.

• ExportedService - Bean Property Type for the remote service properties for an exported service.

org.osgi.service.cdi.propertytypes CDI Integration Specification Version 1.0

Page 902 OSGi Enterprise Release 7

• ServiceDescr ipt ion - Bean Property Type for the service.descr ipt ion service property.
• ServiceRanking - Bean Property Type for the service.ranking service property.
• ServiceVendor - Bean Property Type for the service.vendor service property.

152.20.2 public class BeanPropertyException
extends RuntimeException
This Runtime Exception is thrown when a Bean Property Type method attempts an invalid compo-
nent property coercion. For example when the bean property type method Long test() ; is applied to
a component property "test" of type String.

152.20.2.1 public BeanPropertyException(String message)

message The message for this exception.

□ Create a Bean Property Exception with a message.

152.20.2.2 public BeanPropertyException(String message, Throwable cause)

message The message for this exception.

cause The causing exception.

□ Create a Bean Property Exception with a message and a nested cause.

152.20.3 @ExportedService
Bean Property Type for the remote service properties for an exported service.

This annotation can be used as defined by BeanPropertyType to declare the values of the remote ser-
vice properties for an exported service.

See Also Bean Property Types , Remote Services Specif icat ion

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.20.3.1 Class<?>[] service_exported_interfaces

□ Service property marking the service for export. It defines the interfaces under which the service
can be exported.

If an empty array is specified, the property is not added to the component description.

Returns The exported service interfaces.

See Also Constants.SERVICE_EXPORTED_INTERFACES

152.20.3.2 String[] service_exported_configs default {}

□ Service property identifying the configuration types that should be used to export the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The configuration types.

See Also Constants.SERVICE_EXPORTED_CONFIGS

152.20.3.3 String[] service_exported_intents default {}

□ Service property identifying the intents that the distribution provider must implement to distribute
the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.propertytypes

OSGi Enterprise Release 7 Page 903

Returns The intents that the distribution provider must implement to distribute the service.

See Also Constants.SERVICE_EXPORTED_INTENTS

152.20.3.4 String[] service_exported_intents_extra default {}

□ Service property identifying the extra intents that the distribution provider must implement to dis-
tribute the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The extra intents that the distribution provider must implement to distribute the service.

See Also Constants.SERVICE_EXPORTED_INTENTS_EXTRA

152.20.3.5 String[] service_intents default {}

□ Service property identifying the intents that the distribution provider must implement to distribute
the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The intents that the service implements.

See Also Constants.SERVICE_INTENTS

152.20.4 @ServiceDescription
Bean Property Type for the service.descr ipt ion service property.

This annotation can be used as defined by BeanPropertyType to declare the value the
Constants.SERVICE_DESCRIPTION service property.

See Also Bean Property Types

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.20.4.1 String value

□ Service property identifying a service's description.

Returns The service description.

See Also Constants.SERVICE_DESCRIPTION

152.20.5 @ServiceRanking
Bean Property Type for the service.ranking service property.

This annotation can be used as defined by BeanPropertyType to declare the value of the
Constants.SERVICE_RANKING service property.

See Also Bean Property Types

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.20.5.1 int value

□ Service property identifying a service's ranking.

Returns The service ranking.

See Also Constants.SERVICE_RANKING

org.osgi.service.cdi.reference CDI Integration Specification Version 1.0

Page 904 OSGi Enterprise Release 7

152.20.6 @ServiceVendor
Bean Property Type for the service.vendor service property.

This annotation can be used as defined by BeanPropertyType to declare the value of the
Constants.SERVICE_VENDOR service property.

See Also Bean Property Types

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.20.6.1 String value

□ Service property identifying a service's vendor.

Returns The service vendor.

See Also Constants.SERVICE_VENDOR

152.21 org.osgi.service.cdi.reference

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .annotat ions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi .annotat ions; vers ion="[1.0,1.1)"

152.21.1 Summary

• BeanServiceObjects - Allows multiple service objects for a service to be obtained.
• BindBeanServiceObjects - A bean provided by CCR for binding actions to life cycle events of

matching services.
• BindService - A bean provided by CCR for binding actions to life cycle events of matching ser-

vices.
• BindServiceReference - A bean provided by CCR for binding actions to life cycle events of

matching services.

152.21.2 public interface BeanServiceObjects<S>
<S> Type of Service

Allows multiple service objects for a service to be obtained.

A component instance can receive a BeanServiceObjects object via a reference that is typed
BeanServiceObjects .

For services with prototype scope, multiple service objects for the service can be obtained. For ser-
vices with singleton or bundle scope, only one, use-counted service object is available.

Any unreleased service objects obtained from this BeanServiceObjects object are automatically re-
leased by Service Component Runtime when the service becomes unbound.

See Also ServiceObjects

CDI Integration Specification Version 1.0 org.osgi.service.cdi.reference

OSGi Enterprise Release 7 Page 905

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

152.21.2.1 public S getService()

□ Returns a service object for the associated service.

This method will always return nul l when the associated service has been become unbound.

Returns A service object for the associated service or nul l if the service is unbound, the customized service
object returned by a ServiceFactory does not implement the classes under which it was registered or
the ServiceFactory threw an exception.

Throws I l legalStateException– If the component instance that received this BeanServiceObjects object has
been deactivated.

See Also ungetService(Object)

152.21.2.2 public ServiceReference<S> getServiceReference()

□ Returns the ServiceReference for the service associated with this BeanServiceObjects object.

Returns The ServiceReference for the service associated with this BeanServiceObjects object.

152.21.2.3 public void ungetService(S service)

service A service object previously provided by this ReferenceServiceObjects object.

□ Releases a service object for the associated service.

The specified service object must no longer be used and all references to it should be destroyed after
calling this method.

Throws I l legalStateException– If the component instance that received this ReferenceServiceObjects ob-
ject has been deactivated.

I l legalArgumentException– If the specified service object was not provided by this BeanServiceOb-
jects object.

See Also getService()

152.21.3 public interface BindBeanServiceObjects<S>
<S> the service argument type.

A bean provided by CCR for binding actions to life cycle events of matching services.

See Also Reference

Provider Type Consumers of this API must not implement this type

152.21.3.1 public BindBeanServiceObjects<S> adding(Consumer<BeanServiceObjects<S>> action)

action the action, whose argument is the Bean Service Objects, to subscribe to the adding service event

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.3.2 public void bind()

□ The bind terminal operation is required to instruct CCR that all the bind actions have been speci-
fied, otherwise bind actions will never be called by CCR.

Calling bind again has no effect.

org.osgi.service.cdi.reference CDI Integration Specification Version 1.0

Page 906 OSGi Enterprise Release 7

152.21.3.3 public BindBeanServiceObjects<S> modified(Consumer<BeanServiceObjects<S>> action)

action the action, whose argument is the Bean Service Objects, to subscribe to the modified service event

□ Subscribe an action to the modified service event.

Only the last modified action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.3.4 public BindBeanServiceObjects<S> removed(Consumer<BeanServiceObjects<S>> action)

action the action, whose argument is the Bean Service Objects, to subscribe to the removed service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4 public interface BindService<S>
<S> the service argument type.

A bean provided by CCR for binding actions to life cycle events of matching services.

See Also Reference

Provider Type Consumers of this API must not implement this type

152.21.4.1 public BindService<S> adding(Consumer<S> action)

action the action, whose argument is the service instance, to subscribe to the adding service event

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4.2 public BindService<S> adding(BiConsumer<S, Map<String, Object>> action)

action the action, whose arguments are the service instance and the Map<Str ing, Object> of service proper-
ties, to subscribe to the adding service event

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4.3 public void bind()

□ The bind terminal operation is required to instruct CCR that all the bind actions have been speci-
fied, otherwise bind actions will never be called by CCR.

Calling bind again has no effect.

152.21.4.4 public BindService<S> modified(Consumer<S> action)

action the action, whose argument is the service instance, to subscribe to the modified service event

□ Subscribe an action to the modified service event.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.reference

OSGi Enterprise Release 7 Page 907

Only the last modified action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4.5 public BindService<S> modified(BiConsumer<S, Map<String, Object>> action)

action the action, whose arguments are the service instance and the Map<Str ing, Object> of service proper-
ties, to subscribe to the modified service event

□ Subscribe an action to the modified service event.

Only the last modified action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4.6 public BindService<S> removed(Consumer<S> action)

action the action, whose argument is the service instance, to subscribe to the removed service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4.7 public BindService<S> removed(BiConsumer<S, Map<String, Object>> action)

action the action, whose arguments are the service instance and the Map<Str ing, Object> of service proper-
ties, to subscribe to the removed service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5 public interface BindServiceReference<S>
<S> the service argument type.

A bean provided by CCR for binding actions to life cycle events of matching services.

See Also Reference

Provider Type Consumers of this API must not implement this type

152.21.5.1 public BindServiceReference<S> adding(Consumer<ServiceReference<S>> action)

action the action, whose argument is the service reference, to subscribe to the adding service event

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5.2 public BindServiceReference<S> adding(BiConsumer<ServiceReference<S>, S> action)

action the action, whose arguments are the service reference and the service object, to subscribe to the
adding service event

org.osgi.service.cdi.runtime CDI Integration Specification Version 1.0

Page 908 OSGi Enterprise Release 7

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5.3 public void bind()

□ The bind terminal operation is required to instruct CCR that all the bind actions have been speci-
fied, otherwise bind actions will never be called by CCR.

Calling bind again has no effect.

152.21.5.4 public BindServiceReference<S> modified(Consumer<ServiceReference<S>> action)

action the action, whose argument is the service reference, to subscribe to the modified service event

□ Subscribe an action to the modified service event.

Only the last modified action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5.5 public BindServiceReference<S> modified(BiConsumer<ServiceReference<S>, S> action)

action the action, whose arguments are the service reference and the service object, to subscribe to the mod-
ified service event

□ Subscribe an action to the modified service event.

Only the last modified action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5.6 public BindServiceReference<S> removed(Consumer<ServiceReference<S>> action)

action the action, whose argument is the service reference, to subscribe to the removed service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5.7 public BindServiceReference<S> removed(BiConsumer<ServiceReference<S>, S> action)

action the action, whose arguments are the service reference and the service object, to subscribe to the re-
moved service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.22 org.osgi.service.cdi.runtime

CDI Integration Package Version 1.0.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.runtime.dto

OSGi Enterprise Release 7 Page 909

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi ; vers ion="[1.0,1.1)"

152.22.1 Summary

• CDIComponentRuntime - The CDIComponentRuntime service represents the actor that man-
ages the CDI containers and their life cycle.

152.22.2 public interface CDIComponentRuntime
The CDIComponentRuntime service represents the actor that manages the CDI containers and their
life cycle. The CDIComponentRuntime service allows introspection of the managed CDI containers.

This service must be registered with a Constants.SERVICE_CHANGECOUNT service property that
must be updated each time any of the DTOs available from this service change.

Access to this service requires the ServicePermission[CDIComponentRuntime, GET] permission. It
is intended that only administrative bundles should be granted this permission to limit access to the
potentially intrusive methods provided by this service.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

152.22.2.1 public Collection<ContainerDTO> getContainerDTOs(Bundle... bundles)

bundles The bundles who's container description snapshots are to be returned. Specifying no bundles, or the
equivalent of an empty Bundle array, will return the container descriptions of all active bundles that
define a container.

□ Returns a collection of container description snapshots for a set of bundles.

Returns A set of descriptions of the container of the specified bundles . Only bundles that have an associated
container are included. If a bundle is listed multiple times in bundles only one ContainerDTO is re-
turned. Returns an empty collection if no CDI containers are found.

152.22.2.2 public ContainerTemplateDTO getContainerTemplateDTO(Bundle bundle)

bundle The bundle defining a container. Must not be nul l and must be active.

□ Returns the ContainerTemplateDTO for the specified bundle

Returns The container template for of the specified bundle or nul l if it does not have an associated container.

152.23 org.osgi.service.cdi.runtime.dto

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .dto; vers ion="[1.0,2.0)"

org.osgi.service.cdi.runtime.dto CDI Integration Specification Version 1.0

Page 910 OSGi Enterprise Release 7

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi .dto; vers ion="[1.0,1.1)"

152.23.1 Summary

• Activat ionDTO - A snapshot of the runtime state of a component activation.
• ComponentDTO - A snapshot of the runtime state of a component.
• ComponentInstanceDTO - A snapshot of the runtime state of a component.
• Configurat ionDTO - A snapshot of the runtime state of a component factory configuration de-

pendency
• ContainerDTO - A snapshot of the runtime state of a CDI container
• ExtensionDTO - A snapshot of the runtime state of an javax.enterpr ise. inject .spi .Extension de-

pendency required by this CDI container.
• ReferenceDTO - A snapshot of the runtime state of a component reference dependency

152.23.2 public class ActivationDTO
extends DTO
A snapshot of the runtime state of a component activation.

Concurrency Not Thread-safe

152.23.2.1 public List<String> errors

The list of errors which occurred during initialization. An empty list means there were no errors.

Must not be nul l .

152.23.2.2 public ServiceReferenceDTO service

The service this activation may have registered.

Must not be nul l if template.serviceClasses is not empty.

152.23.2.3 public ActivationTemplateDTO template

The template describing this activation.

Must not be nul l

152.23.2.4 public ActivationDTO()

152.23.3 public class ComponentDTO
extends DTO
A snapshot of the runtime state of a component.

Concurrency Not Thread-safe

152.23.3.1 public boolean enabled

Indicates if the component is enabled. The default is true .

A setting of fa lse on the container component results in all components in the bundle being disabled.

152.23.3.2 public List<ComponentInstanceDTO> instances

The component instances created by this component.

• When template is of type ComponentType.CONTAINER - there will be 1 ComponentInstanceD-
TO

CDI Integration Specification Version 1.0 org.osgi.service.cdi.runtime.dto

OSGi Enterprise Release 7 Page 911

• When template is of type ComponentType.SINGLE - there will be 1 ComponentInstanceDTO
• When template is of type ComponentType.FACTORY - there will be one ComponentInstanceD-

TO for every factory configuration object associated with the factory PID of the component.

Must not be nul l

152.23.3.3 public ComponentTemplateDTO template

The template of this component.

Must not be nul l

152.23.3.4 public ComponentDTO()

152.23.4 public class ComponentInstanceDTO
extends DTO
A snapshot of the runtime state of a component.

Concurrency Not Thread-safe

152.23.4.1 public List<ActivationDTO> activations

The activations of the component.

Must not be nul l .

152.23.4.2 public List<ConfigurationDTO> configurations

The configuration dependencies of this component.

Must not be nul l .

152.23.4.3 public Map<String, Object> properties

The resolved configuration properties for the component.

Contains the merger of all consumed configurations merged in the order of configurations.

All configuration dependencies are satisfied when not nul l .

152.23.4.4 public List<ReferenceDTO> references

The service dependencies of the component.

Can be empty when the component has no reference dependencies.

The component instance is satisfied when the sum of ReferenceDTO.minimumCardinality equals
the size of ReferenceDTO.matches for each value.

Must not be nul l .

152.23.4.5 public ComponentInstanceDTO()

152.23.5 public class ConfigurationDTO
extends DTO
A snapshot of the runtime state of a component factory configuration dependency

Concurrency Not Thread-safe

152.23.5.1 public Map<String, Object> properties

The properties of this configuration.

The configuration dependency is satisfied when not nul l .

org.osgi.service.cdi.runtime.dto CDI Integration Specification Version 1.0

Page 912 OSGi Enterprise Release 7

152.23.5.2 public ConfigurationTemplateDTO template

The template of this configuration dependency

Must never be nul l

152.23.5.3 public ConfigurationDTO()

152.23.6 public class ContainerDTO
extends DTO
A snapshot of the runtime state of a CDI container

Concurrency Not Thread-safe

152.23.6.1 public BundleDTO bundle

The bundle declaring the CDI container.

Must not be 0.

152.23.6.2 public long changeCount

The change count of the container at the time this DTO was created

Must not be 0.

152.23.6.3 public List<ComponentDTO> components

The components defined by this CDI container.

Must not be nul l . The list always contains at least one element representing the container compo-
nent. See Container Component.

152.23.6.4 public List<String> errors

The list of errors reported during attempted initialization of the container instance.

152.23.6.5 public List<ExtensionDTO> extensions

The extension dependencies of this CDI container.

Must not be nul l .

152.23.6.6 public ContainerTemplateDTO template

The template of this Container DTO.

Must not be nul l .

152.23.6.7 public ContainerDTO()

152.23.7 public class ExtensionDTO
extends DTO
A snapshot of the runtime state of an javax.enterpr ise. inject .spi .Extension dependency required by
this CDI container.

Concurrency Not Thread-safe

152.23.7.1 public ServiceReferenceDTO service

The service reference of the extension.

The extension dependency is satisfied when not nul l .

CDI Integration Specification Version 1.0 org.osgi.service.cdi.runtime.dto.template

OSGi Enterprise Release 7 Page 913

152.23.7.2 public ExtensionTemplateDTO template

The template of this extension dependency.

Must not be nul l

152.23.7.3 public ExtensionDTO()

152.23.8 public class ReferenceDTO
extends DTO
A snapshot of the runtime state of a component reference dependency

Concurrency Not Thread-safe

152.23.8.1 public List<ServiceReferenceDTO> matches

The list of service references that match this reference.

Must not be nul l

Can be empty when there are no matching services.

This dependency is satisfied when minimumCardinality <= matches.s ize() <=
MaximumCardinality.toInt() where the maximum cardinality can be obtained from the associated
ReferenceTemplateDTO.

152.23.8.2 public int minimumCardinality

The runtime minimum cardinality of the dependency.

• If template.maximumCardinality is ONE the value must be either 0 or 1.
• If template.maximumCardinality is MANY the value must be from 0 to Integer.MAX_VALUE.

152.23.8.3 public String targetFilter

Indicates the runtime target filter used in addition to the template.serviceType to match services.

152.23.8.4 public ReferenceTemplateDTO template

The template of this reference.

Must not be nul l

152.23.8.5 public ReferenceDTO()

152.24 org.osgi.service.cdi.runtime.dto.template

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .dto.model ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi .dto.model ; vers ion="[1.0,1.1)"

org.osgi.service.cdi.runtime.dto.template CDI Integration Specification Version 1.0

Page 914 OSGi Enterprise Release 7

152.24.1 Summary

• Activat ionTemplateDTO - Activations represent either immediate instances or service objects
produced by component instances.

• ComponentTemplateDTO - A static description of a CDI component.
• Configurat ionTemplateDTO - A description of a configuration dependency of a component The

content of this DTO is resolved form metadata at initialization time and remains the same be-
tween the CDI bundle restarts.

• ContainerTemplateDTO - Description of a CDI container.
• ExtensionTemplateDTO - Models an extension dependency of the ContainerDTO
• ReferenceTemplateDTO - A description of a reference dependency of a component

152.24.2 public class ActivationTemplateDTO
extends DTO
Activations represent either immediate instances or service objects produced by component in-
stances.

The content of this DTO is resolved form metadata at initialization time and remains the same be-
tween the CDI bundle restarts.

Concurrency Not Thread-safe

152.24.2.1 public Map<String, Object> properties

The default properties for activations which represent container component services. This will nev-
er be populated for single or factory components.

These are merged (and possibly replaced) with runtime properties.

Must not be nul l . May be empty if no default properties are provided.

152.24.2.2 public ServiceScope scope

The ServiceScope of this activation

Must not be nul l .

152.24.2.3 public List<String> serviceClasses

Describes the set of fully qualified names of the interfaces/classes under which this activation will
publish and OSGi service

Must not be nul l . An empty array indicated this activation will not publish an OSGi service

152.24.2.4 public ActivationTemplateDTO()

152.24.3 public class ComponentTemplateDTO
extends DTO
A static description of a CDI component.

At runtime it is spit between a ComponentInstanceDTO which handles the resolution of the config-
urations, references and the creation of ComponentInstanceDTO instances and one or more Com-
ponentInstanceDTO instances, which handle the resolution of references and the creation of activa-
tions.

Concurrency Not Thread-safe

152.24.3.1 public List<ActivationTemplateDTO> activations

The activations associated with the component.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.runtime.dto.template

OSGi Enterprise Release 7 Page 915

Must not be nul l .

152.24.3.2 public List<String> beans

The set of beans that make up the component.

Must not be nul l .

152.24.3.3 public List<ConfigurationTemplateDTO> configurations

The configuration dependencies of this component.

There is always at least one default singleton configuration.

May contain at most one factory configuration.

Must not be nul l .

152.24.3.4 public String name

A name unique within the container.

Must not be nul l .

152.24.3.5 public Map<String, Object> properties

The default component properties.

These are merged (and possibly replaced) with runtime properties.

Must not be nul l . May be empty if no default properties are provided.

152.24.3.6 public List<ReferenceTemplateDTO> references

The service dependencies of the component.

The list will be empty if there are no service dependencies.

Must not be nul l .

152.24.3.7 public ComponentType type

The type of the component.

Must not be nul l .

152.24.3.8 public ComponentTemplateDTO()

152.24.4 public class ConfigurationTemplateDTO
extends DTO
A description of a configuration dependency of a component The content of this DTO is resolved
form metadata at initialization time and remains the same between the CDI bundle restarts.

Concurrency Not Thread-safe

152.24.4.1 public MaximumCardinality maximumCardinality

The maximum cardinality of the configuration dependency.

• When MaximumCardinality.ONE this is a singleton configuration dependency.
• When MaximumCardinality.MANY this is a factory configuration dependency.

Must not be nul l .

152.24.4.2 public String pid

The PID of the tracked configuration object(s).

org.osgi.service.cdi.runtime.dto.template CDI Integration Specification Version 1.0

Page 916 OSGi Enterprise Release 7

Must not be nul l .

152.24.4.3 public ConfigurationPolicy policy

The policy for the configuration dependency.

Must not be nul l .

152.24.4.4 public ConfigurationTemplateDTO()

152.24.5 public class ContainerTemplateDTO
extends DTO
Description of a CDI container.

Concurrency Not Thread-safe

152.24.5.1 public List<ComponentTemplateDTO> components

The components defined in this CDI container.

Must not be nul l

Has at lest one element for the container component. See Container Component.

152.24.5.2 public List<ExtensionTemplateDTO> extensions

The extension dependencies of this CDI container.

Must not be nul l

May be empty if the CDI container does not require CDI extensions.

152.24.5.3 public String id

The id of the CDI container.

152.24.5.4 public ContainerTemplateDTO()

152.24.6 public class ExtensionTemplateDTO
extends DTO
Models an extension dependency of the ContainerDTO

Concurrency Not Thread-safe

152.24.6.1 public String serviceFilter

The service filter used for finding the extension service.

The value must be associated to the osgi .cdi extender requirement whose 'extension ' attribute con-
tains a value equal to serviceFilter.

Must not be nul l .

152.24.6.2 public ExtensionTemplateDTO()

152.24.7 public class ReferenceTemplateDTO
extends DTO
A description of a reference dependency of a component

The content of this DTO is resolved form metadata at initialization time and remains the same be-
tween the CDI bundle restarts.

CDI Integration Specification Version 1.0 References

OSGi Enterprise Release 7 Page 917

Concurrency Not Thread-safe

152.24.7.1 public MaximumCardinality maximumCardinality

The maximum cardinality of the reference.

152.24.7.2 public int minimumCardinality

The minimum cardinality of the reference.

Contains the minimum cardinality statically resolved from the CDI bundle metadata. The mini-
mum cardinality can be replaced by configuration at runtime.

• If maximumCardinality is ONE the value must be either 0 or 1.
• If maximumCardinality is MANY the value must be from 0 to Integer.MAX_VALUE.

152.24.7.3 public String name

A unique within the container and persistent across reboots identified for this activation

The value must not be nul l . The value must be equal to the reference name.

152.24.7.4 public ReferencePolicy policy

Indicates if the reference is dynamic or static in nature.

152.24.7.5 public ReferencePolicyOption policyOption

Indicates if the reference is greedy or reluctant in nature.

152.24.7.6 public String serviceType

Indicates the type of service matched by the reference.

The value must not be nul l .

152.24.7.7 public String targetFilter

Indicates a target filter used in addition to the serviceType to match services.

Contains the target filter resolved from the CDI bundle metadata. The filter can be replaced by con-
figuration at runtime.

152.24.7.8 public ReferenceTemplateDTO()

152.25 References

[1] CDI
http://www.cdi-spec.org/

[2] CDI 2.0
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html

[3] unproxyable bean types
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#unproxyable

[4] Default bean discovery mode
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#default_bean_discovery

[5] Exclude filters
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#exclude_filters

[6] Packaging and deployment

http://www.cdi-spec.org/
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#unproxyable
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#default_bean_discovery
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#exclude_filters

References CDI Integration Specification Version 1.0

Page 918 OSGi Enterprise Release 7

http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#packaging_deployment

[7] Typesafe Resolution
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#typesafe_resolution

[8] Scopes and contexts
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#contexts

[9] Pseudo-scope
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#normal_scope

[10] @PostConstruct
https://javaee.github.io/javaee-spec/javadocs/javax/annotation/PostConstruct.html

[11] General Syntax Definitions
OSGi Core, General Syntax Definitions

[12] Filter Syntax
OSGi Core, Filter Syntax

[13] Dependency Injection for Java
https://jcp.org/en/jsr/detail?id=330

[14] Java Transaction API
https://github.com/eclipse-ee4j/jta-api

[15] Portable Java Contract
https://www.osgi.org/portable-java-contract-definitions/

[16] The Java Language Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#packaging_deployment
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#typesafe_resolution
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#contexts
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#normal_scope
https://javaee.github.io/javaee-spec/javadocs/javax/annotation/PostConstruct.html
https://jcp.org/en/jsr/detail?id=330
https://github.com/eclipse-ee4j/jta-api
https://www.osgi.org/portable-java-contract-definitions/
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

XML Parser Service Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 919

702 XML Parser Service Specification

Version 1.0

702.1 Introduction
The Extensible Markup Language (XML) has become a popular method of describing data. As more
bundles use XML to describe their data, a common XML Parser becomes necessary in an embedded
environment in order to reduce the need for space. Not all XML Parsers are equivalent in function,
however, and not all bundles have the same requirements on an XML parser.

This problem was addressed in the Java API for XML Processing, see [4] JAXP for Java 2 Standard Edi-
tion and Enterprise Edition. This specification addresses how the classes defined in JAXP can be used
in an OSGi framework. It defines how:

• Implementations of XML parsers can become available to other bundles
• Bundles can find a suitable parser
• A standard parser in a JAR can be transformed to a bundle

702.1.1 Essentials

• Standards - Leverage existing standards in Java based XML parsing: JAXP, SAX and DOM
• Unmodified JAXP code - Run unmodified JAXP code
• Simple - It should be easy to provide a SAX or DOM parser as well as easy to find a matching pars-

er
• Multiple - It should be possible to have multiple implementations of parsers available
• Extendable - It is likely that parsers will be extended in the future with more functionality

702.1.2 Entities

• XMLParserActivator - A utility class that registers a parser factory from declarative information in
the Manifest file.

• SAXParserFactory - A class that can create an instance of a SAXParser class.
• DocumentBuilderFactory - A class that can create an instance of a DocumentBui lder class.
• SAXParser - A parser, instantiated by a SaxParserFactory object, that parses according to the SAX

specifications.
• DocumentBuilder - A parser, instantiated by a DocumentBui lderFactory , that parses according to

the DOM specifications.

JAXP XML Parser Service Specification Version 1.0

Page 920 OSGi Enterprise Release 7

Figure 702.1 XML Parsing diagram

SAXParser
Factory

Document
Builder Factory

XMLParser
Activator

SAXParser
user

Document
Builder user

Subclass impl.

SAXParser Document
Builder

Document Builder
impl.

SAXParser impl.

parses withparses with

registered by registered by

instantiatesinstant. by

reads bundle META-INF
Parser Implementation
Bundle

getsgets

0..*0..*

0..*0..*

0..*0..*

0..*0..*

0,1 0,1

0,10,1

0..*10..* 1

702.1.3 Operations
A bundle containing a SAX or DOM parser is started. This bundle registers a SAXParserFactory and/
or a DocumentBui lderFactory service object with the Framework. Service registration properties de-
scribe the features of the parsers to other bundles. A bundle that needs an XML parser will get a SAX-
ParserFactory or DocumentBui lderFactory service object from the Framework service registry. This
object is then used to instantiate the requested parsers according to their specifications.

702.2 JAXP
XML has become very popular in the last few years because it allows the interchange of complex in-
formation between different parties. Though only a single XML standard exists, there are multiple
APIs to XML parsers, primarily of two types:

• The Simple API for XML (SAX1 and SAX2)
• Based on the Document Object Model (DOM 1 and 2)

Both standards, however, define an abstract API that can be implemented by different vendors.

A given XML Parser implementation may support either or both of these parser types by imple-
menting the org.w3c.dom and/or org.xml.sax packages. In addition, parsers have characteristics
such as whether they are validating or non-validating parsers and whether or not they are name-
space aware.

An application which uses a specific XML Parser must code to that specific parser and become cou-
pled to that specific implementation. If the parser has implemented [4] JAXP, however, the applica-
tion developer can code against SAX or DOM and let the runtime environment decide which parser
implementation is used.

JAXP uses the concept of a factory. A factory object is an object that abstracts the creation of another
object. JAXP defines a DocumentBui lderFactory and a SAXParserFactory class for this purpose.

XML Parser Service Specification Version 1.0 XML Parser service

OSGi Enterprise Release 7 Page 921

JAXP is implemented in the javax.xml.parsers package and provides an abstraction layer between
an application and a specific XML Parser implementation. Using JAXP, applications can choose to
use any JAXP compliant parser without changing any code, simply by changing a System property
which specifies the SAX- and DOM factory class names.

In JAXP, the default factory is obtained with a static method in the SAXParserFactory or Document-
Bui lderFactory class. This method will inspect the associated System property and create a new in-
stance of that class.

702.3 XML Parser service
The current specification of JAXP has the limitation that only one of each type of parser factories
can be registered. This specification specifies how multiple SAXParserFactory objects and Docu-
mentBui lderFactory objects can be made available to bundles simultaneously.

Providers of parsers should register a JAXP factory object with the OSGi service registry under the
factory class name. Service properties are used to describe whether the parser:

• Is validating
• Is name-space aware
• Has additional features

With this functionality, bundles can query the OSGi service registry for parsers supporting the spe-
cific functionality that they require.

702.4 Properties
Parsers must be registered with a number of properties that qualify the service. In this specification,
the following properties are specified:

• PARSER_NAMESPACEAWARE - The registered parser is aware of name-spaces. Name-spaces allow
an XML document to consist of independently developed DTDs. In an XML document, they are
recognized by the xmlns attribute and names prefixed with an abbreviated name-space identifi-
er, like: <xsl : i f . . .> . The type is a Boolean object that must be true when the parser supports name-
spaces. All other values, or the absence of the property, indicate that the parser does not imple-
ment name-spaces.

• PARSER_VALIDATING - The registered parser can read the DTD and can validate the XML accord-
ingly. The type is a Boolean object that must true when the parser is validating. All other values,
or the absence of the property, indicate that the parser does not validate.

702.5 Getting a Parser Factory
Getting a parser factory requires a bundle to get the appropriate factory from the service registry. In
a simple case in which a non-validating, non-name-space aware parser would suffice, it is best to use
getServiceReference(Str ing) .

DocumentBuilder getParser(BundleContext context)
 throws Exception {
 ServiceReference ref = context.getServiceReference(
 DocumentBuilderFactory.class.getName());
 if (ref == null)
 return null;

Adapting a JAXP Parser to OSGi XML Parser Service Specification Version 1.0

Page 922 OSGi Enterprise Release 7

 DocumentBuilderFactory factory =
 (DocumentBuilderFactory) context.getService(ref);
 return factory.newDocumentBuilder();
}

In a more demanding case, the filtered version allows the bundle to select a parser that is validating
and name-space aware:

SAXParser getParser(BundleContext context)
 throws Exception {
 ServiceReference refs[] = context.getServiceReferences(
 SAXParserFactory.class.getName(),
 "(&(parser.namespaceAware=true)"
 + "(parser.validating=true))");
 if (refs == null)
 return null;
 SAXParserFactory factory =
 (SAXParserFactory) context.getService(refs[O]);
 return factory.newSAXParser();
}

702.6 Adapting a JAXP Parser to OSGi
If an XML Parser supports JAXP, then it can be converted to an OSGi aware bundle
by adding a BundleActivator class which registers an XML Parser Service. The utility
org.osgi .ut i l .xml.XMLParserActivator class provides this function and can be added (copied, not ref-
erenced) to any XML Parser bundle, or it can be extended and customized if desired.

702.6.1 JAR Based Services
Its functionality is based on the definition of the [5] JAR File specification, services directory. This spec-
ification defines a concept for service providers. A JAR file can contain an implementation of an ab-
stractly defined service. The class (or classes) implementing the service are designated from a file in
the META-INF/services directory. The name of this file is the same as the abstract service class.

The content of the UTF-8 encoded file is a list of class names separated by new lines. White space is
ignored and the number sign ('# ' \u0023) is the comment character.

JAXP uses this service provider mechanism. It is therefore likely that vendors will place these ser-
vice files in the META-INF/services directory.

702.6.2 XMLParserActivator
To support this mechanism, the XML Parser service provides a utility class that should be normally
delivered with the OSGi framework implementation. This class is a Bundle Activator and must start
when the bundle is started. This class is copied into the parser bundle, and not imported.

The start method of the utility BundleActivator class will look in the META-INF/services service
provider directory for the files javax.xml.parsers.SAXParserFactory (SAXFACTORYNAME) or
javax.xml.parsers.DocumentBui lderFactory (DOMFACTORYNAME). The full path name is specified
in the constants SAXCLASSFILE and DOMCLASSFILE respectively.

If either of these files exist, the utility BundleActivator class will parse the contents according to the
specification. A service provider file can contain multiple class names. Each name is read and a new
instance is created. The following example shows the possible content of such a file:

ACME example SAXParserFactory file

XML Parser Service Specification Version 1.0 Usage of JAXP

OSGi Enterprise Release 7 Page 923

com.acme.saxparser.SAXParserFast # Fast
com.acme.saxparser.SAXParserValidating # Validates

Both the javax.xml.parsers.SAXParserFactory and the javax.xml.parsers.DocumentBui lderFactory
provide methods that describe the features of the parsers they can create. The XMLParserActivator
activator will use these methods to set the values of the properties, as defined in Properties on page
921, that describe the instances.

702.6.3 Adapting an Existing JAXP Compatible Parser
To incorporate this bundle activator into a XML Parser Bundle, do the following:

• If SAX parsing is supported, create a /META-INF/services/ javax.xml.parsers.SAXParserFactory re-
source file containing the class names of the SAXParserFactory classes.

• If DOM parsing is supported, create a /META-INF/ser-
vices/ javax.xml.parsers.DocumentBui lderFactory file containing the fully qualified class names
of the DocumentBui lderFactory classes.

• Create manifest file which imports the packages org.w3c.dom , org.xml.sax , and
javax.xml.parsers .

• Add a Bundle-Activator header to the manifest pointing to the XMLParserActivator , the sub-class
that was created, or a fully custom one.

• If the parsers support attributes, properties, or features that should be registered
as properties so they can be searched, extend the XMLParserActivator class and
override setSAXPropert ies(javax.xml.parsers.SAXParserFactory,Hashtable) and
setDOMPropert ies(javax.xml.parsers.DocumentBui lderFactory,Hashtable) .

• Ensure that custom properties are put into the Hashtable object. JAXP does not provide a way for
XMLParserActivator to query the parser to find out what properties were added.

• Bundles that extend the XMLParserActivator class must call the original methods via super to
correctly initialize the XML Parser Service properties.

• Compile this class into the bundle.
• Install the new XML Parser Service bundle.
• Ensure that the org.osgi .ut i l .xml.XMLParserActivator class is contained in the bundle.

702.7 Usage of JAXP
A single bundle should export the JAXP, SAX, and DOM APIs. The version of contained packages
must be appropriately labeled. JAXP 1.1 or later is required which references SAX 2 and DOM 2. See
[4] JAXP for the exact version dependencies.

This specification is related to related packages as defined in the JAXP 1.1 document. The following
table contains the expected minimum versions.

Table 702.1 JAXP 1.1 minimum package versions

Package Minimum Version
javax.xml.parsers 1.1
org.xml.sax 2.0
org.xml.sax.helpers 2.0
org.xsml.sax.ext 1.0
org.w3c.dom 2.0

The Xerces project from the Apache group, [6] Xerces 2 Java Parser, contains a number libraries that
implement the necessary APIs. These libraries can be wrapped in a bundle to provide the relevant
packages.

Security XML Parser Service Specification Version 1.0

Page 924 OSGi Enterprise Release 7

702.8 Security
A centralized XML parser is likely to see sensitive information from other bundles. Provi-
sioning an XML parser should therefore be limited to trusted bundles. This security can be
achieved by providing ServicePermission[javax.xml.parsers.DocumentBui lderFactory |
javax.xml.parsers.SAXFactory,REGISTER] to only trusted bundles.

Using an XML parser is a common function, and
ServicePermission[javax.xml.parsers.DOMParserFactory | javax.xml.parsers.SAXFactory, GET]
should not be restricted.

The XML parser bundle will need Fi lePermission[<<ALL FILES>>,READ] for parsing of files because
it is not known beforehand where those files will be located. This requirement further implies that
the XML parser is a system bundle that must be fully trusted.

702.9 org.osgi.util.xml

XML Parser Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .xml; vers ion="[1.0,2.0)"

702.9.1 Summary

• XMLParserActivator - A BundleActivator class that allows any JAXP compliant XML Parser to
register itself as an OSGi parser service.

702.9.2 public class XMLParserActivator
implements BundleActivator, ServiceFactory<Object>
A BundleActivator class that allows any JAXP compliant XML Parser to register itself as an OSGi
parser service. Multiple JAXP compliant parsers can concurrently register by using this Bundle-
Activator class. Bundles who wish to use an XML parser can then use the framework's service reg-
istry to locate available XML Parsers with the desired characteristics such as validating and name-
space-aware.

The services that this bundle activator enables a bundle to provide are:

• javax.xml.parsers.SAXParserFactory(SAXFACTORYNAME)
• javax.xml.parsers.DocumentBui lderFactory(DOMFACTORYNAME)

The algorithm to find the implementations of the abstract parsers is derived from the JAR file speci-
fications, specifically the Services API.

An XMLParserActivator assumes that it can find the class file names of the factory classes in the fol-
lowing files:

• /META-INF/services/ javax.xml.parsers.SAXParserFactory is a file contained in a jar available to
the runtime which contains the implementation class name(s) of the SAXParserFactory.

• /META-INF/services/ javax.xml.parsers.DocumentBui lderFactory is a file contained in a jar avail-
able to the runtime which contains the implementation class name(s) of the DocumentBui lder-
Factory

XML Parser Service Specification Version 1.0 org.osgi.util.xml

OSGi Enterprise Release 7 Page 925

If either of the files does not exist, XMLParserActivator assumes that the parser does not support that
parser type.

XMLParserActivator attempts to instantiate both the SAXParserFactory and the DocumentBui lder-
Factory . It registers each factory with the framework along with service properties:

• PARSER_VALIDATING- indicates if this factory supports validating parsers. It's value is a
Boolean .

• PARSER_NAMESPACEAWARE- indicates if this factory supports namespace aware parsers It's
value is a Boolean .

Individual parser implementations may have additional features, properties, or attributes which
could be used to select a parser with a filter. These can be added by extending this class and overrid-
ing the setSAXPropert ies and setDOMPropert ies methods.

Concurrency Thread-safe

702.9.2.1 public static final String DOMCLASSFILE = "/META-INF/services/javax.xml.parsers.DocumentBuilderFactory"

Fully qualified path name of DOM Parser Factory Class Name file

702.9.2.2 public static final String DOMFACTORYNAME = "javax.xml.parsers.DocumentBuilderFactory"

Filename containing the DOM Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.

702.9.2.3 public static final String PARSER_NAMESPACEAWARE = "parser.namespaceAware"

Service property specifying if factory is configured to support namespace aware parsers. The value is
of type Boolean .

702.9.2.4 public static final String PARSER_VALIDATING = "parser.validating"

Service property specifying if factory is configured to support validating parsers. The value is of type
Boolean .

702.9.2.5 public static final String SAXCLASSFILE = "/META-INF/services/javax.xml.parsers.SAXParserFactory"

Fully qualified path name of SAX Parser Factory Class Name file

702.9.2.6 public static final String SAXFACTORYNAME = "javax.xml.parsers.SAXParserFactory"

Filename containing the SAX Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.

702.9.2.7 public XMLParserActivator()

702.9.2.8 public Object getService(Bundle bundle, ServiceRegistration<Object> registration)

bundle The bundle using the service.

registration The ServiceRegistrat ion object for the service.

□ Creates a new XML Parser Factory object.

A unique XML Parser Factory object is returned for each call to this method.

The returned XML Parser Factory object will be configured for validating and namespace aware sup-
port as specified in the service properties of the specified ServiceRegistration object. This method
can be overridden to configure additional features in the returned XML Parser Factory object.

Returns A new, configured XML Parser Factory object or null if a configuration error was encountered

org.osgi.util.xml XML Parser Service Specification Version 1.0

Page 926 OSGi Enterprise Release 7

702.9.2.9 public void setDOMProperties(DocumentBuilderFactory factory, Hashtable<String, Object> props)

factory - the DocumentBuilderFactory object

props - Hashtable of service properties.

Set the customizable DOM Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine
if the parser can support those features. The appropriate properties are then set in the specified
props object.

This method can be overridden to add additional DOM2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put("http://www.acme.com/
features/foo", Boolean.TRUE);

702.9.2.10 public void setSAXProperties(SAXParserFactory factory, Hashtable<String, Object> properties)

factory - the SAXParserFactory object

properties - the properties object for the service

Set the customizable SAX Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine
if the parser can support those features. The appropriate properties are then set in the specified
properties object.

This method can be overridden to add additional SAX2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put("http://www.acme.com/
features/foo", Boolean.TRUE);

702.9.2.11 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

□ Called when this bundle is started so the Framework can perform the bundle-specific activities nec-
essary to start this bundle. This method can be used to register services or to allocate any resources
that this bundle needs.

This method must complete and return to its caller in a timely manner.

This method attempts to register a SAX and DOM parser with the Framework's service registry.

Throws Exception– If this method throws an exception, this bundle is marked as stopped and the Frame-
work will remove this bundle's listeners, unregister all services registered by this bundle, and re-
lease all services used by this bundle.

702.9.2.12 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

□ This method has nothing to do as all active service registrations will automatically get unregistered
when the bundle stops.

Throws Exception– If this method throws an exception, the bundle is still marked as stopped, and the
Framework will remove the bundle's listeners, unregister all services registered by the bundle, and
release all services used by the bundle.

702.9.2.13 public void ungetService(Bundle bundle, ServiceRegistration<Object> registration, Object service)

bundle The bundle releasing the service.

registration The ServiceRegistrat ion object for the service.

XML Parser Service Specification Version 1.0 References

OSGi Enterprise Release 7 Page 927

service The XML Parser Factory object returned by a previous call to the getService method.

□ Releases a XML Parser Factory object.

702.10 References

[1] XML
http://www.w3.org/XML

[2] SAX
http://www.saxproject.org/

[3] DOM Java Language Binding
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

[4] JAXP
http://jaxp.java.net/

[5] JAR File specification, services directory
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html

[6] Xerces 2 Java Parser
http://xerces.apache.org/xerces2-j/

http://www.w3.org/XML
http://www.saxproject.org/
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html
http://jaxp.java.net/
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html
http://xerces.apache.org/xerces2-j/

References XML Parser Service Specification Version 1.0

Page 928 OSGi Enterprise Release 7

Promises Specification Version 1.1 Introduction

OSGi Enterprise Release 7 Page 929

705 Promises Specification

Version 1.1

705.1 Introduction
One of the fundamental pieces of an asynchronous programming model is the mechanism
by which clients retrieve the result of the asynchronous task. Since Java 5, there has been a
java.ut i l .concurrent.Future interface available in the Java class libraries, which means that it is
the de facto API in Java for handling the result of an asynchronous task. Futures have some limita-
tions however in that they have no mechanism for registering callbacks. Java 8 introduces the class
java.ut i l .concurrent.CompletableFuture which addresses this but the requirement of Java 8 is un-
suitable for many OSGi users at this time.

This specification defines a Promises API which can be used on many versions of Java including Java
5 and Java ME CDC/Foundation. The Promises API defined by this specification is independent of all
other OSGi specifications including the OSGi Framework and thus can be easily used outside of the
OSGi environment.

A Promise object holds the result of a potentially asynchronous task. The receiver of a Promise ob-
ject can register callbacks on the Promise to be notified when the result is available or can block on
the result becoming available. Promises can be chained together in powerful ways to handle asyn-
chronous work flows and recovery.

Promises capture the effects of latency and errors by making these explicit in the API signatures. La-
tency is represented by callbacks which will eventually be called. Errors are represented by the fail-
ure member. In essence, this is what sets Promises apart from things such as RPC calls where such
effects are not explicitly captured but rather attempted to be transparently handled.

705.1.1 Essentials

• Common concepts - The API is inspired by the Promises work in JavaScript and uses the same basic
concepts. See [2] JavaScript Promises.

• Independent - The design is independent of all other OSGi specifications and can be used outside
of an OSGi environment.

• Asynchronous - The design supports asynchronous tasks.
• Small - The API and implementation are very compact.
• Complete - The design provides a very complete set of operations for Promise which are primi-

tives that can be used to address most use cases.
• Monad - The design supports monadic programming. See [4] Monad.
• Resolution - A Promise can be resolved successfully with a value or unsuccessfully with an excep-

tion.
• Generified - Generics are used to promote type safety.

705.1.2 Entities

• Promise - A Promise object holds the eventual result of a potentially asynchronous task.
• Callback - The receiver of a Promise can register callbacks on the Promise to be notified when the

task is completed.

Promise Promises Specification Version 1.1

Page 930 OSGi Enterprise Release 7

• Deferred - A Deferred object represents the potentially asynchronous task and is used to resolve
the Promise.

Figure 705.1 Class diagram of org.osgi.util.promise

<<class>>
Deferred resolves

<<interface>>
Promise1

<<class>>
PromiseFactory <<interface>>

Failure
<<interface>>
Success

<<interface>>
Runnable

0..n0..n 0..n

calls callscalls

705.2 Promise
A Promise object holds the eventual result of a potentially asynchronous task. A Promise is either
unresolved or resolved. An unresolved Promise does not have the result of the associated task avail-
able while a resolved Promise has the result of the associated task available. The isDone() method
must return true if the Promise is resolved and fa lse if the Promise is unresolved. A Promise must
only be resolved once.

A resolved Promise can be either resolved with a value, which means the associated task completed
successfully and supplied a result, or resolved with a failure, which means the associated task com-
pleted unsuccessfully and supplied an exception. The getFai lure() method can be called to determine
if the resolved Promise completed successfully with a value or unsuccessfully with a failure. If the
getFai lure() method returns a Throwable , the Promise resolved unsuccessfully with a failure. If the
getFai lure() method returns nul l , the Promise resolved successfully with a value that can be ob-
tained from getValue() .

If the Promise is unresolved, then calling getFai lure() or getValue() must block until the Promise is
resolved. In general, these two methods should not be used outside of a callback. Use callbacks to be
notified when the Promise is resolved. See Callbacks on page 931.

705.3 Deferred
Promise is an interface which can allow for many Promise implementations. This API contains the
Deferred class which provides access to the standard Promise implementation. A Deferred object
can be created by calling the deferred() method on a PromiseFactory object.

A PromiseFactory object is created with a specified callback executor and a specified scheduled ex-
ecutor to use for created Promise objects and the Promise objects associated with created Deferred
objects. If the callback executor or the scheduled executor is not specified or is specified as nul l , then
implementation default executors will be used. The Deferred() constructor will create a Deferred
whose associated Promise uses the implementation default executors. All Promise objects created
by a Promise must use the same executors as the creating Promise. Callbacks must be called using
the callback executor. The scheduled executor must be used by the t imeout(long) and delay(long)
operations. The in l ineExecutor() method can be used to obtain an executor which runs callbacks
immediately on the thread calling the Executor.execute method. This behavior is similar to how
callbacks were executed in the default Promise implementation of Promise 1.0 specification.

The Promise associated with a Deferred object can be obtained using getPromise() . This Promise
can then be supplied to other parties who can use it to be notified of and obtain the eventual result.

public Promise<String> getTimeConsumingAnswer() {

Promises Specification Version 1.1 Callbacks

OSGi Enterprise Release 7 Page 931

 Deferred<String> deferred = factory.deferred();
 asynchronously(() -> doTask(deferred));
 return deferred.getPromise();
}

A Deferred object can later be used to resolve the associated Promise successfully by calling
resolve(T) or unsuccessfully by calling fa i l (Throwable) .

private void doTask(Deferred<String> deferred) {
 try {
 String answer = computeTimeConsumingAnswer();
 deferred.resolve(answer); // successfully resolve with value
 } catch (Exception e) {
 deferred.fail(e); // unsuccessfully resolve with exception
 }
}

A Deferred object can also be used to resolve the associated Promise with the eventual result of an-
other Promise by calling resolveWith(Promise) .

private void doTask(Deferred<String> deferred) {
 try {
 Promise<String> promise = getPromiseWithTheAnswer();
 deferred.resolveWith(promise); // resolve with another Promise
 } catch (Exception e) {
 deferred.fail(e); // unsuccessfully resolve with exception
 }
}

If resolve(T) or fa i l (Throwable) is called when the Promise associated with the Deferred is already
resolved, then an Illegal State Exception must be thrown.

Care must be taken in sharing a Deferred object with other parties since the other parties can re-
solve the associated Promise. A Deferred object should be made available only to the party that will
responsible for resolving the associated Promise.

705.4 Callbacks
To be notified when a Promise has been resolved, callbacks are used. The Promise API provides two
forms of callbacks: the basic Runnable and Consumer callbacks and the more specialized Success
and Fai lure callbacks.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
callback is called.

Resolving a Promise happens-before any registered callback is called. That is, for the resolved Promise,
in a registered callback isDone() must return true and getValue() and getFai lure() must not block.

Callbacks may be registered at any time including before and after a Promise has been resolved. If
a callback is registered before the Promise is resolved, it will be called later when the Promise is re-
solved. If a callback is registered on an already resolved Promise, it will be called right away.

705.4.1 Runnable
The onResolve(Runnable) method is used to register a Runnable with the Promise which must be
called when the Promise is resolved either successfully with a value or unsuccessfully with a failure.

Chaining Promises Promises Specification Version 1.1

Page 932 OSGi Enterprise Release 7

The resolved Promise is not passed to the Runnable, so if the Runnable implementation needs access
to the resolved Promise, it must take care to ensure it has access.

final Promise<String> answer = getTimeConsumingAnswer();
answer.onResolve(() -> doSomethingWithAnswer(answer));

The onResolve(Runnable) method returns the Promise object upon which it is called.

705.4.2 Consumer
The thenAccept(Consumer) method is used to register a Consumer with the Promise which must be
called when the Promise is resolved successfully with a value. The value of the resolved Promise is
passed to the Consumer .

final Promise<String> answer = getTimeConsumingAnswer().thenAccept(s ->
 doSomethingWithAnswer(s)
);

The thenAccept(Consumer) method returns a new Promise which will be resolved with either the
exception thrown from the Consumer , if one is thrown, or with the Promise.

The onSuccess(Consumer) method is used to register a Consumer with the Promise which must be
called when the Promise is resolved successfully with a value. The value of the resolved Promise is
passed to the Consumer . The onSuccess(Consumer) method returns the Promise object upon which
it is called.

The onFai lure(Consumer) method is used to register a Consumer with the Promise which must
be called when the Promise is resolved unsuccessfully with a failure. The failure of the resolved
Promise is passed to the Consumer . The onFai lure(Consumer) method returns the Promise object
upon which it is called.

705.4.3 Success and Failure
The then(Success) and then(Success,Fai lure) methods can be used to register the more specialized
Success and Fai lure callbacks. The Success callback is only called if the Promise is successfully re-
solved with a value. The Fai lure callback is only called if the Promise is unsuccessfully resolved with
a failure.

Promise<String> answer = getTimeConsumingAnswer();
answer.then(p -> processResult(p.getValue()), p -> handleFailure(p.getFailure()));

The then methods return a new Promise which can be used to chain Promises together.

705.5 Chaining Promises
The then(Success) , then(Success,Fai lure) , and thenAccept(Consumer) methods also provide a
means to chain Promises together. These methods return a new Promise which is chained to the
original Promise upon which the method was called. The returned Promise must be resolved when
the original Promise is resolved after the specified Success, Failure, or Consumer callback is execut-
ed. The result of the executed callback must be used to resolve the returned Promise. A sequence of
calls to the then methods can be used to create a chain of promises which are resolved in sequence.

For the then(Success) or then(Success,Fai lure) methods, if the original Promise is successfully re-
solved, the Success callback is executed and the Promise returned by the Success callback, if any, or
thrown exception is used to resolve the Promise returned from the method. If the original Promise is
resolved with a failure, the Failure callback is executed and the Promise returned from the method
is resolved with a failure.

Promises Specification Version 1.1 Monad

OSGi Enterprise Release 7 Page 933

For the thenAccept(Consumer) method, if the original Promise is successfully resolved, the Con-
sumer callback is executed and the value of the original Promise or thrown exception is used to re-
solve the Promise returned from the method. If the original Promise is resolved with a failure, the
Consumer callback is not executed and the Promise returned from the method is resolved with the
failure of the original Promise.

In the following example, a Promise which will supply the name of the file to download is chained
to a Promise which will return a mirror URL to use to download the file which is then further
chained to a Promise which will return an Input Stream from which to read the download file.

Promise<String> name = getDownloadName();
Promise<URL> mirror = name.then(p -> getMirror(p.getValue()));
Promise<InputStream> in = mirror.then(p -> getStream(p.getValue()));

Since we probably do not need the intermediate Promises, we can collapse the chain into a single
statement.

Promise<InputStream> in = getDownloadName().then(p -> getMirror(p.getValue()))
 .then(p -> getStream(p.getValue()));

The chain of Promises will also propagate any exceptions that occur to resolve the last Promise in
the chain which means we do not need to do any exception handling in the intermediate tasks.
Promises can also be chained by using the monadic programming methods in Monad on page
933.

705.6 Monad
The Promise API supports monadic programming. See [4] Monad. The Promise interface defines a
number of interesting methods including map , f latMap and f i l ter .

• f i l ter(Predicate) - Filter the value of the Promise.

If the Promise is successfully resolved, the predicate argument is called with the value of the
Promise. If the predicate accepts the value, then the value is used to successfully resolve the
Promise returned by the filter method. If the predicate does not accept the value, the Promise re-
turned by the filter method is unsuccessfully resolved with a No Such Element Exception. If the
predicate throws an exception, the Promise returned by the filter method is unsuccessfully re-
solved with that exception.

If the Promise is unsuccessfully resolved, the predicate argument is not called and the Promise
returned by the filter method is unsuccessfully resolved with the failure of the Promise.

• map(Function) - Map the value of the Promise.

If the Promise is successfully resolved, the function argument is called with the value of the
Promise. The value returned by the function is used to successfully resolve the Promise returned
by the map method. If the function throws an exception, the Promise returned by the map
method is unsuccessfully resolved with that exception.

If the Promise is unsuccessfully resolved, the function argument is not called and the Promise re-
turned by the map method is unsuccessfully resolved with the failure of the Promise.

• f latMap(Function) - FlatMap the value of the Promise.

If the Promise is successfully resolved, the function argument is called with the value of the
Promise. The Promise returned by the function is used to resolve the Promise returned by the
flatMap method. If the function throws an exception, the Promise returned by the flatMap
method is unsuccessfully resolved with that exception.

Timing Promises Specification Version 1.1

Page 934 OSGi Enterprise Release 7

If the Promise is unsuccessfully resolved, the function argument is not called and the Promise re-
turned by the flatMap method is unsuccessfully resolved with the failure of the Promise.

• recover(Function) - Recover from the unsuccessful resolution of the Promise with a recovery val-
ue.

If the Promise is successfully resolved, the function argument is not called and the Promise re-
turned by the recover method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the function argument is called with the Promise to
supply a recovery value. If the recovery value is not nul l , the Promise returned by the recover
method is successfully resolved with the recovery value. If the recovery value is nul l , the Promise
returned by the recover method is unsuccessfully resolved with the failure of the Promise. If the
function throws an exception, the Promise returned by the recover method is unsuccessfully re-
solved with that exception.

• recoverWith(Function) - Recover from the unsuccessful resolution of the Promise with a recov-
ery Promise.

If the Promise is successfully resolved, the function argument is not called and the Promise re-
turned by the recover method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the function argument is called with the Promise to
supply a recovery Promise. If the recovery Promise is not nul l , the Promise returned by the recov-
er method is resolved with the recovery Promise. If the recovery Promise is nul l , the Promise re-
turned by the recover method is unsuccessfully resolved with the failure of the Promise. If the
function throws an exception, the Promise returned by the recover method is unsuccessfully re-
solved with that exception.

• fa l lbackTo(Promise) - Fall back to the value of the Promise argument if the Promise unsuccessful-
ly resolves.

If the Promise is successfully resolved, the Promise argument is not used and the Promise re-
turned by the fallbackTo method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the Promise argument is used to provide a fallback
value when it becomes resolved. If the Promise argument is successfully resolved, the Promise
returned by the fallbackTo method is resolved with the value of the Promise argument. If the
Promise argument is unsuccessfully resolved, the Promise returned by the fallbackTo method is
unsuccessfully resolved with the failure of the Promise.

These functions can be used to build pipelines of chained Promises that are processed in sequence.
For example, in the following chain, the value of the original promise, once resolved, is filtered for
acceptable values. If the filter says the value is not acceptable, the recover method will be used to re-
place it with a default value.

return promise.filter(v -> isValueOk(v)).recover(p -> getDefaultValue())

With these chains, one can write powerful programs without the need to resort to complex if/else
and try/catch logic.

705.7 Timing
The Promise API provides methods to affect the timing of resolving Promises.

• t imeout(long) - Time out the resolution of the Promise.

If the Promise is successfully resolved before the timeout, the returned Promise is resolved with
the value of the Promise. If the Promise is resolved with a failure before the timeout, the returned

Promises Specification Version 1.1 Functional Interfaces

OSGi Enterprise Release 7 Page 935

Promise is resolved with the failure of the Promise. If the timeout is reached before the Promise
is resolved, the returned Promise is failed with a TimeoutException .

• delay(long) - Delay after the resolution of the Promise.

Once the Promise is resolved, resolve the returned Promise with the Promise after the specified
delay.

705.8 Functional Interfaces
In Java 8, the concept of Functional Interfaces is introduced. See [5] Function Interfaces. Function-
al interfaces are types with a single abstract method. Instances of functional interfaces can be cre-
ated with lambda expressions, method references, or constructor references. Many methods on
Promise take functional interface arguments and so are suitable for use with lambda expressions
and method references in Java 8.

Three of these functional interfaces are Function , Predicate , and Consumer . These are equivalent to
functional interfaces which are part of the java.ut i l .function package introduced in Java 8. OSGi de-
fines these interfaces to allow throwing checked exceptions which can be propagated in a chain of
Promises.

705.9 Utility Methods
The API also provides several useful utility methods when working with Promises.

Often, you may need to create an already resolved Promise to return or chain with another Promise.
The resolved(T) method can be used to create a new Promise already successfully resolved with the
specified value. The fa i led(Throwable) method can be used to create a new Promise already unsuc-
cessfully resolved with the specified exception. These methods also exists as static methods on the
Promises class returning Promises which use the implementation default executors.

 return getTimeConsumingAnswer().fallbackTo(factory.resolved("Fallback Value"));

The submit(Cal lable) method can be used to return a new Promise that will hold the result of the
specified task. The task will be executed on the callback executor.

The al l (Col lect ion) method returns a Promise that is a latch on the specified Promises. The returned
Promise must resolve only when all of the specified Promises have resolved. This method also exists
as a static method on the Promises class returning a Promise which uses the implementation default
executors.

705.10 Security
The Promise API does not define any OSGi services nor does the API perform any privileged actions.
Therefore, it has no security considerations.

705.11 org.osgi.util.promise

Promise Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

org.osgi.util.promise Promises Specification Version 1.1

Page 936 OSGi Enterprise Release 7

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .promise; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .promise; vers ion="[1.1 ,1 .2)"

705.11.1 Summary

• Deferred - A Deferred Promise resolution.
• Fai ledPromisesException - Promise failure exception for a collection of failed Promises.
• Fai lure - Failure callback for a Promise.
• Promise - A Promise of a value.
• PromiseFactory - Promise factory to create Deferred and Promise objects.
• Promises - Static helper methods for Promises.
• Success - Success callback for a Promise.
• TimeoutException - Timeout exception for a Promise.

705.11.2 public class Deferred<T>
<T> The value type associated with the created Promise.

A Deferred Promise resolution.

Instances of this class can be used to create a Promise that can be resolved in the future. The
associated Promise can be successfully resolved with resolve(Object) or resolved with a fail-
ure with fail(Throwable). It can also be resolved with the resolution of another promise using
resolveWith(Promise).

The associated Promise can be provided to any one, but the Deferred object should be made avail-
able only to the party that will responsible for resolving the Promise.

Concurrency Immutable

Provider Type Consumers of this API must not implement this type

705.11.2.1 public Deferred()

□ Create a new Deferred.

The associated promise will use the default callback executor and default scheduled executor.

See Also PromiseFactory.deferred()

705.11.2.2 public void fail(Throwable failure)

failure The failure of the resolved Promise. Must not be nul l .

□ Fail the Promise associated with this Deferred.

After the associated Promise is resolved with the specified failure, all registered callbacks are called
and any chained Promises are resolved. This may occur asynchronously to this method.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Throws I l legalStateException– If the associated Promise was already resolved.

705.11.2.3 public Promise<T> getPromise()

□ Returns the Promise associated with this Deferred.

Promises Specification Version 1.1 org.osgi.util.promise

OSGi Enterprise Release 7 Page 937

All Promise objects created by the associated Promise will use the executors of the associated
Promise.

Returns The Promise associated with this Deferred.

705.11.2.4 public void resolve(T value)

value The value of the resolved Promise.

□ Successfully resolve the Promise associated with this Deferred.

After the associated Promise is resolved with the specified value, all registered callbacks are called
and any chained Promises are resolved. This may occur asynchronously to this method.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Throws I l legalStateException– If the associated Promise was already resolved.

705.11.2.5 public Promise<Void> resolveWith(Promise<? extends T> with)

with A Promise whose value or failure must be used to resolve the associated Promise. Must not be nul l .

□ Resolve the Promise associated with this Deferred with the specified Promise.

If the specified Promise is successfully resolved, the associated Promise is resolved with the value of
the specified Promise. If the specified Promise is resolved with a failure, the associated Promise is re-
solved with the failure of the specified Promise.

After the associated Promise is resolved with the specified Promise, all registered callbacks are called
and any chained Promises are resolved. This may occur asynchronously to this method.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Returns A Promise that is resolved only when the associated Promise is resolved by the specified Promise.
The returned Promise must be successfully resolved with the value nul l , if the associated Promise
was resolved by the specified Promise. The returned Promise must be resolved with a failure of Ille-
galStateException, if the associated Promise was already resolved when the specified Promise was
resolved.

705.11.2.6 public String toString()

□ Returns a string representation of the associated Promise.

Returns A string representation of the associated Promise.

Since 1.1

705.11.3 public class FailedPromisesException
extends RuntimeException
Promise failure exception for a collection of failed Promises.

705.11.3.1 public FailedPromisesException(Collection<Promise<?>> failed, Throwable cause)

failed A collection of Promises that have been resolved with a failure. Must not be nul l , must not be empty
and all of the elements in the collection must not be nul l .

cause The cause of this exception. This is typically the failure of the first Promise in the specified collec-
tion.

□ Create a new FailedPromisesException with the specified Promises.

org.osgi.util.promise Promises Specification Version 1.1

Page 938 OSGi Enterprise Release 7

705.11.3.2 public Collection<Promise<?>> getFailedPromises()

□ Returns the collection of Promises that have been resolved with a failure.

Returns The collection of Promises that have been resolved with a failure. The returned collection is unmod-
ifiable.

705.11.4 public interface Failure
Failure callback for a Promise.

A Failure callback is registered with a Promise using the Promise.then(Success, Failure) method and
is called if the Promise is resolved with a failure.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.11.4.1 public void fail(Promise<?> resolved) throws Exception

resolved The failed resolved Promise.

□ Failure callback for a Promise.

This method is called if the Promise with which it is registered resolves with a failure.

In the remainder of this description we will refer to the Promise returned by Promise.then(Success,
Failure) when this Failure callback was registered as the chained Promise.

If this methods completes normally, the chained Promise must be failed with the same exception
which failed the resolved Promise. If this method throws an exception, the chained Promise must be
failed with the thrown exception.

Throws Exception– The chained Promise must be failed with the thrown exception.

705.11.5 public interface Promise<T>
<T> The value type associated with this Promise.

A Promise of a value.

A Promise represents a future value. It handles the interactions for asynchronous processing. A De-
ferred object can be used to create a Promise and later resolve the Promise. A Promise is used by the
caller of an asynchronous function to get the result or handle the error. The caller can either get a
callback when the Promise is resolved with a value or an error, or the Promise can be used in chain-
ing. In chaining, callbacks are provided that receive the resolved Promise, and a new Promise is gen-
erated that resolves based upon the result of a callback.

Both callbacks and chaining can be repeated any number of times, even after the Promise has been
resolved.

Example callback usage:

 Promise<String> foo = foo();
 foo.onResolve(() -> System.out.println("resolved"));

Example chaining usage;

 Success<String,String> doubler = p -> Promises
 .resolved(p.getValue() + p.getValue());
 Promise<String> foo = foo().then(doubler).then(doubler);

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

Promises Specification Version 1.1 org.osgi.util.promise

OSGi Enterprise Release 7 Page 939

705.11.5.1 public Promise<T> delay(long milliseconds)

milliseconds The time to delay in milliseconds. Zero and negative time is treated as no delay.

□ Delay after the resolution of this Promise.

Once this Promise is resolved, resolve the returned Promise with this Promise after the specified de-
lay.

Returns A Promise that is resolved with this Promise after this Promise is resolved and the specified delay
has elapsed.

Since 1.1

705.11.5.2 public Promise<T> fallbackTo(Promise<? extends T> fallback)

fallback The Promise whose value must be used to resolve the returned Promise if this Promise resolves with
a failure. Must not be nul l .

□ Fall back to the value of the specified Promise if this Promise fails.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the successful result of the specified Promise is used to re-
solve the returned Promise. If the specified Promise is resolved with a failure, the returned Promise
must be failed with the failure of this Promise rather than the failure of the specified Promise.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise or falls back to the value of the specified Promise.

705.11.5.3 public Promise<T> filter(Predicate<? super T> predicate)

predicate The Predicate to evaluate the value of this Promise. Must not be nul l .

□ Filter the value of this Promise.

If this Promise is successfully resolved, the returned Promise must either be resolved with the value
of this Promise, if the specified Predicate accepts that value, or failed with a NoSuchElementExcep-
t ion , if the specified Predicate does not accept that value. If the specified Predicate throws an excep-
tion, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that filters the value of this Promise.

705.11.5.4 public Promise<R> flatMap(Function<? super T, Promise<? extends R>> mapper)

Type Parameters <R>

<R> The value type associated with the returned Promise.

mapper The Function that must flatMap the value of this Promise to a Promise that must be used to resolve
the returned Promise. Must not be nul l .

□ FlatMap the value of this Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the Promise
from the specified Function as applied to the value of this Promise. If the specified Function throws
an exception, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise as mapped by the specified Function.

org.osgi.util.promise Promises Specification Version 1.1

Page 940 OSGi Enterprise Release 7

705.11.5.5 public Throwable getFailure() throws InterruptedException

□ Returns the failure of this Promise.

If this Promise is not resolved, this method must block and wait for this Promise to be resolved be-
fore completing.

If this Promise was resolved with a failure, this method returns with the failure of this Promise. If
this Promise was successfully resolved, this method must return nul l .

Returns The failure of this resolved Promise or nul l if this Promise was successfully resolved.

Throws InterruptedException– If the current thread was interrupted while waiting.

705.11.5.6 public T getValue() throws InvocationTargetException, InterruptedException

□ Returns the value of this Promise.

If this Promise is not resolved, this method must block and wait for this Promise to be resolved be-
fore completing.

If this Promise was successfully resolved, this method returns with the value of this Promise. If this
Promise was resolved with a failure, this method must throw an InvocationTargetException with
the failure exception as the cause.

Returns The value of this resolved Promise.

Throws InvocationTargetException– If this Promise was resolved with a failure. The cause of the Invoca-
t ionTargetException is the failure exception.

InterruptedException– If the current thread was interrupted while waiting.

705.11.5.7 public boolean isDone()

□ Returns whether this Promise has been resolved.

This Promise may be successfully resolved or resolved with a failure.

Returns true if this Promise was resolved either successfully or with a failure; fa lse if this Promise is unre-
solved.

705.11.5.8 public Promise<R> map(Function<? super T, ? extends R> mapper)

Type Parameters <R>

<R> The value type associated with the returned Promise.

mapper The Function that must map the value of this Promise to the value that must be used to resolve the
returned Promise. Must not be nul l .

□ Map the value of this Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of
specified Function as applied to the value of this Promise. If the specified Function throws an excep-
tion, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise as mapped by the specified Function.

705.11.5.9 public Promise<T> onFailure(Consumer<? super Throwable> failure)

failure The Consumer callback that receives the failure of this Promise. Must not be nul l .

□ Register a callback to be called with the failure for this Promise when this Promise is resolved with a
failure. The callback will not be called if this Promise is resolved successfully.

This method may be called at any time including before and after this Promise has been resolved.

Promises Specification Version 1.1 org.osgi.util.promise

OSGi Enterprise Release 7 Page 941

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns This Promise.

Since 1.1

705.11.5.10 public Promise<T> onResolve(Runnable callback)

callback The callback to be called when this Promise is resolved. Must not be nul l .

□ Register a callback to be called when this Promise is resolved.

The specified callback is called when this Promise is resolved either successfully or with a failure.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns This Promise.

705.11.5.11 public Promise<T> onSuccess(Consumer<? super T> success)

success The Consumer callback that receives the value of this Promise. Must not be nul l .

□ Register a callback to be called with the result of this Promise when this Promise is resolved success-
fully. The callback will not be called if this Promise is resolved with a failure.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns This Promise.

Since 1.1

705.11.5.12 public Promise<T> recover(Function<Promise<?>, ? extends T> recovery)

recovery If this Promise resolves with a failure, the specified Function is called to produce a recovery value to
be used to resolve the returned Promise. Must not be nul l .

□ Recover from a failure of this Promise with a recovery value.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the specified Function is applied to this Promise to produce
a recovery value.

• If the recovery value is not nul l , the returned Promise must be resolved with the recovery value.
• If the recovery value is nul l , the returned Promise must be failed with the failure of this Promise.
• If the specified Function throws an exception, the returned Promise must be failed with that ex-

ception.

org.osgi.util.promise Promises Specification Version 1.1

Page 942 OSGi Enterprise Release 7

To recover from a failure of this Promise with a recovery value of nul l , the recoverWith(Function)
method must be used. The specified Function for recoverWith(Function) can return
Promises.resolved(nul l) to supply the desired nul l value.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that resolves with the value of this Promise or recovers from the failure of this Promise.

705.11.5.13 public Promise<T> recoverWith(Function<Promise<?>, Promise<? extends T>> recovery)

recovery If this Promise resolves with a failure, the specified Function is called to produce a recovery Promise
to be used to resolve the returned Promise. Must not be nul l .

□ Recover from a failure of this Promise with a recovery Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the specified Function is applied to this Promise to produce
a recovery Promise.

• If the recovery Promise is not nul l , the returned Promise must be resolved with the recovery
Promise.

• If the recovery Promise is nul l , the returned Promise must be failed with the failure of this
Promise.

• If the specified Function throws an exception, the returned Promise must be failed with that ex-
ception.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that resolves with the value of this Promise or recovers from the failure of this Promise.

705.11.5.14 public Promise<R> then(Success<? super T, ? extends R> success, Failure failure)

Type Parameters <R>

<R> The value type associated with the returned Promise.

success The Success callback to be called when this Promise is successfully resolved. May be nul l if no Suc-
cess callback is required. In this case, the returned Promise must be resolved with the value nul l
when this Promise is successfully resolved.

failure The Failure callback to be called when this Promise is resolved with a failure. May be nul l if no Fail-
ure callback is required.

□ Chain a new Promise to this Promise with Success and Failure callbacks.

The specified Success callback is called when this Promise is successfully resolved and the specified
Failure callback is called when this Promise is resolved with a failure.

This method returns a new Promise which is chained to this Promise. The returned Promise must
be resolved when this Promise is resolved after the specified Success or Failure callback is executed.
The result of the executed callback must be used to resolve the returned Promise. Multiple calls to
this method can be used to create a chain of promises which are resolved in sequence.

If this Promise is successfully resolved, the Success callback is executed and the result Promise, if
any, or thrown exception is used to resolve the returned Promise from this method. If this Promise is
resolved with a failure, the Failure callback is executed and the returned Promise from this method
is failed.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

Promises Specification Version 1.1 org.osgi.util.promise

OSGi Enterprise Release 7 Page 943

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Success or Failure callback, if any, is executed.

705.11.5.15 public Promise<R> then(Success<? super T, ? extends R> success)

Type Parameters <R>

<R> The value type associated with the returned Promise.

success The Success callback to be called when this Promise is successfully resolved. May be nul l if no Suc-
cess callback is required. In this case, the returned Promise must be resolved with the value nul l
when this Promise is successfully resolved.

□ Chain a new Promise to this Promise with a Success callback.

This method performs the same function as calling then(Success, Failure) with the specified Success
callback and nul l for the Failure callback.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Success, if any, is executed.

See Also then(Success, Failure)

705.11.5.16 public Promise<T> thenAccept(Consumer<? super T> consumer)

consumer The Consumer callback that receives the value of this Promise. Must not be nul l .

□ Chain a new Promise to this Promise with a Consumer callback that receives the value of this
Promise when it is successfully resolved.

The specified Consumer is called when this Promise is resolved successfully.

This method returns a new Promise which is chained to this Promise. The returned Promise must be
resolved when this Promise is resolved after the specified callback is executed. If the callback throws
an exception, the returned Promise is failed with that exception. Otherwise the returned Promise is
resolved with the success value from this Promise.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Consumer is executed.

Since 1.1

705.11.5.17 public Promise<T> timeout(long milliseconds)

milliseconds The time to wait in milliseconds. Zero and negative time is treated as an immediate timeout.

□ Time out the resolution of this Promise.

If this Promise is successfully resolved before the timeout, the returned Promise is resolved with
the value of this Promise. If this Promise is resolved with a failure before the timeout, the returned
Promise is resolved with the failure of this Promise. If the timeout is reached before this Promise is
resolved, the returned Promise is failed with a TimeoutException.

Returns A Promise that is resolved when either this Promise is resolved or the specified timeout is reached.

org.osgi.util.promise Promises Specification Version 1.1

Page 944 OSGi Enterprise Release 7

Since 1.1

705.11.6 public class PromiseFactory
Promise factory to create Deferred and Promise objects.

Instances of this class can be used to create Deferred and Promise objects which use the executors
used to construct this object for any callback or scheduled operation execution.

Since 1.1

Concurrency Immutable

705.11.6.1 public PromiseFactory(Executor callbackExecutor)

callbackExecutor The executor to use for callbacks. nul l can be specified for the default callback executor.

□ Create a new PromiseFactory with the specified callback executor.

The default scheduled executor will be used.

705.11.6.2 public PromiseFactory(Executor callbackExecutor, ScheduledExecutorService scheduledExecutor)

callbackExecutor The executor to use for callbacks. nul l can be specified for the default callback executor.

scheduledExecutor The scheduled executor for use for scheduled operations. nul l can be specified for the default sched-
uled executor.

□ Create a new PromiseFactory with the specified callback executor and specified scheduled executor.

705.11.6.3 public Promise<List<T>> all(Collection<Promise<S>> promises)

Type Parameters <T, S extends T>

<T> The value type of the List value associated with the returned Promise.

<S> A subtype of the value type of the List value associated with the returned Promise.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the elements in the collection must not be nul l .

□ Returns a new Promise that is a latch on the resolution of the specified Promises.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

The returned Promise acts as a gate and must be resolved after all of the specified Promises are re-
solved.

Returns A Promise that must be successfully resolved with a List of the values in the order of the specified
Promises if all the specified Promises are successfully resolved. The List in the returned Promise is
the property of the caller and is modifiable. The returned Promise must be resolved with a failure
of FailedPromisesException if any of the specified Promises are resolved with a failure. The failure
FailedPromisesException must contain all of the specified Promises which resolved with a failure.

705.11.6.4 public Deferred<T> deferred()

Type Parameters <T>

<T> The value type associated with the returned Deferred.

□ Create a new Deferred with the callback executor and scheduled executor of this PromiseFactory ob-
ject.

Use this method instead of Deferred.Deferred() to create a new Deferred whose associated Promise
uses executors other than the default executors.

Returns A new Deferred with the callback and scheduled executors of this PromiseFactory object

Promises Specification Version 1.1 org.osgi.util.promise

OSGi Enterprise Release 7 Page 945

705.11.6.5 public Executor executor()

□ Returns the executor to use for callbacks.

Returns The executor to use for callbacks. This will be the default callback executor if nul l was specified for
the callback executor when this PromiseFactory was created.

705.11.6.6 public Promise<T> failed(Throwable failure)

Type Parameters <T>

<T> The value type associated with the returned Promise.

failure The failure of the resolved Promise. Must not be nul l .

□ Returns a new Promise that has been resolved with the specified failure.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

Use this method instead of Promises.failed(Throwable) to create a Promise which uses executors
other than the default executors.

Returns A new Promise that has been resolved with the specified failure.

705.11.6.7 public static Executor inlineExecutor()

□ Returns an Executor implementation that executes tasks immediately on the thread calling the
Executor.execute method.

Returns An Executor implementation that executes tasks immediately on the thread calling the
Executor.execute method.

705.11.6.8 public Promise<T> resolved(T value)

Type Parameters <T>

<T> The value type associated with the returned Promise.

value The value of the resolved Promise.

□ Returns a new Promise that has been resolved with the specified value.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

Use this method instead of Promises.resolved(Object) to create a Promise which uses executors oth-
er than the default executors.

Returns A new Promise that has been resolved with the specified value.

705.11.6.9 public ScheduledExecutorService scheduledExecutor()

□ Returns the scheduled executor to use for scheduled operations.

Returns The scheduled executor to use for scheduled operations. This will be the default scheduled executor
if nul l was specified for the scheduled executor when this PromiseFactory was created.

705.11.6.10 public Promise<T> submit(Callable<? extends T> task)

Type Parameters <T>

<T> The value type associated with the returned Promise.

task The task whose result will be available from the returned Promise.

□ Returns a new Promise that will hold the result of the specified task.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

org.osgi.util.promise Promises Specification Version 1.1

Page 946 OSGi Enterprise Release 7

The specified task will be executed on the callback executor.

Returns A new Promise that will hold the result of the specified task.

705.11.7 public class Promises
Static helper methods for Promises.

These methods return Promises which use the default callback executor and default scheduled ex-
ecutor. See PromiseFactory for similar methods which use executors other than the default execu-
tors.

See Also PromiseFactory

Concurrency Thread-safe

705.11.7.1 public static Promise<List<T>> all(Collection<Promise<S>> promises)

Type Parameters <T, S extends T>

<T> The value type of the List value associated with the returned Promise.

<S> A subtype of the value type of the List value associated with the returned Promise.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the elements in the collection must not be nul l .

□ Returns a new Promise that is a latch on the resolution of the specified Promises.

The returned Promise acts as a gate and must be resolved after all of the specified Promises are re-
solved.

Returns A Promise which uses the default callback executor and default scheduled executor that is resolved
only when all the specified Promises are resolved. The returned Promise must be successfully re-
solved with a List of the values in the order of the specified Promises if all the specified Promises are
successfully resolved. The List in the returned Promise is the property of the caller and is modifiable.
The returned Promise must be resolved with a failure of FailedPromisesException if any of the spec-
ified Promises are resolved with a failure. The failure FailedPromisesException must contain all of
the specified Promises which resolved with a failure.

See Also PromiseFactory.all(Collection)

705.11.7.2 public static Promise<List<T>> all(Promise<? extends T>... promises)

Type Parameters <T>

<T> The value type associated with the specified Promises.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the arguments must not be nul l .

□ Returns a new Promise that is a latch on the resolution of the specified Promises.

The new Promise acts as a gate and must be resolved after all of the specified Promises are resolved.

Returns A Promise which uses the default callback executor and scheduled executor that is resolved only
when all the specified Promises are resolved. The returned Promise must be successfully resolved
with a List of the values in the order of the specified Promises if all the specified Promises are suc-
cessfully resolved. The List in the returned Promise is the property of the caller and is modifiable.
The returned Promise must be resolved with a failure of FailedPromisesException if any of the spec-
ified Promises are resolved with a failure. The failure FailedPromisesException must contain all of
the specified Promises which resolved with a failure.

See Also PromiseFactory.all(Collection)

Promises Specification Version 1.1 org.osgi.util.promise

OSGi Enterprise Release 7 Page 947

705.11.7.3 public static Promise<T> failed(Throwable failure)

Type Parameters <T>

<T> The value type associated with the returned Promise.

failure The failure of the resolved Promise. Must not be nul l .

□ Returns a new Promise that has been resolved with the specified failure.

Returns A new Promise which uses the default callback executor and default scheduled executor that has
been resolved with the specified failure.

See Also PromiseFactory.failed(Throwable)

705.11.7.4 public static Promise<T> resolved(T value)

Type Parameters <T>

<T> The value type associated with the returned Promise.

value The value of the resolved Promise.

□ Returns a new Promise that has been resolved with the specified value.

Returns A new Promise which uses the default callback executor and default scheduled executor that has
been resolved with the specified value.

See Also PromiseFactory.resolved(Object)

705.11.8 public interface Success<T, R>
<T> The value type of the resolved Promise passed as input to this callback.

<R> The value type of the returned Promise from this callback.

Success callback for a Promise.

A Success callback is registered with a Promise using the Promise.then(Success) method and is
called if the Promise is resolved successfully.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.11.8.1 public Promise<R> call(Promise<T> resolved) throws Exception

resolved The successfully resolved Promise.

□ Success callback for a Promise.

This method is called if the Promise with which it is registered resolves successfully.

In the remainder of this description we will refer to the Promise returned by this method as the re-
turned Promise and the Promise returned by Promise.then(Success) when this Success callback was
registered as the chained Promise.

If the returned Promise is nul l then the chained Promise must resolve immediately with a success-
ful value of nul l . If the returned Promise is not nul l then the chained Promise must be resolved when
the returned Promise is resolved.

Returns The Promise to use to resolve the chained Promise, or nul l if the chained Promise is to be resolved
immediately with the value nul l .

Throws Exception– The chained Promise must be failed with the thrown exception.

org.osgi.util.function Promises Specification Version 1.1

Page 948 OSGi Enterprise Release 7

705.11.9 public class TimeoutException
extends Exception
Timeout exception for a Promise.

Since 1.1

705.11.9.1 public TimeoutException()

□ Create a new TimeoutException .

705.12 org.osgi.util.function

Function Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .function; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .function; vers ion="[1.1 ,1 .2)"

705.12.1 Summary

• Consumer - A function that accepts a single argument and produces no result.
• Function - A function that accepts a single argument and produces a result.
• Predicate - A predicate that accepts a single argument and produces a boolean result.

705.12.2 public interface Consumer<T>
<T> The type of the function input.

A function that accepts a single argument and produces no result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Since 1.1

Concurrency Thread-safe

705.12.2.1 public void accept(T t) throws Exception

t The input to this function.

□ Applies this function to the specified argument.

Throws Exception– An exception thrown by the method.

705.12.3 public interface Function<T, R>
<T> The type of the function input.

<R> The type of the function output.

A function that accepts a single argument and produces a result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Promises Specification Version 1.1 References

OSGi Enterprise Release 7 Page 949

Concurrency Thread-safe

705.12.3.1 public R apply(T t) throws Exception

t The input to this function.

□ Applies this function to the specified argument.

Returns The output of this function.

Throws Exception– An exception thrown by the method.

705.12.4 public interface Predicate<T>
<T> The type of the predicate input.

A predicate that accepts a single argument and produces a boolean result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.12.4.1 public boolean test(T t) throws Exception

t The input to this predicate.

□ Evaluates this predicate on the specified argument.

Returns true if the specified argument is accepted by this predicate; fa lse otherwise.

Throws Exception– An exception thrown by the method.

705.13 References

[1] JavaScript Promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

[2] JavaScript Promises
http://www.html5rocks.com/en/tutorials/es6/promises/

[3] ECMAScript 6 drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

[4] Monad
https://en.wikipedia.org/wiki/Monad_%28functional_programming%29

[5] Function Interfaces
https://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.8

705.14 Changes
• Function and Predicate are updated so that their methods are now declared to throw Exception.
• The Consumer functional interface is added to the org.osgi.util.function package. New methods

are added to Promise which accept a Consumer. See Consumer on page 932.
• New timeout and delay methods are added to Promise. See Timing on page 934.
• The new PromiseFactory class has constructors which allow the caller to specify the executors to

be used by Deferred and Promise objects created by a PromiseFactory object. The PromiseFactory
class provides an inlineExecutor which can be used to provide behavior similar to how callbacks
were executed in the default Promise implementation of the Promise 1.0 specification.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://www.html5rocks.com/en/tutorials/es6/promises/
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://en.wikipedia.org/wiki/Monad_%28functional_programming%29
https://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.8

Changes Promises Specification Version 1.1

Page 950 OSGi Enterprise Release 7

Push Stream Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 951

706 Push Stream Specification

Version 1.0

706.1 Introduction
In large-scale distributed systems events are a commonly used communication mechanism for pass-
ing data and triggering behaviors. Events are typically generated asynchronously rather than at the re-
quest of the processing system, and once received an event usually undergoes some level of transfor-
mation before being stored, acted upon, or forwarded to another consumer.

Pipelines and streams are a popular and effective model for consuming and processing events, with
numerous APIs providing this sort of model. One of the most well-known processing pipeline APIs
is the Java 8 Streams API, which provides a functional pipeline for operating on Collections. The
Streams API is inherently pull based” as it relies on iterators and spliterators to pull the next entry
from the stream. This is the primary difference between synchronous and asynchronous models. In
an asynchronous world events are pushed into the pipeline as they are received.

This specification defines a PushStream API which can be used on devices which support the Java 8
compact1 profile. The PushStream API defined by this specification depends on OSGi Promises but
is independent of all other OSGi specifications, including the OSGi Framework, and thus can be eas-
ily used outside of the OSGi environment.

A PushStream object encapsulates a pipeline of a potentially asynchronous tasks which will be per-
formed when an event arrives. The result of the processing pipeline is represented using a Promise
object which will resolve when the result has been calculated.

PushStream capture the effects of errors, finite streams and back pressure by making these explicit
in the API signatures. Errors and End of Stream conditions are represented by specific events which
are pushed into the stream. Back pressure is represented by a delay value returned from the event
pipeline stages.

706.1.1 Essentials

• Common concepts - The API is inspired by the Streams API in Java 8 and uses the same basic con-
cepts. See [1] Java 8 Stream API.

• Independent - The design is independent of all other OSGi specifications (except for OSGi Promis-
es) and can be used outside of an OSGi environment.

• Asynchronous - The design is built to handle asynchronously produced events.
• Back Pressure - The design provides a means for event pipelines to communicate back-pressure to

the Event Source.
• Complete - The design provides a very complete set of operations for PushStreams which are

primitives that can be used to address most use cases.
• Generified - Generics are used to promote type safety.

706.1.2 Entities

• Push Event Source - A PushEventSource object represents a source of asynchronous events, and
can be used to create a PushStream.

Asynchronous Event Streams Push Stream Specification Version 1.0

Page 952 OSGi Enterprise Release 7

• Push Event Consumer - A Push Event Consumer object represents a sink for asynchronous events,
and can be attached to a PushEventSource or a PushStream.

• Push Stream - A PushStream object represents a pipeline for processing asynchronous events.
• Terminal Operation - The final operation of a PushStream pipeline results in a Promise which rep-

resents the completion state of the pipeline. The operation also begins the processing of events.

706.2 Asynchronous Event Streams
The Push Stream API is built upon the principals of Asynchronous Event streams, and therefore re-
quires three basic primitives:

• An event object
• A source of event objects
• A consumer of event objects

706.2.1 The Push Event
The PushEvent is an object representing an event. Every Push Event has an event type, which has
one of three values:

• DATA - A data event encapsulates a typed object
• ERROR - An error event encapsulates an exception and indicates a failure in the event stream.
• CLOSE - A close event represents the end of the stream of events.

An event stream consists of zero or more data events followed by a terminal event. A terminal event
is either an error or a close, and it indicates that there will be no more events in this stream. Depend-
ing on the reason for the terminal event it may be possible to re-attach to the event source and con-
sume more events.

706.2.2 The Push Event Source
A Push Event Source object represents a source of asynchronous Push Events. The event source de-
fines a single method open(PushEventConsumer) which can be used to connect to the source and
begin receiving a stream of events.

The open method of the Push Event Source returns an AutoCloseable which can be used to close the
event stream. If the close method is called on this object then the stream is terminated by sending a
close event. If additional calls are made to the close method then they return without further action.

706.2.3 The Push Event Consumer
A Push Event Consumer object represents a sink for asynchronous Push Events. The event con-
sumer defines a single method accept(PushEvent) which can be used to receive a stream of events.

The accept method of the Push Event Consumer returns a long representing back pressure. Back pres-
sure is described in detail in Back pressure on page 958. If the returned long is negative then the
event stream should be closed by the event source.

706.2.4 Closing the Event Stream
There are three ways in which a stream of events can complete normally.

• The Push Event Source may close the stream at any time by sending a terminal event to the con-
sumer. Upon receiving a terminal event the consumer should clean up any resources and not ex-
pect to receive further messages. Note that in a multi-threaded system the consumer may receive
events out of order, and in this case data events may be received after a terminal event. Event
processors should be careful to ignore data events that occur after terminal events, and to ensure

Push Stream Specification Version 1.0 The Push Stream

OSGi Enterprise Release 7 Page 953

that any downstream consumers receive any pending data events before forwarding the terminal
event.

• The open method of the Push Event Source returns an AutoCloseable which can be used to close
the event stream. If the close method is called on this object then the stream is terminated by
sending a close event. If additional calls are made to the close method then they return without
action. If the close method is called after a terminal event has been sent for any other reason then
it must return without action.

• The accept method of the Push Event Consumer returns a long indicating back pressure. If the
long is negative then the event source must close the stream by sending a close event.

706.3 The Push Stream
Simple event passing can be achieved by connecting a Push Event Consumer directly to a Push
Event Source, however this model forces a large amount of flow-control and resource manage-
ment into a single location. Furthermore it is difficult to reuse business logic across different event
streams.

The PushStream provides a powerful, flexible pipeline for event processing. The Push Stream API
shares many concepts with the Java 8 Streams API, in particular Push Streams are lazy, they may not
consume the entire event stream, and they can be composed from functional steps.

706.3.1 Simple Pipelines
A Push Stream can be created from a Push Event Source by using a PushStreamProvider . A Push
Stream represents a stage in an event processing pipeline. The overall pipeline is constructed from
zero or more intermediate operations, and completed with a single terminal operation.

Each intermediate operation returns a new Push Stream object chained to the previous pipeline
step. Once a Push Stream object has had an intermediate operation invoked on it then it may not
have any other operations chained to it. Terminal operations are either void, or return a Promise rep-
resenting the future result of the pipeline. These API patterns allow Push Streams to be built using a
fluent API.

Push Stream instances are lazy, and so the Push Stream will not be connected to the Push Event
Source until a terminal operat ion is invoked on the Push Stream. This means that a push stream ob-
ject can be safely built without events being received when the pipeline is partially initialized.

706.3.1.1 Mapping, Flat Mapping and Filtering

The simplest intermediate operations on a Push Stream are mapping and filtering. These operations
use stateless, non-interfering functions to alter the data received by the next stage in the pipeline.

706.3.1.1.1 Mapping

Mapping is the act of transforming an event from one type into another. This may involve taking a
field from the object, or performing some simple processing on it. When mapping there is an one to
one relationship between input and output events, that is, each input event is mapped to exactly one
output event.

 PushStream<String> streamOfStrings = getStreamOfStrings();

 PushStream<Integer> streamOfLengths =
 streamOfStrings.map(String::length);

If the mapping function throws an Exception then an Error Event is propagated down the stream
to the next pipeline step. The failure in the error event is set to the Exception thrown by the map-
ping function. The current pipeline step is also closed, and the close operation is propagated back

The Push Stream Push Stream Specification Version 1.0

Page 954 OSGi Enterprise Release 7

upstream to the event source by closing previous pipeline stages. Any subsequently received events
must not be propagated and must return negative back pressure.

706.3.1.1.2 Flat Mapping

Flat Mapping is the act of transforming an event from one type into multiple events of another type.
This may involve taking fields from an object, or performing some simple processing on it. When
flat mapping there is a one to many relationship between input and output events, that is, each input
event is mapped to zero or more output events.

A flat mapping function should asynchronously consume the event data and return a Push Stream
containing the flow of subsequent events.

 PushStream<String> streamOfStrings = getStreamOfStrings();

 PushStream<Character> streamOfCharacters =
 streamOfStrings.flatMap(s -> {
 SimplePushEventSource<Character> spes =
 getSimplePushEventSource();

 spes.connectPromise()
 .onResolve(() ->
 executor.execute(() -> {
 for(int i = 0; i < s.length; i++) {
 spes.publish(s.charAt(i));
 }
 });
 return pushStreamProvider.createStream(spes);
 });

If the flat mapping function throws an Exception then an Error Event is propagated down the
stream to the next pipeline step. The failure in the error event is set to the Exception thrown by the
mapping function. The current pipeline step is also closed, and the close operation is propagated
back upstream to the event source by closing previous pipeline stages. Any subsequently received
events must not be propagated and must return negative back pressure.

706.3.1.1.3 Filtering

Filtering is the act of removing events from the stream based on some characteristic of the event
data. This may involve inspecting the fields of the data object, or performing some simple process-
ing on it. If the filter function returns true for an event then it will be passed to the next stage of
the pipeline. If the filter function returns false then it will be discarded, and not passed to the next
pipeline stage.

 PushStream<String> streamOfStrings = getStreamOfStrings();

 PushStream<String> filteredStrings =
 streamOfStrings.filter(s -> s.length() == 42);

If the filtering function throws an Exception then an Error Event is propagated down the stream to
the next pipeline step. The failure in the error event is set to the Exception thrown by the filter func-
tion. The current pipeline step is also closed, and the close operation is propagated back upstream to
the event source by closing previous pipeline stages. Any subsequently received events must not be
propagated and must return negative back pressure.

706.3.1.1.4 Asynchronous Mapping

Mapping operations may sometimes take time to calculate their results. PushStream operations
should, in general be fast and non-blocking and so long-running mapping operations should be run

Push Stream Specification Version 1.0 The Push Stream

OSGi Enterprise Release 7 Page 955

on a separate thread. The asyncMap(int , int ,Function) operation allows the mapping function to re-
turn a Promise representing the ongoing calculation of the mapped value. When this promise re-
solves then its value will be passed to the next pipeline stage.

As asynchronous mapping operations are long-running they require back pressure to be generated
as the number of running operations increases. The amount of back pressure returned is equal to
the number of pending promises (aside from the mapping operation that has just started) plus the
number of waiting threads if the maximum number of concurrent promises has been reached. The
returned back pressure when only a single promise is running is therefore always zero.

706.3.1.2 Stateless and Stateful Intermediate Operations

Intermediate operations are either stateless or stateful. Stateless operations are ones where the
pipeline stage does not need to remember the previous data from the stream. Mapping, Flat Map-
ping and Filtering are all stateless operations. The following table lists the stateless operations on
the Push Stream.

Table 706.1 Stateless Intermediate Operations on the Push Stream

Intermediate Operation Description
adjustBackPressure(LongUnaryOperator)

adjustBackPressure(ToLongBiFunction)

Register a transformation function to adjust the back pressure
returned by the previous entry in the stream. The result of this
function will be returned as back pressure.

asyncMap(int , int ,Function) Register a mapping function which will asynchronously calcu-
late the value to be passed to the next stage of the stream. The re-
turned back pressure is equal to one less than the number of out-
standing promises, plus the number of queued threads, multi-
plied by the delay value.

f i l ter(Predicate) Register a selection function to be called with each data event in
the stream. If the function returns true then the event will propa-
gated, if fa lse then the event will dropped from the stream.

f latMap(Function) Register a transformation function to be called with each data
event in the stream. Each incoming data element is converted in-
to a stream of elements. The transformed data is then propagated
to the next stage of the stream.

fork(int , int ,Executor) Pushes event processing onto one or more threads in the supplied
Executor returning a fixed back pressure

map(Function) Register a transformation function to be called with each data
event in the stream. The transformed data is propagated to the
next stage of the stream.

merge(PushStream) Merges this stream and another stream into a single stream. The
returned stream will not close until both parent streams are
closed.

sequential() Forces data events to be delivered sequentially to the next stage of
the stream. Events may be delivered on multiple threads, but will
not arrive concurrently at the next stage of the pipeline.

spl it(Predicate. . .) Register a set of filter functions to select elements that should be
forwarded downstream. The returned streams correspond to the
supplied filter functions.

Stateful operations differ from stateless operations in that they must remember items from the
stream. Sometimes stateful operations must remember large numbers of events, or even the entire
stream. For example the dist inct operation remembers the identity of each entry in the stream, and
filters out duplicate events.

Care should be taken when using Stateful operations with large or infinite streams. For example
the sorted operation must process the entire stream until it receives a close event. At this point the

The Push Stream Push Stream Specification Version 1.0

Page 956 OSGi Enterprise Release 7

events can be sorted and delivered in order. It is usually a good idea to use the l imit operation to re-
strict the length of the stream before performing a stateful operation which must remember many
elements.

The following table lists all of the stateful operations of the PushStream.

Table 706.2 Stateful Intermediate Operations on the Push Stream

Intermediate Operation Description
buffer() Introduces a buffer before the next stage of the stream. The buffer

can be used to provide a circuit breaker, or to allow a switch of
consumer thread(s).

bui ldBuffer() Introduces a configurable buffer before the next stage of the
stream. The buffer can be used to provide a circuit breaker, or to
allow a switch of consumer thread(s).

coalesce(Function)

coalesce(int ,Function)

coalesce(IntSuppl ier,Function)

Register a coalescing function which aggregates one or more da-
ta events into a single data event which will be passed to the next
stage of the stream.

The number of events to be accumulated is either provided as a
fixed number, or as the result of a function

dist inct() A variation of f i l ter(Predicate) which drops data from the stream
that has already been seen. Specifically if a data element equals
an element which has previously been seen then it will be
dropped. This stateful operation must remember all data that has
been seen.

l imit(long) Limits the length of the stream to the defined number of ele-
ments. Once that number of elements are received then a close
event is propagated to the next stage of the stream.

l imit(Durat ion) Limits the time that the stream will remain open to the supplied
Duration . Once that time has elapsed then a close event is propa-
gated to the next stage of the stream.

skip(long) Drops the supplied number of data events from the stream and
then forwards any further data events.

sorted()

sorted(Comparator)

Remembers all items in the stream until the stream ends. At this
point the data in the stream will be propagated to the next stage
of the stream, either in the Natural Ordering of the elements, or
in the order defined by the supplied Comparator.

t imeout(Duration) Tracks the time since the last event was received. If no event is re-
ceived within the supplied Duration then an error event is propa-
gated to the next stage of the stream. The exception in the event
will be an org.osgi .ut i l .promise.TimeoutException .

window(Duration,Function)

window(Duration,Executor,Function)

window(Suppl ier, IntSuppl ier,BiFunction)

window(Suppl ier, IntSuppl ier,Executor,BiFunction)

Collects events over the specified time-limit, passing them to the
registered handler function. If no events occur during the time
limit then a Collection containing no events is passed to the han-
dler function.

706.3.1.3 Terminal Operations

Terminal operations mark the end of a processing pipeline. Invoking a terminal operation causes
the PushStream to connect to its underlying event source and begin processing.

The simplest terminal operation is the count() operation. This method returns a promise that will
resolve when the stream finishes. If the stream finishes with a close event then the promise will

Push Stream Specification Version 1.0 The Push Stream

OSGi Enterprise Release 7 Page 957

resolve with a Long representing the number of events that reached the end of the pipeline. If the
stream finishes with an error then the promise will fail with that error.

Terminal operations such as forEachEvent(PushEventConsumer) are passed a handler function
which will be called for each piece of data that reaches the end of the stream. If the handler function
throws an Exception then the Promise returned by the terminal operation must fail with the Excep-
tion thrown by the handler function.

Some terminal operations, like count require the full stream to be processed, others are able to fin-
ish before the end of the stream. These are known as short circuiting operations. An example of a
short-circuiting operation is f indFirst() . This operation resolves the promise with the first event
that is received by the end of the pipeline. Once a short-circuiting operation has completed it prop-
agates negative back-pressure through the pipeline to close the source of events. Any subsequent-
ly received events must not affect the result and must return negative back pressure. If an asynchro-
nous pipeline step is encountered, such as a buffer, the close operation is propagated back upstream
to the event source by closing previous pipeline stages.

Table 706.3 Non Short Circuiting Terminal Operations on the Push Stream

Terminal Operation Description
col lect(Col lector) Uses the Java Collector API to collect the data from events into a

single Collection, Map, or other type.
count() Counts the number of events that reach the end of the stream

pipeline.
forEach(Consumer) Register a function to be called back with the data from each

event in the stream
forEachEvent(PushEventConsumer) Register a PushEventConsumer to be called back with each event

in the stream. If negative back-pressure is returned then the
stream will be closed.

max(Comparator) Uses a Comparator to find the largest data element in the stream
of data. The promise is resolved with the final result when the
stream finishes.

min(Comparator) Uses a Comparator to find the smallest data element in the
stream of data. The promise is resolved with the final result when
the stream finishes.

reduce(BinaryOperator)

reduce(T,BinaryOperator)

reduce(U,BiFunction,BinaryOperator)

Uses a Binary Operator function to combine event data into a sin-
gle object. The promise is resolved with the final result when the
stream finishes.

toArray()

toArray(IntFunction)

Collects together all of the event data in a single array which is
used to resolve the returned promise.

Table 706.4 Short Circuiting Terminal Operations on the Push Stream

Terminal Operation Description
al lMatch(Predicate) Resolves with fa lse if any event reaches the end of the stream

pipeline that does not match the predicate. If the stream ends
without any data matching the predicate then the promise re-
solves with true

anyMatch(Predicate) Resolves with true if any data event reaches the end of the stream
pipeline and matches the supplied predicate. If the stream ends
without any data matching the predicate then the promise re-
solves with fa lse

The Push Stream Push Stream Specification Version 1.0

Page 958 OSGi Enterprise Release 7

Terminal Operation Description
f indAny() Resolves with an Optional representing the data from the first

event that reaches the end of the pipeline. If the stream ends
without any data reaching the end of the pipeline then the
promise resolves with an empty Optional.

f indFirst() Resolves with an Optional representing the data from the first
event that reaches the end of the pipeline. If the stream ends
without any data reaching the end of the pipeline then the
promise resolves with an empty Optional.

noneMatch(Predicate) Resolves with fa lse if any data event reaches the end of the stream
pipeline and matches the supplied predicate. If the stream ends
without any data matching the predicate then the promise re-
solves with true

706.3.2 Buffering, Back pressure and Circuit Breakers
Buffering and Back Pressure are an important part of asynchronous stream processing. Back pres-
sure and buffering are therefore an important part of the push stream API.

706.3.2.1 Back pressure

In a synchronous model the producer's thread is held by the consumer until the consumer has fin-
ished processing the data. This is not true for asynchronous systems, and so a producer can easily
overwhelm a consumer with data. Back pressure is therefore used in asynchronous systems to allow
consumers to control the speed at which producers provide data.

Back pressure in the asynchronous event processing model is provided by the PushEventConsumer.
The value returned by the accept method of the PushEventConsumer is an indication of the request-
ed back pressure. A return of zero indicates that event delivery may continue immediately. A posi-
tive return value indicates that the source should delay sending any further events for the requested
number of milliseconds. A negative return value indicates that no further events should be sent and
that the stream can be closed.

Back pressure in a Push Stream can also be applied mid-way through the process-
ing pipeline through the use of the adjustBackPressure(LongUnaryOperator) or
adjustBackPressure(ToLongBiFunction) methods. These methods can be used to increase or decrease
the back pressure requested by later stages of the pipeline.

706.3.2.2 Buffering

In asynchronous systems events may be produced and consumed at different rates. If the consumer
is faster than the producer then there is no issue, however if the producer is faster than the con-
sumer then events must be held somewhere. Back pressure provides some assistance here, howev-
er some sources do not have control over when events are produced. In these cases the data must be
buffered until it can be processed.

As well as providing a queue for pending work, introducing buffers allows event processing to be
moved onto a different thread, and for the number of processing threads to be changed part way
through the pipeline. Buffering can therefore protect an PushEventSource from having its event
generation thread “stolen” by a consumer which executes a long running operation. As a result the
PushEventSource can be written more simply, without a thread switch, if a buffer is used.

Buffering also provides a “fire break” for back-pressure. Back-pressure return values propagate back
along a PushStream until they reach a part of the stream that is able to respond. For some PushEven-
tSource implementations it is not possible to slow or delay event generation, however a buffer can
always respond to back pressure by not releasing events from the buffer. Buffers can therefore be
used to “smooth out” sources that produce bursts of events more quickly than they can be immedi-
ately processed. This simplifies the creation of PushEventConsumer instances, which can rely on
their back-pressure requests being honored.

Push Stream Specification Version 1.0 The Push Stream

OSGi Enterprise Release 7 Page 959

Buffering is provided by the Push Stream using default configuration values, either when creating
the Push Stream from the Push Stream Provider, or using the buffer method. These defaults are de-
scribed in Building a Buffer or Push Stream on page 959.

The default configuration values can be overridden by using a BufferBui lder to explicitly provide the
buffering parameters. If no Executor is provided then the PushStream will create its own internal
Executor with the same number of threads as the defined parallelism. An internally created Execu-
tor will be shut down when the PushStream is closed.

706.3.2.3 Buffering policies

Buffering policies govern the behavior of a buffer as it becomes full.

The QueuePol icy of the buffer determines what happens when the queue becomes full. Different
policies may discard incoming data, evict data from the buffer, block, or throw an exception.

The QueuePol icyOption provides basic implementations of the queue policies, but custom polices
can be implemented to provide more complex behaviors.

The PushbackPol icy of the buffer determines how much back pressure is requested by the buffer.
Different policies may return a constant value, slowly increase the back pressure as the buffer fills,
or return an exponentially increasing value when the buffer is full.

The PushbackPol icyOption provides basic implementations of the push back policies, but custom
polices can be implemented to provide more complex behaviors.

706.3.2.4 Building a Buffer or Push Stream

The PushStreamBui lder can be obtained from a Push Stream Provider and used to customize the
buffer at the start of the PushStream, or it can be used to create an unbuffered PushStream. An un-
buffered PushStream uses the incoming event delivery thread to process the events, and therefore
users must be careful not to block the thread, or perform long-running tasks. The default configura-
tion building a Push Stream is as follows:

• A parallelism of one
• A FAIL queue policy
• A LINEAR push back policy with a maximum push back of one second
• A Buffer with a capacity of 32 elements

A Push Stream also requires a timer and an executor. For a new Push Stream the Push Stream
Provider must create a new fixed pool of worker threads with the same size as the parallelism. The
Push Stream Provider may create a new ScheduledExecutorService for each new Push Stream,
or reuse a common Scheduler. When adding a buffer to an existing Push Stream the existing
executor and timer used by the Push Stream are reused by default. The builder of the Buffer/
Push Stream may provide their own executor and timer using the withExecutor(Executor) and
withScheduler(ScheduledExecutorService) methods

706.3.2.5 Circuit Breakers

Buffering is a powerful tool in event processing pipelines, however it cannot help in the situation
where the average event production rate is higher than the average processing rate. Rather than hav-
ing an infinitely growing buffer a circuit breaker is used. A circuit breaker is a buffer which fails the
stream when the buffer is full. This halts event processing and prevents the consuming system from
being overwhelmed.

The default policy for push stream buffers is the FAIL policy, which means that push stream buffers
are all circuit breakers by default.

The Push Stream Push Stream Specification Version 1.0

Page 960 OSGi Enterprise Release 7

706.3.3 Forking
Sometimes the processing that needs to be performed on an event is long-running. An important
part of the asynchronous eventing model is that callbacks are short and non-blocking, which means
that these callbacks should not run using the primary event thread. One solution to this is to buffer
the stream, allowing a thread handoff at the buffer and limiting the impact of the long-running task.
Buffering, however, has other consequences, and so it may be the case that a simple thread hand-off
is preferable.

Forking allows users to specify a maximum number of concurrent downstream operations. Incom-
ing events will block if this limit has been reached. If there are blocked threads then the returned
back pressure for an event will be equal to the number of queued threads multiplied by the supplied
timeout value. If there are no blocked threads then the back pressure will be zero.

706.3.4 Coalescing and Windowing
Coalescing and windowing are both processes by which multiple incoming data events are col-
lapsed into a single outgoing event.

706.3.4.1 Coalescing

There are two main ways to coalesce a stream.

The first mechanism delegates all responsibility to the coalescing function, which returns an Op-
tional . The coalescing function is called for every data event, and returns an optional which either
has a value, or is empty. If the optional has a value then this value is passed to the next stage of the
processing pipeline. If the optional is empty then no data event is passed to the next stage.

The second mechanism allows the stream to be configured with a (potentially variable) buffer size.
The stream then stores values into this buffer. When the buffer is full then the stream passes the
buffer to the handler function, which returns data to be passed to the next stage. If the stream finish-
es when a buffer is partially filled then the partially filled buffer will be passed to the handler func-
tion.

When coalescing events there is no opportunity for feedback from the event handler while the
events are being buffered. As a result back pressure from the handler is zero except when the event
triggers a call to the next stage. When the next stage is triggered the back pressure from that stage is
returned.

706.3.4.2 Windowing

Windowing is similar to coalescing, the primary difference between coalescing and windowing is
the way in which the next stage of processing is triggered. A coalescing stage collects events until it
has the correct number and then passes them to the handler function, regardless of how long this
takes. A windowing stage collects events for a given amount of time, and then passes the collected
events to the handler function, regardless of how many events are collected.

To avoid the need for a potentially infinite buffer a windowing stage may also place a limit on the
number of events to be buffered. If this limit is reached then the window finishes early and the
buffer is passed to the client, just like a coalescing stage. In this mode of operation the handler func-
tion is also passed the length of time for which the window lasted.

As windowing requires the collected events to be delivered asynchronously there is no opportuni-
ty for back-pressure from the previous stage to be applied upstream. Windowing therefore returns
zero back-pressure in all cases except when a buffer size limit has been declared and is reached. If a
window size limit is reached then the windowing stage returns the remaining window time as back
pressure. Applying back pressure in this way means that the event source will tend not to repeated-
ly over saturate the window.

Push Stream Specification Version 1.0 The Push Stream

OSGi Enterprise Release 7 Page 961

706.3.5 Merging and Splitting
Merging and Splitting are actions that can be used to combine push streams, or to convert one
stream into many streams.

706.3.5.1 Merging

A client may need to consume data from more than one Event Sources. In this case the PushStream
may be used to merge two event streams. The returned stream will receive events from both parent
streams, but will only close when both parent streams have delivered terminal events.

706.3.5.2 Splitting

Sometimes it is desirable to split a stream into multiple parallel pipelines. These pipelines are inde-
pendent from the point at which they are split, but share the same source and upstream pipeline.

Splitting a stream is possible using the spl it(Predicate<? super T > . . . predicates) method. For each
predicate a PushStream will be returned that receives the events accepted by the predicate.

The lifecycle of a split stream differs from that of a normal stream in two key ways:

• The stream will begin event delivery when any of the downstream handlers encounters a termi-
nal operation

• The stream will only close when all of the downstream handlers are closed

706.3.6 Time Limited Streams
An important difference between Push Streams and Java 8 Streams is that events occur over time,
there are therefore some operations that do not apply to Java 8 Streams which are relevant to Push
Streams.

The l imit() operation on a Stream can be used to limit the number of elements that are processed,
however on a Push Stream that number of events may never be reached, even though the stream has
not closed. Push Streams therefore also have a l imit method which takes a Duration . This duration
limits the time for which the stream is open, closing it after the duration has elapsed.

The t imeout operation of a Push Stream can be used to end a stream if no events are received for the
given amount of time. If an event is received then this resets the timeout counter. The timeout oper-
ation is therefore a useful mechanism for identifying pipelines which have stalled in their process-
ing. If the timeout expires then it propagates an error event to the next stage of the pipeline. The Ex-
ception in the error event is an org.osgi .ut i l .promise.TimeoutException .

706.3.7 Closing Streams
A PushStream represents a stage in the processing pipeline and is AutoCloseable . When the close()
method is invoked it will not, in general, coincide with the processing of an event. The closing of a
stream in this way must therefore do the following things:

• Send a close event downstream to close the stream
• Discard events subsequently received by this pipeline stage, and return negative backpressure

for any that do arrive at this pipeline stage.
• Propagate the close operation upstream until the AutoCloseable returned by the

open(PushEventConsumer) method is closed.

The result of this set of operations must be that all stages of the pipeline, including the connection
to the PushEventSource , are eagerly closed. This may be as a result of receiving a close event, nega-
tive back pressure, or the close call being propagated back up the pipeline, but it must not wait for
the next event. For example, if an event is produced every ten minutes and the stream is closed one
minute after an event is created then it must not take a further nine minutes to close the connection
to the Push Event Source.

The Push Stream Provider Push Stream Specification Version 1.0

Page 962 OSGi Enterprise Release 7

706.4 The Push Stream Provider
The PushStreamProvider can be used to assist with a variety of asynchronous event handling use
cases. A Push Stream Provider can create Push Stream instances from a Push Event Source, it can
buffer an Push Event Consumer, or it can turn a Push Stream into a reusable Push Event Source.

706.4.1 Building Buffers
The Push Stream Provider allows several types of buffered objects to be created. By default all Push
Streams are created with a buffer, but other objects can also be wrapped in a buffer. For example a
Push Event Consumer can be wrapped in a buffer to isolate it from a Push Event Source. The Simple-
PushEventSource also has a buffer, which is used to isolate the event producing thread from event
consumers.

In all cases buffers are configured using a BufferBui lder with the following defaults:

• A parallelism of one
• A FAIL QueuePolicy
• A LINEAR PushbackPolicy with a maximum pushback of one second
• A Buffer with a capacity of 32 elements

A Buffer requires a timer and an executor. If no Executor is provided when creating a buffer then
the buffer will have its own internal Executor with the same number of threads as the defined par-
allelism. The Push Stream Provider may create a new ScheduledExecutorService for each buffer, or
reuse a common Scheduler. The builder of the Buffer may provide their own executor and timer us-
ing the withExecutor(Executor) and withScheduler(ScheduledExecutorService) methods

Any internally created Executor will be shut down after the buffer has processed a terminal event.

706.4.2 Mapping between Java 8 Streams and Push Streams
There are a number of scenarios where an application developer may wish to convert between a Ja-
va 8 Stream and a PushStream. In particular, the f latMap(Function) operation of a Push Stream takes
a single event and converts it into many events in a Push Stream. Common operations, such as split-
ting the event into child events will result in a Java Collection, or a Java 8 Stream. These need to be
converted into a Push Stream before they can be returned from the flatMap operation.

To assist this model the PushStreamProvider provides two streamOf methods. These convert a Java 8
Stream into a Push Stream, changing the pull-based model of Java 8 Streams into the asynchronous
model of the Push Stream.

The first streamOf(Stream) method takes a Java 8 Stream. The PushStream created by this method
is not fully asynchronous, it uses the connecting thread to consume the Java 8 Stream. As a result
the streams created using this method will block terminal operations. This method should therefore
not normally be used for infinite event streams, but instead for short, finite streams of data that can
be processed rapidly, for example as the result of a flatmapping operation. In this scenario reusing
the incoming thread improves performance. In the following example an incoming list of URLs is
registered for download.

PushStreamProvider psp = new PushStreamProvider();

PushStream<List<URL>> urls = getURLStream();

urls.flatMap(l -> psp.streamOf(l.stream()))
 .forEach(url -> registerDownload(url));

For larger Streams of data, or when truly asynchronous operation is required, there is a second
streamOf(Executor,ScheduledExecutorService,Stream) method which allows for asynchronous

Push Stream Specification Version 1.0 Simple Push Event Sources

OSGi Enterprise Release 7 Page 963

consumption of the stream. The Executor is used to consume elements from the Java 8 Stream us-
ing a single task. This mode of operation is suitable for use with infinite data streams, or for streams
which require a truly asynchronous mode of operation, and does not require the stream to be paral-
lel. If nul l is passed for the Executor then the PushStreamProvider will create a fixed thread pool of
size 2. This allows for work to continue in the Push Stream even if the passed-in Stream blocks the
consuming thread. If nul l is passed for the ScheduledExecutor then the Push Stream Provider may
create a new scheduler or use a shared default.

706.5 Simple Push Event Sources
The PushEventSource and PushEventConsumer are both functional interfaces, however it is notice-
ably harder to implement a PushEventSource than a PushEventConsumer. A PushEventSource must
be able to support multiple independently closeable consumer registrations, all of which are provid-
ing potentially different amounts of back pressure.

To simplify the case where a user wishes to write a basic event source the PushStreamProvider is
able to create a SimplePushEventSource. The SimplePushEventSource handles the details of imple-
menting PushEventSource, providing a simplified API for the event producing code to use.

Events can be sent via the Simple Push Event Source publ ish(T) method at any time until it is closed.
These events may be silently ignored if no consumer is connected, but if one or more consumers are
connected then the event will be asynchronously delivered to them.

Close or error events can be sent equally easily using the endOfStream() and error(Throwable)
methods. These will send disconnection events to all of the currently connected consumers and re-
move them from the Simple Push Event Source. Note that sending these events does not close the
Simple Push Event Source. Subsequent connection attempts will succeed, and events can still be
published.

706.5.1 Optimizing Event Creation
In addition to the publication methods the Simple Push Event Source provides isConnected() and
connectPromise() methods. The isConnected method gives a point-in-time snapshot of whether
there are any connections to the Simple Push Event Source. If this method returns false then the
event producer may wish to avoid creating the event, particularly if it is computationally expensive
to do so. The connectPromise method returns a Promise representing the current connection state.
This Promise resolves when there is a client connected (which means it may be resolved immedi-
ately as it is created). If the Simple Push Event Source is closed before the Promise resolves then the
Promise is failed with an IllegalStateException. The connect Promise can be used to trigger the ini-
tialization of an event thread, allowing lazier startup.

PushStreamProvider psp = new PushStreamProvider();

SimplePushEventSource<Long> ses = psp.createSimpleEventSource(Long.class))

Success<Void,Void> onConnect = p -> {
 new Thread(() -> {
 long counter = 0;
 // Keep going as long as someone is listening
 while (ses.isConnected()) {
 ses.publish(++counter);
 Thread.sleep(100);
 System.out.println("Published: " + counter);
 }
 // Restart delivery when a new listener connects
 ses.connectPromise().then(onConnect);

Security Push Stream Specification Version 1.0

Page 964 OSGi Enterprise Release 7

 }).start();
 return null;
 };

// Begin delivery when someone is listening
ses.connectPromise().then(onConnect);

// Create a listener which prints out even numbers
psp.createStream(ses).
 filter(l -> l % 2L == 0).
 limit(5000L).
 forEach(f -> System.out.println("Consumed event: " + f));

706.6 Security
The Push Stream API does not define any OSGi services nor does the API perform any privileged ac-
tions. Therefore, it has no security considerations.

706.7 org.osgi.util.pushstream

Push Stream Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .pushstream; version="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .pushstream; version="[1.0,1.1)"

706.7.1 Summary

• BufferBui lder - Create a buffered section of a Push-based stream
• PushbackPol icy - A PushbackPolicy is used to calculate how much back pressure to apply based

on the current buffer.
• PushbackPol icyOption - PushbackPolicyOption provides a standard set of simple PushbackPoli-

cy implementations.
• PushEvent - A PushEvent is an immutable object that is transferred through a communication

channel to push information to a downstream consumer.
• PushEvent.EventType - The type of a PushEvent.
• PushEventConsumer - An Async Event Consumer asynchronously receives Data events until it

receives either a Close or Error event.
• PushEventSource - An event source.
• PushStream - A Push Stream fulfills the same role as the Java 8 stream but it reverses the control

direction.
• PushStreamBui lder - A Builder for a PushStream.
• PushStreamProvider - A factory for PushStream instances, and utility methods for handling Pu-

shEventSources and PushEventConsumers
• QueuePol icy - A QueuePolicy is used to control how events should be queued in the current

buffer.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 965

• QueuePol icyOption - QueuePolicyOption provides a standard set of simple QueuePolicy imple-
mentations.

• SimplePushEventSource - A SimplePushEventSource is a helper that makes it simpler to write a
PushEventSource.

706.7.2 public interface BufferBuilder<R, T, U extends BlockingQueue<PushEvent<?
extends T>>>

<R> The type of object being built

<T> The type of objects in the PushEvent

<U> The type of the Queue used in the user specified buffer

Create a buffered section of a Push-based stream

Provider Type Consumers of this API must not implement this type

706.7.2.1 public R build()

Returns the object being built

706.7.2.2 public BufferBuilder<R, T, U> withBuffer(U queue)

queue

□ The BlockingQueue implementation to use as a buffer

Returns this builder

706.7.2.3 public BufferBuilder<R, T, U> withExecutor(Executor executor)

executor

□ Set the Executor that should be used to deliver events from this buffer

Returns this builder

706.7.2.4 public BufferBuilder<R, T, U> withParallelism(int parallelism)

parallelism

□ Set the maximum permitted number of concurrent event deliveries allowed from this buffer

Returns this builder

706.7.2.5 public BufferBuilder<R, T, U> withPushbackPolicy(PushbackPolicy<T, U> pushbackPolicy)

pushbackPolicy

□ Set the PushbackPolicy of this builder

Returns this builder

706.7.2.6 public BufferBuilder<R, T, U> withPushbackPolicy(PushbackPolicyOption pushbackPolicyOption, long time)

pushbackPolicyOp-
tion

time

□ Set the PushbackPolicy of this builder

Returns this builder

706.7.2.7 public BufferBuilder<R, T, U> withQueuePolicy(QueuePolicy<T, U> queuePolicy)

queuePolicy

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 966 OSGi Enterprise Release 7

□ Set the QueuePolicy of this Builder

Returns this builder

706.7.2.8 public BufferBuilder<R, T, U> withQueuePolicy(QueuePolicyOption queuePolicyOption)

queuePolicyOption

□ Set the QueuePolicy of this Builder

Returns this builder

706.7.2.9 public BufferBuilder<R, T, U> withScheduler(ScheduledExecutorService scheduler)

scheduler

□ Set the ScheduledExecutorService that should be used to trigger timed events after this buffer

Returns this builder

706.7.3 public interface PushbackPolicy<T, U extends BlockingQueue<PushEvent<?
extends T>>>

<T> The type of the data

<U> The type of the queue

A PushbackPolicy is used to calculate how much back pressure to apply based on the current buffer.
The PushbackPolicy will be called after an event has been queued, and the returned value will be
used as back pressure.

See Also PushbackPolicyOption

706.7.3.1 public long pushback(U queue) throws Exception

queue

□ Given the current state of the queue, determine the level of back pressure that should be applied

Returns a back pressure value in nanoseconds

Throws Exception –

706.7.4 enum PushbackPolicyOption
PushbackPolicyOption provides a standard set of simple PushbackPolicy implementations.

See Also PushbackPolicy

706.7.4.1 FIXED

Returns a fixed amount of back pressure, independent of how full the buffer is

706.7.4.2 ON_FULL_FIXED

Returns zero back pressure until the buffer is full, then it returns a fixed value

706.7.4.3 ON_FULL_EXPONENTIAL

Returns zero back pressure until the buffer is full, then it returns an exponentially increasing
amount, starting with the supplied value and doubling it each time. Once the buffer is no longer full
the back pressure returns to zero.

706.7.4.4 LINEAR

Returns zero back pressure when the buffer is empty, then it returns a linearly increasing amount of
back pressure based on how full the buffer is. The maximum value will be returned when the buffer
is full.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 967

706.7.4.5 public abstract PushbackPolicy<T, U> getPolicy(long value)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

value

□ Create a PushbackPolicy instance configured with a base back pressure time in nanoseconds The ac-
tual backpressure returned will vary based on the selected implementation, the base value, and the
state of the buffer.

Returns A PushbackPolicy to use

706.7.4.6 public static PushbackPolicyOption valueOf(String name)

706.7.4.7 public static PushbackPolicyOption[] values()

706.7.5 public abstract class PushEvent<T>
<T> The payload type of the event.

A PushEvent is an immutable object that is transferred through a communication channel to push
information to a downstream consumer. The event has three different types:

• EventType.DATA – Provides access to a typed data element in the stream.
• EventType.CLOSE – The stream is closed. After receiving this event, no more events will follow.
• EventType.ERROR – The stream ran into an unrecoverable problem and is sending the reason

downstream. The stream is closed and no more events will follow after this event.

Concurrency Immutable

Provider Type Consumers of this API must not implement this type

706.7.5.1 public static PushEvent<T> close()

Type Parameters <T>

<T> The payload type.

□ Create a new close event.

Returns A new close event.

706.7.5.2 public static PushEvent<T> data(T payload)

Type Parameters <T>

<T> The payload type.

payload The payload.

□ Create a new data event.

Returns A new data event wrapping the specified payload.

706.7.5.3 public static PushEvent<T> error(Throwable t)

Type Parameters <T>

<T> The payload type.

t The error.

□ Create a new error event.

Returns A new error event with the specified error.

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 968 OSGi Enterprise Release 7

706.7.5.4 public T getData()

□ Return the data for this event.

Returns The data payload.

Throws I l legalStateException– if this event is not a EventType.DATA event.

706.7.5.5 public Throwable getFailure()

□ Return the error that terminated the stream.

Returns The error that terminated the stream.

Throws I l legalStateException– if this event is not an EventType.ERROR event.

706.7.5.6 public abstract PushEvent.EventType getType()

□ Get the type of this event.

Returns The type of this event.

706.7.5.7 public boolean isTerminal()

□ Answer if no more events will follow after this event.

Returns fa lse if this is a data event, otherwise true .

706.7.5.8 public PushEvent<X> nodata()

Type Parameters <X>

<X> The new payload type.

□ Convenience to cast a close/error event to another payload type. Since the payload type is not need-
ed for these events this is harmless. This therefore allows you to forward the close/error event down-
stream without creating anew event.

Returns The current error or close event mapped to a new payload type.

Throws I l legalStateException– if the event is a EventType.DATA event.

706.7.6 enum PushEvent.EventType
The type of a PushEvent.

706.7.6.1 DATA

A data event forming part of the stream

706.7.6.2 ERROR

An error event that indicates streaming has failed and that no more events will arrive

706.7.6.3 CLOSE

An event that indicates that the stream has terminated normally

706.7.6.4 public static PushEvent.EventType valueOf(String name)

706.7.6.5 public static PushEvent.EventType[] values()

706.7.7 public interface PushEventConsumer<T>
<T> The type for the event payload

An Async Event Consumer asynchronously receives Data events until it receives either a Close or
Error event.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 969

706.7.7.1 public static final long ABORT = -1L

If ABORT is used as return value, the sender should close the channel all the way to the upstream
source. The ABORT will not guarantee that no more events are delivered since this is impossible in a
concurrent environment. The consumer should accept subsequent events and close/clean up when
the Close or Error event is received. Though ABORT has the value -1, any value less than 0 will act as
an abort.

706.7.7.2 public static final long CONTINUE = 0L

A 0 indicates that the consumer is willing to receive subsequent events at full speeds. Any value
more than 0 will indicate that the consumer is becoming overloaded and wants a delay of the given
milliseconds before the next event is sent. This allows the consumer to pushback the event delivery
speed.

706.7.7.3 public long accept(PushEvent<? extends T> event) throws Exception

event The event

□ Accept an event from a source. Events can be delivered on multiple threads simultaneously. Howev-
er, Close and Error events are the last events received, no more events must be sent after them.

Returns less than 0 means abort, 0 means continue, more than 0 means delay ms

Throws Exception– to indicate that an error has occurred and that no further events should be delivered to
this PushEventConsumer

706.7.8 public interface PushEventSource<T>
<T> The payload type

An event source. An event source can open a channel between a source and a consumer. Once the
channel is opened (even before it returns) the source can send events to the consumer. A source
should stop sending and automatically close the channel when sending an event returns a negative
value, see PushEventConsumer.ABORT. Values that are larger than 0 should be treated as a request
to delay the next events with those number of milliseconds.

706.7.8.1 public AutoCloseable open(PushEventConsumer<? super T> aec) throws Exception

aec the consumer (not null)

□ Open the asynchronous channel between the source and the consumer. The call returns an Auto-
Closeable. This can be closed, and should close the channel, including sending a Close event if the
channel was not already closed. The returned object must be able to be closed multiple times with-
out sending more than one Close events.

Returns a AutoCloseable that can be used to close the stream

Throws Exception –

706.7.9 public interface PushStream<T>
extends AutoCloseable

<T> The Payload type

A Push Stream fulfills the same role as the Java 8 stream but it reverses the control direction. The Ja-
va 8 stream is pull based and this is push based. A Push Stream makes it possible to build a pipeline
of transformations using a builder kind of model. Just like streams, it provides a number of termi-
nating methods that will actually open the channel and perform the processing until the channel
is closed (The source sends a Close event). The results of the processing will be send to a Promise,
just like any error events. A stream can be used multiple times. The Push Stream represents a
pipeline. Upstream is in the direction of the source, downstream is in the direction of the terminat-
ing method. Events are sent downstream asynchronously with no guarantee for ordering or con-

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 970 OSGi Enterprise Release 7

currency. Methods are available to provide serialization of the events and splitting in background
threads.

Provider Type Consumers of this API must not implement this type

706.7.9.1 public PushStream<T> adjustBackPressure(LongUnaryOperator adjustment)

adjustment

□ Changes the back-pressure propagated by this pipeline stage.

The supplied function receives the back pressure returned by the next pipeline stage and returns the
back pressure that should be returned by this stage. This function will not be called if the previous
pipeline stage returns negative back pressure.

Returns Builder style (can be a new or the same object)

706.7.9.2 public PushStream<T> adjustBackPressure(ToLongBiFunction<T, Long> adjustment)

adjustment

□ Changes the back-pressure propagated by this pipeline stage.

The supplied function receives the data object passed to the next pipeline stage and the back pres-
sure that was returned by that stage when accepting it. The function returns the back pressure that
should be returned by this stage. This function will not be called if the previous pipeline stage re-
turns negative back pressure.

Returns Builder style (can be a new or the same object)

706.7.9.3 public Promise<Boolean> allMatch(Predicate<? super T> predicate)

predicate

□ Closes the channel and resolve the promise with false when the predicate does not matches a pay
load. If the channel is closed before, the promise is resolved with true.

This is a short circuiting terminal operation

Returns A Promise that will resolve when an event fails to match the predicate, or the end of the stream is
reached

706.7.9.4 public Promise<Boolean> anyMatch(Predicate<? super T> predicate)

predicate

□ Close the channel and resolve the promise with true when the predicate matches a payload. If the
channel is closed before the predicate matches, the promise is resolved with false.

This is a short circuiting terminal operation

Returns A Promise that will resolve when an event matches the predicate, or the end of the stream is reached

706.7.9.5 public PushStream<R> asyncMap(int n, int delay, Function<? super T, Promise<? extends R>> mapper)

Type Parameters <R>

n number of simultaneous promises to use

delay Nr of ms/promise that is queued back pressure

mapper The mapping function

□ Asynchronously map the payload values. The mapping function returns a Promise representing the
asynchronous mapping operation.

The PushStream limits the number of concurrently running mapping operations, and returns back
pressure based on the number of existing queued operations.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 971

Returns Builder style (can be a new or the same object)

Throws I l legalArgumentException– if the number of threads is < 1 or the delay is < 0

NullPointerException– if the mapper is null

706.7.9.6 public PushStream<T> buffer()

□ Buffer the events in a queue using default values for the queue size and other behaviors. Buffered
work will be processed asynchronously in the rest of the chain. Buffering also blocks the transmis-
sion of back pressure to previous elements in the chain, although back pressure is honored by the
buffer.

Buffers are useful for "bursty" event sources which produce a number of events close together, then
none for some time. These bursts can sometimes overwhelm downstream event consumers. Buffer-
ing will not, however, protect downstream components from a source which produces events faster
than they can be consumed. For fast sources filter(Predicate) and coalesce(int, Function) fork(int,
int, Executor) are better choices.

Returns Builder style (can be a new or the same object)

706.7.9.7 public PushStreamBuilder<T, U> buildBuffer()

Type Parameters <U extends BlockingQueue<PushEvent<? extends T>>>

□ Build a buffer to enqueue events in a queue using custom values for the queue size and other behav-
iors. Buffered work will be processed asynchronously in the rest of the chain. Buffering also blocks
the transmission of back pressure to previous elements in the chain, although back pressure is hon-
ored by the buffer.

Buffers are useful for "bursty" event sources which produce a number of events close together, then
none for some time. These bursts can sometimes overwhelm downstream event consumers. Buffer-
ing will not, however, protect downstream components from a source which produces events faster
than they can be consumed. For fast sources filter(Predicate) and coalesce(int, Function) fork(int,
int, Executor) are better choices.

Buffers are also useful as "circuit breakers" in the pipeline. If a QueuePolicyOption.FAIL is used then
a full buffer will trigger the stream to close, preventing an event storm from reaching the client.

Returns A builder which can be used to configure the buffer for this pipeline stage.

706.7.9.8 public void close()

□ Close this PushStream by sending an event of type PushEvent.EventType.CLOSE downstream. Clos-
ing a PushStream is a safe operation that will not throw an Exception.

Calling close() on a closed PushStream has no effect.

706.7.9.9 public PushStream<R> coalesce(Function<? super T, Optional<R>> f)

Type Parameters <R>

f

□ Coalesces a number of events into a new type of event. The input events are forwarded to a accumu-
lator function. This function returns an Optional. If the optional is present, it's value is send down-
stream, otherwise it is ignored.

Returns Builder style (can be a new or the same object)

706.7.9.10 public PushStream<R> coalesce(int count, Function<Collection<T>, R> f)

Type Parameters <R>

count

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 972 OSGi Enterprise Release 7

f

□ Coalesces a number of events into a new type of event. A fixed number of input events are forward-
ed to a accumulator function. This function returns new event data to be forwarded on.

Returns Builder style (can be a new or the same object)

706.7.9.11 public PushStream<R> coalesce(IntSupplier count, Function<Collection<T>, R> f)

Type Parameters <R>

count

f

□ Coalesces a number of events into a new type of event. A variable number of input events are for-
warded to a accumulator function. The number of events to be forwarded is determined by calling
the count function. The accumulator function then returns new event data to be forwarded on.

Returns Builder style (can be a new or the same object)

706.7.9.12 public Promise<R> collect(Collector<? super T, A, R> collector)

Type Parameters <R, A>

collector

□ See Stream. Will resolve once the channel closes.

This is a terminal operation

Returns A Promise representing the collected results

706.7.9.13 public Promise<Long> count()

□ See Stream. Will resolve onces the channel closes.

This is a terminal operation

Returns A Promise representing the number of values in the stream

706.7.9.14 public PushStream<T> distinct()

□ Remove any duplicates. Notice that this can be expensive in a large stream since it must track previ-
ous payloads.

Returns Builder style (can be a new or the same object)

706.7.9.15 public PushStream<T> filter(Predicate<? super T> predicate)

predicate The predicate that is tested (not null)

□ Only pass events downstream when the predicate tests true.

Returns Builder style (can be a new or the same object)

706.7.9.16 public Promise<Optional<T>> findAny()

□ Close the channel and resolve the promise with the first element. If the channel is closed before, the
Optional will have no value.

This is a terminal operation

Returns a promise

706.7.9.17 public Promise<Optional<T>> findFirst()

□ Close the channel and resolve the promise with the first element. If the channel is closed before, the
Optional will have no value.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 973

Returns a promise

706.7.9.18 public PushStream<R> flatMap(Function<? super T, ? extends PushStream<? extends R>> mapper)

Type Parameters <R>

mapper The flat map function

□ Flat map the payload value (turn one event into 0..n events of potentially another type).

Returns Builder style (can be a new or the same object)

706.7.9.19 public Promise<Void> forEach(Consumer<? super T> action)

action The action to perform

□ Execute the action for each event received until the channel is closed. This is a terminating method,
the returned promise is resolved when the channel closes.

This is a terminal operation

Returns A promise that is resolved when the channel closes.

706.7.9.20 public Promise<Long> forEachEvent(PushEventConsumer<? super T> action)

action

□ Pass on each event to another consumer until the stream is closed.

This is a terminal operation

Returns a promise

706.7.9.21 public PushStream<T> fork(int n, int delay, Executor e)

n number of simultaneous background threads to use

delay Nr of ms/thread that is queued back pressure

e an executor to use for the background threads.

□ Execute the downstream events in up to n background threads. If more requests are outstanding ap-
ply delay * nr of delayed threads back pressure. A downstream channel that is closed or throws an
exception will cause all execution to cease and the stream to close

Returns Builder style (can be a new or the same object)

Throws I l legalArgumentException– if the number of threads is < 1 or the delay is < 0

NullPointerException– if the Executor is null

706.7.9.22 public PushStream<T> limit(long maxSize)

maxSize Maximum number of elements has been received

□ Automatically close the channel after the maxSize number of elements is received.

Returns Builder style (can be a new or the same object)

706.7.9.23 public PushStream<T> limit(Duration maxTime)

maxTime The maximum time that the stream should remain open

□ Automatically close the channel after the given amount of time has elapsed.

Returns Builder style (can be a new or the same object)

706.7.9.24 public PushStream<R> map(Function<? super T, ? extends R> mapper)

Type Parameters <R>

mapper The map function

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 974 OSGi Enterprise Release 7

□ Map a payload value.

Returns Builder style (can be a new or the same object)

706.7.9.25 public Promise<Optional<T>> max(Comparator<? super T> comparator)

comparator

□ See Stream. Will resolve onces the channel closes.

This is a terminal operation

Returns A Promise representing the maximum value, or null if no values are seen before the end of the
stream

706.7.9.26 public PushStream<T> merge(PushEventSource<? extends T> source)

source The source to merge in.

□ Merge in the events from another source. The resulting channel is not closed until this channel and
the channel from the source are closed.

Returns Builder style (can be a new or the same object)

706.7.9.27 public PushStream<T> merge(PushStream<? extends T> source)

source The source to merge in.

□ Merge in the events from another PushStream. The resulting channel is not closed until this chan-
nel and the channel from the source are closed.

Returns Builder style (can be a new or the same object)

706.7.9.28 public Promise<Optional<T>> min(Comparator<? super T> comparator)

comparator

□ See Stream. Will resolve onces the channel closes.

This is a terminal operation

Returns A Promise representing the minimum value, or null if no values are seen before the end of the
stream

706.7.9.29 public Promise<Boolean> noneMatch(Predicate<? super T> predicate)

predicate

□ Closes the channel and resolve the promise with false when the predicate matches any pay load. If
the channel is closed before, the promise is resolved with true.

This is a short circuiting terminal operation

Returns A Promise that will resolve when an event matches the predicate, or the end of the stream is reached

706.7.9.30 public PushStream<T> onClose(Runnable closeHandler)

closeHandler Will be called on close

□ Must be run after the channel is closed. This handler will run after the downstream methods have
processed the close event and before the upstream methods have closed.

Returns This stream

706.7.9.31 public PushStream<T> onError(Consumer<? super Throwable> closeHandler)

closeHandler Will be called on close

□ Must be run after the channel is closed. This handler will run after the downstream methods have
processed the close event and before the upstream methods have closed.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 975

Returns This stream

706.7.9.32 public Promise<T> reduce(T identity, BinaryOperator<T> accumulator)

identity The identity/begin value

accumulator The accumulator

□ Standard reduce, see Stream. The returned promise will be resolved when the channel closes.

This is a terminal operation

Returns A

706.7.9.33 public Promise<Optional<T>> reduce(BinaryOperator<T> accumulator)

accumulator The accumulator

□ Standard reduce without identity, so the return is an Optional. The returned promise will be re-
solved when the channel closes.

This is a terminal operation

Returns an Optional

706.7.9.34 public Promise<U> reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U>
combiner)

Type Parameters <U>

identity

accumulator

combiner combines two U's into one U (for example, combine two lists)

□ Standard reduce with identity, accumulator and combiner. The returned promise will be resolved
when the channel closes.

This is a terminal operation

Returns The promise

706.7.9.35 public PushStream<T> sequential()

□ Ensure that any events are delivered sequentially. That is, no overlapping calls downstream. This
can be used to turn a forked stream (where for example a heavy conversion is done in multiple
threads) back into a sequential stream so a reduce is simple to do.

Returns Builder style (can be a new or the same object)

706.7.9.36 public PushStream<T> skip(long n)

n number of elements to skip

□ Skip a number of events in the channel.

Returns Builder style (can be a new or the same object)

Throws I l legalArgumentException– if the number of events to skip is negative

706.7.9.37 public PushStream<T> sorted()

□ Sorted the elements, assuming that T extends Comparable. This is of course expensive for large or
infinite streams since it requires buffering the stream until close.

Returns Builder style (can be a new or the same object)

706.7.9.38 public PushStream<T> sorted(Comparator<? super T> comparator)

comparator

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 976 OSGi Enterprise Release 7

□ Sorted the elements with the given comparator. This is of course expensive for large or infinite
streams since it requires buffering the stream until close.

Returns Builder style (can be a new or the same object)

706.7.9.39 public PushStream<T>[] split(Predicate<? super T>... predicates)

predicates the predicates to test

□ Split the events to different streams based on a predicate. If the predicate is true, the event is dis-
patched to that channel on the same position. All predicates are tested for every event.

This method differs from other methods of PushStream in three significant ways:

• The return value contains multiple streams.
• This stream will only close when all of these child streams have closed.
• Event delivery is made to all open children that accept the event.

Returns streams that map to the predicates

706.7.9.40 public PushStream<T> timeout(Duration idleTime)

idleTime The length of time that the stream should remain open when no events are being received.

□ Automatically fail the channel if no events are received for the indicated length of time. If the time-
out is reached then a failure event containing a TimeoutException will be sent.

Returns Builder style (can be a new or the same object)

706.7.9.41 public Promise<Object> toArray()

□ Collect the payloads in an Object array after the channel is closed. This is a terminating method, the
returned promise is resolved when the channel is closed.

This is a terminal operation

Returns A promise that is resolved with all the payloads received over the channel

706.7.9.42 public Promise<A> toArray(IntFunction<A> generator)

Type Parameters <A extends T>

generator

□ Collect the payloads in an Object array after the channel is closed. This is a terminating method,
the returned promise is resolved when the channel is closed. The type of the array is handled by the
caller using a generator function that gets the length of the desired array.

This is a terminal operation

Returns A promise that is resolved with all the payloads received over the channel

706.7.9.43 public PushStream<R> window(Duration d, Function<Collection<T>, R> f)

Type Parameters <R>

d

f

□ Buffers a number of events over a fixed time interval and then forwards the events to an accumula-
tor function. This function returns new event data to be forwarded on. Note that:

• The collection forwarded to the accumulator function will be empty if no events arrived during
the time interval.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 977

• The accumulator function will be run and the forwarded event delivered as a different task,
(and therefore potentially on a different thread) from the one that delivered the event to this
PushStream.

• Due to the buffering and asynchronous delivery required, this method prevents the propagation
of back-pressure to earlier stages

Returns Builder style (can be a new or the same object)

706.7.9.44 public PushStream<R> window(Duration d, Executor executor, Function<Collection<T>, R> f)

Type Parameters <R>

d

executor

f

□ Buffers a number of events over a fixed time interval and then forwards the events to an accumula-
tor function. This function returns new event data to be forwarded on. Note that:

• The collection forwarded to the accumulator function will be empty if no events arrived during
the time interval.

• The accumulator function will be run and the forwarded event delivered by a task given to the
supplied executor.

• Due to the buffering and asynchronous delivery required, this method prevents the propagation
of back-pressure to earlier stages

Returns Builder style (can be a new or the same object)

706.7.9.45 public PushStream<R> window(Supplier<Duration> timeSupplier, IntSupplier maxEvents, BiFunction<Long,
Collection<T>, R> f)

Type Parameters <R>

timeSupplier

maxEvents

f

□ Buffers a number of events over a variable time interval and then forwards the events to an accumu-
lator function. The length of time over which events are buffered is determined by the time func-
tion. A maximum number of events can also be requested, if this number of events is reached then
the accumulator will be called early. The accumulator function returns new event data to be for-
warded on. It is also given the length of time for which the buffer accumulated data. This may be
less than the requested interval if the buffer reached the maximum number of requested events ear-
ly. Note that:

• The collection forwarded to the accumulator function will be empty if no events arrived during
the time interval.

• The accumulator function will be run and the forwarded event delivered as a different task,
(and therefore potentially on a different thread) from the one that delivered the event to this
PushStream.

• Due to the buffering and asynchronous delivery required, this method prevents the propagation
of back-pressure to earlier stages

• If the window finishes by hitting the maximum number of events then the remaining time in
the window will be applied as back-pressure to the previous stage, attempting to slow the pro-
ducer to the expected windowing threshold.

Returns Builder style (can be a new or the same object)

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 978 OSGi Enterprise Release 7

706.7.9.46 public PushStream<R> window(Supplier<Duration> timeSupplier, IntSupplier maxEvents, Executor executor,
BiFunction<Long, Collection<T>, R> f)

Type Parameters <R>

timeSupplier

maxEvents

executor

f

□ Buffers a number of events over a variable time interval and then forwards the events to an accumu-
lator function. The length of time over which events are buffered is determined by the time func-
tion. A maximum number of events can also be requested, if this number of events is reached then
the accumulator will be called early. The accumulator function returns new event data to be for-
warded on. It is also given the length of time for which the buffer accumulated data. This may be
less than the requested interval if the buffer reached the maximum number of requested events ear-
ly. Note that:

• The collection forwarded to the accumulator function will be empty if no events arrived during
the time interval.

• The accumulator function will be run and the forwarded event delivered as a different task,
(and therefore potentially on a different thread) from the one that delivered the event to this
PushStream.

• If the window finishes by hitting the maximum number of events then the remaining time in
the window will be applied as back-pressure to the previous stage, attempting to slow the pro-
ducer to the expected windowing threshold.

Returns Builder style (can be a new or the same object)

706.7.10 public interface PushStreamBuilder<T, U extends BlockingQueue<PushEvent<?
extends T>>>
extends BufferBuilder<PushStream<T>, T, U>

<T> The type of objects in the PushEvent

<U> The type of the Queue used in the user specified buffer

A Builder for a PushStream. This Builder extends the support of a standard BufferBuilder by allow-
ing the PushStream to be unbuffered.

Provider Type Consumers of this API must not implement this type

706.7.10.1 public PushStreamBuilder<T, U> unbuffered()

□ Tells this PushStreamBuilder to create an unbuffered stream which delivers events directly to its
consumer using the incoming delivery thread. Setting the PushStreamBuilder to be unbuffered
means that any buffer, queue policy or push back policy will be ignored. Note that calling one of:

• withBuffer(BlockingQueue)
• withQueuePolicy(QueuePolicy)
• withQueuePolicy(QueuePolicyOption)
• withPushbackPolicy(PushbackPolicy)
• withPushbackPolicy(PushbackPolicyOption, long)
• withParallelism(int)

after this method will reset this builder to require a buffer.

Returns the builder

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 979

706.7.10.2 public PushStreamBuilder<T, U> withBuffer(U queue)

queue

□ The BlockingQueue implementation to use as a buffer

Returns this builder

706.7.10.3 public PushStreamBuilder<T, U> withExecutor(Executor executor)

executor

□ Set the Executor that should be used to deliver events from this buffer

Returns this builder

706.7.10.4 public PushStreamBuilder<T, U> withParallelism(int parallelism)

parallelism

□ Set the maximum permitted number of concurrent event deliveries allowed from this buffer

Returns this builder

706.7.10.5 public PushStreamBuilder<T, U> withPushbackPolicy(PushbackPolicy<T, U> pushbackPolicy)

pushbackPolicy

□ Set the PushbackPolicy of this builder

Returns this builder

706.7.10.6 public PushStreamBuilder<T, U> withPushbackPolicy(PushbackPolicyOption pushbackPolicyOption, long
time)

pushbackPolicyOp-
tion

time

□ Set the PushbackPolicy of this builder

Returns this builder

706.7.10.7 public PushStreamBuilder<T, U> withQueuePolicy(QueuePolicy<T, U> queuePolicy)

queuePolicy

□ Set the QueuePolicy of this Builder

Returns this builder

706.7.10.8 public PushStreamBuilder<T, U> withQueuePolicy(QueuePolicyOption queuePolicyOption)

queuePolicyOption

□ Set the QueuePolicy of this Builder

Returns this builder

706.7.10.9 public PushStreamBuilder<T, U> withScheduler(ScheduledExecutorService scheduler)

scheduler

□ Set the ScheduledExecutorService that should be used to trigger timed events after this buffer

Returns this builder

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 980 OSGi Enterprise Release 7

706.7.11 public final class PushStreamProvider
A factory for PushStream instances, and utility methods for handling PushEventSources and Pu-
shEventConsumers

706.7.11.1 public PushStreamProvider()

706.7.11.2 public BufferBuilder<PushEventConsumer<T>, T, U> buildBufferedConsumer(PushEventConsumer<T>
delegate)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

delegate

□ Build a buffered PushEventConsumer with custom configuration.

The returned consumer will be buffered from the event source, and will honor back pressure re-
quests from its delegate even if the event source does not.

Buffered consumers are useful for "bursty" event sources which produce a number of events close
together, then none for some time. These bursts can sometimes overwhelm the consumer. Buffer-
ing will not, however, protect downstream components from a source which produces events faster
than they can be consumed.

Buffers are also useful as "circuit breakers". If a QueuePolicyOption.FAIL is used then a full buffer
will request that the stream close, preventing an event storm from reaching the client.

Note that this buffered consumer will close when it receives a terminal event, or if the delegate re-
turns negative backpressure. No further events will be propagated after this time.

Returns a PushEventConsumer with a buffer directly before it

706.7.11.3 public BufferBuilder<PushEventSource<T>, T, U> buildEventSourceFromStream(PushStream<T> stream)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

stream

□ Convert an PushStream into an PushEventSource. The first call to
PushEventSource.open(PushEventConsumer) will begin event processing.

The PushEventSource will remain active until the backing stream is closed, and permits multiple
consumers to PushEventSource.open(PushEventConsumer) it. Note that this means the caller of
this method is responsible for closing the supplied stream if it is not finite in length.

Late joining consumers will not receive historical events, but will immediately receive the terminal
event which closed the stream if the stream is already closed.

Returns a PushEventSource backed by the PushStream

706.7.11.4 public BufferBuilder<SimplePushEventSource<T>, T, U> buildSimpleEventSource(Class<T> type)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

type

□ Build a SimplePushEventSource with the supplied type and custom buffering behaviors. The Sim-
plePushEventSource will respond to back pressure requests from the consumers connected to it.

Returns a SimplePushEventSource

706.7.11.5 public PushStreamBuilder<T, U> buildStream(PushEventSource<T> eventSource)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

eventSource The source of the events

□ Builds a push stream with custom configuration.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 981

The resulting PushStream may be buffered or unbuffered depending on how it is configured.

Returns A PushStreamBuilder for the stream

706.7.11.6 public PushEventConsumer<T> createBufferedConsumer(PushEventConsumer<T> delegate)

Type Parameters <T>

delegate

□ Create a buffered PushEventConsumer with the default configured buffer, executor size, queue,
queue policy and pushback policy. This is equivalent to calling

 buildBufferedConsumer(delegate).create();

The returned consumer will be buffered from the event source, and will honor back pressure re-
quests from its delegate even if the event source does not.

Buffered consumers are useful for "bursty" event sources which produce a number of events close
together, then none for some time. These bursts can sometimes overwhelm the consumer. Buffer-
ing will not, however, protect downstream components from a source which produces events faster
than they can be consumed.

Returns a PushEventConsumer with a buffer directly before it

706.7.11.7 public PushEventSource<T> createEventSourceFromStream(PushStream<T> stream)

Type Parameters <T>

stream

□ Convert an PushStream into an PushEventSource. The first call to
PushEventSource.open(PushEventConsumer) will begin event processing. The PushEven-
tSource will remain active until the backing stream is closed, and permits multiple consumers to
PushEventSource.open(PushEventConsumer) it. This is equivalent to:

 buildEventSourceFromStream(stream).create();

Returns a PushEventSource backed by the PushStream

706.7.11.8 public SimplePushEventSource<T> createSimpleEventSource(Class<T> type)

Type Parameters <T>

type

□ Create a SimplePushEventSource with the supplied type and default buffering behaviors. The Sim-
plePushEventSource will respond to back pressure requests from the consumers connected to it.
This is equivalent to:

 buildSimpleEventSource(type).create();

Returns a SimplePushEventSource

706.7.11.9 public PushStream<T> createStream(PushEventSource<T> eventSource)

Type Parameters <T>

eventSource

□ Create a stream with the default configured buffer, executor size, queue, queue policy and pushback
policy. This is equivalent to calling

 buildStream(source).create();

This stream will be buffered from the event producer, and will honor back pressure even if the
source does not.

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 982 OSGi Enterprise Release 7

Buffered streams are useful for "bursty" event sources which produce a number of events close to-
gether, then none for some time. These bursts can sometimes overwhelm downstream processors.
Buffering will not, however, protect downstream components from a source which produces events
faster (on average) than they can be consumed.

Event delivery will not begin until a terminal operation is reached on the chain of PushStreams.
Once a terminal operation is reached the stream will be connected to the event source.

Returns A PushStream with a default initial buffer

706.7.11.10 public PushStream<T> streamOf(Stream<T> items)

Type Parameters <T>

items The items to push into the PushStream

□ Create an Unbuffered PushStream from a Java Stream The data from the stream will be pushed in-
to the PushStream synchronously as it is opened. This may make terminal operations blocking un-
less a buffer has been added to the PushStream. Care should be taken with infinite Streams to avoid
blocking indefinitely.

Returns A PushStream containing the items from the Java Stream

706.7.11.11 public PushStream<T> streamOf(Executor executor, ScheduledExecutorService scheduler, Stream<T> items)

Type Parameters <T>

executor The worker to use to push items from the Stream into the PushStream

scheduler The scheduler to use to trigger timed events in the PushStream

items The items to push into the PushStream

□ Create an Unbuffered PushStream from a Java Stream The data from the stream will be pushed into
the PushStream asynchronously using the supplied Executor.

Returns A PushStream containing the items from the Java Stream

706.7.12 public interface QueuePolicy<T, U extends BlockingQueue<PushEvent<? extends
T>>>

<T> The type of the data

<U> The type of the queue

A QueuePolicy is used to control how events should be queued in the current buffer. The QueuePoli-
cy will be called when an event has arrived.

See Also QueuePolicyOption

706.7.12.1 public void doOffer(U queue, PushEvent<? extends T> event) throws Exception

queue

event

□ Enqueue the event and return the remaining capacity available for events

Throws Exception– If an error occurred adding the event to the queue. This exception will cause the
connection between the PushEventSource and the PushEventConsumer to be closed with an
EventType.ERROR

706.7.13 enum QueuePolicyOption
QueuePolicyOption provides a standard set of simple QueuePolicy implementations.

See Also QueuePolicy

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Enterprise Release 7 Page 983

706.7.13.1 DISCARD_OLDEST

Attempt to add the supplied event to the queue. If the queue is unable to immediately accept the
value then discard the value at the head of the queue and try again. Repeat this process until the
event is enqueued.

706.7.13.2 BLOCK

Attempt to add the supplied event to the queue, blocking until the enqueue is successful.

706.7.13.3 FAIL

Attempt to add the supplied event to the queue, throwing an exception if the queue is full.

706.7.13.4 public abstract QueuePolicy<T, U> getPolicy()

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

Returns a QueuePolicy implementation

706.7.13.5 public static QueuePolicyOption valueOf(String name)

706.7.13.6 public static QueuePolicyOption[] values()

706.7.14 public interface SimplePushEventSource<T>
extends PushEventSource<T>, AutoCloseable

<T> The type of the events produced by this source

A SimplePushEventSource is a helper that makes it simpler to write a PushEventSource. Users do
not need to manage multiple registrations to the stream, nor do they have to be concerned with
back pressure.

Provider Type Consumers of this API must not implement this type

706.7.14.1 public void close()

□ Close this source. Calling this method indicates that there will never be any more events published
by it. Calling this method sends a close event to all connected consumers. After calling this method
any PushEventConsumer that tries to open(PushEventConsumer) this source will immediately re-
ceive a close event, and will not see any remaining buffered events.

706.7.14.2 public Promise<Void> connectPromise()

□ This method can be used to delay event generation until an event source has connected. The re-
turned promise will resolve as soon as one or more PushEventConsumer instances have opened the
SimplePushEventSource.

The returned promise may already be resolved if this SimplePushEventSource already has connect-
ed consumers. If the SimplePushEventSource is closed before the returned Promise resolves then it
will be failed with an IllegalStateException.

Note that the connected consumers are able to asynchronously close their connections to this Sim-
plePushEventSource, and therefore it is possible that once the promise resolves this SimplePu-
shEventSource may no longer be connected to any consumers.

Returns A promise representing the connection state of this EventSource

706.7.14.3 public void endOfStream()

□ Close this source for now, but potentially reopen it later. Calling this method asynchronously sends
a close event to all connected consumers and then disconnects them. Any events previously queued
by the publish(Object) method will be delivered before this close event.

References Push Stream Specification Version 1.0

Page 984 OSGi Enterprise Release 7

After calling this method any PushEventConsumer that wishes may open(PushEventConsumer)
this source, and will receive subsequent events.

706.7.14.4 public void error(Throwable t)

t the error

□ Close this source for now, but potentially reopen it later. Calling this method asynchronously
sends an error event to all connected consumers and then disconnects them. Any events previously
queued by the publish(Object) method will be delivered before this error event.

After calling this method any PushEventConsumer that wishes may open(PushEventConsumer)
this source, and will receive subsequent events.

706.7.14.5 public boolean isConnected()

□ Determine whether there are any PushEventConsumers for this PushEventSource. This can be used
to skip expensive event creation logic when there are no listeners.

Returns true if any consumers are currently connected

706.7.14.6 public void publish(T t)

t

□ Asynchronously publish an event to this stream and all connected PushEventConsumer instances.
When this method returns there is no guarantee that all consumers have been notified. Events pub-
lished by a single thread will maintain their relative ordering, however they may be interleaved
with events from other threads.

Throws I l legalStateException– if the source is closed

706.8 References

[1] Java 8 Stream API
https://docs.oracle.com/javase/8/docs/api/java/util/stream/pack-
age-summary.html#package.description

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#package.description
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#package.description

Converter Specification Version 1.0 Introduction

OSGi Enterprise Release 7 Page 985

707 Converter Specification

Version 1.0

707.1 Introduction
Data conversion is an inherent part of writing software in a type safe language. In Java, converting
strings to proper types or to convert one type to a more convenient type is often done manually. Any
errors are then handled inline.

In release 6, the OSGi specifications introduced Data Transfer Objects (DTOs). DTOs are public ob-
jects without open generics that only contain public instance fields based on simple types, arrays,
and collections. In many ways DTOs can be used as an alternative to Java beans. Java beans are hid-
ing their fields and provide access methods which separates the contract (the public interface) from
the internal usage. Though this model has advantages in technical applications it tends to add over-
head. DTOs unify the specification with the data since the data is what is already public when it is
sent to another process or serialized.

This specification defines the OSGi Converter that makes it easy to convert many types to other
types, including scalars, Collections, Maps, Beans, Interfaces and DTOs without having to write the
boilerplate conversion code. The converter strictly adheres to the rules specified in this chapter.
Converters can also be customized using converter builders.

707.2 Entities
The following entities are used in this specification:

• Converter - a converter can perform conversion operations.
• Standard Converter - a converter implementation that follows this specification.
• Converter Builder - can create customized converters by specifying rules for specific conversions.
• Source - the object to be converted.
• Target - the target of the conversion.
• Source Type - the type of the source to be converted.
• Target Type - the desired type of the conversion target.
• Rule - a rule is used to customize the behavior of the converter.

Figure 707.1 Converter Entity overview

obtain standard
converter 1..n

<<interface>>
Converter
Builder

<<interface>>
Converter

<<interface>>
TargetRuleobtain converter

builder

<<class>>
Converters

create custom
converter

<<abstract class>>
Rule

<<class>>
TypeRule

Standard Converter Converter Specification Version 1.0

Page 986 OSGi Enterprise Release 7

707.3 Standard Converter
The Standard Converter is a converter that follows precisely what is described in this specification.
It converts source objects to the desired target type if a suitable conversion is available. An instance
can be obtained by calling the static standardConverter() method on the Converters class.

Some example conversions:

Converter c = Converters.standardConverter();

// Scalar conversions
MyEnum e = c.convert(MyOtherEnum.BLUE).to(MyEnum.class);
BigDecimal bd = c.convert(12345).to(BigDecimal.class);

// Collection/array conversions
List<String> ls = Arrays.asList("978", "142", "-99");
long[] la = c.convert(ls).to(long[].class);

// Map conversions
Map someMap = new HashMap();
someMap.put("timeout", "700");
MyInterface mi = c.convert(someMap).to(MyInterface.class);
int t = mi.timeout(); // t=700

707.4 Conversions
For scalars, conversions are only performed when the target type is not compatible with the source
type. For example, when requesting to convert a java.math.BigDecimal to a java. lang.Number the
big decimal is simply used as-is as this type is assignable to the requested target type.

In the case of arrays, Collections and Map-like structures a new object is always returned, even if the
target type is compatible with the source type. This copy can be owned and optionally further modi-
fied by the caller.

707.4.1 Generics
When converting to a target type with generic type parameters it is necessary to capture these to in-
struct the converter to produce the correct parameterized type. This can be achieved with the Type-
Reference based APIs, for example:

Converter c = Converters.standardConverter();
List<Long> list = c.convert("123").to(new TypeReference<List<Long>>());
// list will contain the Long value 123L

707.4.2 Scalars

707.4.2.1 Direct conversion between scalars

Direct conversion between the following scalars is supported:

Table 707.1 Scalar types that support direct conversions

to \ from Boolean Character Number nul l
boolean v.booleanValue() v.charValue() != 0 v.numberValue() != 0 false
char v.booleanValue() ? 1 : 0 v.charValue() (char) v. intValue() 0
number v.booleanValue() ? 1 : 0 (number) v.charValue() v.numberValue() 0

Converter Specification Version 1.0 Conversions

OSGi Enterprise Release 7 Page 987

Where conversion is done from corresponding primitive types, these types are boxed before con-
verting. Where conversion is done to corresponding boxed types, the types are boxed after convert-
ing.

Direct conversions between Enums and ints and between Dates and longs are also supported, see
the sections below.

Conversions between from Map.Entry to scalars follow special rules, see Map.Entry on page 988.

All other conversions between scalars are done by converting the source object to a String first and
then converting the String value to the target type.

707.4.2.2 Conversion to String

Conversion of scalars to Str ing is done by calling toStr ing() on the object to be converted. In the case
of a primitive type, the object is boxed first.

A nul l object results in a nul l String value.

Exceptions:

• java.ut i l .Calendar and java.ut i l .Date are converted to Str ing as described in Date and Calendar on
page 988.

• Map.Entry is converter to String according to the rules in Map.Entry on page 988.

707.4.2.3 Conversion from String

Conversion from String is done by attempting to invoke the following methods, in order:

1. publ ic stat ic valueOf(Str ing s)
2. public constructor taking a single Str ing argument.

Some scalars have special rules for converting from String values. See below.

Table 707.2 Special cases converting to scalars from String

Target Method
char / Character v. length() > 0 ? v.charAt(0) : 0
java.t ime.Duration Duration.parse(v)
java.t ime. Instant Instant.parse(v)
java.t ime.LocalDate LocalDate.parse(v)
java.t ime.LocalDateTime LocalDateTime.parse(v)
java.t ime.LocalTime LocalTime.parse(v)
java.t ime.MonthDay MonthDay.parse(v)
java.t ime.OffsetTime OffsetTime.parse(v)
java.t ime.OffsetDateTime OffsetDateTime.parse(v)
java.t ime.Year Year.parse(v)
java.t ime.YearMonth YearMonth.parse(v)
java.t ime.ZonedDateTime ZonedDateTime.parse(v)
java.ut i l .Calendar See Date and Calendar on page 988.
java.ut i l .Date See Date and Calendar on page 988.
java.ut i l .UUID UUID.fromStr ing(v)
java.ut i l . regex.Pattern Pattern.compile(v)

Note to implementors: some of the classes mentioned in table Table 707.2 are introduced in Java 8.
However, a converter implementation does not need to depend on Java 8 in order to function. An
implementation of the converter specification could determine its Java runtime dynamically and
handle classes in this table depending on availability.

Conversions Converter Specification Version 1.0

Page 988 OSGi Enterprise Release 7

707.4.2.4 Date and Calendar

A java.ut i l .Date instance is converted to a long value by calling Date.getTime() . Converting a long
into a java.ut i l .Date is done by calling new Date(long) .

Converting a Date to a String will produce a ISO-8601 UTC date/time string in the following format:
2011-12-03T10:15:30Z . In Java 8 this can be done by calling Date.toInstant() .toStr ing() . Convert-
ing a String to a Date is done by parsing this ISO-8601 format back into a Date. In Java 8 this func-
tion is performed by calling Date.from(Instant.parse(v)) .

Conversions from Calendar objects are done by converting the Calendar to a Date via getTime()
first, and then converting the resulting Date to the target type. Conversions to a Calendar object are
done by converting the source to a Date object with the desired time (always in UTC) and then set-
ting the time in the Calendar object via setTime() .

707.4.2.5 Enums

Conversions to Enum types are supported as follows.

Table 707.3 Converting to Enum types

Source Method
Number EnumType.values()[v. intValue()]
Str ing EnumType.valueOf(v) . If this does not produce

a result a case-insensitive lookup is done for a
matching enum value.

Primitives are boxed before conversion is done. Other source types are converted to String before
converting to Enum.

707.4.2.6 Map.Entry

Conversion of Map.Entry<K,V> to a target scalar type is done by evaluating the compatibility of the
target type with both the key and the value in the entry and then using the best match. This is done
in the following order:

1. If one of the key or value is the same as the target type, then this is used. If both are the same, the
key is used.

2. If one of the key or value type is assignable to the target type, then this is used. If both are assign-
able the key is used.

3. If one of the key or value is of type Str ing , this is used and converted to the target type. If both
are of type Str ing the key is used.

4. If none of the above matches the key is converted into a Str ing and this value is then converted
to the target type.

Conversion to Map.Entry from a scalar is not supported.

707.4.3 Arrays and Collections
This section describes conversions from, to and between Arrays and Collections. This includes Lists,
Sets, Queues and Double-ended Queues (Deques).

707.4.3.1 Converting from a scalar

Scalars are converted into a Collection or Array by creating an instance of the target type suitable
for holding a single element. The scalar source object will be converted to target element type if nec-
essary and then set as the element.

A nul l value will result in an empty Collection or Array.

Exceptions:

Converter Specification Version 1.0 Conversions

OSGi Enterprise Release 7 Page 989

• Converting a Str ing to a char[] or Character[] will result in an array with characters representing
the characters in the String.

707.4.3.2 Converting to a scalar

If a Collection or array needs to be converted to a scalar, the first element is taken and converted in-
to the target type. Example:

Converter converter = Converters.standardConverter();
String s = converter.convert(new int[] {1,2}).to(String.class)); // s="1"

If the collection or array has no elements, the nul l value is used to convert into the target type.

Note: deviations from this mechanism can be achieved by using a ConverterBui lder . For example:

// Use an ConverterBuilder to create a customized converter
ConverterBuilder cb = converter.newConverterBuilder();
cb.rule(new Rule<int[], String>(v -> Arrays.stream(v).
 mapToObj(Integer::toString).collect(Collectors.joining(","))) {});
cb.rule(new Rule<String, int[]>(v -> Arrays.stream(v.split(",")).
 mapToInt(Integer::parseInt).toArray()) {});
Converter c = cb.build();

String s2 = c.convert(new int[] {1,2}).to(String.class)); // s2="1,2"
int[] sa = c.convert("1,2").to(String[].class); // sa={1,2}

Exceptions:

• Converting a char[] or Character[] into a Str ing results in a String where each character repre-
sents the elements of the character array.

707.4.3.3 Converting to an Array or Collection

When converting to an Array or Collection a separate instance is returned that can be owned by the
caller. By default the result is created eagerly and populated with the converted content.

When converting to a java.ut i l .Col lect ion , java.ut i l .L ist or java.ut i l .Set the converter can produce a
live view over the backing object that changes when the backing object changes. The live view can
be enabled by specifying the view() modifier.

In all cases the object returned is a separate instance that can be owned by the client. Once the client
modifies the returned object a live view will stop reflecting changes to the backing object.

Table 707.4 Collection / Array target creation

Target Method
Collection interface A mutable implementation is created. For example, if the tar-

get type is java.ut i l .Queue then the converter can create a
java.ut i l .L inkedList . When converting to a subinterface of
java.ut i l .Set the converter must choose a set implementation
that preserves iteration order.

Collection concrete type A new instance is created by calling Class.newInstance() on
the provided type. For example if the target type is Array-
Deque then the converter creates a target object by calling
ArrayDeque.class.newInstance() . The converter may choose to
use a call a well-known constructor to optimize the creation of
the collection.

Collect ion , List or Set with
view() modifier

A live view over the backing object is created, changes to the
backing object will be reflected, unless the view object is modi-
fied by the client.

Conversions Converter Specification Version 1.0

Page 990 OSGi Enterprise Release 7

Target Method
T[] A new array is created via Array.newInstance(Class<T> c ls , int x)

where x is the required size of the target collection.

Before inserting values into the resulting collection/array they are converted to the desired tar-
get type. In the case of arrays this is the type of the array. When inserting into a Collection gener-
ic type information about the target type can be made available by using the to(TypeReference) or
to(Type) methods. If no type information is available, source elements are inserted into the target
object as-is without further treatment.

For example, to convert an array of Str ings into a list of Integers:

List<Integer> result =
 converter.convert(Arrays.asList("1","2","3")).
 to(new TypeReference<List<Integer>>() {});

The following example converts an array of ints into a set of Doubles. Note that the resulting set
must preserve the same iteration order as the original array:

Set<Double> result =
 converter.convert(new int[] {2,3,2,1}).
 to(new TypeReference<Set<Double>>() {})
// result is 2.0, 3.0, 1.0

Values are inserted in the target Collection/array as follows:

• If the source object is nul l , an empty collection/array is produced.
• If the source is a Collection or Array, then each of its elements is converted into desired target

type, if known, before inserting. Elements are inserted into the target collection in their normal
iteration order.

• If the source is a Map-like structure (as described in Maps, Interfaces, Java Beans, DTOs and Annota-
tions on page 990) then Map.Entry elements are obtained from it by converting the source to a
Map (if needed) and then calling Map.entrySet() . Each Map.Entry element is then converted into
the target type as described in Map.Entry on page 988 before inserting in the target.

707.4.3.4 Converting to maps

Conversion to a map-like structure from an Array or Collection is not supported by the Standard
Converter.

707.4.4 Maps, Interfaces, Java Beans, DTOs and Annotations
Entities that can hold multiple key-value pairs are all treated in a similar way. These entities include
Maps, Dictionaries, Interfaces, Java Beans, Annotations and OSGi DTOs. We call these map-like types.
Additionally objects that provide a map view via getPropert ies() are supported.

When converting between map-like types, a Map can be used as intermediary. When converting to
other, non map-like, structures the map is converted into an iteration order preserving collection of
Map.Entry values which in turn is converted into the target type.

707.4.4.1 Converting from a scalar

Conversions from a scalar to a map-like type are not supported by the standard converter.

707.4.4.2 Converting to a scalar

Conversions of a map-like structure to a scalar are done by iterating through the entries of the map
and taking the first Map.Entry instance. Then this instance is converted into the target scalar type as
described in Map.Entry on page 988.

Converter Specification Version 1.0 Conversions

OSGi Enterprise Release 7 Page 991

An empty map results in a nul l scalar value.

707.4.4.3 Converting to an Array or Collection

A map-like structure is converted to an Array or Collection target type by creating an ordered collec-
tion of Map.Entry objects. Then this collection is converted to the target type as described in Arrays
and Collections on page 988 and Map.Entry on page 988.

707.4.4.4 Converting to a map-like structure

Conversions from one map-like structure to another map-like structure are supported. For example,
conversions between a map and an annotation, between a DTO and a Java Bean or between one in-
terface and another interface are all supported.

707.4.4.4.1 Key Mapping

When converting to or from a Java type, the key is derived from the method or field name. Certain
common property name characters, such as full stop ('.' \u002E) and hyphen-minus (' - ' \u002D) are
not valid in Java identifiers. So the name of a method must be converted to its corresponding key
name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are converted to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are converted to a

single dollar sign.
• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-

other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.
• If the type that declares the method also declares a static final PREFIX_ field whose value is a com-

pile-time constant Str ing , then the key name is prefixed with the value of the PREFIX_ field. PRE-
FIX_ fields in super-classes or super-interfaces are ignored.

Table 707.5 contains some name mapping examples.

Table 707.5 Component Property Name Mapping Examples

Component Property Type Method Name Component Property Name
myProperty143 myProperty143
$new new
my$$prop my$prop
dot_prop dot.prop
_secret .secret
another__prop another_prop
three___prop three_.prop
four_$__prop four._prop
five_$_prop five. .prop
six$_$prop six-prop
seven$$_$prop seven$.prop

Below is an example of using the PREFIX_ constant in an annotation. The example receives an un-
typed Dictionary in the updated() callback with configuration information. Each key in the dictio-

Conversions Converter Specification Version 1.0

Page 992 OSGi Enterprise Release 7

nary is prefixed with the PREFIX_ . The annotation can be used to read the configuration using typed
methods with short names.

 public @interface MyAnnotation {
 static final String PREFIX_ = "com.acme.config.";

 long timeout() default 1000L;
 String tempdir() default "/tmp";
 int retries() default 10;
 }

 public void updated(Dictionary dict) {
 // dict contains:
 // "com.acme.config.timeout" = "500"
 // "com.acme.config.tempdir" = "/temp"

 MyAnnotation cfg = converter.convert(dict).to(MyAnnotation.class);

 long configuredTimeout = cfg.timeout(); // 500
 int configuredRetries = cfg.retries(); // 10

 // ...
 }

However, if the type is a single-element annotation, see 9.7.3 in [1] The Java Language Specification, Java
SE 8 Edition, then the key name for the value method is derived from the name of the component
property type rather than the name of the method. In this case, the simple name of the component
property type, that is, the name of the class without any package name or outer class name, if the
component property type is an inner class, must be converted to the value method's property name
as follows:

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each uppercase character is converted to lower case.
• All other characters are unchanged.
• If the annotation type declares a PREFIX_ field whose value is a compile-time constant Str ing ,

then the id is prefixed with the value of the PREFIX_ field.

Table 707.6 contains some mapping examples for the value method.

Table 707.6 Single-Element Annotation Mapping Examples for value Method

Type Name value Method Component Property Name
ServiceRanking service.ranking
Some_Name some_name
OSGiProperty osgi .property

707.4.4.4.2 Converting to a Map

When converting to a Map a separate instance is returned that can be owned by the caller. By de-
fault the result is created eagerly and populated with converted content.

When converting to a java.ut i l .Map the converter can produce a live view over the backing ob-
ject that changes when the backing object changes. The live view can be enabled by specifying the
view() modifier.

Converter Specification Version 1.0 Conversions

OSGi Enterprise Release 7 Page 993

In all cases the object returned is a separate instance that can be owned by the client. When the
client modifies the returned object a live view will stop reflecting changes to the backing object.

Table 707.7 Map target creation

Target Method
Map interface A mutable implementation is created. For example, if the target

type is ConcurrentNavigableMap then the implementation can
create a ConcurrentSkipListMap .

Map concrete type A new instance is created by calling Class.newInstance()
on the provided type. For example if the target type is
HashMap then the converter creates a target object by calling
HashMap.class.newInstance() . The converter may choose to use
a call a well-known constructor to optimize the creation of the
map.

java.ut i l .Map with view() modi-
fier

A map view over the backing object is created, changes to the
backing object will be reflected in the map, unless the map is
modified by the client.

When converting from a map-like object to a Map or sub-type, each key-value pair in the source
map is converted to desired types of the target map using the generic information if available.
Map type information for the target type can be made available by using the to(TypeReference) or
to(Type) methods. If no type information is available, key-value pairs are used in the map as-is.

707.4.4.4.3 Dictionary

Converting between a map and a Dictionary is done by iterating over the source and inserting the
key value pairs in the target, converting them to the requested target type, if known. As with other
generic types, target type information for Dictionaries can be provided via a TypeReference .

707.4.4.4.4 Interface

Converting a map-like structure into an interface can be a useful way to give a map of untyped data
a typed API. The converter synthesizes an interface instance to represent the conversion.

Note that converting to annotations provides similar functionality with the added benefit of being
able to specify default values in the annotation code.

707.4.4.4.4.1 Converting to an Interface

When converting into an interface the converter will create a dynamic proxy to implement the in-
terface. The name of the method returning the value should match the key of the map entry, taking
into account the mapping rules specified in Key Mapping on page 991. The key of the map may
need to be converted into a Str ing first.

Conversion is done on demand: only when the method on the interface is actually invoked. This
avoids conversion errors on methods for which the information is missing or cannot be converted,
but which the caller does not require.

Note that the converter will not copy the source map when converting to an interface allowing
changes to the source map to be reflected live to the proxy. The proxy cannot cache the conversions.

Interfaces can provide methods for default values by providing a single-argument method override
in addition to the no-parameter method matching the key name. If the type of the default does not
match the target type it is converted first. For example:

interface Config {
 int my_value(); // no default
 int my_value(int defVal);

Conversions Converter Specification Version 1.0

Page 994 OSGi Enterprise Release 7

 int my_value(String defVal); // String value is automatically converted to int
 boolean my_other_value();
}

// Usage
Map<String, Object> myMap = new HashMap<>(); // an example map
myMap.put("my.other.value", "true");
Config cfg = converter.convert(myMap).to(Config.class);
int val = cfg.my_value(17); // if not set then use 17
boolean val2 = cfg.my_other_value(); // val2=true

Default values are used when the key is not present in the map for the method. If a key is present
with a nul l value, then nul l is taken as the value and converted to the target type.

If no default is specified and a requested value is not present in the map, a ConversionException is
thrown.

707.4.4.4.4.2 Converting from an Interface

An interface can also be the source of a conversion to another map-like type. The name of each
method without parameters is taken as key, taking into account the Key Mapping on page 991.
The method is invoked using reflection to produce the associated value.

Whether a conversion source object is an interface is determined dynamically. When an object im-
plements multiple interfaces by default the first interface from these that has no-parameter meth-
ods is taken as the source type. To select a different interface use the sourceAs(Class) modifier:

 Map m = converter.convert(myMultiInterface).
 sourceAs(MyInterfaceB.class).to(Map.class);

If the source object also has a getPropert ies() method as described in Types with getProperties() on
page 996, this getProperties() method is used to obtain the map view by default. This behavior
can be overridden by using the sourceAs(Class) modifier.

707.4.4.4.5 Annotation

Conversion to and from annotations behaves similar to interface conversion with the added capabil-
ity of specifying a default in the annotation definition.

When converting to an annotation type, the converter will return an instance of the requested an-
notation class. As with interfaces, values are only obtained from the conversion source when the an-
notation method is actually called. If the requested value is not available, the default as specified in
the annotation class is used. If no default is specified a ConversionException is thrown.

Similar to interfaces, conversions to and from annotations also follow the Key Mapping on page
991 for annotation element names. Below a few examples of conversions to an annotation:

@interface MyAnnotation {
 String[] args() default {"arg1", "arg2"};
}

// Will set sa={"args1", "arg2"}
String[] sa = converter.convert(new HashMap()).to(MyAnnotation.class).args();

// Will set a={"x", "y", "z"}
Map m = Collections.singletonMap("args", new String [] {"x", "y", "z"});
String[] a = converter.convert(m).to(MyAnnotation.class).args();

// Will set a1={}
Map m1 = Collections.singletonMap("args", null)

Converter Specification Version 1.0 Conversions

OSGi Enterprise Release 7 Page 995

String[] a1 = converter.convert(m1).to(MyAnnotation.class).args();

// Will set a2={""}
Map m2 = Collections.singletonMap("args", "")
String[] a2 = converter.convert(m2).to(MyAnnotation.class).args();

// Will set a3={","}
Map m3 = Collections.singletonMap("args", ",")
String[] a3 = converter.convert(m3).to(MyAnnotation.class).args();

707.4.4.4.5.1 Marker annotations

If an annotation is a marker annotation, see 9.7.2 in [1] The Java Language Specification, Java SE 8 Edition,
then the property name is derived from the name of the annotation, as described for single-element
annotations in Key Mapping on page 991, and the value of the property is Boolean.TRUE .

When converting to a marker annotation the converter checks that the source has key and val-
ue that are consistent with the marker annotation. If they are not, for example if the value is not
present or does not convert to Boolean.TRUE , then a conversion will result in a Conversion Excep-
tion.

707.4.4.4.6 Java Beans

Java Beans are concrete (non-abstract) classes that follow the Java Bean naming convention. They
provide public getters and setters to access their properties and have a public no-parameter con-
structor. When converting from a Java Bean introspection is used to find the read accessors. A read
accessor must have no arguments and a non-void return value. The method name must start with
get followed by a capitalized property name, for example getSize() provides access to the property
size . For boolean/Boolean properties a prefix of is is also permitted. Properties names follow the Key
Mapping on page 991.

For the converter to consider an object as a Java Bean the sourceAsBean() or targetAsBean() modifi-
er needs to be invoked, for example:

 Map m = converter.convert(myBean).sourceAsBean().to(Map.class);

When converting to a Java Bean, the bean is constructed eagerly. All available properties are set in
the bean using the bean's write accessors, that is, public setters methods with a single argument. All
methods of the bean class itself and its super classes are considered. When a property cannot be con-
verted this will cause a ConversionException . If a property is missing in the source, the property
will not be set in the bean.

Note: access via indexed bean properties is not supported.

Note: the getClass() method of the java. lang.Object class is not considered an accessor.

707.4.4.4.7 DTOs

DTOs are classes with public non-static fields and no methods other than the ones provided by the
java. lang.Object c lass . OSGi DTOs extend the org.osgi .dto.DTO class, however objects following
the DTO rules that do not extend the DTO class are also treated as DTOs by the converter. DTOs may
have static fields, or non-public instance fields. These are ignored by the converter.

When converting from a DTO to another map-like structure each public instance field is consid-
ered. The field name is taken as the key for the map entry, taking into account Key Mapping on page
991, the field value is taken as the value for the map entry.

When converting to a DTO, the converter attempts to find fields that match the key of each entry in
the source map and then converts the value to the field type before assigning it. The key of the map
entries may need to be converted into a String first. Keys are mapped according to Key Mapping on
page 991.

Repeated or Deferred Conversions Converter Specification Version 1.0

Page 996 OSGi Enterprise Release 7

The DTO is constructed using its no-parameter constructor and each public field is filled with data
from the source eagerly. Fields present in the DTO but missing in the source object not be set.

The converter only considers a type to be a DTO type if it declares no methods. However, if a type
needs to be treated as a DTO that has methods, the converter can be instructed to do this using the
sourceAsDTO() and targetAsDTO() modifiers.

707.4.4.4.8 Types with getProperties()

The converter uses reflection to find a public java.ut i l .Map getPropert ies() or java.ut i l .Dict ionary
getPropert ies() method on the source type to obtain a map view over the source object. This map
view is used to convert the source object to a map-like structure.

If the source object both implements an interface and also has a public getPropert ies() method, the
converter uses the getPropert ies() method to obtain the map view. This getPropert ies() may or may
not be part of an implemented interface.

Note: this mechanism can only be used to convert to another type. The reverse is not supported

707.4.4.4.9 Specifying target types

The converter always produces an instance of the target type as specified with the to(Class) ,
to(TypeReference) or to(Type) method. In some cases the converter needs to be instructed how to
treat this target object. For example the desired target type might extend a DTO class adding some
methods and behavior to the DTO. As this target class now has methods, the converter will not rec-
ognize it as a DTO. The targetAs(Class) , targetAsBean() and targetAsDTO() methods can be used
here to instruct the converter to treat the target object as certain type of object to guide the conver-
sion.

For example:

 MyExtendedDTO med = converter.convert(someMap).
 targetAsDTO().to(MyExtendedDTO.class)

In this example the converter will return a MyExtendedDTO instance but it will treat is as a MyDTO
type.

707.5 Repeated or Deferred Conversions
In certain situations the same conversion needs to be performed multiple times, on different source
objects. Or maybe the conversion needs to be performed asynchronously as part of a async stream
processing pipeline. For such cases the Converter can produce a Function, which will perform the
conversion once applied. The function can be invoked multiple times with different source objects.
The Converter can produce this function through the function() method, which provides an API
similar to the convert(Object) method, with the difference that instead of returning the conversion,
once to() is called, a Function that can perform the conversion on apply(T) is returned.

The following example sets up a Function that can perform conversions to Integer objects. A default
value of 999 is specified for the conversion:

 Converter c = Converters.standardConverter();

 // Obtain a function for the conversion
 Function<Object, Integer> cf = c.function().defaultValue(999).to(Integer.class);

 // Use the converter multiple times:
 Integer i1 = cf.apply("123"); // i1 = 123
 Integer i2 = cf.apply(""); // i2 = 999

Converter Specification Version 1.0 Customizing converters

OSGi Enterprise Release 7 Page 997

The Function returned by the converter is thread safe and can be used concurrently or asynchro-
nously in other threads.

707.6 Customizing converters
The Standard Converter applies the conversion rules described in this specification. While this is
useful for many applications, in some cases deviations from the specified rules may be necessary.
This can be done by creating a customized converter. Customized converters are created based on an
existing converter with additional rules specified that override the existing converter's behavior. A
customized converter is created through a ConverterBui lder . Customized converters implement the
converter interface and as such can be used to create further customized converters. Converters are
immutable, once created they cannot be modified, so they can be freely shared without the risk of
modification to the converter's behavior.

For example converting a Date to a String may require a specific format. The default Date to Str ing
conversion produces a String in the format yyyy-MM-ddTHH:mm:ss.SSSZ . If we want to produce a
String in the format yyMMddHHmmssZ instead a custom converter can be applied:

SimpleDateFormat sdf = new SimpleDateFormat("yyMMddHHmmssZ") {
 @Override
 public synchronized StringBuffer format(Date date, StringBuffer toAppendTo,
 FieldPosition pos) {
 // Make the method synchronized to support multi threaded access
 return super.format(date, toAppendTo, pos);
 }
};
ConverterBuilder cb = Converters.newConverterBuilder();
cb.rule(new TypeRule<>(Date.class, String.class, sdf::format));
Converter c = cb.build();

String s = c.convert(new Date()).to(String.class);
// s = "160923102853+0100" or similar

Custom conversions are also applied to embedded conversions that are part of a map or other en-
closing object:

class MyBean {
 //... fields ommitted
 boolean getEnabled() { /* ... */ }
 void setEnabled(boolean e) { /* ... */ }
 Date getStartDate() { /* ... */ }
 void setStartDate(Date d) { /* ... */ }
}

MyBean mb = new MyBean();
mb.setStartDate(new Date());
mb.setEnabled(true);

Map<String, String> m = c.convert(mb).sourceAsBean().
 to(new TypeReference<Map<String, String>>(){});
String en = m.get("enabled"); // en = "true"
String sd = m.get("startDate"); // sd = "160923102853+0100" or similar

A converter rule can return CANNOT_HANDLE to indicate that it cannot handle the conversion, in
which case next applicable rule is handed the conversion. If none of the registered rules for the cur-

Conversion failures Converter Specification Version 1.0

Page 998 OSGi Enterprise Release 7

rent converter can handle the conversion, the parent converter object is asked to convert the value.
Since custom converters can be the basis for further custom converters, a chain of custom convert-
ers can be created where a custom converter rule can either decide to handle the conversion, or it
can delegate back to the next converter in the chain by returning CANNOT_HANDLE if it wishes to
do so.

707.6.1 Catch-all rules
It is also possible to register converter rules which are invoked for every conversion with the
rule(ConverterFunction) method. When multiple rules are registered, they are evaluated in the or-
der of registration, until a rule indicates that it can handle a conversion. A rule can indicate that it
cannot handle the conversion by returning the CANNOT_HANDLE constant. Rules targeting specific
types are evaluated before catch-all rules.

707.7 Conversion failures
Not all conversions can be performed by the standard converter. It cannot convert text such as
'lorem ipsum' into a long value. Or the number pi into a map. When a conversion fails, the converter
will throw a ConversionException .

If meaningful conversions exist between types not supported by the standard converter, a cus-
tomized converter can be used, see Customizing converters on page 997.

Some applications require different behavior for error scenarios. For example they can use an emp-
ty value such as 0 or "" instead of the exception, or they might require a different exception to be
thrown. For these scenarios a custom error handler can be registered. The error handler is only in-
voked in cases where otherwise a ConversionException would be thrown. The error handler can re-
turn a different value instead or throw another exception.

An error handler is registered by creating a custom converter and providing it with an error handler
via the errorHandler(ConverterFunction) method. When multiple error handlers are registered for
a given converter they are invoked in the order in which they were registered until an error handler
either throws an exception or returns a value other than CANNOT_HANDLE .

707.8 Security
An implementation of this specification will require the use of Java Reflection APIs. Therefore it
should have the appropriate permissions to perform these operations when running under the Java
Security model.

707.9 org.osgi.util.converter

Converter Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .converter ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .converter ; vers ion="[1.0,1.1)"

Converter Specification Version 1.0 org.osgi.util.converter

OSGi Enterprise Release 7 Page 999

707.9.1 Summary

• ConversionException - This Runtime Exception is thrown when an object is requested to be con-
verted but the conversion cannot be done.

• Converter - The Converter service is used to start a conversion.
• ConverterBui lder - A builder to create a new converter with modified behavior based on an ex-

isting converter.
• ConverterFunction - An functional interface with a convert method that is passed the original

object and the target type to perform a custom conversion.
• Converters - Factory class to obtain the standard converter or a new converter builder.
• Convert ing - This interface is used to specify the target that an object should be converted to.
• Functioning - This interface is used to specify the target function to perform conversions.
• Rule - A rule implementation that works by capturing the type arguments via subclassing.
• Specify ing - This is the base interface for the Converting and Functioning interfaces and defines

the common modifiers that can be applied to these.
• TargetRule - Interface for custom conversion rules.
• TypeReference - An object does not carry any runtime information about its generic type.
• TypeRule - Rule implementation that works by passing in type arguments rather than subclass-

ing.

707.9.2 public class ConversionException
extends RuntimeException
This Runtime Exception is thrown when an object is requested to be converted but the conversion
cannot be done. For example when the String "test" is to be converted into a Long.

707.9.2.1 public ConversionException(String message)

message The message for this exception.

□ Create a Conversion Exception with a message.

707.9.2.2 public ConversionException(String message, Throwable cause)

message The message for this exception.

cause The causing exception.

□ Create a Conversion Exception with a message and a nested cause.

707.9.3 public interface Converter
The Converter service is used to start a conversion. The service is obtained from the service registry.
The conversion is then completed via the Converting interface that has methods to specify the tar-
get type.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

707.9.3.1 public Converting convert(Object obj)

obj The object that should be converted.

□ Start a conversion for the given object.

Returns A Converting object to complete the conversion.

707.9.3.2 public Functioning function()

□ Start defining a function that can perform given conversions.

org.osgi.util.converter Converter Specification Version 1.0

Page 1000 OSGi Enterprise Release 7

Returns A Functioning object to complete the definition.

707.9.3.3 public ConverterBuilder newConverterBuilder()

□ Obtain a builder to create a modified converter based on this converter. For more details see the Con-
verterBuilder interface.

Returns A new Converter Builder.

707.9.4 public interface ConverterBuilder
A builder to create a new converter with modified behavior based on an existing converter. The
modified behavior is specified by providing rules and/or conversion functions. If multiple rules
match they will be visited in sequence of registration. If a rule's function returns nul l the next rule
found will be visited. If none of the rules can handle the conversion, the original converter will be
used to perform the conversion.

Provider Type Consumers of this API must not implement this type

707.9.4.1 public Converter build()

□ Build the specified converter. Each time this method is called a new custom converter is produced
based on the rules registered with the builder.

Returns A new converter with the rules provided to the builder.

707.9.4.2 public ConverterBuilder errorHandler(ConverterFunction func)

func The function to be used to handle errors.

□ Register a custom error handler. The custom error handler will be called when the conversion
would otherwise throw an exception. The error handler can either throw a different exception or re-
turn a value to be used for the failed conversion.

Returns This converter builder for further building.

707.9.4.3 public ConverterBuilder rule(Type type, ConverterFunction func)

type The type that this rule will produce.

func The function that will handle the conversion.

□ Register a conversion rule for this converter. Note that only the target type is specified, so the rule
will be visited for every conversion to the target type.

Returns This converter builder for further building.

707.9.4.4 public ConverterBuilder rule(TargetRule rule)

rule A rule implementation.

□ Register a conversion rule for this converter.

Returns This converter builder for further building.

707.9.4.5 public ConverterBuilder rule(ConverterFunction func)

func The function that will handle the conversion.

□ Register a catch-all rule, will be called of no other rule matches.

Returns This converter builder for further building.

707.9.5 public interface ConverterFunction
An functional interface with a convert method that is passed the original object and the target type
to perform a custom conversion.

Converter Specification Version 1.0 org.osgi.util.converter

OSGi Enterprise Release 7 Page 1001

This interface can also be used to register a custom error handler.

707.9.5.1 public static final Object CANNOT_HANDLE

Special object to indicate that a custom converter rule or error handler cannot handle the conver-
sion.

707.9.5.2 public Object apply(Object obj, Type targetType) throws Exception

obj The object to be converted. This object will never be nul l as the convert function will not be invoked
for null values.

targetType The target type.

□ Convert the object into the target type.

Returns The conversion result or CANNOT_HANDLE to indicate that the convert function cannot handle
this conversion. In this case the next matching rule or parent converter will be given a opportunity
to convert.

Throws Exception– the operation can throw an exception if the conversion can not be performed due to in-
compatible types.

707.9.6 public class Converters
Factory class to obtain the standard converter or a new converter builder.

Concurrency Thread-safe

707.9.6.1 public static ConverterBuilder newConverterBuilder()

□ Obtain a converter builder based on the standard converter.

Returns A new converter builder.

707.9.6.2 public static Converter standardConverter()

□ Obtain the standard converter.

Returns The standard converter.

707.9.7 public interface Converting
extends Specifying<Converting>
This interface is used to specify the target that an object should be converted to. A Converting in-
stance can be obtained via the Converter.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

707.9.7.1 public T to(Class<T> cls)

Type Parameters <T>

cls The class to convert to.

□ Specify the target object type for the conversion as a class object.

Returns The converted object.

707.9.7.2 public T to(Type type)

Type Parameters <T>

type A Type object to represent the target type to be converted to.

□ Specify the target object type as a Java Reflection Type object.

org.osgi.util.converter Converter Specification Version 1.0

Page 1002 OSGi Enterprise Release 7

Returns The converted object.

707.9.7.3 public T to(TypeReference<T> ref)

Type Parameters <T>

ref A type reference to the object being converted to.

□ Specify the target object type as a TypeReference. If the target class carries generics information a
TypeReference should be used as this preserves the generic information whereas a Class object has
this information erased. Example use:

 List<String> result = converter.convert(Arrays.asList(1, 2, 3))
 .to(new TypeReference<List<String>>() {});

Returns The converted object.

707.9.8 public interface Functioning
extends Specifying<Functioning>
This interface is used to specify the target function to perform conversions. This function can be
used multiple times. A Functioning instance can be obtained via the Converter.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

707.9.8.1 public Function<Object, T> to(Class<T> cls)

Type Parameters <T>

cls The class to convert to.

□ Specify the target object type for the conversion as a class object.

Returns A function that can perform the conversion.

707.9.8.2 public Function<Object, T> to(Type type)

Type Parameters <T>

type A Type object to represent the target type to be converted to.

□ Specify the target object type as a Java Reflection Type object.

Returns A function that can perform the conversion.

707.9.8.3 public Function<Object, T> to(TypeReference<T> ref)

Type Parameters <T>

ref A type reference to the object being converted to.

□ Specify the target object type as a TypeReference. If the target class carries generics information a
TypeReference should be used as this preserves the generic information whereas a Class object has
this information erased. Example use:

 List<String> result = converter.function()
 .to(new TypeReference<List<String>>() {});

Returns A function that can perform the conversion.

707.9.9 public abstract class Rule<F, T>
implements TargetRule

<F> The type to convert from.

Converter Specification Version 1.0 org.osgi.util.converter

OSGi Enterprise Release 7 Page 1003

<T> The type to convert to.

A rule implementation that works by capturing the type arguments via subclassing. The rule sup-
ports specifying both from and to types. Filtering on the from by the Rule implementation. Filtering
on the to is done by the converter customization mechanism.

707.9.9.1 public Rule(Function<F, T> func)

func The conversion function to use.

□ Create an instance with a conversion function.

707.9.9.2 public ConverterFunction getFunction()

□ The function to perform the conversion.

Returns The function.

707.9.9.3 public Type getTargetType()

□ The target type of this rule. The conversion function is invoked for each conversion to the target
type.

Returns The target type.

707.9.10 public interface Specifying<T extends Specifying<T>>
<T> Either Converting or Specifying.

This is the base interface for the Converting and Functioning interfaces and defines the common
modifiers that can be applied to these.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

707.9.10.1 public T extends Specifying<T> defaultValue(Object defVal)

defVal The default value.

□ The default value to use when the object cannot be converted or in case of conversion from a nul l
value.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.2 public T extends Specifying<T> keysIgnoreCase()

□ When converting between map-like types use case-insensitive mapping of keys.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.3 public T extends Specifying<T> sourceAs(Class<?> cls)

cls The class to treat the object as.

□ Treat the source object as the specified class. This can be used to disambiguate a type if it imple-
ments multiple interfaces or extends multiple classes.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.4 public T extends Specifying<T> sourceAsBean()

□ Treat the source object as a JavaBean. By default objects will not be treated as JavaBeans, this has to
be specified using this method.

Returns The current Convert ing object so that additional calls can be chained.

org.osgi.util.converter Converter Specification Version 1.0

Page 1004 OSGi Enterprise Release 7

707.9.10.5 public T extends Specifying<T> sourceAsDTO()

□ Treat the source object as a DTO even if the source object has methods or is otherwise not recog-
nized as a DTO.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.6 public T extends Specifying<T> targetAs(Class<?> cls)

cls The class to treat the object as.

□ Treat the target object as the specified class. This can be used to disambiguate a type if it implements
multiple interfaces or extends multiple classes.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.7 public T extends Specifying<T> targetAsBean()

□ Treat the target object as a JavaBean. By default objects will not be treated as JavaBeans, this has to be
specified using this method.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.8 public T extends Specifying<T> targetAsDTO()

□ Treat the target object as a DTO even if it has methods or is otherwise not recognized as a DTO.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.9 public T extends Specifying<T> view()

□ Return a live view over the backing object that reflects any changes to the original object. This is on-
ly possible with conversions to java.util.Map, java.util.Collection, java.util.List and java.util.Set. The
live view object will cease to be live as soon as modifications are made to it. Note that conversions
to an interface or annotation will always produce a live view that cannot be modified. This modifier
has no effect with conversions to other types.

Returns The current Convert ing object so that additional calls can be chained.

707.9.11 public interface TargetRule
Interface for custom conversion rules.

707.9.11.1 public ConverterFunction getFunction()

□ The function to perform the conversion.

Returns The function.

707.9.11.2 public Type getTargetType()

□ The target type of this rule. The conversion function is invoked for each conversion to the target
type.

Returns The target type.

707.9.12 public class TypeReference<T>
<T> The target type for the conversion.

An object does not carry any runtime information about its generic type. However sometimes it is
necessary to specify a generic type, that is the purpose of this class. It allows you to specify an gener-
ic type by defining a type T, then subclassing it. The subclass will have a reference to the super class
that contains this generic information. Through reflection, we pick this reference up and return it
with the getType() call.

 List<String> result = converter.convert(Arrays.asList(1, 2, 3))

Converter Specification Version 1.0 References

OSGi Enterprise Release 7 Page 1005

 .to(new TypeReference<List<String>>() {});

Concurrency Immutable

707.9.12.1 protected TypeReference()

□ A TypeReference cannot be directly instantiated. To use it, it has to be extended, typically as an
anonymous inner class.

707.9.12.2 public Type getType()

□ Return the actual type of this Type Reference

Returns the type of this reference.

707.9.13 public class TypeRule<F, T>
implements TargetRule

<F> The type to convert from.

<T> The type to convert to.

Rule implementation that works by passing in type arguments rather than subclassing. The rule
supports specifying both from and to types. Filtering on the from by the Rule implementation. Filter-
ing on the to is done by the converter customization mechanism.

707.9.13.1 public TypeRule(Type from, Type to, Function<F, T> func)

from The type to convert from.

to The type to convert to.

func The conversion function to use.

□ Create an instance based on source, target types and a conversion function.

707.9.13.2 public ConverterFunction getFunction()

□ The function to perform the conversion.

Returns The function.

707.9.13.3 public Type getTargetType()

□ The target type of this rule. The conversion function is invoked for each conversion to the target
type.

Returns The target type.

707.10 References

[1] The Java Language Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

https://docs.oracle.com/javase/specs/jls/se8/html/index.html

References Converter Specification Version 1.0

Page 1006 OSGi Enterprise Release 7

OSGi Enterprise Release 7

OSGi Enterprise Release 7 Page 1007

OSGi Enterprise Release 7

Page 1008 OSGi Enterprise Release 7

End Of Document

	OSGi Enterprise
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview of Services
	1.1.1. Dependency Injection Models
	1.1.2. Distributed Services
	1.1.3. Web Applications and HTTP Servlets
	1.1.4. Asynchronous Processing and Event models
	1.1.5. Management and Configuration services
	1.1.6. Naming and Directory services
	1.1.7. Database Access
	1.1.8. Transaction Support
	1.1.9. Miscellaneous Supporting Services

	1.2. Application and Provisioning Support
	1.3. Reader Level
	1.4. Version Information
	1.4.1. OSGi Core Release 7
	1.4.2. Component Versions
	1.4.3. Note

	1.5. References
	1.6. Changes

	Chapter 100. Remote Services
	100.1. The Fallacies
	100.2. Remote Service Properties
	100.2.1. Registering a Service for Export
	100.2.2. Getting an Imported Service
	100.2.3. On Demand Import

	100.3. Intents
	100.3.1. Basic Remote Services: osgi.basic
	100.3.1.1. Minimum Supported Service Signature
	100.3.1.2. Remote Invocation Timeout

	100.3.2. Asynchronous Remote Services: osgi.async
	100.3.2.1. Supported Return Types
	100.3.2.2. Asynchronous Failures

	100.3.3. Confidential Remote Services: osgi.confidential
	100.3.4. Private Remote Services: osgi.private

	100.4. General Usage
	100.4.1. Call by Value
	100.4.2. Data Fencing
	100.4.3. Remote Services Life Cycle
	100.4.4. Runtime
	100.4.5. Exceptions

	100.5. Configuration Types
	100.5.1. Configuration Type Properties
	100.5.2. Dependencies

	100.6. Security
	100.6.1. Limiting Exports and Imports

	100.7. References
	100.8. Changes

	Chapter 101. Log Service Specification
	101.1. Introduction
	101.1.1. Entities

	101.2. The Logger Interface
	101.3. Obtaining a Logger
	101.4. Logger Configuration
	101.4.1. Configuration Admin Integration
	101.4.2. Effective Log Level

	101.5. Log Stream Provider
	101.6. Log Reader Service
	101.7. Log Entry Interface
	101.8. Mapping of Events
	101.8.1. Bundle Events Mapping
	101.8.2. Service Events Mapping
	101.8.3. Framework Events Mapping
	101.8.4. Log Events

	101.9. Log Service
	101.10. Capabilities
	101.11. Security
	101.12. org.osgi.service.log
	101.12.1. Summary
	101.12.2. public interface FormatterLogger extends Logger
	101.12.3. public interface LogEntry
	101.12.3.1. public Bundle getBundle()
	101.12.3.2. public Throwable getException()
	101.12.3.3. public int getLevel()
	101.12.3.4. public StackTraceElement getLocation()
	101.12.3.5. public String getLoggerName()
	101.12.3.6. public LogLevel getLogLevel()
	101.12.3.7. public String getMessage()
	101.12.3.8. public long getSequence()
	101.12.3.9. public ServiceReference<?> getServiceReference()
	101.12.3.10. public String getThreadInfo()
	101.12.3.11. public long getTime()

	101.12.4. public interface Logger
	101.12.4.1. public static final String ROOT_LOGGER_NAME = "ROOT"
	101.12.4.2. public void audit(String message)
	101.12.4.3. public void audit(String format, Object arg)
	101.12.4.4. public void audit(String format, Object arg1, Object arg2)
	101.12.4.5. public void audit(String format, Object... arguments)
	101.12.4.6. public void debug(String message)
	101.12.4.7. public void debug(String format, Object arg)
	101.12.4.8. public void debug(String format, Object arg1, Object arg2)
	101.12.4.9. public void debug(String format, Object... arguments)
	101.12.4.10. public void debug(LoggerConsumer<E> consumer) throws E
	101.12.4.11. public void error(String message)
	101.12.4.12. public void error(String format, Object arg)
	101.12.4.13. public void error(String format, Object arg1, Object arg2)
	101.12.4.14. public void error(String format, Object... arguments)
	101.12.4.15. public void error(LoggerConsumer<E> consumer) throws E
	101.12.4.16. public String getName()
	101.12.4.17. public void info(String message)
	101.12.4.18. public void info(String format, Object arg)
	101.12.4.19. public void info(String format, Object arg1, Object arg2)
	101.12.4.20. public void info(String format, Object... arguments)
	101.12.4.21. public void info(LoggerConsumer<E> consumer) throws E
	101.12.4.22. public boolean isDebugEnabled()
	101.12.4.23. public boolean isErrorEnabled()
	101.12.4.24. public boolean isInfoEnabled()
	101.12.4.25. public boolean isTraceEnabled()
	101.12.4.26. public boolean isWarnEnabled()
	101.12.4.27. public void trace(String message)
	101.12.4.28. public void trace(String format, Object arg)
	101.12.4.29. public void trace(String format, Object arg1, Object arg2)
	101.12.4.30. public void trace(String format, Object... arguments)
	101.12.4.31. public void trace(LoggerConsumer<E> consumer) throws E
	101.12.4.32. public void warn(String message)
	101.12.4.33. public void warn(String format, Object arg)
	101.12.4.34. public void warn(String format, Object arg1, Object arg2)
	101.12.4.35. public void warn(String format, Object... arguments)
	101.12.4.36. public void warn(LoggerConsumer<E> consumer) throws E

	101.12.5. public interface LoggerConsumer<E extends Exception>
	101.12.5.1. public void accept(Logger l) throws E

	101.12.6. public interface LoggerFactory
	101.12.6.1. public Logger getLogger(String name)
	101.12.6.2. public Logger getLogger(Class<?> clazz)
	101.12.6.3. public L extends Logger getLogger(String name, Class<L> loggerType)
	101.12.6.4. public L extends Logger getLogger(Class<?> clazz, Class<L> loggerType)
	101.12.6.5. public L extends Logger getLogger(Bundle bundle, String name, Class<L> loggerType)

	101.12.7. enum LogLevel
	101.12.7.1. AUDIT
	101.12.7.2. ERROR
	101.12.7.3. WARN
	101.12.7.4. INFO
	101.12.7.5. DEBUG
	101.12.7.6. TRACE
	101.12.7.7. public boolean implies(LogLevel other)
	101.12.7.8. public static LogLevel valueOf(String name)
	101.12.7.9. public static LogLevel[] values()

	101.12.8. public interface LogListener extends EventListener
	101.12.8.1. public void logged(LogEntry entry)

	101.12.9. public interface LogReaderService
	101.12.9.1. public void addLogListener(LogListener listener)
	101.12.9.2. public Enumeration<LogEntry> getLog()
	101.12.9.3. public void removeLogListener(LogListener listener)

	101.12.10. public interface LogService extends LoggerFactory
	101.12.10.1. public static final int LOG_DEBUG = 4
	101.12.10.2. public static final int LOG_ERROR = 1
	101.12.10.3. public static final int LOG_INFO = 3
	101.12.10.4. public static final int LOG_WARNING = 2
	101.12.10.5. public void log(int level, String message)
	101.12.10.6. public void log(int level, String message, Throwable exception)
	101.12.10.7. public void log(ServiceReference<?> sr, int level, String message)
	101.12.10.8. public void log(ServiceReference<?> sr, int level, String message, Throwable exception)

	101.13. org.osgi.service.log.admin
	101.13.1. Summary
	101.13.2. public interface LoggerAdmin
	101.13.2.1. public static final String LOG_SERVICE_ID = "osgi.log.service.id"
	101.13.2.2. public LoggerContext getLoggerContext(String name)

	101.13.3. public interface LoggerContext
	101.13.3.1. public static final String LOGGER_CONTEXT_DEFAULT_LOGLEVEL = "org.osgi.service.log.admin.loglevel"
	101.13.3.2. public static final String LOGGER_CONTEXT_PID = "org.osgi.service.log.admin"
	101.13.3.3. public void clear()
	101.13.3.4. public LogLevel getEffectiveLogLevel(String name)
	101.13.3.5. public Map<String, LogLevel> getLogLevels()
	101.13.3.6. public String getName()
	101.13.3.7. public boolean isEmpty()
	101.13.3.8. public void setLogLevels(Map<String, LogLevel> logLevels)

	101.14. org.osgi.service.log.stream
	101.14.1. Summary
	101.14.2. public interface LogStreamProvider
	101.14.2.1. public PushStream<LogEntry> createStream(LogStreamProvider.Options... options)

	101.14.3. enum LogStreamProvider.Options
	101.14.3.1. HISTORY
	101.14.3.2. public static LogStreamProvider.Options valueOf(String name)
	101.14.3.3. public static LogStreamProvider.Options[] values()

	101.15. References
	101.16. Changes

	Chapter 102. Http Service Specification
	102.1. Introduction
	102.1.1. Entities

	102.2. Registering Servlets
	102.3. Registering Resources
	102.4. Mapping HTTP Requests to Servlet and Resource Registrations
	102.5. The Default Http Context Object
	102.6. Multipurpose Internet Mail Extension (MIME) Types
	102.7. Authentication
	102.8. Security
	102.8.1. Accessing Resources with the Default Http Context
	102.8.2. Accessing Other Types of Resources
	102.8.3. Servlet and HttpContext objects

	102.9. Configuration Properties
	102.10. org.osgi.service.http
	102.10.1. Summary
	102.10.2. public interface HttpContext
	102.10.2.1. public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"
	102.10.2.2. public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"
	102.10.2.3. public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"
	102.10.2.4. public String getMimeType(String name)
	102.10.2.5. public URL getResource(String name)
	102.10.2.6. public boolean handleSecurity(HttpServletRequest request, HttpServletResponse response) throws IOException

	102.10.3. public interface HttpService
	102.10.3.1. public HttpContext createDefaultHttpContext()
	102.10.3.2. public void registerResources(String alias, String name, HttpContext context) throws NamespaceException
	102.10.3.3. public void registerServlet(String alias, Servlet servlet, Dictionary<?, ?> initparams, HttpContext context) throws ServletException, NamespaceException
	102.10.3.4. public void unregister(String alias)

	102.10.4. public class NamespaceException extends Exception
	102.10.4.1. public NamespaceException(String message)
	102.10.4.2. public NamespaceException(String message, Throwable cause)
	102.10.4.3. public Throwable getCause()
	102.10.4.4. public Throwable getException()
	102.10.4.5. public Throwable initCause(Throwable cause)

	102.11. References

	Chapter 104. Configuration Admin Service Specification
	104.1. Introduction
	104.1.1. Essentials
	104.1.2. Entities
	104.1.3. Synopsis

	104.2. Configuration Targets
	104.3. The Persistent Identity
	104.3.1. PID Syntax
	104.3.1.1. Local Bundle PIDs
	104.3.1.2. Software PIDs
	104.3.1.3. Devices

	104.3.2. Targeted PIDs
	104.3.3. Extenders and Targeted PIDs

	104.4. The Configuration Object
	104.4.1. Location Binding
	104.4.2. Dynamic Binding
	104.4.3. Configuration Properties
	104.4.4. Property Propagation
	104.4.5. Automatic Properties
	104.4.6. Equality

	104.5. Managed Service
	104.5.1. Singletons
	104.5.2. Networks
	104.5.3. Configuring Managed Services
	104.5.4. Race Conditions
	104.5.5. Examples of Managed Service
	104.5.5.1. Configuring A Console Bundle

	104.5.6. Deletion

	104.6. Managed Service Factory
	104.6.1. When to Use a Managed Service Factory
	104.6.1.1. Example Email Fetcher
	104.6.1.2. Example Temperature Conversion Service
	104.6.1.3. Serial Ports

	104.6.2. Registration
	104.6.3. Deletion
	104.6.4. Managed Service Factory Example
	104.6.5. Multiple Consoles Example

	104.7. Configuration Admin Service
	104.7.1. Creating a Managed Service Configuration Object
	104.7.2. Creating a Managed Service Factory Configuration Object
	104.7.3. Accessing Existing Configurations
	104.7.4. Updating a Configuration
	104.7.5. Using Multi-Locations
	104.7.6. Regions
	104.7.7. Deletion
	104.7.8. Updating a Bundle's Own Configuration
	104.7.9. Configuration Attributes

	104.8. Configuration Events
	104.8.1. Event Admin Service and Configuration Change Events

	104.9. Configuration Plugin
	104.9.1. Limiting The Targets
	104.9.2. Example of Property Expansion
	104.9.3. Configuration Data Modifications
	104.9.4. Forcing a Callback
	104.9.5. Calling Order
	104.9.6. Manual Invocation

	104.10. Meta Typing
	104.11. Coordinator Support
	104.12. Capabilities
	104.12.1. osgi.implementation Capability
	104.12.2. osgi.service Capability

	104.13. Security
	104.13.1. Configuration Permission
	104.13.2. Permissions Summary
	104.13.3. Configuration and Permission Administration

	104.14. org.osgi.service.cm
	104.14.1. Summary
	104.14.2. Permissions
	104.14.2.1. Configuration
	104.14.2.2. ConfigurationAdmin
	104.14.2.3. ManagedService
	104.14.2.4. ManagedServiceFactory

	104.14.3. public interface Configuration
	104.14.3.1. public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.2. public void delete() throws IOException
	104.14.3.3. public boolean equals(Object other)
	104.14.3.4. public Set<Configuration.ConfigurationAttribute> getAttributes()
	104.14.3.5. public String getBundleLocation()
	104.14.3.6. public long getChangeCount()
	104.14.3.7. public String getFactoryPid()
	104.14.3.8. public String getPid()
	104.14.3.9. public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)
	104.14.3.10. public Dictionary<String, Object> getProperties()
	104.14.3.11. public int hashCode()
	104.14.3.12. public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.13. public void setBundleLocation(String location)
	104.14.3.14. public void update(Dictionary<String, ?> properties) throws IOException
	104.14.3.15. public void update() throws IOException
	104.14.3.16. public boolean updateIfDifferent(Dictionary<String, ?> properties) throws IOException

	104.14.4. enum Configuration.ConfigurationAttribute
	104.14.4.1. READ_ONLY
	104.14.4.2. public static Configuration.ConfigurationAttribute valueOf(String name)
	104.14.4.3. public static Configuration.ConfigurationAttribute[] values()

	104.14.5. public interface ConfigurationAdmin
	104.14.5.1. public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"
	104.14.5.2. public static final String SERVICE_FACTORYPID = "service.factoryPid"
	104.14.5.3. public Configuration createFactoryConfiguration(String factoryPid) throws IOException
	104.14.5.4. public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException
	104.14.5.5. public Configuration getConfiguration(String pid, String location) throws IOException
	104.14.5.6. public Configuration getConfiguration(String pid) throws IOException
	104.14.5.7. public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws IOException
	104.14.5.8. public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException
	104.14.5.9. public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

	104.14.6. public final class ConfigurationConstants
	104.14.6.1. public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"
	104.14.6.2. public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6.0"

	104.14.7. public class ConfigurationEvent
	104.14.7.1. public static final int CM_DELETED = 2
	104.14.7.2. public static final int CM_LOCATION_CHANGED = 3
	104.14.7.3. public static final int CM_UPDATED = 1
	104.14.7.4. public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid, String pid)
	104.14.7.5. public String getFactoryPid()
	104.14.7.6. public String getPid()
	104.14.7.7. public ServiceReference<ConfigurationAdmin> getReference()
	104.14.7.8. public int getType()

	104.14.8. public class ConfigurationException extends Exception
	104.14.8.1. public ConfigurationException(String property, String reason)
	104.14.8.2. public ConfigurationException(String property, String reason, Throwable cause)
	104.14.8.3. public Throwable getCause()
	104.14.8.4. public String getProperty()
	104.14.8.5. public String getReason()
	104.14.8.6. public Throwable initCause(Throwable cause)

	104.14.9. public interface ConfigurationListener
	104.14.9.1. public void configurationEvent(ConfigurationEvent event)

	104.14.10. public final class ConfigurationPermission extends BasicPermission
	104.14.10.1. public static final String ATTRIBUTE = "attribute"
	104.14.10.2. public static final String CONFIGURE = "configure"
	104.14.10.3. public static final String TARGET = "target"
	104.14.10.4. public ConfigurationPermission(String name, String actions)
	104.14.10.5. public boolean equals(Object obj)
	104.14.10.6. public String getActions()
	104.14.10.7. public int hashCode()
	104.14.10.8. public boolean implies(Permission p)
	104.14.10.9. public PermissionCollection newPermissionCollection()

	104.14.11. public interface ConfigurationPlugin
	104.14.11.1. public static final String CM_RANKING = "service.cmRanking"
	104.14.11.2. public static final String CM_TARGET = "cm.target"
	104.14.11.3. public void modifyConfiguration(ServiceReference<?> reference, Dictionary<String, Object> properties)

	104.14.12. public interface ManagedService
	104.14.12.1. public void updated(Dictionary<String, ?> properties) throws ConfigurationException

	104.14.13. public interface ManagedServiceFactory
	104.14.13.1. public void deleted(String pid)
	104.14.13.2. public String getName()
	104.14.13.3. public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException

	104.14.14. public class ReadOnlyConfigurationException extends RuntimeException
	104.14.14.1. public ReadOnlyConfigurationException(String reason)

	104.14.15. public interface SynchronousConfigurationListener extends ConfigurationListener

	104.15. org.osgi.service.cm.annotations
	104.15.1. Summary
	104.15.2. @RequireConfigurationAdmin

	104.16. Changes

	Chapter 105. Metatype Service Specification
	105.1. Introduction
	105.1.1. Essentials
	105.1.2. Entities
	105.1.3. Operation

	105.2. Attributes Model
	105.3. Object Class Definition
	105.4. Attribute Definition
	105.5. Meta Type Service
	105.6. Meta Type Provider Service
	105.7. Using the Meta Type Resources
	105.7.1. XML Schema of a Meta Type Resource
	105.7.2. Designate Element
	105.7.3. Example Metadata File
	105.7.4. Object Element

	105.8. Meta Type Resource XML Schema
	105.9. Meta Type Annotations
	105.9.1. ObjectClassDefinition Annotation
	105.9.2. AttributeDefinition Annotation
	105.9.3. Designate Annotation

	105.10. Limitations
	105.11. Related Standards
	105.12. Capabilities
	105.13. Security Considerations
	105.14. org.osgi.service.metatype
	105.14.1. Summary
	105.14.2. public interface AttributeDefinition
	105.14.2.1. public static final int BIGDECIMAL = 10
	105.14.2.2. public static final int BIGINTEGER = 9
	105.14.2.3. public static final int BOOLEAN = 11
	105.14.2.4. public static final int BYTE = 6
	105.14.2.5. public static final int CHARACTER = 5
	105.14.2.6. public static final int DOUBLE = 7
	105.14.2.7. public static final int FLOAT = 8
	105.14.2.8. public static final int INTEGER = 3
	105.14.2.9. public static final int LONG = 2
	105.14.2.10. public static final int PASSWORD = 12
	105.14.2.11. public static final int SHORT = 4
	105.14.2.12. public static final int STRING = 1
	105.14.2.13. public int getCardinality()
	105.14.2.14. public String[] getDefaultValue()
	105.14.2.15. public String getDescription()
	105.14.2.16. public String getID()
	105.14.2.17. public String getName()
	105.14.2.18. public String[] getOptionLabels()
	105.14.2.19. public String[] getOptionValues()
	105.14.2.20. public int getType()
	105.14.2.21. public String validate(String value)

	105.14.3. public interface MetaTypeInformation extends MetaTypeProvider
	105.14.3.1. public Bundle getBundle()
	105.14.3.2. public String[] getFactoryPids()
	105.14.3.3. public String[] getPids()

	105.14.4. public interface MetaTypeProvider
	105.14.4.1. public static final String METATYPE_FACTORY_PID = "metatype.factory.pid"
	105.14.4.2. public static final String METATYPE_PID = "metatype.pid"
	105.14.4.3. public String[] getLocales()
	105.14.4.4. public ObjectClassDefinition getObjectClassDefinition(String id, String locale)

	105.14.5. public interface MetaTypeService
	105.14.5.1. public static final String METATYPE_CAPABILITY_NAME = "osgi.metatype"
	105.14.5.2. public static final String METATYPE_DOCUMENTS_LOCATION = "OSGI-INF/metatype"
	105.14.5.3. public static final String METATYPE_SPECIFICATION_VERSION = "1.4.0"
	105.14.5.4. public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

	105.14.6. public interface ObjectClassDefinition
	105.14.6.1. public static final int ALL = -1
	105.14.6.2. public static final int OPTIONAL = 2
	105.14.6.3. public static final int REQUIRED = 1
	105.14.6.4. public AttributeDefinition[] getAttributeDefinitions(int filter)
	105.14.6.5. public String getDescription()
	105.14.6.6. public InputStream getIcon(int size) throws IOException
	105.14.6.7. public String getID()
	105.14.6.8. public String getName()

	105.15. org.osgi.service.metatype.annotations
	105.15.1. Summary
	105.15.2. @AttributeDefinition
	105.15.2.1. String name default ""
	105.15.2.2. String description default ""
	105.15.2.3. AttributeType type default STRING
	105.15.2.4. int cardinality default 0
	105.15.2.5. String min default ""
	105.15.2.6. String max default ""
	105.15.2.7. String[] defaultValue default {}
	105.15.2.8. boolean required default true
	105.15.2.9. Option[] options default {}

	105.15.3. enum AttributeType
	105.15.3.1. STRING
	105.15.3.2. LONG
	105.15.3.3. INTEGER
	105.15.3.4. SHORT
	105.15.3.5. CHARACTER
	105.15.3.6. BYTE
	105.15.3.7. DOUBLE
	105.15.3.8. FLOAT
	105.15.3.9. BOOLEAN
	105.15.3.10. PASSWORD
	105.15.3.11. public String toString()
	105.15.3.12. public static AttributeType valueOf(String name)
	105.15.3.13. public static AttributeType[] values()

	105.15.4. @Designate
	105.15.4.1. Class<?> ocd
	105.15.4.2. boolean factory default false

	105.15.5. @Icon
	105.15.5.1. String resource
	105.15.5.2. int size

	105.15.6. @ObjectClassDefinition
	105.15.6.1. String id default ""
	105.15.6.2. String name default ""
	105.15.6.3. String description default ""
	105.15.6.4. String localization default ""
	105.15.6.5. String[] pid default {}
	105.15.6.6. String[] factoryPid default {}
	105.15.6.7. Icon[] icon default {}

	105.15.7. @Option
	105.15.7.1. String label default ""
	105.15.7.2. String value

	105.15.8. @RequireMetaTypeExtender
	105.15.9. @RequireMetaTypeImplementation

	105.16. References
	105.17. Changes

	Chapter 107. User Admin Service Specification
	107.1. Introduction
	107.1.1. Essentials
	107.1.2. Entities
	107.1.3. Operation

	107.2. Authentication
	107.2.1. Repository
	107.2.2. Basic Authentication
	107.2.3. Certificates

	107.3. Authorization
	107.3.1. The Authorization Object
	107.3.2. Authorization Example

	107.4. Repository Maintenance
	107.5. User Admin Events
	107.5.1. Event Admin and User Admin Change Events

	107.6. Security
	107.6.1. User Admin Permission

	107.7. Relation to JAAS
	107.7.1. JDK 1.3 Dependencies
	107.7.2. Existing OSGi Mechanism
	107.7.3. Future Road Map

	107.8. org.osgi.service.useradmin
	107.8.1. Summary
	107.8.2. public interface Authorization
	107.8.2.1. public String getName()
	107.8.2.2. public String[] getRoles()
	107.8.2.3. public boolean hasRole(String name)

	107.8.3. public interface Group extends User
	107.8.3.1. public boolean addMember(Role role)
	107.8.3.2. public boolean addRequiredMember(Role role)
	107.8.3.3. public Role[] getMembers()
	107.8.3.4. public Role[] getRequiredMembers()
	107.8.3.5. public boolean removeMember(Role role)

	107.8.4. public interface Role
	107.8.4.1. public static final int GROUP = 2
	107.8.4.2. public static final int ROLE = 0
	107.8.4.3. public static final int USER = 1
	107.8.4.4. public static final String USER_ANYONE = "user.anyone"
	107.8.4.5. public String getName()
	107.8.4.6. public Dictionary<String, Object> getProperties()
	107.8.4.7. public int getType()

	107.8.5. public interface User extends Role
	107.8.5.1. public Dictionary<String, Object> getCredentials()
	107.8.5.2. public boolean hasCredential(String key, Object value)

	107.8.6. public interface UserAdmin
	107.8.6.1. public Role createRole(String name, int type)
	107.8.6.2. public Authorization getAuthorization(User user)
	107.8.6.3. public Role getRole(String name)
	107.8.6.4. public Role[] getRoles(String filter) throws InvalidSyntaxException
	107.8.6.5. public User getUser(String key, String value)
	107.8.6.6. public boolean removeRole(String name)

	107.8.7. public class UserAdminEvent
	107.8.7.1. public static final int ROLE_CHANGED = 2
	107.8.7.2. public static final int ROLE_CREATED = 1
	107.8.7.3. public static final int ROLE_REMOVED = 4
	107.8.7.4. public UserAdminEvent(ServiceReference<UserAdmin> ref, int type, Role role)
	107.8.7.5. public Role getRole()
	107.8.7.6. public ServiceReference<UserAdmin> getServiceReference()
	107.8.7.7. public int getType()

	107.8.8. public interface UserAdminListener
	107.8.8.1. public void roleChanged(UserAdminEvent event)

	107.8.9. public final class UserAdminPermission extends BasicPermission
	107.8.9.1. public static final String ADMIN = "admin"
	107.8.9.2. public static final String CHANGE_CREDENTIAL = "changeCredential"
	107.8.9.3. public static final String CHANGE_PROPERTY = "changeProperty"
	107.8.9.4. public static final String GET_CREDENTIAL = "getCredential"
	107.8.9.5. public UserAdminPermission(String name, String actions)
	107.8.9.6. public boolean equals(Object obj)
	107.8.9.7. public String getActions()
	107.8.9.8. public int hashCode()
	107.8.9.9. public boolean implies(Permission p)
	107.8.9.10. public PermissionCollection newPermissionCollection()
	107.8.9.11. public String toString()

	107.9. References

	Chapter 110. Initial Provisioning Specification
	110.1. Introduction
	110.1.1. Essentials
	110.1.2. Entities

	110.2. Procedure
	110.2.1. InitialProvisioning-Entries Manifest Header

	110.3. Special Configurations
	110.3.1. Branded OSGi framework Server
	110.3.2. Non-connected OSGi framework

	110.4. The Provisioning Service
	110.5. Management Agent Environment
	110.6. Mapping To File Scheme
	110.6.1. Example With File Scheme

	110.7. Mapping To HTTP(S) Scheme
	110.7.1. HTTPS Certificates
	110.7.2. Certificate Encoding
	110.7.3. URL Encoding

	110.8. Mapping To RSH Scheme
	110.8.1. Shared Secret
	110.8.2. Request Coding
	110.8.3. Response Coding
	110.8.4. RSH URL
	110.8.5. Extensions to the Provisioning Service Dictionary
	110.8.6. RSH Transport

	110.9. Exception Handling
	110.10. Security
	110.10.1. Concerns
	110.10.2. OSGi framework Long-Term Security
	110.10.3. Permissions

	110.11. org.osgi.service.provisioning
	110.11.1. Summary
	110.11.2. public interface ProvisioningService
	110.11.2.1. public static final String INITIALPROVISIONING_ENTRIES = "InitialProvisioning-Entries"
	110.11.2.2. public static final String MIME_BUNDLE = "application/vnd.osgi.bundle"
	110.11.2.3. public static final String MIME_BUNDLE_ALT = "application/x-osgi-bundle"
	110.11.2.4. public static final String MIME_BUNDLE_URL = "text/x-osgi-bundle-url"
	110.11.2.5. public static final String MIME_BYTE_ARRAY = "application/octet-stream"
	110.11.2.6. public static final String MIME_STRING = "text/plain;charset=utf-8"
	110.11.2.7. public static final String PROVISIONING_AGENT_CONFIG = "provisioning.agent.config"
	110.11.2.8. public static final String PROVISIONING_REFERENCE = "provisioning.reference"
	110.11.2.9. public static final String PROVISIONING_ROOTX509 = "provisioning.rootx509"
	110.11.2.10. public static final String PROVISIONING_RSH_SECRET = "provisioning.rsh.secret"
	110.11.2.11. public static final String PROVISIONING_SPID = "provisioning.spid"
	110.11.2.12. public static final String PROVISIONING_START_BUNDLE = "provisioning.start.bundle"
	110.11.2.13. public static final String PROVISIONING_UPDATE_COUNT = "provisioning.update.count"
	110.11.2.14. public void addInformation(Dictionary<String, ?> info)
	110.11.2.15. public void addInformation(ZipInputStream zis) throws IOException
	110.11.2.16. public Dictionary<String, Object> getInformation()
	110.11.2.17. public void setInformation(Dictionary<String, ?> info)

	110.12. References

	Chapter 112. Declarative Services Specification
	112.1. Introduction
	112.1.1. Essentials
	112.1.2. Entities
	112.1.3. Synopsis
	112.1.4. Readers

	112.2. Components
	112.2.1. Declaring a Component
	112.2.2. Immediate Component
	112.2.3. Delayed Component
	112.2.4. Factory Component

	112.3. References to Services
	112.3.1. Accessing Services
	112.3.2. Method Injection
	112.3.3. Field Injection
	112.3.4. Constructor Injection
	112.3.5. Reference Cardinality
	112.3.6. Reference Scope
	112.3.7. Reference Policy
	112.3.7.1. Static Reference Policy
	112.3.7.2. Dynamic Reference Policy

	112.3.8. Reference Policy Option
	112.3.9. Reference Field Option
	112.3.9.1. Replace Field Option
	112.3.9.2. Update Field Option

	112.3.10. Selecting Target Services
	112.3.11. Circular References
	112.3.12. Logger Support

	112.4. Component Description
	112.4.1. Annotations
	112.4.2. Service Component Header
	112.4.3. XML Document
	112.4.4. Component Element
	112.4.5. Implementation Element
	112.4.6. Property and Properties Elements
	112.4.7. Service Element
	112.4.8. Reference Element
	112.4.9. Factory Property and Factory Properties Elements

	112.5. Component Life Cycle
	112.5.1. Enabled
	112.5.2. Satisfied
	112.5.3. Immediate Component
	112.5.4. Delayed Component
	112.5.5. Factory Component
	112.5.6. Activation
	112.5.7. Bound Services
	112.5.8. Component Context
	112.5.9. Activation Objects
	112.5.10. Binding Services
	112.5.11. Activate Method
	112.5.12. Bound Service Replacement
	112.5.13. Updated
	112.5.14. Modification
	112.5.15. Modified Method
	112.5.16. Deactivation
	112.5.17. Deactivate Method
	112.5.18. Unbinding
	112.5.19. Life Cycle Example

	112.6. Component Properties
	112.6.1. Service Properties
	112.6.2. Reference Properties
	112.6.2.1. Target Property
	112.6.2.2. Minimum Cardinality Property

	112.7. Deployment
	112.7.1. Configuration Changes
	112.7.1.1. Ignore Configuration Policy
	112.7.1.2. Require Configuration Policy
	112.7.1.3. Optional Configuration Policy
	112.7.1.4. Configuration Change Actions
	112.7.1.5. Coordinator Support

	112.8. Annotations
	112.8.1. Component Annotations
	112.8.2. Component Property Types
	112.8.2.1. Component Property Mapping
	112.8.2.2. Coercing Component Property Values
	112.8.2.3. Standard Component Property Types

	112.8.3. Ordering of Generated Component Properties

	112.9. Service Component Runtime
	112.9.1. Relationship to OSGi Framework
	112.9.2. Starting and Stopping SCR
	112.9.3. Logging Messages
	112.9.4. Locating Component Methods and Fields
	112.9.5. Bundle Activator Interaction
	112.9.6. Introspection
	112.9.7. Capabilities

	112.10. Security
	112.10.1. Service Permissions
	112.10.2. Required Admin Permission
	112.10.3. Using hasPermission
	112.10.4. Configuration Multi-Locations and Regions

	112.11. Component Description Schema
	112.12. org.osgi.service.component
	112.12.1. Summary
	112.12.2. public interface ComponentConstants
	112.12.2.1. public static final String COMPONENT_CAPABILITY_NAME = "osgi.component"
	112.12.2.2. public static final String COMPONENT_FACTORY = "component.factory"
	112.12.2.3. public static final String COMPONENT_ID = "component.id"
	112.12.2.4. public static final String COMPONENT_NAME = "component.name"
	112.12.2.5. public static final String COMPONENT_SPECIFICATION_VERSION = "1.4.0"
	112.12.2.6. public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6
	112.12.2.7. public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4
	112.12.2.8. public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3
	112.12.2.9. public static final int DEACTIVATION_REASON_DISABLED = 1
	112.12.2.10. public static final int DEACTIVATION_REASON_DISPOSED = 5
	112.12.2.11. public static final int DEACTIVATION_REASON_REFERENCE = 2
	112.12.2.12. public static final int DEACTIVATION_REASON_UNSPECIFIED = 0
	112.12.2.13. public static final String REFERENCE_TARGET_SUFFIX = ".target"
	112.12.2.14. public static final String SERVICE_COMPONENT = "Service-Component"

	112.12.3. public interface ComponentContext
	112.12.3.1. public void disableComponent(String name)
	112.12.3.2. public void enableComponent(String name)
	112.12.3.3. public BundleContext getBundleContext()
	112.12.3.4. public ComponentInstance<S> getComponentInstance()
	112.12.3.5. public Dictionary<String, Object> getProperties()
	112.12.3.6. public ServiceReference<?> getServiceReference()
	112.12.3.7. public Bundle getUsingBundle()
	112.12.3.8. public S locateService(String name)
	112.12.3.9. public S locateService(String name, ServiceReference<S> reference)
	112.12.3.10. public Object[] locateServices(String name)

	112.12.4. public class ComponentException extends RuntimeException
	112.12.4.1. public ComponentException(String message, Throwable cause)
	112.12.4.2. public ComponentException(String message)
	112.12.4.3. public ComponentException(Throwable cause)
	112.12.4.4. public Throwable getCause()
	112.12.4.5. public Throwable initCause(Throwable cause)

	112.12.5. public interface ComponentFactory<S>
	112.12.5.1. public ComponentInstance<S> newInstance(Dictionary<String, ?> properties)

	112.12.6. public interface ComponentInstance<S>
	112.12.6.1. public void dispose()
	112.12.6.2. public S getInstance()

	112.12.7. public interface ComponentServiceObjects<S>
	112.12.7.1. public S getService()
	112.12.7.2. public ServiceReference<S> getServiceReference()
	112.12.7.3. public void ungetService(S service)

	112.13. org.osgi.service.component.annotations
	112.13.1. Summary
	112.13.2. @Activate
	112.13.3. enum CollectionType
	112.13.3.1. SERVICE
	112.13.3.2. REFERENCE
	112.13.3.3. SERVICEOBJECTS
	112.13.3.4. PROPERTIES
	112.13.3.5. TUPLE
	112.13.3.6. public String toString()
	112.13.3.7. public static CollectionType valueOf(String name)
	112.13.3.8. public static CollectionType[] values()

	112.13.4. @Component
	112.13.4.1. String name default ""
	112.13.4.2. Class<?>[] service default {}
	112.13.4.3. String factory default ""
	112.13.4.4. boolean servicefactory default false
	112.13.4.5. boolean enabled default true
	112.13.4.6. boolean immediate default false
	112.13.4.7. String[] property default {}
	112.13.4.8. String[] properties default {}
	112.13.4.9. String xmlns default ""
	112.13.4.10. ConfigurationPolicy configurationPolicy default OPTIONAL
	112.13.4.11. String[] configurationPid default "$"
	112.13.4.12. ServiceScope scope default DEFAULT
	112.13.4.13. Reference[] reference default {}
	112.13.4.14. String[] factoryProperty default {}
	112.13.4.15. String[] factoryProperties default {}
	112.13.4.16. String NAME = "$"

	112.13.5. @ComponentPropertyType
	112.13.6. enum ConfigurationPolicy
	112.13.6.1. OPTIONAL
	112.13.6.2. REQUIRE
	112.13.6.3. IGNORE
	112.13.6.4. public String toString()
	112.13.6.5. public static ConfigurationPolicy valueOf(String name)
	112.13.6.6. public static ConfigurationPolicy[] values()

	112.13.7. @Deactivate
	112.13.8. enum FieldOption
	112.13.8.1. UPDATE
	112.13.8.2. REPLACE
	112.13.8.3. public String toString()
	112.13.8.4. public static FieldOption valueOf(String name)
	112.13.8.5. public static FieldOption[] values()

	112.13.9. @Modified
	112.13.10. @Reference
	112.13.10.1. String name default ""
	112.13.10.2. Class<?> service default Object.class
	112.13.10.3. ReferenceCardinality cardinality default MANDATORY
	112.13.10.4. ReferencePolicy policy default STATIC
	112.13.10.5. String target default ""
	112.13.10.6. ReferencePolicyOption policyOption default RELUCTANT
	112.13.10.7. ReferenceScope scope default BUNDLE
	112.13.10.8. String bind default ""
	112.13.10.9. String updated default ""
	112.13.10.10. String unbind default ""
	112.13.10.11. String field default ""
	112.13.10.12. FieldOption fieldOption default REPLACE
	112.13.10.13. int parameter default 0
	112.13.10.14. CollectionType collectionType default SERVICE

	112.13.11. enum ReferenceCardinality
	112.13.11.1. OPTIONAL
	112.13.11.2. MANDATORY
	112.13.11.3. MULTIPLE
	112.13.11.4. AT_LEAST_ONE
	112.13.11.5. public String toString()
	112.13.11.6. public static ReferenceCardinality valueOf(String name)
	112.13.11.7. public static ReferenceCardinality[] values()

	112.13.12. enum ReferencePolicy
	112.13.12.1. STATIC
	112.13.12.2. DYNAMIC
	112.13.12.3. public String toString()
	112.13.12.4. public static ReferencePolicy valueOf(String name)
	112.13.12.5. public static ReferencePolicy[] values()

	112.13.13. enum ReferencePolicyOption
	112.13.13.1. RELUCTANT
	112.13.13.2. GREEDY
	112.13.13.3. public String toString()
	112.13.13.4. public static ReferencePolicyOption valueOf(String name)
	112.13.13.5. public static ReferencePolicyOption[] values()

	112.13.14. enum ReferenceScope
	112.13.14.1. BUNDLE
	112.13.14.2. PROTOTYPE
	112.13.14.3. PROTOTYPE_REQUIRED
	112.13.14.4. public String toString()
	112.13.14.5. public static ReferenceScope valueOf(String name)
	112.13.14.6. public static ReferenceScope[] values()

	112.13.15. @RequireServiceComponentRuntime
	112.13.16. enum ServiceScope
	112.13.16.1. SINGLETON
	112.13.16.2. BUNDLE
	112.13.16.3. PROTOTYPE
	112.13.16.4. DEFAULT
	112.13.16.5. public String toString()
	112.13.16.6. public static ServiceScope valueOf(String name)
	112.13.16.7. public static ServiceScope[] values()

	112.14. org.osgi.service.component.runtime
	112.14.1. Summary
	112.14.2. public interface ServiceComponentRuntime
	112.14.2.1. public Promise<Void> disableComponent(ComponentDescriptionDTO description)
	112.14.2.2. public Promise<Void> enableComponent(ComponentDescriptionDTO description)
	112.14.2.3. public Collection<ComponentConfigurationDTO> getComponentConfigurationDTOs(ComponentDescriptionDTO description)
	112.14.2.4. public ComponentDescriptionDTO getComponentDescriptionDTO(Bundle bundle, String name)
	112.14.2.5. public Collection<ComponentDescriptionDTO> getComponentDescriptionDTOs(Bundle... bundles)
	112.14.2.6. public boolean isComponentEnabled(ComponentDescriptionDTO description)

	112.15. org.osgi.service.component.runtime.dto
	112.15.1. Summary
	112.15.2. public class ComponentConfigurationDTO extends DTO
	112.15.2.1. public static final int ACTIVE = 8
	112.15.2.2. public ComponentDescriptionDTO description
	112.15.2.3. public static final int FAILED_ACTIVATION = 16
	112.15.2.4. public String failure
	112.15.2.5. public long id
	112.15.2.6. public Map<String, Object> properties
	112.15.2.7. public static final int SATISFIED = 4
	112.15.2.8. public SatisfiedReferenceDTO[] satisfiedReferences
	112.15.2.9. public ServiceReferenceDTO service
	112.15.2.10. public int state
	112.15.2.11. public static final int UNSATISFIED_CONFIGURATION = 1
	112.15.2.12. public static final int UNSATISFIED_REFERENCE = 2
	112.15.2.13. public UnsatisfiedReferenceDTO[] unsatisfiedReferences
	112.15.2.14. public ComponentConfigurationDTO()

	112.15.3. public class ComponentDescriptionDTO extends DTO
	112.15.3.1. public String activate
	112.15.3.2. public String[] activationFields
	112.15.3.3. public BundleDTO bundle
	112.15.3.4. public String[] configurationPid
	112.15.3.5. public String configurationPolicy
	112.15.3.6. public String deactivate
	112.15.3.7. public boolean defaultEnabled
	112.15.3.8. public String factory
	112.15.3.9. public Map<String, Object> factoryProperties
	112.15.3.10. public boolean immediate
	112.15.3.11. public String implementationClass
	112.15.3.12. public int init
	112.15.3.13. public String modified
	112.15.3.14. public String name
	112.15.3.15. public Map<String, Object> properties
	112.15.3.16. public ReferenceDTO[] references
	112.15.3.17. public String scope
	112.15.3.18. public String[] serviceInterfaces
	112.15.3.19. public ComponentDescriptionDTO()

	112.15.4. public class ReferenceDTO extends DTO
	112.15.4.1. public String bind
	112.15.4.2. public String cardinality
	112.15.4.3. public String collectionType
	112.15.4.4. public String field
	112.15.4.5. public String fieldOption
	112.15.4.6. public String interfaceName
	112.15.4.7. public String name
	112.15.4.8. public Integer parameter
	112.15.4.9. public String policy
	112.15.4.10. public String policyOption
	112.15.4.11. public String scope
	112.15.4.12. public String target
	112.15.4.13. public String unbind
	112.15.4.14. public String updated
	112.15.4.15. public ReferenceDTO()

	112.15.5. public class SatisfiedReferenceDTO extends DTO
	112.15.5.1. public ServiceReferenceDTO[] boundServices
	112.15.5.2. public String name
	112.15.5.3. public String target
	112.15.5.4. public SatisfiedReferenceDTO()

	112.15.6. public class UnsatisfiedReferenceDTO extends DTO
	112.15.6.1. public String name
	112.15.6.2. public String target
	112.15.6.3. public ServiceReferenceDTO[] targetServices
	112.15.6.4. public UnsatisfiedReferenceDTO()

	112.16. org.osgi.service.component.propertytypes
	112.16.1. Summary
	112.16.2. @ExportedService
	112.16.2.1. Class<?>[] service_exported_interfaces
	112.16.2.2. String[] service_exported_configs default {}
	112.16.2.3. String[] service_exported_intents default {}
	112.16.2.4. String[] service_exported_intents_extra default {}
	112.16.2.5. String[] service_intents default {}

	112.16.3. @ServiceDescription
	112.16.3.1. String value

	112.16.4. @ServiceRanking
	112.16.4.1. int value

	112.16.5. @ServiceVendor
	112.16.5.1. String value

	112.17. References
	112.18. Changes

	Chapter 113. Event Admin Service Specification
	113.1. Introduction
	113.1.1. Essentials
	113.1.2. Entities
	113.1.3. Synopsis
	113.1.4. What To Read

	113.2. Event Admin Architecture
	113.3. The Event
	113.3.1. Topics
	113.3.2. Properties
	113.3.3. High Performance

	113.4. Event Handler
	113.4.1. Ordering

	113.5. Event Publisher
	113.6. Specific Events
	113.6.1. General Conventions
	113.6.2. OSGi Events
	113.6.3. Framework Event
	113.6.4. Bundle Event
	113.6.5. Service Event
	113.6.6. Other Event Sources

	113.7. Event Admin Service
	113.7.1. Synchronous Event Delivery
	113.7.2. Asynchronous Event Delivery
	113.7.3. Order of Event Delivery

	113.8. Reliability
	113.8.1. Exceptions in callbacks
	113.8.2. Dealing with Stalled Handlers

	113.9. Interoperability with Native Applications
	113.10. Capabilities
	113.10.1. osgi.implementation Capability
	113.10.2. osgi.service Capability

	113.11. Security
	113.11.1. Topic Permission
	113.11.2. Required Permissions
	113.11.3. Security Context During Event Callbacks

	113.12. org.osgi.service.event
	113.12.1. Summary
	113.12.2. public class Event
	113.12.2.1. public Event(String topic, Map<String, ?> properties)
	113.12.2.2. public Event(String topic, Dictionary<String, ?> properties)
	113.12.2.3. public final boolean containsProperty(String name)
	113.12.2.4. public boolean equals(Object object)
	113.12.2.5. public final Object getProperty(String name)
	113.12.2.6. public final String[] getPropertyNames()
	113.12.2.7. public final String getTopic()
	113.12.2.8. public int hashCode()
	113.12.2.9. public final boolean matches(Filter filter)
	113.12.2.10. public String toString()

	113.12.3. public interface EventAdmin
	113.12.3.1. public void postEvent(Event event)
	113.12.3.2. public void sendEvent(Event event)

	113.12.4. public interface EventConstants
	113.12.4.1. public static final String BUNDLE = "bundle"
	113.12.4.2. public static final String BUNDLE_ID = "bundle.id"
	113.12.4.3. public static final String BUNDLE_SIGNER = "bundle.signer"
	113.12.4.4. public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"
	113.12.4.5. public static final String BUNDLE_VERSION = "bundle.version"
	113.12.4.6. public static final String DELIVERY_ASYNC_ORDERED = "async.ordered"
	113.12.4.7. public static final String DELIVERY_ASYNC_UNORDERED = "async.unordered"
	113.12.4.8. public static final String EVENT = "event"
	113.12.4.9. public static final String EVENT_ADMIN_IMPLEMENTATION = "osgi.event"
	113.12.4.10. public static final String EVENT_ADMIN_SPECIFICATION_VERSION = "1.4.0"
	113.12.4.11. public static final String EVENT_DELIVERY = "event.delivery"
	113.12.4.12. public static final String EVENT_FILTER = "event.filter"
	113.12.4.13. public static final String EVENT_TOPIC = "event.topics"
	113.12.4.14. public static final String EXCEPTION = "exception"
	113.12.4.15. public static final String EXCEPTION_CLASS = "exception.class"
	113.12.4.16. public static final String EXCEPTION_MESSAGE = "exception.message"
	113.12.4.17. public static final String EXECPTION_CLASS = "exception.class"
	113.12.4.18. public static final String MESSAGE = "message"
	113.12.4.19. public static final String SERVICE = "service"
	113.12.4.20. public static final String SERVICE_ID = "service.id"
	113.12.4.21. public static final String SERVICE_OBJECTCLASS = "service.objectClass"
	113.12.4.22. public static final String SERVICE_PID = "service.pid"
	113.12.4.23. public static final String TIMESTAMP = "timestamp"

	113.12.5. public interface EventHandler
	113.12.5.1. public void handleEvent(Event event)

	113.12.6. public class EventProperties implements Map<String, Object>
	113.12.6.1. public EventProperties(Map<String, ?> properties)
	113.12.6.2. public void clear()
	113.12.6.3. public boolean containsKey(Object name)
	113.12.6.4. public boolean containsValue(Object value)
	113.12.6.5. public Set<Map.Entry<String, Object>> entrySet()
	113.12.6.6. public boolean equals(Object object)
	113.12.6.7. public Object get(Object name)
	113.12.6.8. public int hashCode()
	113.12.6.9. public boolean isEmpty()
	113.12.6.10. public Set<String> keySet()
	113.12.6.11. public Object put(String key, Object value)
	113.12.6.12. public void putAll(Map<? extends String, ? extends Object> map)
	113.12.6.13. public Object remove(Object key)
	113.12.6.14. public int size()
	113.12.6.15. public String toString()
	113.12.6.16. public Collection<Object> values()

	113.12.7. public final class TopicPermission extends Permission
	113.12.7.1. public static final String PUBLISH = "publish"
	113.12.7.2. public static final String SUBSCRIBE = "subscribe"
	113.12.7.3. public TopicPermission(String name, String actions)
	113.12.7.4. public boolean equals(Object obj)
	113.12.7.5. public String getActions()
	113.12.7.6. public int hashCode()
	113.12.7.7. public boolean implies(Permission p)
	113.12.7.8. public PermissionCollection newPermissionCollection()

	113.13. org.osgi.service.event.annotations
	113.13.1. Summary
	113.13.2. @RequireEventAdmin

	113.14. org.osgi.service.event.propertytypes
	113.14.1. Summary
	113.14.2. @EventDelivery
	113.14.2.1. String[] value

	113.14.3. @EventFilter
	113.14.3.1. String value

	113.14.4. @EventTopics
	113.14.4.1. String[] value

	113.15. Changes

	Chapter 122. Remote Service Admin Service Specification
	122.1. Introduction
	122.1.1. Essentials
	122.1.2. Entities
	122.1.3. Synopsis
	122.1.3.1. Endpoint Listener Services

	122.2. Actors
	122.3. Topology Managers
	122.3.1. Multiple Topology Managers
	122.3.2. Example Use Cases
	122.3.2.1. Promiscuous Policy
	122.3.2.2. Fail Over

	122.4. Endpoint Description
	122.4.1. Validity
	122.4.2. Mutability
	122.4.3. Endpoint Id
	122.4.4. Framework UUID
	122.4.5. Resource Containment

	122.5. Remote Service Admin
	122.5.1. Exporting
	122.5.2. Importing
	122.5.3. Updates
	122.5.4. Reflection
	122.5.5. Registration Life Cycle
	122.5.6. Invalid Registrations
	122.5.7. Proxying

	122.6. Discovery
	122.6.1. Scope and Filters
	122.6.2. Endpoint Event Listener Interface
	122.6.3. Endpoint Listener Interface
	122.6.4. Endpoint Event Listener and Endpoint Listener Implementations
	122.6.5. Endpoint Description Providers
	122.6.6. On Demand

	122.7. Events
	122.7.1. Event Admin Mapping

	122.8. Endpoint Description Extender Format
	122.8.1. XML Schema

	122.9. Capability Namespaces
	122.9.1. Local Discovery Extender
	122.9.2. Discovery Provider Capability
	122.9.3. Distribution Provider Capability
	122.9.4. Topology Manager Capability
	122.9.5. Service Capability

	122.10. Advice to implementations
	122.10.1. Notifying listeners
	122.10.2. Receiving Endpoint lifecycle notifications

	122.11. Security
	122.11.1. Import and Export Registrations
	122.11.2. Endpoint Permission

	122.12. org.osgi.service.remoteserviceadmin
	122.12.1. Summary
	122.12.2. public class EndpointDescription
	122.12.2.1. public EndpointDescription(Map<String, ?> properties)
	122.12.2.2. public EndpointDescription(ServiceReference<?> reference, Map<String, ?> properties)
	122.12.2.3. public boolean equals(Object other)
	122.12.2.4. public List<String> getConfigurationTypes()
	122.12.2.5. public String getFrameworkUUID()
	122.12.2.6. public String getId()
	122.12.2.7. public List<String> getIntents()
	122.12.2.8. public List<String> getInterfaces()
	122.12.2.9. public Version getPackageVersion(String packageName)
	122.12.2.10. public Map<String, Object> getProperties()
	122.12.2.11. public long getServiceId()
	122.12.2.12. public int hashCode()
	122.12.2.13. public boolean isSameService(EndpointDescription other)
	122.12.2.14. public boolean matches(String filter)
	122.12.2.15. public String toString()

	122.12.3. public class EndpointEvent
	122.12.3.1. public static final int ADDED = 1
	122.12.3.2. public static final int MODIFIED = 4
	122.12.3.3. public static final int MODIFIED_ENDMATCH = 8
	122.12.3.4. public static final int REMOVED = 2
	122.12.3.5. public EndpointEvent(int type, EndpointDescription endpoint)
	122.12.3.6. public EndpointDescription getEndpoint()
	122.12.3.7. public int getType()

	122.12.4. public interface EndpointEventListener
	122.12.4.1. public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"
	122.12.4.2. public void endpointChanged(EndpointEvent event, String filter)

	122.12.5. public interface EndpointListener
	122.12.5.1. public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"
	122.12.5.2. public void endpointAdded(EndpointDescription endpoint, String matchedFilter)
	122.12.5.3. public void endpointRemoved(EndpointDescription endpoint, String matchedFilter)

	122.12.6. public final class EndpointPermission extends Permission
	122.12.6.1. public static final String EXPORT = "export"
	122.12.6.2. public static final String IMPORT = "import"
	122.12.6.3. public static final String READ = "read"
	122.12.6.4. public EndpointPermission(String filterString, String actions)
	122.12.6.5. public EndpointPermission(EndpointDescription endpoint, String localFrameworkUUID, String actions)
	122.12.6.6. public boolean equals(Object obj)
	122.12.6.7. public String getActions()
	122.12.6.8. public int hashCode()
	122.12.6.9. public boolean implies(Permission p)
	122.12.6.10. public PermissionCollection newPermissionCollection()

	122.12.7. public interface ExportReference
	122.12.7.1. public EndpointDescription getExportedEndpoint()
	122.12.7.2. public ServiceReference<?> getExportedService()

	122.12.8. public interface ExportRegistration
	122.12.8.1. public void close()
	122.12.8.2. public Throwable getException()
	122.12.8.3. public ExportReference getExportReference()
	122.12.8.4. public EndpointDescription update(Map<String, ?> properties)

	122.12.9. public interface ImportReference
	122.12.9.1. public EndpointDescription getImportedEndpoint()
	122.12.9.2. public ServiceReference<?> getImportedService()

	122.12.10. public interface ImportRegistration
	122.12.10.1. public void close()
	122.12.10.2. public Throwable getException()
	122.12.10.3. public ImportReference getImportReference()
	122.12.10.4. public boolean update(EndpointDescription endpoint)

	122.12.11. public class RemoteConstants
	122.12.11.1. public static final String ENDPOINT_FRAMEWORK_UUID = "endpoint.framework.uuid"
	122.12.11.2. public static final String ENDPOINT_ID = "endpoint.id"
	122.12.11.3. public static final String ENDPOINT_PACKAGE_VERSION_ = "endpoint.package.version."
	122.12.11.4. public static final String ENDPOINT_SERVICE_ID = "endpoint.service.id"
	122.12.11.5. public static final String REMOTE_CONFIGS_SUPPORTED = "remote.configs.supported"
	122.12.11.6. public static final String REMOTE_INTENTS_SUPPORTED = "remote.intents.supported"
	122.12.11.7. public static final String SERVICE_EXPORTED_CONFIGS = "service.exported.configs"
	122.12.11.8. public static final String SERVICE_EXPORTED_INTENTS = "service.exported.intents"
	122.12.11.9. public static final String SERVICE_EXPORTED_INTENTS_EXTRA = "service.exported.intents.extra"
	122.12.11.10. public static final String SERVICE_EXPORTED_INTERFACES = "service.exported.interfaces"
	122.12.11.11. public static final String SERVICE_IMPORTED = "service.imported"
	122.12.11.12. public static final String SERVICE_IMPORTED_CONFIGS = "service.imported.configs"
	122.12.11.13. public static final String SERVICE_INTENTS = "service.intents"

	122.12.12. public interface RemoteServiceAdmin
	122.12.12.1. public Collection<ExportRegistration> exportService(ServiceReference<?> reference, Map<String, ?> properties)
	122.12.12.2. public Collection<ExportReference> getExportedServices()
	122.12.12.3. public Collection<ImportReference> getImportedEndpoints()
	122.12.12.4. public ImportRegistration importService(EndpointDescription endpoint)

	122.12.13. public class RemoteServiceAdminEvent
	122.12.13.1. public static final int EXPORT_ERROR = 6
	122.12.13.2. public static final int EXPORT_REGISTRATION = 2
	122.12.13.3. public static final int EXPORT_UNREGISTRATION = 3
	122.12.13.4. public static final int EXPORT_UPDATE = 10
	122.12.13.5. public static final int EXPORT_WARNING = 7
	122.12.13.6. public static final int IMPORT_ERROR = 5
	122.12.13.7. public static final int IMPORT_REGISTRATION = 1
	122.12.13.8. public static final int IMPORT_UNREGISTRATION = 4
	122.12.13.9. public static final int IMPORT_UPDATE = 9
	122.12.13.10. public static final int IMPORT_WARNING = 8
	122.12.13.11. public RemoteServiceAdminEvent(int type, Bundle source, ExportReference exportReference, Throwable exception)
	122.12.13.12. public RemoteServiceAdminEvent(int type, Bundle source, ImportReference importReference, Throwable exception)
	122.12.13.13. public Throwable getException()
	122.12.13.14. public ExportReference getExportReference()
	122.12.13.15. public ImportReference getImportReference()
	122.12.13.16. public Bundle getSource()
	122.12.13.17. public int getType()

	122.12.14. public interface RemoteServiceAdminListener
	122.12.14.1. public void remoteAdminEvent(RemoteServiceAdminEvent event)

	122.13. org.osgi.service.remoteserviceadmin.namespace
	122.13.1. Summary
	122.13.2. public final class DiscoveryNamespace extends Namespace
	122.13.2.1. public static final String CAPABILITY_PROTOCOLS_ATTRIBUTE = "protocols"
	122.13.2.2. public static final String DISCOVERY_NAMESPACE = "osgi.remoteserviceadmin.discovery"

	122.13.3. public final class DistributionNamespace extends Namespace
	122.13.3.1. public static final String CAPABILITY_CONFIGS_ATTRIBUTE = "configs"
	122.13.3.2. public static final String DISTRIBUTION_NAMESPACE = "osgi.remoteserviceadmin.distribution"

	122.13.4. public final class TopologyNamespace extends Namespace
	122.13.4.1. public static final String CAPABILITY_POLICY_ATTRIBUTE = "policy"
	122.13.4.2. public static final String FAIL_OVER_POLICY = "fail-over"
	122.13.4.3. public static final String PROMISCUOUS_POLICY = "promiscuous"
	122.13.4.4. public static final String TOPOLOGY_NAMESPACE = "osgi.remoteserviceadmin.topology"

	122.14. References

	Chapter 123. JTA Transaction Services Specification
	123.1. Introduction
	123.1.1. Essentials
	123.1.2. Entities
	123.1.3. Dependencies
	123.1.4. Synopsis

	123.2. JTA Overview
	123.2.1. Global and Local Transactions
	123.2.2. Durable Resource
	123.2.3. Volatile Resource
	123.2.4. Threading

	123.3. Application
	123.3.1. No Enlistment
	123.3.2. Application Bundle Enlistment
	123.3.3. Container Managed Enlistment

	123.4. Resource Managers
	123.5. The JTA Provider
	123.5.1. User Transaction
	123.5.2. Transaction Manager
	123.5.3. Transaction Synchronization Service

	123.6. Life Cycle
	123.6.1. JTA Provider
	123.6.2. Application Bundles
	123.6.3. Error Handling

	123.7. Security
	123.8. References

	Chapter 124. Management Model Specification for JMX™ Technology
	124.1. Introduction
	124.1.1. Essentials
	124.1.2. Entities
	124.1.3. Synopsis

	124.2. JMX Overview
	124.2.1. Connectors and Adapters
	124.2.2. Object Name
	124.2.3. MBeans
	124.2.4. Open Types

	124.3. OSGi JMX Management
	124.3.1. Naming
	124.3.2. Object Naming
	124.3.3. The MBean Server
	124.3.4. Registrations

	124.4. MBeans
	124.5. Item
	124.6. Security
	124.7. org.osgi.jmx
	124.7.1. Summary
	124.7.2. public class Item
	124.7.2.1. public Item(String name, String description, OpenType type, String... restrictions)
	124.7.2.2. public static ArrayType arrayType(int dim, OpenType elementType)
	124.7.2.3. public static CompositeType compositeType(String name, String description, Item... items)
	124.7.2.4. public static CompositeType extend(CompositeType parent, String name, String description, Item... items)
	124.7.2.5. public static TabularType tabularType(String name, String description, CompositeType rowType, String... index)

	124.7.3. public class JmxConstants
	124.7.3.1. public static final String ARRAY_OF = "Array of "
	124.7.3.2. public static final String BIGDECIMAL = "BigDecimal"
	124.7.3.3. public static final String BIGINTEGER = "BigInteger"
	124.7.3.4. public static final String BOOLEAN = "Boolean"
	124.7.3.5. public static final String BYTE = "Byte"
	124.7.3.6. public static final String CHARACTER = "Character"
	124.7.3.7. public static final String DOUBLE = "Double"
	124.7.3.8. public static final String FLOAT = "Float"
	124.7.3.9. public static final String INTEGER = "Integer"
	124.7.3.10. public static final String KEY = "Key"
	124.7.3.11. public static final Item KEY_ITEM
	124.7.3.12. public static final String LONG = "Long"
	124.7.3.13. public static final ArrayType LONG_ARRAY_TYPE
	124.7.3.14. public static final String OSGI_COMPENDIUM = "osgi.compendium"
	124.7.3.15. public static final String OSGI_CORE = "osgi.core"
	124.7.3.16. public static final String P_BOOLEAN = "boolean"
	124.7.3.17. public static final String P_BYTE = "byte"
	124.7.3.18. public static final String P_CHAR = "char"
	124.7.3.19. public static final String P_DOUBLE = "double"
	124.7.3.20. public static final String P_FLOAT = "float"
	124.7.3.21. public static final String P_INT = "int"
	124.7.3.22. public static final String P_LONG = "long"
	124.7.3.23. public static final String P_SHORT = "short"
	124.7.3.24. public static final TabularType PROPERTIES_TYPE
	124.7.3.25. public static final CompositeType PROPERTY_TYPE
	124.7.3.26. public static final List<String> SCALAR
	124.7.3.27. public static final String SHORT = "Short"
	124.7.3.28. public static final String STRING = "String"
	124.7.3.29. public static final ArrayType STRING_ARRAY_TYPE
	124.7.3.30. public static final String TYPE = "Type"
	124.7.3.31. public static final Item TYPE_ITEM
	124.7.3.32. public static final String VALUE = "Value"
	124.7.3.33. public static final Item VALUE_ITEM
	124.7.3.34. public static final String VECTOR_OF = "Vector of "
	124.7.3.35. public static final String VERSION = "Version"

	124.8. org.osgi.jmx.framework
	124.8.1. Summary
	124.8.2. public interface BundleStateMBean
	124.8.2.1. public static final String ACTIVATION_POLICY_USED = "ActivationPolicyUsed"
	124.8.2.2. public static final Item ACTIVATION_POLICY_USED_ITEM
	124.8.2.3. public static final String ACTIVE = "ACTIVE"
	124.8.2.4. public static final CompositeType BUNDLE_EVENT_TYPE
	124.8.2.5. public static final CompositeType BUNDLE_TYPE
	124.8.2.6. public static final TabularType BUNDLES_TYPE
	124.8.2.7. public static final String EVENT = "BundleEvent"
	124.8.2.8. public static final Item EVENT_ITEM
	124.8.2.9. public static final String EXPORTED_PACKAGES = "ExportedPackages"
	124.8.2.10. public static final Item EXPORTED_PACKAGES_ITEM
	124.8.2.11. public static final String FRAGMENT = "Fragment"
	124.8.2.12. public static final Item FRAGMENT_ITEM
	124.8.2.13. public static final String FRAGMENTS = "Fragments"
	124.8.2.14. public static final Item FRAGMENTS_ITEM
	124.8.2.15. public static final CompositeType HEADER_TYPE
	124.8.2.16. public static final String HEADERS = "Headers"
	124.8.2.17. public static final Item HEADERS_ITEM
	124.8.2.18. public static final TabularType HEADERS_TYPE
	124.8.2.19. public static final String HOSTS = "Hosts"
	124.8.2.20. public static final Item HOSTS_ITEM
	124.8.2.21. public static final String IDENTIFIER = "Identifier"
	124.8.2.22. public static final Item IDENTIFIER_ITEM
	124.8.2.23. public static final String IMPORTED_PACKAGES = "ImportedPackages"
	124.8.2.24. public static final Item IMPORTED_PACKAGES_ITEM
	124.8.2.25. public static final String INSTALLED = "INSTALLED"
	124.8.2.26. public static final String KEY = "Key"
	124.8.2.27. public static final Item KEY_ITEM
	124.8.2.28. public static final String LAST_MODIFIED = "LastModified"
	124.8.2.29. public static final Item LAST_MODIFIED_ITEM
	124.8.2.30. public static final String LOCATION = "Location"
	124.8.2.31. public static final Item LOCATION_ITEM
	124.8.2.32. public static final String OBJECTNAME = "osgi.core:type=bundleState,version=1.7"
	124.8.2.33. public static final String PERSISTENTLY_STARTED = "PersistentlyStarted"
	124.8.2.34. public static final Item PERSISTENTLY_STARTED_ITEM
	124.8.2.35. public static final String REGISTERED_SERVICES = "RegisteredServices"
	124.8.2.36. public static final Item REGISTERED_SERVICES_ITEM
	124.8.2.37. public static final String REMOVAL_PENDING = "RemovalPending"
	124.8.2.38. public static final Item REMOVAL_PENDING_ITEM
	124.8.2.39. public static final String REQUIRED = "Required"
	124.8.2.40. public static final String REQUIRED_BUNDLES = "RequiredBundles"
	124.8.2.41. public static final Item REQUIRED_BUNDLES_ITEM
	124.8.2.42. public static final Item REQUIRED_ITEM
	124.8.2.43. public static final String REQUIRING_BUNDLES = "RequiringBundles"
	124.8.2.44. public static final Item REQUIRING_BUNDLES_ITEM
	124.8.2.45. public static final String RESOLVED = "RESOLVED"
	124.8.2.46. public static final String SERVICES_IN_USE = "ServicesInUse"
	124.8.2.47. public static final Item SERVICES_IN_USE_ITEM
	124.8.2.48. public static final String START_LEVEL = "StartLevel"
	124.8.2.49. public static final Item START_LEVEL_ITEM
	124.8.2.50. public static final String STARTING = "STARTING"
	124.8.2.51. public static final String STATE = "State"
	124.8.2.52. public static final Item STATE_ITEM
	124.8.2.53. public static final String STOPPING = "STOPPING"
	124.8.2.54. public static final String SYMBOLIC_NAME = "SymbolicName"
	124.8.2.55. public static final Item SYMBOLIC_NAME_ITEM
	124.8.2.56. public static final String UNINSTALLED = "UNINSTALLED"
	124.8.2.57. public static final String UNKNOWN = "UNKNOWN"
	124.8.2.58. public static final String VALUE = "Value"
	124.8.2.59. public static final Item VALUE_ITEM
	124.8.2.60. public static final String VERSION = "Version"
	124.8.2.61. public static final Item VERSION_ITEM
	124.8.2.62. public CompositeData getBundle(long bundleIdentifier) throws IOException
	124.8.2.63. public long[] getBundleIds() throws IOException
	124.8.2.64. public String[] getExportedPackages(long bundleId) throws IOException
	124.8.2.65. public long[] getFragments(long bundleId) throws IOException
	124.8.2.66. public String getHeader(long bundleId, String key) throws IOException
	124.8.2.67. public String getHeader(long bundleId, String key, String locale) throws IOException
	124.8.2.68. public TabularData getHeaders(long bundleId) throws IOException
	124.8.2.69. public TabularData getHeaders(long bundleId, String locale) throws IOException
	124.8.2.70. public long[] getHosts(long fragment) throws IOException
	124.8.2.71. public String[] getImportedPackages(long bundleId) throws IOException
	124.8.2.72. public long getLastModified(long bundleId) throws IOException
	124.8.2.73. public String getLocation(long bundleId) throws IOException
	124.8.2.74. public long[] getRegisteredServices(long bundleId) throws IOException
	124.8.2.75. public long[] getRequiredBundles(long bundleIdentifier) throws IOException
	124.8.2.76. public long[] getRequiringBundles(long bundleIdentifier) throws IOException
	124.8.2.77. public long[] getServicesInUse(long bundleIdentifier) throws IOException
	124.8.2.78. public int getStartLevel(long bundleId) throws IOException
	124.8.2.79. public String getState(long bundleId) throws IOException
	124.8.2.80. public String getSymbolicName(long bundleId) throws IOException
	124.8.2.81. public String getVersion(long bundleId) throws IOException
	124.8.2.82. public boolean isActivationPolicyUsed(long bundleId) throws IOException
	124.8.2.83. public boolean isFragment(long bundleId) throws IOException
	124.8.2.84. public boolean isPersistentlyStarted(long bundleId) throws IOException
	124.8.2.85. public boolean isRemovalPending(long bundleId) throws IOException
	124.8.2.86. public boolean isRequired(long bundleId) throws IOException
	124.8.2.87. public TabularData listBundles() throws IOException
	124.8.2.88. public TabularData listBundles(String... items) throws IOException

	124.8.3. public interface FrameworkMBean
	124.8.3.1. public static final CompositeType BATCH_ACTION_RESULT_TYPE
	124.8.3.2. public static final CompositeType BATCH_INSTALL_RESULT_TYPE
	124.8.3.3. public static final CompositeType BATCH_RESOLVE_RESULT_TYPE
	124.8.3.4. public static final String BUNDLE_IN_ERROR = "BundleInError"
	124.8.3.5. public static final Item BUNDLE_IN_ERROR_ID_ITEM
	124.8.3.6. public static final Item BUNDLE_IN_ERROR_LOCATION_ITEM
	124.8.3.7. public static final String COMPLETED = "Completed"
	124.8.3.8. public static final Item COMPLETED_ITEM
	124.8.3.9. public static final String ERROR = "Error"
	124.8.3.10. public static final Item ERROR_ITEM
	124.8.3.11. public static final String OBJECTNAME = "osgi.core:type=framework,version=1.7"
	124.8.3.12. public static final String REMAINING = "Remaining"
	124.8.3.13. public static final Item REMAINING_ID_ITEM
	124.8.3.14. public static final Item REMAINING_LOCATION_ITEM
	124.8.3.15. public static final String SUCCESS = "Success"
	124.8.3.16. public static final Item SUCCESS_ITEM
	124.8.3.17. public long[] getDependencyClosure(long[] bundles) throws IOException
	124.8.3.18. public int getFrameworkStartLevel() throws IOException
	124.8.3.19. public int getInitialBundleStartLevel() throws IOException
	124.8.3.20. public String getProperty(String key) throws IOException
	124.8.3.21. public long[] getRemovalPendingBundles() throws IOException
	124.8.3.22. public long installBundle(String location) throws IOException
	124.8.3.23. public long installBundleFromURL(String location, String url) throws IOException
	124.8.3.24. public CompositeData installBundles(String[] locations) throws IOException
	124.8.3.25. public CompositeData installBundlesFromURL(String[] locations, String[] urls) throws IOException
	124.8.3.26. public void refreshBundle(long bundleIdentifier) throws IOException
	124.8.3.27. public boolean refreshBundleAndWait(long bundleIdentifier) throws IOException
	124.8.3.28. public void refreshBundles(long[] bundleIdentifiers) throws IOException
	124.8.3.29. public CompositeData refreshBundlesAndWait(long[] bundleIdentifiers) throws IOException
	124.8.3.30. public CompositeData resolve(long[] bundleIdentifiers) throws IOException
	124.8.3.31. public boolean resolveBundle(long bundleIdentifier) throws IOException
	124.8.3.32. public boolean resolveBundles(long[] bundleIdentifiers) throws IOException
	124.8.3.33. public void restartFramework() throws IOException
	124.8.3.34. public void setBundleStartLevel(long bundleIdentifier, int newlevel) throws IOException
	124.8.3.35. public CompositeData setBundleStartLevels(long[] bundleIdentifiers, int[] newlevels) throws IOException
	124.8.3.36. public void setFrameworkStartLevel(int newlevel) throws IOException
	124.8.3.37. public void setInitialBundleStartLevel(int newlevel) throws IOException
	124.8.3.38. public void shutdownFramework() throws IOException
	124.8.3.39. public void startBundle(long bundleIdentifier) throws IOException
	124.8.3.40. public CompositeData startBundles(long[] bundleIdentifiers) throws IOException
	124.8.3.41. public void stopBundle(long bundleIdentifier) throws IOException
	124.8.3.42. public CompositeData stopBundles(long[] bundleIdentifiers) throws IOException
	124.8.3.43. public void uninstallBundle(long bundleIdentifier) throws IOException
	124.8.3.44. public CompositeData uninstallBundles(long[] bundleIdentifiers) throws IOException
	124.8.3.45. public void updateBundle(long bundleIdentifier) throws IOException
	124.8.3.46. public void updateBundleFromURL(long bundleIdentifier, String url) throws IOException
	124.8.3.47. public CompositeData updateBundles(long[] bundleIdentifiers) throws IOException
	124.8.3.48. public CompositeData updateBundlesFromURL(long[] bundleIdentifiers, String[] urls) throws IOException
	124.8.3.49. public void updateFramework() throws IOException

	124.8.4. public interface PackageStateMBean
	124.8.4.1. public static final String EXPORTING_BUNDLES = "ExportingBundles"
	124.8.4.2. public static final Item EXPORTING_BUNDLES_ITEM
	124.8.4.3. public static final String IMPORTING_BUNDLES = "ImportingBundles"
	124.8.4.4. public static final Item IMPORTING_BUNDLES_ITEM
	124.8.4.5. public static final String NAME = "Name"
	124.8.4.6. public static final Item NAME_ITEM
	124.8.4.7. public static final String OBJECTNAME = "osgi.core:type=packageState,version=1.5"
	124.8.4.8. public static final CompositeType PACKAGE_TYPE
	124.8.4.9. public static final TabularType PACKAGES_TYPE
	124.8.4.10. public static final String REMOVAL_PENDING = "RemovalPending"
	124.8.4.11. public static final Item REMOVAL_PENDING_ITEM
	124.8.4.12. public static final String VERSION = "Version"
	124.8.4.13. public static final Item VERSION_ITEM
	124.8.4.14. public long[] getExportingBundles(String packageName, String version) throws IOException
	124.8.4.15. public long[] getImportingBundles(String packageName, String version, long exportingBundle) throws IOException
	124.8.4.16. public boolean isRemovalPending(String packageName, String version, long exportingBundle) throws IOException
	124.8.4.17. public TabularData listPackages() throws IOException

	124.8.5. public interface ServiceStateMBean
	124.8.5.1. public static final String BUNDLE_IDENTIFIER = "BundleIdentifier"
	124.8.5.2. public static final Item BUNDLE_IDENTIFIER_ITEM
	124.8.5.3. public static final String BUNDLE_LOCATION = "BundleLocation"
	124.8.5.4. public static final Item BUNDLE_LOCATION_ITEM
	124.8.5.5. public static final String BUNDLE_SYMBOLIC_NAME = "BundleSymbolicName"
	124.8.5.6. public static final Item BUNDLE_SYMBOLIC_NAME_ITEM
	124.8.5.7. public static final String EVENT = "ServiceEvent"
	124.8.5.8. public static final Item EVENT_ITEM
	124.8.5.9. public static final String IDENTIFIER = "Identifier"
	124.8.5.10. public static final Item IDENTIFIER_ITEM
	124.8.5.11. public static final String OBJECT_CLASS = "objectClass"
	124.8.5.12. public static final Item OBJECT_CLASS_ITEM
	124.8.5.13. public static final String OBJECTNAME = "osgi.core:type=serviceState,version=1.7"
	124.8.5.14. public static final String PROPERTIES = "Properties"
	124.8.5.15. public static final Item PROPERTIES_ITEM
	124.8.5.16. public static final CompositeType SERVICE_EVENT_TYPE
	124.8.5.17. public static final CompositeType SERVICE_TYPE
	124.8.5.18. public static final TabularType SERVICES_TYPE
	124.8.5.19. public static final String USING_BUNDLES = "UsingBundles"
	124.8.5.20. public static final Item USING_BUNDLES_ITEM
	124.8.5.21. public long getBundleIdentifier(long serviceId) throws IOException
	124.8.5.22. public String[] getObjectClass(long serviceId) throws IOException
	124.8.5.23. public TabularData getProperties(long serviceId) throws IOException
	124.8.5.24. public CompositeData getProperty(long serviceId, String key) throws IOException
	124.8.5.25. public CompositeData getService(long serviceId) throws IOException
	124.8.5.26. public long[] getServiceIds() throws IOException
	124.8.5.27. public long[] getUsingBundles(long serviceId) throws IOException
	124.8.5.28. public TabularData listServices() throws IOException
	124.8.5.29. public TabularData listServices(String clazz, String filter) throws IOException
	124.8.5.30. public TabularData listServices(String clazz, String filter, String... serviceTypeItems) throws IOException

	124.9. org.osgi.jmx.service.cm
	124.9.1. Summary
	124.9.2. public interface ConfigurationAdminMBean
	124.9.2.1. public static final String OBJECTNAME = "osgi.compendium:service=cm,version=1.3"
	124.9.2.2. public String createFactoryConfiguration(String factoryPid) throws IOException
	124.9.2.3. public String createFactoryConfigurationForLocation(String factoryPid, String location) throws IOException
	124.9.2.4. public void delete(String pid) throws IOException
	124.9.2.5. public void deleteConfigurations(String filter) throws IOException
	124.9.2.6. public void deleteForLocation(String pid, String location) throws IOException
	124.9.2.7. public String getBundleLocation(String pid) throws IOException
	124.9.2.8. public String[][] getConfigurations(String filter) throws IOException
	124.9.2.9. public String getFactoryPid(String pid) throws IOException
	124.9.2.10. public String getFactoryPidForLocation(String pid, String location) throws IOException
	124.9.2.11. public TabularData getProperties(String pid) throws IOException
	124.9.2.12. public TabularData getPropertiesForLocation(String pid, String location) throws IOException
	124.9.2.13. public void setBundleLocation(String pid, String location) throws IOException
	124.9.2.14. public void update(String pid, TabularData properties) throws IOException
	124.9.2.15. public void updateForLocation(String pid, String location, TabularData properties) throws IOException

	124.10. org.osgi.jmx.service.permissionadmin
	124.10.1. Summary
	124.10.2. public interface PermissionAdminMBean
	124.10.2.1. public static final String OBJECTNAME = "osgi.core:service=permissionadmin,version=1.2"
	124.10.2.2. public String[] getPermissions(String location) throws IOException
	124.10.2.3. public String[] listDefaultPermissions() throws IOException
	124.10.2.4. public String[] listLocations() throws IOException
	124.10.2.5. public void setDefaultPermissions(String[] encodedPermissions) throws IOException
	124.10.2.6. public void setPermissions(String location, String[] encodedPermissions) throws IOException

	124.11. org.osgi.jmx.service.provisioning
	124.11.1. Summary
	124.11.2. public interface ProvisioningServiceMBean
	124.11.2.1. public static final String OBJECTNAME = "osgi.compendium:service=provisioning,version=1.2"
	124.11.2.2. public void addInformation(TabularData info) throws IOException
	124.11.2.3. public void addInformationFromZip(String zipURL) throws IOException
	124.11.2.4. public TabularData listInformation() throws IOException
	124.11.2.5. public void setInformation(TabularData info) throws IOException

	124.12. org.osgi.jmx.service.useradmin
	124.12.1. Summary
	124.12.2. public interface UserAdminMBean
	124.12.2.1. public static final CompositeType AUTORIZATION_TYPE
	124.12.2.2. public static final String CREDENTIALS = "Credentials"
	124.12.2.3. public static final Item CREDENTIALS_ITEM
	124.12.2.4. public static final CompositeType GROUP_TYPE
	124.12.2.5. public static final String MEMBERS = "Members"
	124.12.2.6. public static final Item MEMBERS_ITEM
	124.12.2.7. public static final String NAME = "Name"
	124.12.2.8. public static final Item NAME_ITEM
	124.12.2.9. public static final String OBJECTNAME = "osgi.compendium:service=useradmin,version=1.1"
	124.12.2.10. public static final String PROPERTIES = "Properties"
	124.12.2.11. public static final Item PROPERTIES_ITEM
	124.12.2.12. public static final String REQUIRED_MEMBERS = "RequiredMembers"
	124.12.2.13. public static final Item REQUIRED_MEMBERS_ITEM
	124.12.2.14. public static final CompositeType ROLE_TYPE
	124.12.2.15. public static final String ROLES = "Roles"
	124.12.2.16. public static final Item ROLES_ITEM
	124.12.2.17. public static final String TYPE = "Type"
	124.12.2.18. public static final Item TYPE_ITEM
	124.12.2.19. public static final CompositeType USER_TYPE
	124.12.2.20. public void addCredential(String key, byte[] value, String username) throws IOException
	124.12.2.21. public void addCredentialString(String key, String value, String username) throws IOException
	124.12.2.22. public boolean addMember(String groupname, String rolename) throws IOException
	124.12.2.23. public void addProperty(String key, byte[] value, String rolename) throws IOException
	124.12.2.24. public void addPropertyString(String key, String value, String rolename) throws IOException
	124.12.2.25. public boolean addRequiredMember(String groupname, String rolename) throws IOException
	124.12.2.26. public void createGroup(String name) throws IOException
	124.12.2.27. public void createRole(String name) throws IOException
	124.12.2.28. public void createUser(String name) throws IOException
	124.12.2.29. public CompositeData getAuthorization(String user) throws IOException
	124.12.2.30. public TabularData getCredentials(String username) throws IOException
	124.12.2.31. public CompositeData getGroup(String groupname) throws IOException
	124.12.2.32. public String[] getGroups(String filter) throws IOException
	124.12.2.33. public String[] getImpliedRoles(String username) throws IOException
	124.12.2.34. public String[] getMembers(String groupname) throws IOException
	124.12.2.35. public TabularData getProperties(String rolename) throws IOException
	124.12.2.36. public String[] getRequiredMembers(String groupname) throws IOException
	124.12.2.37. public CompositeData getRole(String name) throws IOException
	124.12.2.38. public String[] getRoles(String filter) throws IOException
	124.12.2.39. public CompositeData getUser(String username) throws IOException
	124.12.2.40. public String[] getUsers(String filter) throws IOException
	124.12.2.41. public String getUserWithProperty(String key, String value) throws IOException
	124.12.2.42. public String[] listGroups() throws IOException
	124.12.2.43. public String[] listRoles() throws IOException
	124.12.2.44. public String[] listUsers() throws IOException
	124.12.2.45. public void removeCredential(String key, String username) throws IOException
	124.12.2.46. public boolean removeGroup(String name) throws IOException
	124.12.2.47. public boolean removeMember(String groupname, String rolename) throws IOException
	124.12.2.48. public void removeProperty(String key, String rolename) throws IOException
	124.12.2.49. public boolean removeRole(String name) throws IOException
	124.12.2.50. public boolean removeUser(String name) throws IOException

	124.13. org.osgi.jmx.framework.wiring
	124.13.1. Summary
	124.13.2. public interface BundleWiringStateMBean
	124.13.2.1. public static final String ATTRIBUTES = "Attributes"
	124.13.2.2. public static final Item ATTRIBUTES_ITEM
	124.13.2.3. public static final TabularType ATTRIBUTES_TYPE
	124.13.2.4. public static final String BUNDLE_CAPABILITY = "BundleCapability"
	124.13.2.5. public static final Item BUNDLE_CAPABILITY_ITEM
	124.13.2.6. public static final CompositeType BUNDLE_CAPABILITY_TYPE
	124.13.2.7. public static final String BUNDLE_ID = "BundleId"
	124.13.2.8. public static final Item BUNDLE_ID_ITEM
	124.13.2.9. public static final String BUNDLE_REQUIREMENT = "BundleRequirement"
	124.13.2.10. public static final Item BUNDLE_REQUIREMENT_ITEM
	124.13.2.11. public static final CompositeType BUNDLE_REQUIREMENT_TYPE
	124.13.2.12. public static final String BUNDLE_REVISION_ID = "BundleRevisionId"
	124.13.2.13. public static final Item BUNDLE_REVISION_ID_ITEM
	124.13.2.14. public static final CompositeType BUNDLE_WIRE_TYPE
	124.13.2.15. public static final ArrayType BUNDLE_WIRES_TYPE_ARRAY
	124.13.2.16. public static final CompositeType BUNDLE_WIRING_TYPE
	124.13.2.17. public static final TabularType BUNDLES_WIRING_TYPE
	124.13.2.18. public static final String CAPABILITIES = "Capabilities"
	124.13.2.19. public static final Item CAPABILITIES_ITEM
	124.13.2.20. public static final ArrayType CAPABILITY_TYPE_ARRAY
	124.13.2.21. public static final CompositeType DIRECTIVE_TYPE
	124.13.2.22. public static final String DIRECTIVES = "Directives"
	124.13.2.23. public static final Item DIRECTIVES_ITEM
	124.13.2.24. public static final TabularType DIRECTIVES_TYPE
	124.13.2.25. public static final String KEY = "Key"
	124.13.2.26. public static final Item KEY_ITEM
	124.13.2.27. public static final String NAMESPACE = "Namespace"
	124.13.2.28. public static final Item NAMESPACE_ITEM
	124.13.2.29. public static final String OBJECTNAME = "osgi.core:type=wiringState,version=1.1"
	124.13.2.30. public static final String PROVIDED_WIRES = "ProvidedWires"
	124.13.2.31. public static final Item PROVIDED_WIRES_ITEM
	124.13.2.32. public static final String PROVIDER_BUNDLE_ID = "ProviderBundleId"
	124.13.2.33. public static final Item PROVIDER_BUNDLE_ID_ITEM
	124.13.2.34. public static final String PROVIDER_BUNDLE_REVISION_ID = "ProviderBundleRevisionId"
	124.13.2.35. public static final Item PROVIDER_BUNDLE_REVISION_ID_ITEM
	124.13.2.36. public static final String REQUIRED_WIRES = "RequiredWires"
	124.13.2.37. public static final Item REQUIRED_WIRES_ITEM
	124.13.2.38. public static final ArrayType REQUIREMENT_TYPE_ARRAY
	124.13.2.39. public static final String REQUIREMENTS = "Requirements"
	124.13.2.40. public static final Item REQUIREMENTS_ITEM
	124.13.2.41. public static final String REQUIRER_BUNDLE_ID = "RequirerBundleId"
	124.13.2.42. public static final Item REQUIRER_BUNDLE_ID_ITEM
	124.13.2.43. public static final String REQUIRER_BUNDLE_REVISION_ID = "RequirerBundleRevisionId"
	124.13.2.44. public static final Item REQUIRER_BUNDLE_REVISION_ID_ITEM
	124.13.2.45. public static final CompositeType REVISION_CAPABILITIES_TYPE
	124.13.2.46. public static final CompositeType REVISION_REQUIREMENTS_TYPE
	124.13.2.47. public static final TabularType REVISIONS_CAPABILITIES_TYPE
	124.13.2.48. public static final TabularType REVISIONS_REQUIREMENTS_TYPE
	124.13.2.49. public static final String VALUE = "Value"
	124.13.2.50. public static final Item VALUE_ITEM
	124.13.2.51. public CompositeData[] getCurrentRevisionDeclaredCapabilities(long bundleId, String namespace) throws IOException, JMException
	124.13.2.52. public CompositeData[] getCurrentRevisionDeclaredRequirements(long bundleId, String namespace) throws IOException, JMException
	124.13.2.53. public CompositeData getCurrentWiring(long bundleId, String namespace) throws IOException, JMException
	124.13.2.54. public TabularData getCurrentWiringClosure(long rootBundleId, String namespace) throws IOException, JMException
	124.13.2.55. public TabularData getRevisionsDeclaredCapabilities(long bundleId, String namespace) throws IOException, JMException
	124.13.2.56. public TabularData getRevisionsDeclaredRequirements(long bundleId, String namespace) throws IOException, JMException
	124.13.2.57. public TabularData getRevisionsWiring(long bundleId, String namespace) throws IOException, JMException
	124.13.2.58. public TabularData getRevisionsWiringClosure(long rootBundleId, String namespace) throws IOException, JMException

	124.14. References

	Chapter 125. Data Service Specification for JDBC™ Technology
	125.1. Introduction
	125.1.1. Essentials
	125.1.2. Entities
	125.1.3. Dependencies
	125.1.4. Synopsis

	125.2. Database Driver
	125.2.1. Life Cycle
	125.2.2. Package Dependencies

	125.3. Applications
	125.3.1. Selecting the Data Source Factory Service
	125.3.2. Using Database Drivers
	125.3.3. Using JDBC in OSGi and Containers

	125.4. Security
	125.5. org.osgi.service.jdbc
	125.5.1. Summary
	125.5.2. public interface DataSourceFactory
	125.5.2.1. public static final String JDBC_DATABASE_NAME = "databaseName"
	125.5.2.2. public static final String JDBC_DATASOURCE_NAME = "dataSourceName"
	125.5.2.3. public static final String JDBC_DESCRIPTION = "description"
	125.5.2.4. public static final String JDBC_INITIAL_POOL_SIZE = "initialPoolSize"
	125.5.2.5. public static final String JDBC_MAX_IDLE_TIME = "maxIdleTime"
	125.5.2.6. public static final String JDBC_MAX_POOL_SIZE = "maxPoolSize"
	125.5.2.7. public static final String JDBC_MAX_STATEMENTS = "maxStatements"
	125.5.2.8. public static final String JDBC_MIN_POOL_SIZE = "minPoolSize"
	125.5.2.9. public static final String JDBC_NETWORK_PROTOCOL = "networkProtocol"
	125.5.2.10. public static final String JDBC_PASSWORD = "password"
	125.5.2.11. public static final String JDBC_PORT_NUMBER = "portNumber"
	125.5.2.12. public static final String JDBC_PROPERTY_CYCLE = "propertyCycle"
	125.5.2.13. public static final String JDBC_ROLE_NAME = "roleName"
	125.5.2.14. public static final String JDBC_SERVER_NAME = "serverName"
	125.5.2.15. public static final String JDBC_URL = "url"
	125.5.2.16. public static final String JDBC_USER = "user"
	125.5.2.17. public static final String OSGI_JDBC_DRIVER_CLASS = "osgi.jdbc.driver.class"
	125.5.2.18. public static final String OSGI_JDBC_DRIVER_NAME = "osgi.jdbc.driver.name"
	125.5.2.19. public static final String OSGI_JDBC_DRIVER_VERSION = "osgi.jdbc.driver.version"
	125.5.2.20. public ConnectionPoolDataSource createConnectionPoolDataSource(Properties props) throws SQLException
	125.5.2.21. public DataSource createDataSource(Properties props) throws SQLException
	125.5.2.22. public Driver createDriver(Properties props) throws SQLException
	125.5.2.23. public XADataSource createXADataSource(Properties props) throws SQLException

	125.6. References

	Chapter 126. JNDI Services Specification
	126.1. Introduction
	126.1.1. Essentials
	126.1.2. Entities
	126.1.3. Dependencies
	126.1.4. Synopsis

	126.2. JNDI Overview
	126.2.1. Context and Dir Context
	126.2.2. Initial Context
	126.2.3. URL Context Factory
	126.2.4. Object and Reference Conversion
	126.2.5. Environment
	126.2.6. Naming Manager Singletons
	126.2.7. Built-In JNDI Providers

	126.3. JNDI Context Manager Service
	126.3.1. Environment and Bundles
	126.3.2. Context Creation
	126.3.2.1. Implementation Class Present in Environment
	126.3.2.2. No Implementation Class Specified

	126.3.3. Rebinding
	126.3.4. Life Cycle and Dynamism

	126.4. JNDI Provider Admin service
	126.5. JNDI Providers
	126.5.1. Initial Context Factory Builder Provider
	126.5.2. Initial Context Factory Provider
	126.5.3. Object Factory Builder Provider
	126.5.4. Object Factory Provider
	126.5.5. URL Context Provider
	126.5.6. JRE Context Providers

	126.6. OSGi URL Scheme
	126.6.1. Service Proxies
	126.6.2. Services and State

	126.7. Traditional Client Model
	126.7.1. New Initial Context
	126.7.2. Static Conversion
	126.7.3. Caller's Bundle Context
	126.7.4. Life Cycle Mismatch

	126.8. Security
	126.8.1. JNDI Implementation
	126.8.2. JNDI Clients
	126.8.3. OSGi URL namespace

	126.9. org.osgi.service.jndi
	126.9.1. Summary
	126.9.2. public class JNDIConstants
	126.9.2.1. public static final String BUNDLE_CONTEXT = "osgi.service.jndi.bundleContext"
	126.9.2.2. public static final String JNDI_SERVICENAME = "osgi.jndi.service.name"
	126.9.2.3. public static final String JNDI_URLSCHEME = "osgi.jndi.url.scheme"

	126.9.3. public interface JNDIContextManager
	126.9.3.1. public Context newInitialContext() throws NamingException
	126.9.3.2. public Context newInitialContext(Map<String, ?> environment) throws NamingException
	126.9.3.3. public DirContext newInitialDirContext() throws NamingException
	126.9.3.4. public DirContext newInitialDirContext(Map<String, ?> environment) throws NamingException

	126.9.4. public interface JNDIProviderAdmin
	126.9.4.1. public Object getObjectInstance(Object refInfo, Name name, Context context, Map<String, ?> environment) throws Exception
	126.9.4.2. public Object getObjectInstance(Object refInfo, Name name, Context context, Map<String, ?> environment, Attributes attributes) throws Exception

	126.10. References

	Chapter 127. JPA Service Specification
	127.1. Introduction
	127.1.1. Essentials
	127.1.2. Entities
	127.1.3. Dependencies
	127.1.4. Synopsis

	127.2. JPA Overview
	127.2.1. Persistence
	127.2.2. JPA Provider
	127.2.3. Managed and Unmanaged
	127.2.4. JDBC Access in JPA

	127.3. Bundles with Persistence
	127.3.1. Services
	127.3.2. Persistence Bundle
	127.3.3. Client Bundles
	127.3.4. Custom Configured Entity Manager
	127.3.4.1. Supported configuration properties

	127.4. Extending a Persistence Bundle
	127.4.1. Class Space Consistency
	127.4.2. Meta Persistence Header
	127.4.3. Processing
	127.4.4. Ready Phase
	127.4.5. Service Registrations
	127.4.6. Registering the Entity Manager Factory Builder Service
	127.4.7. Registering the Entity Manager Factory
	127.4.8. Stopping
	127.4.9. Entity Manager Factory Life Cycle

	127.5. JPA Provider
	127.5.1. Managed Model
	127.5.2. Database Access
	127.5.3. Data Source Factory Service Matching
	127.5.4. Rebinding
	127.5.5. Enhancing Entity Classes
	127.5.6. Class Loading
	127.5.7. Validation

	127.6. Static Access
	127.6.1. Access

	127.7. Capabilities
	127.7.1. The Extender Capability
	127.7.2. The JPA Contract Capability
	127.7.3. Service capabilities

	127.8. Security
	127.8.1. Service Permissions
	127.8.2. Required Admin Permission

	127.9. org.osgi.service.jpa
	127.9.1. Summary
	127.9.2. public interface EntityManagerFactoryBuilder
	127.9.2.1. public static final String JPA_CAPABILITY_NAME = "osgi.jpa"
	127.9.2.2. public static final String JPA_SPECIFICATION_VERSION = "1.1"
	127.9.2.3. public static final String JPA_UNIT_NAME = "osgi.unit.name"
	127.9.2.4. public static final String JPA_UNIT_PROVIDER = "osgi.unit.provider"
	127.9.2.5. public static final String JPA_UNIT_VERSION = "osgi.unit.version"
	127.9.2.6. public EntityManagerFactory createEntityManagerFactory(Map<String, Object> props)
	127.9.2.7. public Bundle getPersistenceProviderBundle()
	127.9.2.8. public String getPersistenceProviderName()

	127.10. org.osgi.service.jpa.annotations
	127.10.1. Summary
	127.10.2. @RequireJPAExtender

	127.11. References
	127.12. Changes

	Chapter 128. Web Applications Specification
	128.1. Introduction
	128.1.1. Essentials
	128.1.2. Entities
	128.1.3. Dependencies
	128.1.4. Synopsis

	128.2. Web Container
	128.3. Web Application Bundle
	128.3.1. WAB Definition
	128.3.2. Starting the Web Application Bundle
	128.3.3. Failure
	128.3.4. Publishing the Servlet Context
	128.3.5. Static Content
	128.3.6. Dynamic Content
	128.3.7. Content Serving Example
	128.3.8. Stopping the Web Application Bundle
	128.3.9. Uninstalling the Web Application Bundle
	128.3.10. Stopping of the Web Extender

	128.4. Web URL Handler
	128.4.1. URL Scheme
	128.4.2. URL Parsing
	128.4.3. URL Parameters
	128.4.4. WAB Modification
	128.4.5. WAR Manifest Processing
	128.4.6. Signed WAR files

	128.5. Events
	128.6. Interacting with the OSGi Environment
	128.6.1. Bundle Context Access
	128.6.2. Other Component Models
	128.6.3. Resource Lookup
	128.6.4. Resource Injection and Annotations
	128.6.5. Java Server Pages Support
	128.6.6. Compilation

	128.7. Security
	128.8. References

	Chapter 130. Coordinator Service Specification
	130.1. Introduction
	130.1.1. Essentials
	130.1.2. Entities

	130.2. Usage
	130.2.1. Synopsis
	130.2.2. Explicit Coordination
	130.2.3. Multi Threading
	130.2.4. Implicit Coordinations
	130.2.5. Partial Ending
	130.2.6. Locking
	130.2.7. Failing
	130.2.8. Time-out
	130.2.9. Joining
	130.2.10. Variables
	130.2.11. Optimizing Example
	130.2.12. Security Example

	130.3. Coordinator Service
	130.3.1. Coordination Creation
	130.3.2. Adding Participants
	130.3.3. Active
	130.3.4. Explicit and Implicit Models
	130.3.5. Termination
	130.3.6. Ending
	130.3.7. Failing, TIMEOUT, ORPHANED, and RELEASED
	130.3.8. Nesting Implicit Coordinations
	130.3.9. Time-outs
	130.3.10. Released
	130.3.11. Coordinator Convenience Methods
	130.3.12. Administrative Access
	130.3.13. Summary

	130.4. Security
	130.5. org.osgi.service.coordinator
	130.5.1. Summary
	130.5.2. public interface Coordination
	130.5.2.1. public static final Exception ORPHANED
	130.5.2.2. public static final Exception RELEASED
	130.5.2.3. public static final Exception TIMEOUT
	130.5.2.4. public void addParticipant(Participant participant)
	130.5.2.5. public void end()
	130.5.2.6. public long extendTimeout(long timeMillis)
	130.5.2.7. public boolean fail(Throwable cause)
	130.5.2.8. public Bundle getBundle()
	130.5.2.9. public Coordination getEnclosingCoordination()
	130.5.2.10. public Throwable getFailure()
	130.5.2.11. public long getId()
	130.5.2.12. public String getName()
	130.5.2.13. public List<Participant> getParticipants()
	130.5.2.14. public Thread getThread()
	130.5.2.15. public Map<Class<?>, Object> getVariables()
	130.5.2.16. public boolean isTerminated()
	130.5.2.17. public void join(long timeMillis) throws InterruptedException
	130.5.2.18. public Coordination push()

	130.5.3. public class CoordinationException extends RuntimeException
	130.5.3.1. public static final int ALREADY_ENDED = 4
	130.5.3.2. public static final int ALREADY_PUSHED = 5
	130.5.3.3. public static final int DEADLOCK_DETECTED = 1
	130.5.3.4. public static final int FAILED = 2
	130.5.3.5. public static final int LOCK_INTERRUPTED = 6
	130.5.3.6. public static final int PARTIALLY_ENDED = 3
	130.5.3.7. public static final int UNKNOWN = 0
	130.5.3.8. public static final int WRONG_THREAD = 7
	130.5.3.9. public CoordinationException(String message, Coordination coordination, int type, Throwable cause)
	130.5.3.10. public CoordinationException(String message, Coordination coordination, int type)
	130.5.3.11. public long getId()
	130.5.3.12. public String getName()
	130.5.3.13. public int getType()

	130.5.4. public final class CoordinationPermission extends BasicPermission
	130.5.4.1. public static final String ADMIN = "admin"
	130.5.4.2. public static final String INITIATE = "initiate"
	130.5.4.3. public static final String PARTICIPATE = "participate"
	130.5.4.4. public CoordinationPermission(String filter, String actions)
	130.5.4.5. public CoordinationPermission(String coordinationName, Bundle coordinationBundle, String actions)
	130.5.4.6. public boolean equals(Object obj)
	130.5.4.7. public String getActions()
	130.5.4.8. public int hashCode()
	130.5.4.9. public boolean implies(Permission p)
	130.5.4.10. public PermissionCollection newPermissionCollection()

	130.5.5. public interface Coordinator
	130.5.5.1. public boolean addParticipant(Participant participant)
	130.5.5.2. public Coordination begin(String name, long timeMillis)
	130.5.5.3. public Coordination create(String name, long timeMillis)
	130.5.5.4. public boolean fail(Throwable cause)
	130.5.5.5. public Coordination getCoordination(long id)
	130.5.5.6. public Collection<Coordination> getCoordinations()
	130.5.5.7. public Coordination peek()
	130.5.5.8. public Coordination pop()

	130.5.6. public interface Participant
	130.5.6.1. public void ended(Coordination coordination) throws Exception
	130.5.6.2. public void failed(Coordination coordination) throws Exception

	Chapter 132. Repository Service Specification
	132.1. Introduction
	132.1.1. Essentials
	132.1.2. Entities
	132.1.3. Synopsis

	132.2. Using a Repository
	132.2.1. Combining Requirements

	132.3. Repository
	132.3.1. Repository Content

	132.4. osgi.content Namespace
	132.5. XML Repository Format
	132.5.1. Repository Element
	132.5.2. Referral Element
	132.5.3. Resource Element
	132.5.4. Capability Element
	132.5.5. Requirement Element
	132.5.6. Attribute Element
	132.5.7. Directive Element
	132.5.8. Sample XML File

	132.6. XML Repository Schema
	132.7. Capabilities
	132.7.1. osgi.implementation Capability
	132.7.2. osgi.service Capability

	132.8. Security
	132.8.1. External Access
	132.8.2. Permissions

	132.9. org.osgi.service.repository
	132.9.1. Summary
	132.9.2. public interface AndExpression extends RequirementExpression
	132.9.2.1. public List<RequirementExpression> getRequirementExpressions()

	132.9.3. public final class ContentNamespace extends Namespace
	132.9.3.1. public static final String CAPABILITY_MIME_ATTRIBUTE = "mime"
	132.9.3.2. public static final String CAPABILITY_SIZE_ATTRIBUTE = "size"
	132.9.3.3. public static final String CAPABILITY_URL_ATTRIBUTE = "url"
	132.9.3.4. public static final String CONTENT_NAMESPACE = "osgi.content"

	132.9.4. public interface ExpressionCombiner
	132.9.4.1. public AndExpression and(RequirementExpression expr1, RequirementExpression expr2)
	132.9.4.2. public AndExpression and(RequirementExpression expr1, RequirementExpression expr2, RequirementExpression... moreExprs)
	132.9.4.3. public IdentityExpression identity(Requirement req)
	132.9.4.4. public NotExpression not(RequirementExpression expr)
	132.9.4.5. public OrExpression or(RequirementExpression expr1, RequirementExpression expr2)
	132.9.4.6. public OrExpression or(RequirementExpression expr1, RequirementExpression expr2, RequirementExpression... moreExprs)

	132.9.5. public interface IdentityExpression extends RequirementExpression
	132.9.5.1. public Requirement getRequirement()

	132.9.6. public interface NotExpression extends RequirementExpression
	132.9.6.1. public RequirementExpression getRequirementExpression()

	132.9.7. public interface OrExpression extends RequirementExpression
	132.9.7.1. public List<RequirementExpression> getRequirementExpressions()

	132.9.8. public interface Repository
	132.9.8.1. public static final String URL = "repository.url"
	132.9.8.2. public Map<Requirement, Collection<Capability>> findProviders(Collection<? extends Requirement> requirements)
	132.9.8.3. public Promise<Collection<Resource>> findProviders(RequirementExpression expression)
	132.9.8.4. public ExpressionCombiner getExpressionCombiner()
	132.9.8.5. public RequirementBuilder newRequirementBuilder(String namespace)

	132.9.9. public interface RepositoryContent
	132.9.9.1. public InputStream getContent()

	132.9.10. public interface RequirementBuilder
	132.9.10.1. public RequirementBuilder addAttribute(String name, Object value)
	132.9.10.2. public RequirementBuilder addDirective(String name, String value)
	132.9.10.3. public Requirement build()
	132.9.10.4. public IdentityExpression buildExpression()
	132.9.10.5. public RequirementBuilder setAttributes(Map<String, Object> attributes)
	132.9.10.6. public RequirementBuilder setDirectives(Map<String, String> directives)
	132.9.10.7. public RequirementBuilder setResource(Resource resource)

	132.9.11. public interface RequirementExpression

	132.10. References
	132.11. Changes

	Chapter 133. Service Loader Mediator Specification
	133.1. Introduction
	133.1.1. Essentials
	133.1.2. Entities
	133.1.3. Synopsis

	133.2. Java Service Loader API
	133.3. Consumers
	133.3.1. Processing
	133.3.2. Opting In
	133.3.3. Restricting Visibility
	133.3.4. Life Cycle Impedance Mismatch
	133.3.5. Consumer Example

	133.4. Service Provider Bundles
	133.4.1. Advertising
	133.4.2. Publishing the Service Providers
	133.4.3. OSGi Services
	133.4.4. Service Provider Example

	133.5. Service Loader Mediator
	133.5.1. Registering Services
	133.5.2. OSGi Service Factory
	133.5.3. Service Loader and Modularity
	133.5.4. Processing Consumers
	133.5.5. Visibility
	133.5.6. Life Cycle

	133.6. osgi.serviceloader Namespace
	133.7. Use of the osgi.extender Namespace
	133.8. Security
	133.8.1. Mediator
	133.8.2. Consumers
	133.8.3. Service Providers

	133.9. org.osgi.service.serviceloader
	133.9.1. Summary
	133.9.2. public final class ServiceLoaderNamespace extends Namespace
	133.9.2.1. public static final String CAPABILITY_REGISTER_DIRECTIVE = "register"
	133.9.2.2. public static final String SERVICELOADER_NAMESPACE = "osgi.serviceloader"

	133.10. References

	Chapter 134. Subsystem Service Specification
	134.1. Introduction
	134.1.1. Essentials
	134.1.2. Entities
	134.1.3. Synopsis

	134.2. Subsystems
	134.2.1. Subsystem Manifest Headers
	134.2.1.1. Export-Package: org.acme.logging; version=1.0
	134.2.1.2. Import-Package: org.osgi.util.tracker; version="[1.4, 2.0)"
	134.2.1.3. Preferred-Provider: com.acme.logging
	134.2.1.4. Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2
	134.2.1.5. Require-Bundle: com.acme.chess; bundle-version="[1.0,2.0)"
	134.2.1.6. Require-Capability: osgi.ee; filter:="(osgi.ee=*)"
	134.2.1.7. Subsystem-Category: osgi, test, nursery
	134.2.1.8. Subsystem-ContactAddress: 2400 Oswego Road, Austin, TX 74563
	134.2.1.9. Subsystem-Content: com.acme.logging
	134.2.1.10. Subsystem-Copyright: OSGi (c) 2014
	134.2.1.11. Subsystem-Description: The ACME Account Admin Application
	134.2.1.12. Subsystem-DocURL: http://www.example.com/Firewall/doc
	134.2.1.13. Subsystem-ExportService: org.acme.billing.Account; filter:="(user=bob)"
	134.2.1.14. Subsystem-Icon: /icons/acme-logo.png; size=64
	134.2.1.15. Subsystem-ImportService: org.acme.billing.Account; filter:="(type=premium)"
	134.2.1.16. Subsystem-License: http://www.opensource.org/licenses/jabberpl.php
	134.2.1.17. Subsystem-Localization: OSGI-INF/l10n/subsystem
	134.2.1.18. Subsystem-ManifestVersion: 1
	134.2.1.19. Subsystem-Name: Account Application
	134.2.1.20. Subsystem-SymbolicName: com.acme.subsystem.logging
	134.2.1.21. Subsystem-Type: osgi.subsystem.application
	134.2.1.22. Subsystem-Vendor: OSGi Alliance
	134.2.1.23. Subsystem-Version: 1.0

	134.2.2. Subsystem Identifiers and Type
	134.2.3. Subsystem-SymbolicName Header
	134.2.4. Subsystem-Version Header
	134.2.5. Subsystem-Type Header
	134.2.6. Deriving the Subsystem Identity
	134.2.7. Subsystem Identity Capability
	134.2.8. Subsystem-Localization Header
	134.2.8.1. Localization Properties
	134.2.8.2. Locating Localization Entries

	134.3. Subsystem Region
	134.4. Subsystem Relationships
	134.4.1. Prevent Cycles and Recursion

	134.5. Determining Content
	134.5.1. Subsystem-Content Header
	134.5.2. Subsystem-Content Requirements
	134.5.3. Preferred-Provider Header
	134.5.4. Resource Repositories
	134.5.4.1. Local Repository
	134.5.4.2. System Repository
	134.5.4.3. Repository Services
	134.5.4.4. Content Repository
	134.5.4.5. Preferred Repository

	134.5.5. Discovering Content Resources
	134.5.5.1. Declared Subsystem-Content
	134.5.5.2. Use Subsystem Local Repository

	134.6. Determining Dependencies
	134.7. Accepting Dependencies
	134.8. Sharing Capabilities
	134.8.1. Preferred Provider
	134.8.2. System Capabilities

	134.9. Region Context Bundle
	134.10. Explicit and Implicit Resources
	134.10.1. Explicit Resources
	134.10.1.1. Explicit Bundle Resources
	134.10.1.2. Explicit Subsystem Resources

	134.10.2. Explicit Resource Example

	134.11. Resource References
	134.11.1. Reference Count

	134.12. Starting and Stopping Resources
	134.12.1. Start Order
	134.12.2. Active Use Count

	134.13. Subsystem Service
	134.13.1. Root Subsystem
	134.13.2. Subsystem Service Properties
	134.13.3. Subsystem States
	134.13.4. Subsystem Service Registrations
	134.13.5. Subsystem Manifest Headers

	134.14. Subsystem Life Cycle
	134.14.1. Installing
	134.14.2. Resolving
	134.14.3. Starting
	134.14.4. Stopping
	134.14.5. Uninstalling

	134.15. Pre-Calculated Deployment
	134.15.1. Deployment Headers
	134.15.1.1. Deployment-ManifestVersion: 1
	134.15.1.2. Subsystem-SymbolicName: com.acme.subsystem.logging
	134.15.1.3. Subsystem-Version: 1.0
	134.15.1.4. Deployed-Content: com.acme.logging;type=osgi.bundle;deployed-version=1.0.0
	134.15.1.5. Provision-Resource: com.acme.logging;type=osgi.bundle;deployed-version=1.0.0
	134.15.1.6. Import-Package: com.acme.api;version="[1.0,1.1)"
	134.15.1.7. Export-Package: com.acme.api;version=1.0.1
	134.15.1.8. Require-Bundle: com.acme.logging; bundle-version="[1.0,1.1)"
	134.15.1.9. Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2
	134.15.1.10. Require-Capability: osgi.ee; filter:="(osgi.ee=*)"
	134.15.1.11. Subsystem-ImportService: com.acme.service.Logging
	134.15.1.12. Subsystem-ExportService: com.acme.service.Logging

	134.15.2. Validating Subsystem Identity
	134.15.3. Deployed-Content
	134.15.4. Provision-Resource
	134.15.5. Import-Package
	134.15.6. Export-Package
	134.15.7. Require-Bundle
	134.15.8. Services
	134.15.9. Subsystem-ImportService
	134.15.10. Subsystem-ExportService

	134.16. Subsystem Types
	134.16.1. Application
	134.16.2. Application Deployment
	134.16.2.1. Package Imports
	134.16.2.2. Service Imports
	134.16.2.3. Bundle Requirements
	134.16.2.4. Generic Requirements
	134.16.2.5. Dependencies

	134.16.3. Composite
	134.16.3.1. Subsystem Content
	134.16.3.2. Package Imports
	134.16.3.3. Package Exports
	134.16.3.4. Service Imports
	134.16.3.5. Service Exports
	134.16.3.6. Bundle Requirements
	134.16.3.7. Generic Requirements
	134.16.3.8. Generic Capabilities
	134.16.3.9. Dependencies

	134.16.4. Feature
	134.16.4.1. Explicit Requirements and Capabilities
	134.16.4.2. Dependencies

	134.17. Weaving Hooks
	134.18. Stopping and Uninstalling Subsystems Implementation
	134.19. Capabilities
	134.20. Security
	134.20.1. Subsystem Permission
	134.20.2. Actions
	134.20.3. Required Permissions

	134.21. org.osgi.service.subsystem
	134.21.1. Summary
	134.21.2. public interface Subsystem
	134.21.2.1. public BundleContext getBundleContext()
	134.21.2.2. public Collection<Subsystem> getChildren()
	134.21.2.3. public Collection<Resource> getConstituents()
	134.21.2.4. public Map<String, String> getDeploymentHeaders()
	134.21.2.5. public String getLocation()
	134.21.2.6. public Collection<Subsystem> getParents()
	134.21.2.7. public Subsystem.State getState()
	134.21.2.8. public Map<String, String> getSubsystemHeaders(Locale locale)
	134.21.2.9. public long getSubsystemId()
	134.21.2.10. public String getSymbolicName()
	134.21.2.11. public String getType()
	134.21.2.12. public Version getVersion()
	134.21.2.13. public Subsystem install(String location)
	134.21.2.14. public Subsystem install(String location, InputStream content)
	134.21.2.15. public Subsystem install(String location, InputStream content, InputStream deploymentManifest)
	134.21.2.16. public void start()
	134.21.2.17. public void stop()
	134.21.2.18. public void uninstall()

	134.21.3. enum Subsystem.State
	134.21.3.1. INSTALLING
	134.21.3.2. INSTALLED
	134.21.3.3. INSTALL_FAILED
	134.21.3.4. RESOLVING
	134.21.3.5. RESOLVED
	134.21.3.6. STARTING
	134.21.3.7. ACTIVE
	134.21.3.8. STOPPING
	134.21.3.9. UNINSTALLING
	134.21.3.10. UNINSTALLED
	134.21.3.11. public static Subsystem.State valueOf(String name)
	134.21.3.12. public static Subsystem.State[] values()

	134.21.4. public class SubsystemConstants
	134.21.4.1. public static final String DEPLOYED_CONTENT = "Deployed-Content"
	134.21.4.2. public static final String DEPLOYED_VERSION_ATTRIBUTE = "deployed-version"
	134.21.4.3. public static final String DEPLOYMENT_MANIFESTVERSION = "Deployment-ManifestVersion"
	134.21.4.4. public static final String PREFERRED_PROVIDER = "Preferred-Provider"
	134.21.4.5. public static final String PROVISION_POLICY_ACCEPT_DEPENDENCIES = "acceptDependencies"
	134.21.4.6. public static final String PROVISION_POLICY_DIRECTIVE = "provision-policy"
	134.21.4.7. public static final String PROVISION_POLICY_REJECT_DEPENDENCIES = "rejectDependencies"
	134.21.4.8. public static final String PROVISION_RESOURCE = "Provision-Resource"
	134.21.4.9. public static final String ROOT_SUBSYSTEM_SYMBOLICNAME = "org.osgi.service.subsystem.root"
	134.21.4.10. public static final String START_ORDER_DIRECTIVE = "start-order"
	134.21.4.11. public static final String SUBSYSTEM_CATEGORY = "Subsystem-Category"
	134.21.4.12. public static final String SUBSYSTEM_CONTACTADDRESS = "Subsystem-ContactAddress"
	134.21.4.13. public static final String SUBSYSTEM_CONTENT = "Subsystem-Content"
	134.21.4.14. public static final String SUBSYSTEM_COPYRIGHT = "Subsystem-Copyright"
	134.21.4.15. public static final String SUBSYSTEM_DESCRIPTION = "Subsystem-Description"
	134.21.4.16. public static final String SUBSYSTEM_DOCURL = "Subsystem-DocURL"
	134.21.4.17. public static final String SUBSYSTEM_EXPORTSERVICE = "Subsystem-ExportService"
	134.21.4.18. public static final String SUBSYSTEM_ICON = "Subsystem-Icon"
	134.21.4.19. public static final String SUBSYSTEM_ID_PROPERTY = "subsystem.id"
	134.21.4.20. public static final String SUBSYSTEM_IMPORTSERVICE = "Subsystem-ImportService"
	134.21.4.21. public static final String SUBSYSTEM_LICENSE = "Subsystem-License"
	134.21.4.22. public static final String SUBSYSTEM_LOCALIZATION = "Subsystem-Localization"
	134.21.4.23. public static final String SUBSYSTEM_LOCALIZATION_DEFAULT_BASENAME = "OSGI-INF/l10n/subsystem"
	134.21.4.24. public static final String SUBSYSTEM_MANIFESTVERSION = "Subsystem-ManifestVersion"
	134.21.4.25. public static final String SUBSYSTEM_NAME = "Subsystem-Name"
	134.21.4.26. public static final String SUBSYSTEM_STATE_PROPERTY = "subsystem.state"
	134.21.4.27. public static final String SUBSYSTEM_SYMBOLICNAME = "Subsystem-SymbolicName"
	134.21.4.28. public static final String SUBSYSTEM_SYMBOLICNAME_PROPERTY = "subsystem.symbolicName"
	134.21.4.29. public static final String SUBSYSTEM_TYPE = "Subsystem-Type"
	134.21.4.30. public static final String SUBSYSTEM_TYPE_APPLICATION = "osgi.subsystem.application"
	134.21.4.31. public static final String SUBSYSTEM_TYPE_COMPOSITE = "osgi.subsystem.composite"
	134.21.4.32. public static final String SUBSYSTEM_TYPE_FEATURE = "osgi.subsystem.feature"
	134.21.4.33. public static final String SUBSYSTEM_TYPE_PROPERTY = "subsystem.type"
	134.21.4.34. public static final String SUBSYSTEM_VENDOR = "Subsystem-Vendor"
	134.21.4.35. public static final String SUBSYSTEM_VERSION = "Subsystem-Version"
	134.21.4.36. public static final String SUBSYSTEM_VERSION_PROPERTY = "subsystem.version"

	134.21.5. public class SubsystemException extends RuntimeException
	134.21.5.1. public SubsystemException()
	134.21.5.2. public SubsystemException(String message)
	134.21.5.3. public SubsystemException(Throwable cause)
	134.21.5.4. public SubsystemException(String message, Throwable cause)

	134.21.6. public final class SubsystemPermission extends BasicPermission
	134.21.6.1. public static final String CONTEXT = "context"
	134.21.6.2. public static final String EXECUTE = "execute"
	134.21.6.3. public static final String LIFECYCLE = "lifecycle"
	134.21.6.4. public static final String METADATA = "metadata"
	134.21.6.5. public SubsystemPermission(String filter, String actions)
	134.21.6.6. public SubsystemPermission(Subsystem subsystem, String actions)
	134.21.6.7. public boolean equals(Object obj)
	134.21.6.8. public String getActions()
	134.21.6.9. public int hashCode()
	134.21.6.10. public boolean implies(Permission p)
	134.21.6.11. public PermissionCollection newPermissionCollection()

	134.22. References

	Chapter 135. Common Namespaces Specification
	135.1. Introduction
	135.1.1. Versioning

	135.2. osgi.extender Namespace
	135.2.1. Extenders and Framework Hooks

	135.3. osgi.contract Namespace
	135.3.1. Versioning

	135.4. osgi.service Namespace
	135.4.1. Versioning

	135.5. osgi.implementation Namespace
	135.6. osgi.unresolvable Namespace
	135.7. org.osgi.namespace.contract
	135.7.1. Summary
	135.7.2. public final class ContractNamespace extends Namespace
	135.7.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.7.2.2. public static final String CONTRACT_NAMESPACE = "osgi.contract"

	135.8. org.osgi.namespace.extender
	135.8.1. Summary
	135.8.2. public final class ExtenderNamespace extends Namespace
	135.8.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.8.2.2. public static final String EXTENDER_NAMESPACE = "osgi.extender"

	135.9. org.osgi.namespace.service
	135.9.1. Summary
	135.9.2. public final class ServiceNamespace extends Namespace
	135.9.2.1. public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"
	135.9.2.2. public static final String SERVICE_NAMESPACE = "osgi.service"

	135.10. org.osgi.namespace.implementation
	135.10.1. Summary
	135.10.2. public final class ImplementationNamespace extends Namespace
	135.10.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.10.2.2. public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

	135.11. org.osgi.namespace.unresolvable
	135.11.1. Summary
	135.11.2. public final class UnresolvableNamespace extends Namespace
	135.11.2.1. public static final String UNRESOLVABLE_FILTER = "(&(must.not.resolve=*)(!(must.not.resolve=*)))"
	135.11.2.2. public static final String UNRESOLVABLE_NAMESPACE = "osgi.unresolvable"

	135.12. References
	135.13. Changes

	Chapter 137. REST Management Service Specification
	137.1. Introduction
	137.1.1. Essentials
	137.1.2. Entities
	137.1.3. Synopsis

	137.2. Interacting with the REST Management Service
	137.2.1. Resource Identifier Overview
	137.2.2. Filtering Results
	137.2.3. Content Type Matching

	137.3. Resources
	137.3.1. Framework Startlevel Resource
	137.3.1.1. GET
	137.3.1.2. PUT

	137.3.2. Bundles Resource
	137.3.2.1. GET
	137.3.2.2. POST with Location String
	137.3.2.3. POST with Bundle

	137.3.3. Bundles Representations Resource
	137.3.3.1. GET of the Representations

	137.3.4. Bundle Resource
	137.3.4.1. GET
	137.3.4.2. PUT with Location String
	137.3.4.3. PUT with Bundle
	137.3.4.4. DELETE

	137.3.5. Bundle State Resource
	137.3.5.1. GET
	137.3.5.2. PUT

	137.3.6. Bundle Header Resource
	137.3.6.1. GET

	137.3.7. Bundle Startlevel Resource
	137.3.7.1. GET
	137.3.7.2. PUT

	137.3.8. Services Resource
	137.3.8.1. GET

	137.3.9. Services Representations Resource
	137.3.9.1. GET of the Representations

	137.3.10. Service Resource
	137.3.10.1. GET

	137.4. Representations
	137.4.1. Bundle Representation
	137.4.1.1. JSON
	137.4.1.2. XML

	137.4.2. Bundles Representations
	137.4.2.1. Bundle List Representation
	137.4.2.1.1. JSON
	137.4.2.1.2. XML

	137.4.2.2. Bundle Representations List Representation
	137.4.2.2.1. JSON
	137.4.2.2.2. XML

	137.4.3. Bundle State Representation
	137.4.3.1. JSON
	137.4.3.2. XML

	137.4.4. Bundle Header Representation
	137.4.4.1. JSON
	137.4.4.2. XML

	137.4.5. Framework Startlevel Representation
	137.4.5.1. JSON
	137.4.5.2. XML

	137.4.6. Bundle Startlevel Representation
	137.4.6.1. JSON
	137.4.6.2. XML

	137.4.7. Service Representation
	137.4.7.1. JSON
	137.4.7.2. XML

	137.4.8. Services Representations
	137.4.8.1. Service List Representation
	137.4.8.1.1. JSON
	137.4.8.1.2. XML

	137.4.8.2. Service Representations List Representation
	137.4.8.2.1. JSON
	137.4.8.2.2. XML

	137.4.9. Bundle Exception Representation
	137.4.9.1. JSON
	137.4.9.2. XML

	137.5. Clients
	137.5.1. Java Client
	137.5.2. JavaScript Client

	137.6. Extending the REST Management Service
	137.6.1. Extensions Resource
	137.6.1.1. GET

	137.6.2. Extensions Representation
	137.6.2.1. JSON
	137.6.2.2. XML

	137.7. XML Schema
	137.8. Capabilities
	137.8.1. osgi.implementation Capability
	137.8.2. osgi.service Capability

	137.9. Security
	137.10. org.osgi.service.rest
	137.10.1. Summary
	137.10.2. public interface RestApiExtension
	137.10.2.1. public static final String NAME = "org.osgi.rest.name"
	137.10.2.2. public static final String SERVICE = "org.osgi.rest.service"
	137.10.2.3. public static final String URI_PATH = "org.osgi.rest.uri.path"

	137.11. org.osgi.service.rest.client
	137.11.1. Summary
	137.11.2. public interface RestClient
	137.11.2.1. public BundleDTO getBundle(long id) throws Exception
	137.11.2.2. public BundleDTO getBundle(String bundlePath) throws Exception
	137.11.2.3. public Map<String, String> getBundleHeaders(long id) throws Exception
	137.11.2.4. public Map<String, String> getBundleHeaders(String bundlePath) throws Exception
	137.11.2.5. public Collection<String> getBundlePaths() throws Exception
	137.11.2.6. public Collection<BundleDTO> getBundles() throws Exception
	137.11.2.7. public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception
	137.11.2.8. public BundleStartLevelDTO getBundleStartLevel(String bundlePath) throws Exception
	137.11.2.9. public int getBundleState(long id) throws Exception
	137.11.2.10. public int getBundleState(String bundlePath) throws Exception
	137.11.2.11. public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception
	137.11.2.12. public Collection<String> getServicePaths() throws Exception
	137.11.2.13. public Collection<String> getServicePaths(String filter) throws Exception
	137.11.2.14. public ServiceReferenceDTO getServiceReference(long id) throws Exception
	137.11.2.15. public ServiceReferenceDTO getServiceReference(String servicePath) throws Exception
	137.11.2.16. public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception
	137.11.2.17. public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception
	137.11.2.18. public BundleDTO installBundle(String location) throws Exception
	137.11.2.19. public BundleDTO installBundle(String location, InputStream in) throws Exception
	137.11.2.20. public void setBundleStartLevel(long id, int startLevel) throws Exception
	137.11.2.21. public void setBundleStartLevel(String bundlePath, int startLevel) throws Exception
	137.11.2.22. public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception
	137.11.2.23. public void startBundle(long id) throws Exception
	137.11.2.24. public void startBundle(String bundlePath) throws Exception
	137.11.2.25. public void startBundle(long id, int options) throws Exception
	137.11.2.26. public void startBundle(String bundlePath, int options) throws Exception
	137.11.2.27. public void stopBundle(long id) throws Exception
	137.11.2.28. public void stopBundle(String bundlePath) throws Exception
	137.11.2.29. public void stopBundle(long id, int options) throws Exception
	137.11.2.30. public void stopBundle(String bundlePath, int options) throws Exception
	137.11.2.31. public BundleDTO uninstallBundle(long id) throws Exception
	137.11.2.32. public BundleDTO uninstallBundle(String bundlePath) throws Exception
	137.11.2.33. public BundleDTO updateBundle(long id) throws Exception
	137.11.2.34. public BundleDTO updateBundle(long id, String url) throws Exception
	137.11.2.35. public BundleDTO updateBundle(long id, InputStream in) throws Exception

	137.11.3. public interface RestClientFactory
	137.11.3.1. public RestClient createRestClient(URI uri)

	137.12. JavaScript Client API
	137.12.1. Summary
	137.12.2. interface OSGiRestClient
	137.12.2.1. void getBundle((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.2. void getBundleHeader((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.3. void getBundleRepresentations(OSGiRestCallback cb)
	137.12.2.4. void getBundles(OSGiRestCallback cb)
	137.12.2.5. void getBundleStartLevel((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.6. void getBundleState((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.7. void getFrameworkStartLevel(OSGiRestCallback cb)
	137.12.2.8. void getService((DOMString or long long) service, OSGiRestCallback cb)
	137.12.2.9. void getServiceRepresentations(OSGiRestCallback cb)
	137.12.2.10. void getServices(OSGiRestCallback cb)
	137.12.2.11. void installBundle((DOMString or ArrayBuffer) bundle, OSGiRestCallback cb)
	137.12.2.12. void setBundleStartLevel((DOMString or long long) bundle, dictionary bsl, OSGiRestCallback cb)
	137.12.2.13. void setBundleState((DOMString or long long) bundle, dictionary state, OSGiRestCallback cb)
	137.12.2.14. void setFrameworkStartLevel(dictionary fwsl, OSGiRestCallback cb)
	137.12.2.15. void startBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)
	137.12.2.16. void stopBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)
	137.12.2.17. void uninstallBundle((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.18. void updateBundle((DOMString or long long) bundle, (DOMString or ArrayBuffer) updated, OSGiRestCallback cb)

	137.12.3. callback interface OSGiRestCallback
	137.12.3.1. void success(object response)
	137.12.3.2. void failure(short httpCode, object response)

	137.13. References

	Chapter 138. Asynchronous Service Specification
	138.1. Introduction
	138.1.1. Essentials
	138.1.2. Entities

	138.2. Usage
	138.2.1. Synopsis
	138.2.2. Making Async Invocations
	138.2.3. Async Invocations of Void Methods
	138.2.4. Fire and Forget Calls
	138.2.5. Multi Threading

	138.3. Async Service
	138.3.1. Using the Async Service
	138.3.2. Asynchronous Failures
	138.3.3. Thread Safety and Instance Sharing
	138.3.4. Service Object Lifecycle Management

	138.4. The Async Mediator
	138.4.1. Building the Mediator Object
	138.4.2. Async Mediator Behaviors
	138.4.3. Thread Safety and Instance Sharing

	138.5. Fire and Forget Invocations
	138.6. Delegating to Asynchronous Implementations
	138.6.1. Obtaining a Promise from an Async Delegate
	138.6.2. Delegating Fire and Forget Calls to an Async Delegate
	138.6.3. Lifecycle for Service Objects When Delegating

	138.7. Capabilities
	138.8. Security
	138.9. org.osgi.service.async
	138.9.1. Summary
	138.9.2. public interface Async
	138.9.2.1. public Promise<R> call(R r)
	138.9.2.2. public Promise<?> call()
	138.9.2.3. public Promise<Void> execute()
	138.9.2.4. public T mediate(T target, Class<T> iface)
	138.9.2.5. public T mediate(ServiceReference<? extends T> target, Class<T> iface)

	138.10. org.osgi.service.async.delegate
	138.10.1. Summary
	138.10.2. public interface AsyncDelegate
	138.10.2.1. public Promise<?> async(Method m, Object[] args) throws Exception
	138.10.2.2. public boolean execute(Method m, Object[] args) throws Exception

	Chapter 140. Http Whiteboard Specification
	140.1. Introduction
	140.1.1. Entities

	140.2. The Servlet Context
	140.2.1. String getMimeType(String)
	140.2.2. String getRealPath(String)
	140.2.3. URL getResource(String)
	140.2.4. Set<String> getResourcePaths(String)
	140.2.5. Security Handling
	140.2.6. Behavior of the Servlet Context
	140.2.7. Relation to the Servlet Container

	140.3. Common Whiteboard Properties
	140.4. Registering Servlets
	140.4.1. Multipart File Upload
	140.4.2. Error Pages
	140.4.3. Asynchronous Request Handling
	140.4.4. Annotations

	140.5. Registering Servlet Filters
	140.5.1. Servlet Pre-Processors

	140.6. Registering Resources
	140.6.1. Overlapping Resource and Servlet Registrations

	140.7. Registering Listeners
	140.8. Life Cycle
	140.8.1. Whiteboard Service Dynamics and Active Requests

	140.9. The Http Service Runtime Service
	140.10. Integration with Http Service Contexts
	140.11. Configuration Properties
	140.12. Capabilities
	140.12.1. osgi.implementation Capability
	140.12.2. osgi.contract Capability
	140.12.3. osgi.service Capability

	140.13. Security
	140.13.1. Service Permissions
	140.13.2. Introspection
	140.13.3. Accessing Resources with the Default Servlet Context Helper Implementation
	140.13.4. Accessing Other Types of Resources
	140.13.5. Calling Http Whiteboard Services
	140.13.6. Multipart Upload

	140.14. org.osgi.service.http.context
	140.14.1. Summary
	140.14.2. public abstract class ServletContextHelper
	140.14.2.1. public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"
	140.14.2.2. public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"
	140.14.2.3. public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"
	140.14.2.4. public ServletContextHelper()
	140.14.2.5. public ServletContextHelper(Bundle bundle)
	140.14.2.6. public void finishSecurity(HttpServletRequest request, HttpServletResponse response)
	140.14.2.7. public String getMimeType(String name)
	140.14.2.8. public String getRealPath(String path)
	140.14.2.9. public URL getResource(String name)
	140.14.2.10. public Set<String> getResourcePaths(String path)
	140.14.2.11. public boolean handleSecurity(HttpServletRequest request, HttpServletResponse response) throws IOException

	140.15. org.osgi.service.http.runtime
	140.15.1. Summary
	140.15.2. public interface HttpServiceRuntime
	140.15.2.1. public RequestInfoDTO calculateRequestInfoDTO(String path)
	140.15.2.2. public RuntimeDTO getRuntimeDTO()

	140.15.3. public final class HttpServiceRuntimeConstants
	140.15.3.1. public static final String HTTP_SERVICE_ENDPOINT = "osgi.http.endpoint"
	140.15.3.2. public static final String HTTP_SERVICE_ID = "osgi.http.service.id"

	140.16. org.osgi.service.http.runtime.dto
	140.16.1. Summary
	140.16.2. public abstract class BaseServletDTO extends DTO
	140.16.2.1. public boolean asyncSupported
	140.16.2.2. public Map<String, String> initParams
	140.16.2.3. public String name
	140.16.2.4. public long serviceId
	140.16.2.5. public long servletContextId
	140.16.2.6. public String servletInfo
	140.16.2.7. public BaseServletDTO()

	140.16.3. public final class DTOConstants
	140.16.3.1. public static final int FAILURE_REASON_EXCEPTION_ON_INIT = 4
	140.16.3.2. public static final int FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING = 1
	140.16.3.3. public static final int FAILURE_REASON_SERVICE_IN_USE = 7
	140.16.3.4. public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 5
	140.16.3.5. public static final int FAILURE_REASON_SERVLET_CONTEXT_FAILURE = 2
	140.16.3.6. public static final int FAILURE_REASON_SERVLET_READ_FROM_DEFAULT_DENIED = 10
	140.16.3.7. public static final int FAILURE_REASON_SERVLET_WRITE_TO_LOCATION_DENIED = 8
	140.16.3.8. public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 3
	140.16.3.9. public static final int FAILURE_REASON_UNKNOWN = 0
	140.16.3.10. public static final int FAILURE_REASON_VALIDATION_FAILED = 6
	140.16.3.11. public static final int FAILURE_REASON_WHITEBOARD_WRITE_TO_DEFAULT_DENIED = 9
	140.16.3.12. public static final int FAILURE_REASON_WHITEBOARD_WRITE_TO_LOCATION_DENIED = 11

	140.16.4. public class ErrorPageDTO extends BaseServletDTO
	140.16.4.1. public long[] errorCodes
	140.16.4.2. public String[] exceptions
	140.16.4.3. public ErrorPageDTO()

	140.16.5. public class FailedErrorPageDTO extends ErrorPageDTO
	140.16.5.1. public int failureReason
	140.16.5.2. public FailedErrorPageDTO()

	140.16.6. public class FailedFilterDTO extends FilterDTO
	140.16.6.1. public int failureReason
	140.16.6.2. public FailedFilterDTO()

	140.16.7. public class FailedListenerDTO extends ListenerDTO
	140.16.7.1. public int failureReason
	140.16.7.2. public FailedListenerDTO()

	140.16.8. public class FailedPreprocessorDTO extends PreprocessorDTO
	140.16.8.1. public int failureReason
	140.16.8.2. public FailedPreprocessorDTO()

	140.16.9. public class FailedResourceDTO extends ResourceDTO
	140.16.9.1. public int failureReason
	140.16.9.2. public FailedResourceDTO()

	140.16.10. public class FailedServletContextDTO extends ServletContextDTO
	140.16.10.1. public int failureReason
	140.16.10.2. public FailedServletContextDTO()

	140.16.11. public class FailedServletDTO extends ServletDTO
	140.16.11.1. public int failureReason
	140.16.11.2. public FailedServletDTO()

	140.16.12. public class FilterDTO extends DTO
	140.16.12.1. public boolean asyncSupported
	140.16.12.2. public String[] dispatcher
	140.16.12.3. public Map<String, String> initParams
	140.16.12.4. public String name
	140.16.12.5. public String[] patterns
	140.16.12.6. public String[] regexs
	140.16.12.7. public long serviceId
	140.16.12.8. public long servletContextId
	140.16.12.9. public String[] servletNames
	140.16.12.10. public FilterDTO()

	140.16.13. public class ListenerDTO extends DTO
	140.16.13.1. public long serviceId
	140.16.13.2. public long servletContextId
	140.16.13.3. public String[] types
	140.16.13.4. public ListenerDTO()

	140.16.14. public class PreprocessorDTO extends DTO
	140.16.14.1. public Map<String, String> initParams
	140.16.14.2. public long serviceId
	140.16.14.3. public PreprocessorDTO()

	140.16.15. public class RequestInfoDTO extends DTO
	140.16.15.1. public FilterDTO[] filterDTOs
	140.16.15.2. public String path
	140.16.15.3. public ResourceDTO resourceDTO
	140.16.15.4. public long servletContextId
	140.16.15.5. public ServletDTO servletDTO
	140.16.15.6. public RequestInfoDTO()

	140.16.16. public class ResourceDTO extends DTO
	140.16.16.1. public String[] patterns
	140.16.16.2. public String prefix
	140.16.16.3. public long serviceId
	140.16.16.4. public long servletContextId
	140.16.16.5. public ResourceDTO()

	140.16.17. public class RuntimeDTO extends DTO
	140.16.17.1. public FailedErrorPageDTO[] failedErrorPageDTOs
	140.16.17.2. public FailedFilterDTO[] failedFilterDTOs
	140.16.17.3. public FailedListenerDTO[] failedListenerDTOs
	140.16.17.4. public FailedPreprocessorDTO[] failedPreprocessorDTOs
	140.16.17.5. public FailedResourceDTO[] failedResourceDTOs
	140.16.17.6. public FailedServletContextDTO[] failedServletContextDTOs
	140.16.17.7. public FailedServletDTO[] failedServletDTOs
	140.16.17.8. public PreprocessorDTO[] preprocessorDTOs
	140.16.17.9. public ServiceReferenceDTO serviceDTO
	140.16.17.10. public ServletContextDTO[] servletContextDTOs
	140.16.17.11. public RuntimeDTO()

	140.16.18. public class ServletContextDTO extends DTO
	140.16.18.1. public Map<String, Object> attributes
	140.16.18.2. public String contextPath
	140.16.18.3. public ErrorPageDTO[] errorPageDTOs
	140.16.18.4. public FilterDTO[] filterDTOs
	140.16.18.5. public Map<String, String> initParams
	140.16.18.6. public ListenerDTO[] listenerDTOs
	140.16.18.7. public String name
	140.16.18.8. public ResourceDTO[] resourceDTOs
	140.16.18.9. public long serviceId
	140.16.18.10. public ServletDTO[] servletDTOs
	140.16.18.11. public ServletContextDTO()

	140.16.19. public class ServletDTO extends BaseServletDTO
	140.16.19.1. public boolean multipartEnabled
	140.16.19.2. public int multipartFileSizeThreshold
	140.16.19.3. public String multipartLocation
	140.16.19.4. public long multipartMaxFileSize
	140.16.19.5. public long multipartMaxRequestSize
	140.16.19.6. public String[] patterns
	140.16.19.7. public ServletDTO()

	140.17. org.osgi.service.http.whiteboard
	140.17.1. Summary
	140.17.2. public final class HttpWhiteboardConstants
	140.17.2.1. public static final String DISPATCHER_ASYNC = "ASYNC"
	140.17.2.2. public static final String DISPATCHER_ERROR = "ERROR"
	140.17.2.3. public static final String DISPATCHER_FORWARD = "FORWARD"
	140.17.2.4. public static final String DISPATCHER_INCLUDE = "INCLUDE"
	140.17.2.5. public static final String DISPATCHER_REQUEST = "REQUEST"
	140.17.2.6. public static final String HTTP_SERVICE_CONTEXT_FILTER = "(osgi.http.whiteboard.context.httpservice=*)"
	140.17.2.7. public static final String HTTP_SERVICE_CONTEXT_PROPERTY = "osgi.http.whiteboard.context.httpservice"
	140.17.2.8. public static final String HTTP_WHITEBOARD_CONTEXT_INIT_PARAM_PREFIX = "context.init."
	140.17.2.9. public static final String HTTP_WHITEBOARD_CONTEXT_NAME = "osgi.http.whiteboard.context.name"
	140.17.2.10. public static final String HTTP_WHITEBOARD_CONTEXT_PATH = "osgi.http.whiteboard.context.path"
	140.17.2.11. public static final String HTTP_WHITEBOARD_CONTEXT_SELECT = "osgi.http.whiteboard.context.select"
	140.17.2.12. public static final String HTTP_WHITEBOARD_DEFAULT_CONTEXT_NAME = "default"
	140.17.2.13. public static final String HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED = "osgi.http.whiteboard.filter.asyncSupported"
	140.17.2.14. public static final String HTTP_WHITEBOARD_FILTER_DISPATCHER = "osgi.http.whiteboard.filter.dispatcher"
	140.17.2.15. public static final String HTTP_WHITEBOARD_FILTER_INIT_PARAM_PREFIX = "filter.init."
	140.17.2.16. public static final String HTTP_WHITEBOARD_FILTER_NAME = "osgi.http.whiteboard.filter.name"
	140.17.2.17. public static final String HTTP_WHITEBOARD_FILTER_PATTERN = "osgi.http.whiteboard.filter.pattern"
	140.17.2.18. public static final String HTTP_WHITEBOARD_FILTER_REGEX = "osgi.http.whiteboard.filter.regex"
	140.17.2.19. public static final String HTTP_WHITEBOARD_FILTER_SERVLET = "osgi.http.whiteboard.filter.servlet"
	140.17.2.20. public static final String HTTP_WHITEBOARD_IMPLEMENTATION = "osgi.http"
	140.17.2.21. public static final String HTTP_WHITEBOARD_LISTENER = "osgi.http.whiteboard.listener"
	140.17.2.22. public static final String HTTP_WHITEBOARD_PREPROCESSOR_INIT_PARAM_PREFIX = "preprocessor.init."
	140.17.2.23. public static final String HTTP_WHITEBOARD_RESOURCE_PATTERN = "osgi.http.whiteboard.resource.pattern"
	140.17.2.24. public static final String HTTP_WHITEBOARD_RESOURCE_PREFIX = "osgi.http.whiteboard.resource.prefix"
	140.17.2.25. public static final String HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED = "osgi.http.whiteboard.servlet.asyncSupported"
	140.17.2.26. public static final String HTTP_WHITEBOARD_SERVLET_ERROR_PAGE = "osgi.http.whiteboard.servlet.errorPage"
	140.17.2.27. public static final String HTTP_WHITEBOARD_SERVLET_INIT_PARAM_PREFIX = "servlet.init."
	140.17.2.28. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED = "osgi.http.whiteboard.servlet.multipart.enabled"
	140.17.2.29. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD = "osgi.http.whiteboard.servlet.multipart.fileSizeThreshold"
	140.17.2.30. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION = "osgi.http.whiteboard.servlet.multipart.location"
	140.17.2.31. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE = "osgi.http.whiteboard.servlet.multipart.maxFileSize"
	140.17.2.32. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE = "osgi.http.whiteboard.servlet.multipart.maxRequestSize"
	140.17.2.33. public static final String HTTP_WHITEBOARD_SERVLET_NAME = "osgi.http.whiteboard.servlet.name"
	140.17.2.34. public static final String HTTP_WHITEBOARD_SERVLET_PATTERN = "osgi.http.whiteboard.servlet.pattern"
	140.17.2.35. public static final String HTTP_WHITEBOARD_SPECIFICATION_VERSION = "1.1.0"
	140.17.2.36. public static final String HTTP_WHITEBOARD_TARGET = "osgi.http.whiteboard.target"

	140.17.3. public interface Preprocessor extends Filter

	140.18. org.osgi.service.http.whiteboard.annotations
	140.18.1. Summary
	140.18.2. @RequireHttpWhiteboard

	140.19. org.osgi.service.http.whiteboard.propertytypes
	140.19.1. Summary
	140.19.2. @HttpWhiteboardContext
	140.19.2.1. String name
	140.19.2.2. String path
	140.19.2.3. String PREFIX_ = "osgi.http.whiteboard.context."

	140.19.3. @HttpWhiteboardContextSelect
	140.19.3.1. String value
	140.19.3.2. String PREFIX_ = "osgi."

	140.19.4. @HttpWhiteboardFilterAsyncSupported
	140.19.4.1. boolean asyncSupported default true
	140.19.4.2. String PREFIX_ = "osgi.http.whiteboard.filter."

	140.19.5. @HttpWhiteboardFilterDispatcher
	140.19.5.1. DispatcherType[] value default javax.servlet.DispatcherType.REQUEST
	140.19.5.2. String PREFIX_ = "osgi."

	140.19.6. @HttpWhiteboardFilterName
	140.19.6.1. String value
	140.19.6.2. String PREFIX_ = "osgi."

	140.19.7. @HttpWhiteboardFilterPattern
	140.19.7.1. String[] value
	140.19.7.2. String PREFIX_ = "osgi."

	140.19.8. @HttpWhiteboardFilterRegex
	140.19.8.1. String[] value
	140.19.8.2. String PREFIX_ = "osgi."

	140.19.9. @HttpWhiteboardFilterServlet
	140.19.9.1. String[] value
	140.19.9.2. String PREFIX_ = "osgi."

	140.19.10. @HttpWhiteboardListener
	140.19.10.1. String PREFIX_ = "osgi."

	140.19.11. @HttpWhiteboardResource
	140.19.11.1. String[] pattern
	140.19.11.2. String prefix
	140.19.11.3. String PREFIX_ = "osgi.http.whiteboard.resource."

	140.19.12. @HttpWhiteboardServletAsyncSupported
	140.19.12.1. boolean asyncSupported default true
	140.19.12.2. String PREFIX_ = "osgi.http.whiteboard.servlet."

	140.19.13. @HttpWhiteboardServletErrorPage
	140.19.13.1. String[] errorPage
	140.19.13.2. String PREFIX_ = "osgi.http.whiteboard.servlet."

	140.19.14. @HttpWhiteboardServletMultipart
	140.19.14.1. boolean enabled default true
	140.19.14.2. int fileSizeThreshold default 0
	140.19.14.3. String location default ""
	140.19.14.4. long maxFileSize default -1L
	140.19.14.5. long maxRequestSize default -1L
	140.19.14.6. String PREFIX_ = "osgi.http.whiteboard.servlet.multipart."

	140.19.15. @HttpWhiteboardServletName
	140.19.15.1. String value
	140.19.15.2. String PREFIX_ = "osgi."

	140.19.16. @HttpWhiteboardServletPattern
	140.19.16.1. String[] value
	140.19.16.2. String PREFIX_ = "osgi."

	140.19.17. @HttpWhiteboardTarget
	140.19.17.1. String value
	140.19.17.2. String PREFIX_ = "osgi."

	140.20. References
	140.21. Changes

	Chapter 147. Transaction Control Service Specification
	147.1. Introduction
	147.1.1. Essentials
	147.1.2. Entities

	147.2. Usage
	147.2.1. Synopsis
	147.2.2. Running Scoped Work
	147.2.3. Accessing Scoped Resources
	147.2.4. Exception Management
	147.2.4.1. Handling Exceptions
	147.2.4.2. Avoiding Transaction Rollback

	147.2.5. Multi Threading

	147.3. Transaction Control Service
	147.3.1. Scope Life Cycle
	147.3.2. Scopes and Exception Management
	147.3.2.1. Client Exceptions
	147.3.2.2. Rethrowing Client Exceptions
	147.3.2.3. Exceptions Generated by the Transaction Control Service

	147.3.3. Transaction Scope lifecycle
	147.3.3.1. Triggering Rollback in Transaction Scopes
	147.3.3.2. Avoiding Rollback
	147.3.3.3. Rollback in inherited transactions
	147.3.3.4. Read Only transactions
	147.3.3.4.1. Determining whether a Transaction is read only
	147.3.3.4.2. Writing to resources using in a read only transaction
	147.3.3.4.3. Changing the read state in nested transactions

	147.4. The TransactionContext
	147.4.1. Transaction Lifecycle callbacks
	147.4.1.1. Pre-completion Callbacks
	147.4.1.2. Post-completion Callbacks

	147.4.2. Scoped variables
	147.4.3. Transaction Key
	147.4.4. The Transaction Status
	147.4.5. Local Transaction scopes
	147.4.5.1. The Local Transaction Lifecycle
	147.4.5.2. Local Transaction Support Service Properties

	147.4.6. XA Transaction scopes
	147.4.6.1. The XA Transaction Lifecycle
	147.4.6.2. XA Transaction Support Service Properties

	147.5. Resource Providers
	147.5.1. Generic Resource Providers
	147.5.1.1. The Basic Resource Lifecycle
	147.5.1.2. Unscoped Resource Access
	147.5.1.3. Closing, Flushing and Committing Resources
	147.5.1.4. Releasing Resource Providers

	147.5.2. JDBC Resource Providers
	147.5.2.1. JDBC and Transaction Scopes
	147.5.2.2. JDBC and No Transaction Scopes
	147.5.2.3. Closing the JDBC connection
	147.5.2.4. The JDBCConnectionProviderFactory
	147.5.2.4.1. JDBCConnectionProvider Configuration
	147.5.2.4.2. Creating a JDBCConnectionProvider Using a DataSourceFactory
	147.5.2.4.3. Creating a JDBCConnectionProvider Using a DataSource
	147.5.2.4.4. Creating a JDBCConnectionProvider Using an XADataSource
	147.5.2.4.5. Creating a JDBCConnectionProvider Using a Driver
	147.5.2.4.6. Releasing a JDBCConnectionProvider

	147.5.2.5. JDBCResourceProvider Examples

	147.5.3. JPA
	147.5.3.1. JPA and Transaction Scopes
	147.5.3.2. JPA and No Transaction Scopes
	147.5.3.3. RESOURCE_LOCAL and JTA EntityManagerFactory instances
	147.5.3.4. The JPAEntityManagerProvider Factory
	147.5.3.4.1. Creating a JPAEntityManagerProvider Using an EntityManagerFactoryBuilder
	147.5.3.4.2. Creating a JPAEntityManagerProvider Using an EntityManagerFactory
	147.5.3.4.3. Releasing a JPAEntityManagerProvider

	147.5.4. Connection Pooling
	147.5.4.1. Pooling in OSGi

	147.6. Transaction Recovery
	147.6.1. Enlisting a Recoverable Resource in a Transaction
	147.6.2. Providing an XAResource for Recovery
	147.6.3. Identifying implementations which support recovery

	147.7. Capabilities
	147.8. Security
	147.9. org.osgi.service.transaction.control
	147.9.1. Summary
	147.9.2. public interface LocalResource
	147.9.2.1. public void commit() throws TransactionException
	147.9.2.2. public void rollback() throws TransactionException

	147.9.3. public interface ResourceProvider<T>
	147.9.3.1. public T getResource(TransactionControl txControl) throws TransactionException

	147.9.4. public class ScopedWorkException extends RuntimeException
	147.9.4.1. public ScopedWorkException(String message, Throwable cause, TransactionContext context)
	147.9.4.2. public T extends Throwable as(Class<T> throwable) throws T
	147.9.4.3. public RuntimeException asOneOf(Class<A> a, Class b) throws A, B
	147.9.4.4. public RuntimeException asOneOf(Class<A> a, Class b, Class<C> c) throws A, B, C
	147.9.4.5. public RuntimeException asOneOf(Class<A> a, Class b, Class<C> c, Class<D> d) throws A, B, C, D
	147.9.4.6. public RuntimeException asRuntimeException()
	147.9.4.7. public TransactionContext ongoingContext()

	147.9.5. public abstract class TransactionBuilder implements TransactionStarter
	147.9.5.1. protected final List<Class<? extends Throwable>> noRollbackFor
	147.9.5.2. protected final List<Class<? extends Throwable>> rollbackFor
	147.9.5.3. public TransactionBuilder()
	147.9.5.4. public final TransactionBuilder noRollbackFor(Class<? extends Throwable> t, Class<? extends Throwable>... throwables)
	147.9.5.5. public abstract TransactionBuilder readOnly()
	147.9.5.6. public final TransactionBuilder rollbackFor(Class<? extends Throwable> t, Class<? extends Throwable>... throwables)

	147.9.6. public interface TransactionContext
	147.9.6.1. public boolean getRollbackOnly() throws IllegalStateException
	147.9.6.2. public Object getScopedValue(Object key)
	147.9.6.3. public Object getTransactionKey()
	147.9.6.4. public TransactionStatus getTransactionStatus()
	147.9.6.5. public boolean isReadOnly()
	147.9.6.6. public void postCompletion(Consumer<TransactionStatus> job) throws IllegalStateException
	147.9.6.7. public void preCompletion(Runnable job) throws IllegalStateException
	147.9.6.8. public void putScopedValue(Object key, Object value)
	147.9.6.9. public void registerLocalResource(LocalResource resource) throws IllegalStateException
	147.9.6.10. public void registerXAResource(XAResource resource, String recoveryId) throws IllegalStateException
	147.9.6.11. public void setRollbackOnly() throws IllegalStateException
	147.9.6.12. public boolean supportsLocal()
	147.9.6.13. public boolean supportsXA()

	147.9.7. public interface TransactionControl extends TransactionStarter
	147.9.7.1. public boolean activeScope()
	147.9.7.2. public boolean activeTransaction()
	147.9.7.3. public TransactionBuilder build()
	147.9.7.4. public TransactionContext getCurrentContext()
	147.9.7.5. public boolean getRollbackOnly() throws IllegalStateException
	147.9.7.6. public void ignoreException(Throwable t) throws IllegalStateException
	147.9.7.7. public void setRollbackOnly() throws IllegalStateException

	147.9.8. public class TransactionException extends RuntimeException
	147.9.8.1. public TransactionException(String message)
	147.9.8.2. public TransactionException(String message, Throwable cause)

	147.9.9. public class TransactionRolledBackException extends TransactionException
	147.9.9.1. public TransactionRolledBackException(String message)
	147.9.9.2. public TransactionRolledBackException(String message, Throwable cause)

	147.9.10. public interface TransactionStarter
	147.9.10.1. public T notSupported(Callable<T> work) throws TransactionException, ScopedWorkException
	147.9.10.2. public T required(Callable<T> work) throws TransactionException, TransactionRolledBackException, ScopedWorkException
	147.9.10.3. public T requiresNew(Callable<T> work) throws TransactionException, TransactionRolledBackException, ScopedWorkException
	147.9.10.4. public T supports(Callable<T> work) throws TransactionException, ScopedWorkException

	147.9.11. enum TransactionStatus
	147.9.11.1. NO_TRANSACTION
	147.9.11.2. ACTIVE
	147.9.11.3. MARKED_ROLLBACK
	147.9.11.4. PREPARING
	147.9.11.5. PREPARED
	147.9.11.6. COMMITTING
	147.9.11.7. COMMITTED
	147.9.11.8. ROLLING_BACK
	147.9.11.9. ROLLED_BACK
	147.9.11.10. public static TransactionStatus valueOf(String name)
	147.9.11.11. public static TransactionStatus[] values()

	147.10. org.osgi.service.transaction.control.jdbc
	147.10.1. Summary
	147.10.2. public interface JDBCConnectionProvider extends ResourceProvider<Connection>
	147.10.3. public interface JDBCConnectionProviderFactory
	147.10.3.1. public static final String CONNECTION_LIFETIME = "osgi.connection.lifetime"
	147.10.3.2. public static final String CONNECTION_POOLING_ENABLED = "osgi.connection.pooling.enabled"
	147.10.3.3. public static final String CONNECTION_TIMEOUT = "osgi.connection.timeout"
	147.10.3.4. public static final String IDLE_TIMEOUT = "osgi.idle.timeout"
	147.10.3.5. public static final String LOCAL_ENLISTMENT_ENABLED = "osgi.local.enabled"
	147.10.3.6. public static final String MAX_CONNECTIONS = "osgi.connection.max"
	147.10.3.7. public static final String MIN_CONNECTIONS = "osgi.connection.min"
	147.10.3.8. public static final String OSGI_RECOVERY_IDENTIFIER = "osgi.recovery.identifier"
	147.10.3.9. public static final String USE_DRIVER = "osgi.use.driver"
	147.10.3.10. public static final String XA_ENLISTMENT_ENABLED = "osgi.xa.enabled"
	147.10.3.11. public static final String XA_RECOVERY_ENABLED = "osgi.recovery.enabled"
	147.10.3.12. public JDBCConnectionProvider getProviderFor(DataSourceFactory dsf, Properties jdbcProperties, Map<String, Object> resourceProviderProperties)
	147.10.3.13. public JDBCConnectionProvider getProviderFor(DataSource ds, Map<String, Object> resourceProviderProperties)
	147.10.3.14. public JDBCConnectionProvider getProviderFor(Driver driver, Properties jdbcProperties, Map<String, Object> resourceProviderProperties)
	147.10.3.15. public JDBCConnectionProvider getProviderFor(XADataSource ds, Map<String, Object> resourceProviderProperties)
	147.10.3.16. public void releaseProvider(JDBCConnectionProvider provider)

	147.11. org.osgi.service.transaction.control.jpa
	147.11.1. Summary
	147.11.2. public interface JPAEntityManagerProvider extends ResourceProvider<EntityManager>
	147.11.3. public interface JPAEntityManagerProviderFactory
	147.11.3.1. public static final String CONNECTION_LIFETIME = "osgi.connection.lifetime"
	147.11.3.2. public static final String CONNECTION_POOLING_ENABLED = "osgi.connection.pooling.enabled"
	147.11.3.3. public static final String CONNECTION_TIMEOUT = "osgi.connection.timeout"
	147.11.3.4. public static final String IDLE_TIMEOUT = "osgi.idle.timeout"
	147.11.3.5. public static final String LOCAL_ENLISTMENT_ENABLED = "osgi.local.enabled"
	147.11.3.6. public static final String MAX_CONNECTIONS = "osgi.connection.max"
	147.11.3.7. public static final String MIN_CONNECTIONS = "osgi.connection.min"
	147.11.3.8. public static final String OSGI_RECOVERY_IDENTIFIER = "osgi.recovery.identifier"
	147.11.3.9. public static final String PRE_ENLISTED_DB_CONNECTION = "osgi.jdbc.enlisted"
	147.11.3.10. public static final String TRANSACTIONAL_DB_CONNECTION = "osgi.jdbc.provider"
	147.11.3.11. public static final String XA_ENLISTMENT_ENABLED = "osgi.xa.enabled"
	147.11.3.12. public static final String XA_RECOVERY_ENABLED = "osgi.recovery.enabled"
	147.11.3.13. public JPAEntityManagerProvider getProviderFor(EntityManagerFactoryBuilder emfb, Map<String, Object> jpaProperties, Map<String, Object> resourceProviderProperties)
	147.11.3.14. public JPAEntityManagerProvider getProviderFor(EntityManagerFactory emf, Map<String, Object> resourceProviderProperties)
	147.11.3.15. public void releaseProvider(JPAEntityManagerProvider provider)

	147.12. org.osgi.service.transaction.control.recovery
	147.12.1. Summary
	147.12.2. public interface RecoverableXAResource
	147.12.2.1. public static final String OSGI_RECOVERY_ENABLED = "osgi.recovery.enabled"
	147.12.2.2. public String getId()
	147.12.2.3. public XAResource getXAResource() throws Exception
	147.12.2.4. public void releaseXAResource(XAResource xaRes)

	Chapter 148. Cluster Information Specification
	148.1. Introduction
	148.1.1. Essentials
	148.1.2. Entities

	148.2. OSGi frameworks in a cluster
	148.3. Node Status Service
	148.4. Framework Node Status Service
	148.5. Application-specific Node Status metadata
	148.6. Security
	148.6.1. Cluster Tag Permission
	148.6.2. Required Permissions
	148.6.3. Remote service visibility in a cluster

	148.7. org.osgi.service.clusterinfo
	148.7.1. Summary
	148.7.2. public final class ClusterTagPermission extends Permission
	148.7.2.1. public static final String ADD = "add"
	148.7.2.2. public ClusterTagPermission(String tag, String actions)
	148.7.2.3. public boolean equals(Object obj)
	148.7.2.4. public String getActions()
	148.7.2.5. public int hashCode()
	148.7.2.6. public boolean implies(Permission p)
	148.7.2.7. public PermissionCollection newPermissionCollection()

	148.7.3. public interface FrameworkManager
	148.7.3.1. public BundleDTO getBundle(long id) throws Exception
	148.7.3.2. public Map<String, String> getBundleHeaders(long id) throws Exception
	148.7.3.3. public Collection<BundleDTO> getBundles() throws Exception
	148.7.3.4. public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception
	148.7.3.5. public int getBundleState(long id) throws Exception
	148.7.3.6. public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception
	148.7.3.7. public ServiceReferenceDTO getServiceReference(long id) throws Exception
	148.7.3.8. public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception
	148.7.3.9. public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception
	148.7.3.10. public BundleDTO installBundle(String location) throws Exception
	148.7.3.11. public void setBundleStartLevel(long id, int startLevel) throws Exception
	148.7.3.12. public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception
	148.7.3.13. public void startBundle(long id) throws Exception
	148.7.3.14. public void startBundle(long id, int options) throws Exception
	148.7.3.15. public void stopBundle(long id) throws Exception
	148.7.3.16. public void stopBundle(long id, int options) throws Exception
	148.7.3.17. public BundleDTO uninstallBundle(long id) throws Exception
	148.7.3.18. public BundleDTO updateBundle(long id) throws Exception
	148.7.3.19. public BundleDTO updateBundle(long id, String url) throws Exception

	148.7.4. public interface FrameworkNodeStatus extends NodeStatus, FrameworkManager
	148.7.5. public interface NodeStatus
	148.7.5.1. public Map<String, Object> getMetrics(String... names)

	148.8. org.osgi.service.clusterinfo.dto
	148.8.1. Summary
	148.8.2. public class FrameworkNodeStatusDTO extends NodeStatusDTO
	148.8.2.1. public String java_runtime_version
	148.8.2.2. public String java_specification_version
	148.8.2.3. public String java_version
	148.8.2.4. public String java_vm_version
	148.8.2.5. public String org_osgi_framework_os_name
	148.8.2.6. public String org_osgi_framework_processor
	148.8.2.7. public String org_osgi_framework_version
	148.8.2.8. public FrameworkNodeStatusDTO()

	148.8.3. public class NodeStatusDTO extends DTO
	148.8.3.1. public String cluster
	148.8.3.2. public String country
	148.8.3.3. public String[] endpoints
	148.8.3.4. public String id
	148.8.3.5. public String location
	148.8.3.6. public String parentid
	148.8.3.7. public static final String PREFIX_ = "osgi.clusterinfo."
	148.8.3.8. public String[] privateEndpoints
	148.8.3.9. public String region
	148.8.3.10. public String[] tags
	148.8.3.11. public String vendor
	148.8.3.12. public String version
	148.8.3.13. public String zone
	148.8.3.14. public NodeStatusDTO()

	Chapter 150. Configurator Specification
	150.1. Introduction
	150.2. Entities
	150.3. Configuration Resources
	150.3.1. Configuration Resource Format
	150.3.2. PIDs, Factory Configurations and Targeted PIDs
	150.3.3. Configuration Dictionary
	150.3.4. Data Types
	150.3.4.1. Binary Data

	150.3.5. Ranking
	150.3.6. Overwrite Policies

	150.4. Bundle Configuration Resources
	150.5. Initial Configurations
	150.6. Life Cycle
	150.7. Grouping and Coordinations
	150.8. Security
	150.8.1. Configuration Permission
	150.8.2. Service Permission
	150.8.3. Configuration Admin Service
	150.8.4. File Permission

	150.9. Capabilities
	150.9.1. osgi.extender Capability

	150.10. osgi.configuration Namespace
	150.11. Configuration Resources in a Repository
	150.12. org.osgi.service.configurator
	150.12.1. Summary
	150.12.2. public final class ConfiguratorConstants
	150.12.2.1. public static final String CONFIGURATOR_BINARIES = "configurator.binaries"
	150.12.2.2. public static final String CONFIGURATOR_EXTENDER_NAME = "osgi.configurator"
	150.12.2.3. public static final String CONFIGURATOR_INITIAL = "configurator.initial"
	150.12.2.4. public static final String CONFIGURATOR_SPECIFICATION_VERSION = "1.0"
	150.12.2.5. public static final String POLICY_DEFAULT = "default"
	150.12.2.6. public static final String POLICY_FORCE = "force"
	150.12.2.7. public static final String PROPERTY_POLICY = ":configurator:policy"
	150.12.2.8. public static final String PROPERTY_PREFIX = ":configurator:"
	150.12.2.9. public static final String PROPERTY_RANKING = ":configurator:ranking"
	150.12.2.10. public static final String PROPERTY_RESOURCE_VERSION = ":configurator:resource-version"
	150.12.2.11. public static final String PROPERTY_SYMBOLIC_NAME = ":configurator:symbolic-name"
	150.12.2.12. public static final String PROPERTY_VERSION = ":configurator:version"

	150.13. org.osgi.service.configurator.annotations
	150.13.1. Summary
	150.13.2. @RequireConfigurator
	150.13.2.1. String[] value default {}

	150.14. org.osgi.service.configurator.namespace
	150.14.1. Summary
	150.14.2. public final class ConfigurationNamespace extends Namespace
	150.14.2.1. public static final String CONFIGURATION_NAMESPACE = "osgi.configuration"
	150.14.2.2. public static final String FACTORY_PID_ATTRIBUTE = "service.factoryPid"
	150.14.2.3. public static final String SERVICE_PID_ATTRIBUTE = "service.pid"

	150.15. References

	Chapter 151. JAX-RS Whiteboard Specification
	151.1. Introduction
	151.1.1. Entities

	151.2. The JAX-RS Whiteboard
	151.2.1. The JAX-RS Service Runtime Service
	151.2.2. Inspecting the Runtime DTOs
	151.2.2.1. DTO properties
	151.2.2.2. Failure DTOs

	151.2.3. Relation to the Servlet Container
	151.2.4. Isolation between JAX-RS Whiteboards

	151.3. Common Whiteboard Properties
	151.4. Registering JAX-RS Resources
	151.4.1. JAX-RS Resource mapping
	151.4.1.1. Clashing resource mappings

	151.4.2. JAX-RS Whiteboard Resource Lifecycle
	151.4.2.1. Resource Context Injection
	151.4.2.2. Request-Scoped Resources
	151.4.2.3. Asynchronous Responses

	151.4.3. Resource Service Properties
	151.4.4. A JAX-RS Whiteboard Resource Example

	151.5. Registering JAX-RS Extensions
	151.5.1. Name Binding and JAX-RS Extensions
	151.5.2. Extension ordering
	151.5.3. Extension dependencies
	151.5.4. Built in extensions
	151.5.5. JAX-RS Whiteboard Extension Lifecycle
	151.5.6. Extension Service Properties
	151.5.7. A JAX-RS Whiteboard Extension Example

	151.6. Registering JAX-RS Applications
	151.6.1. Application shadowing
	151.6.2. Application Extension Dependencies
	151.6.3. Application Service Properties
	151.6.4. Accessing the Application service properties
	151.6.5. A JAX-RS Whiteboard Application Example

	151.7. Advertising JAX-RS Endpoints
	151.8. Whiteboard Error Handling
	151.9. The JAX-RS Client API
	151.9.1. Client Filters, Interceptors, Readers and Writers
	151.9.2. Reactive Clients
	151.9.3. Consuming Server Sent Events

	151.10. Portability and Interoperability
	151.10.1. Media Type support
	151.10.1.1. Media Type names, wildcards and suffixes
	151.10.1.2. Media Type Selection Example

	151.11. Capabilities
	151.11.1. osgi.implementation Capability
	151.11.2. osgi.contract Capability
	151.11.3. osgi.service Capability

	151.12. Security
	151.12.1. Service Permissions
	151.12.2. Runtime Introspection
	151.12.3. Calling JAX-RS Whiteboard Services

	151.13. org.osgi.service.jaxrs.client
	151.13.1. Summary
	151.13.2. public interface PromiseRxInvoker extends RxInvoker<Promise>
	151.13.2.1. public Promise<Response> delete()
	151.13.2.2. public Promise<R> delete(Class<R> arg0)
	151.13.2.3. public Promise<R> delete(GenericType<R> arg0)
	151.13.2.4. public Promise<Response> get()
	151.13.2.5. public Promise<R> get(Class<R> arg0)
	151.13.2.6. public Promise<R> get(GenericType<R> arg0)
	151.13.2.7. public Promise<Response> head()
	151.13.2.8. public Promise<R> method(String arg0, Class<R> arg1)
	151.13.2.9. public Promise<R> method(String arg0, Entity<?> arg1, Class<R> arg2)
	151.13.2.10. public Promise<R> method(String arg0, Entity<?> arg1, GenericType<R> arg2)
	151.13.2.11. public Promise<Response> method(String arg0, Entity<?> arg1)
	151.13.2.12. public Promise<R> method(String arg0, GenericType<R> arg1)
	151.13.2.13. public Promise<Response> method(String arg0)
	151.13.2.14. public Promise<Response> options()
	151.13.2.15. public Promise<R> options(Class<R> arg0)
	151.13.2.16. public Promise<R> options(GenericType<R> arg0)
	151.13.2.17. public Promise<R> post(Entity<?> arg0, Class<R> arg1)
	151.13.2.18. public Promise<R> post(Entity<?> arg0, GenericType<R> arg1)
	151.13.2.19. public Promise<Response> post(Entity<?> arg0)
	151.13.2.20. public Promise<R> put(Entity<?> arg0, Class<R> arg1)
	151.13.2.21. public Promise<R> put(Entity<?> arg0, GenericType<R> arg1)
	151.13.2.22. public Promise<Response> put(Entity<?> arg0)
	151.13.2.23. public Promise<Response> trace()
	151.13.2.24. public Promise<R> trace(Class<R> arg0)
	151.13.2.25. public Promise<R> trace(GenericType<R> arg0)

	151.13.3. public interface SseEventSourceFactory
	151.13.3.1. public SseEventSource.Builder newBuilder(WebTarget target)
	151.13.3.2. public SseEventSource newSource(WebTarget target)

	151.14. org.osgi.service.jaxrs.runtime
	151.14.1. Summary
	151.14.2. public interface JaxrsEndpoint
	151.14.2.1. public static final String JAX_RS_BUNDLE_ID = "osgi.jaxrs.bundle.id"
	151.14.2.2. public static final String JAX_RS_BUNDLE_SYMBOLICNAME = "osgi.jaxrs.bundle.symbolicname"
	151.14.2.3. public static final String JAX_RS_BUNDLE_VERSION = "osgi.jaxrs.bundle.version"
	151.14.2.4. public static final String JAX_RS_SERVICE_ID = "osgi.jaxrs.service.id"
	151.14.2.5. public static final String JAX_RS_URI = "osgi.jaxrs.uri"

	151.14.3. public interface JaxrsServiceRuntime
	151.14.3.1. public RuntimeDTO getRuntimeDTO()

	151.14.4. public final class JaxrsServiceRuntimeConstants
	151.14.4.1. public static final String JAX_RS_SERVICE_ENDPOINT = "osgi.jaxrs.endpoint"

	151.15. org.osgi.service.jaxrs.runtime.dto
	151.15.1. Summary
	151.15.2. public class ApplicationDTO extends BaseApplicationDTO
	151.15.2.1. public ResourceMethodInfoDTO[] resourceMethods
	151.15.2.2. public ApplicationDTO()

	151.15.3. public abstract class BaseApplicationDTO extends BaseDTO
	151.15.3.1. public String base
	151.15.3.2. public ExtensionDTO[] extensionDTOs
	151.15.3.3. public ResourceDTO[] resourceDTOs
	151.15.3.4. public BaseApplicationDTO()

	151.15.4. public abstract class BaseDTO extends DTO
	151.15.4.1. public String name
	151.15.4.2. public long serviceId
	151.15.4.3. public BaseDTO()

	151.15.5. public abstract class BaseExtensionDTO extends BaseDTO
	151.15.5.1. public String[] extensionTypes
	151.15.5.2. public BaseExtensionDTO()

	151.15.6. public final class DTOConstants
	151.15.6.1. public static final int FAILURE_REASON_DUPLICATE_NAME = 6
	151.15.6.2. public static final int FAILURE_REASON_NOT_AN_EXTENSION_TYPE = 4
	151.15.6.3. public static final int FAILURE_REASON_REQUIRED_APPLICATION_UNAVAILABLE = 7
	151.15.6.4. public static final int FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE = 5
	151.15.6.5. public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 2
	151.15.6.6. public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 1
	151.15.6.7. public static final int FAILURE_REASON_UNKNOWN = 0
	151.15.6.8. public static final int FAILURE_REASON_VALIDATION_FAILED = 3

	151.15.7. public class ExtensionDTO extends BaseExtensionDTO
	151.15.7.1. public String[] consumes
	151.15.7.2. public ResourceDTO[] filteredByName
	151.15.7.3. public String[] nameBindings
	151.15.7.4. public String[] produces
	151.15.7.5. public ExtensionDTO()

	151.15.8. public class FailedApplicationDTO extends BaseApplicationDTO
	151.15.8.1. public int failureReason
	151.15.8.2. public FailedApplicationDTO()

	151.15.9. public class FailedExtensionDTO extends BaseExtensionDTO
	151.15.9.1. public int failureReason
	151.15.9.2. public FailedExtensionDTO()

	151.15.10. public class FailedResourceDTO extends BaseDTO
	151.15.10.1. public int failureReason
	151.15.10.2. public FailedResourceDTO()

	151.15.11. public class ResourceDTO extends BaseDTO
	151.15.11.1. public ResourceMethodInfoDTO[] resourceMethods
	151.15.11.2. public ResourceDTO()

	151.15.12. public class ResourceMethodInfoDTO extends DTO
	151.15.12.1. public String[] consumingMimeType
	151.15.12.2. public String method
	151.15.12.3. public String[] nameBindings
	151.15.12.4. public String path
	151.15.12.5. public String[] producingMimeType
	151.15.12.6. public ResourceMethodInfoDTO()

	151.15.13. public class RuntimeDTO extends DTO
	151.15.13.1. public ApplicationDTO[] applicationDTOs
	151.15.13.2. public ApplicationDTO defaultApplication
	151.15.13.3. public FailedApplicationDTO[] failedApplicationDTOs
	151.15.13.4. public FailedExtensionDTO[] failedExtensionDTOs
	151.15.13.5. public FailedResourceDTO[] failedResourceDTOs
	151.15.13.6. public ServiceReferenceDTO serviceDTO
	151.15.13.7. public RuntimeDTO()

	151.16. org.osgi.service.jaxrs.whiteboard
	151.16.1. Summary
	151.16.2. public final class JaxrsWhiteboardConstants
	151.16.2.1. public static final String JAX_RS_APPLICATION_BASE = "osgi.jaxrs.application.base"
	151.16.2.2. public static final String JAX_RS_APPLICATION_SELECT = "osgi.jaxrs.application.select"
	151.16.2.3. public static final String JAX_RS_APPLICATION_SERVICE_PROPERTIES = "osgi.jaxrs.application.serviceProperties"
	151.16.2.4. public static final String JAX_RS_DEFAULT_APPLICATION = ".default"
	151.16.2.5. public static final String JAX_RS_EXTENSION = "osgi.jaxrs.extension"
	151.16.2.6. public static final String JAX_RS_EXTENSION_SELECT = "osgi.jaxrs.extension.select"
	151.16.2.7. public static final String JAX_RS_MEDIA_TYPE = "osgi.jaxrs.media.type"
	151.16.2.8. public static final String JAX_RS_NAME = "osgi.jaxrs.name"
	151.16.2.9. public static final String JAX_RS_RESOURCE = "osgi.jaxrs.resource"
	151.16.2.10. public static final String JAX_RS_WHITEBOARD_IMPLEMENTATION = "osgi.jaxrs"
	151.16.2.11. public static final String JAX_RS_WHITEBOARD_SPECIFICATION_VERSION = "1.0.0"
	151.16.2.12. public static final String JAX_RS_WHITEBOARD_TARGET = "osgi.jaxrs.whiteboard.target"

	151.17. org.osgi.service.jaxrs.whiteboard.annotations
	151.17.1. Summary
	151.17.2. @RequireJaxrsWhiteboard

	151.18. org.osgi.service.jaxrs.whiteboard.propertytypes
	151.18.1. Summary
	151.18.2. @JaxrsApplicationBase
	151.18.2.1. String value
	151.18.2.2. String PREFIX_ = "osgi."

	151.18.3. @JaxrsApplicationSelect
	151.18.3.1. String value
	151.18.3.2. String PREFIX_ = "osgi."

	151.18.4. @JaxrsExtension
	151.18.4.1. String PREFIX_ = "osgi."

	151.18.5. @JaxrsExtensionSelect
	151.18.5.1. String[] value
	151.18.5.2. String PREFIX_ = "osgi."

	151.18.6. @JaxrsMediaType
	151.18.6.1. String[] value
	151.18.6.2. String PREFIX_ = "osgi."

	151.18.7. @JaxrsName
	151.18.7.1. String value
	151.18.7.2. String PREFIX_ = "osgi."

	151.18.8. @JaxrsResource
	151.18.8.1. String PREFIX_ = "osgi."

	151.18.9. @JaxrsWhiteboardTarget
	151.18.9.1. String value
	151.18.9.2. String PREFIX_ = "osgi."

	151.18.10. @JSONRequired
	151.18.10.1. String osgi_jaxrs_extension_select default "(osgi.jaxrs.media.type=application/json)"
	151.18.10.2. String FILTER = "(osgi.jaxrs.media.type=application/json)"

	151.19. References

	Chapter 152. CDI Integration Specification
	152.1. Introduction
	152.1.1. Essentials
	152.1.2. Entities
	152.1.3. Synopsis

	152.2. Components
	152.3. Component Scope
	152.3.1. Contexts
	152.3.1.1. When Contexts are Created

	152.4. Container Component
	152.4.1. Container Component Configuration
	152.4.2. Container Component Life Cycle

	152.5. Standard Definitions
	152.5.1. Annotation Inheritance
	152.5.2. Code Examples

	152.6. Single Component
	152.6.1. Single Component Naming
	152.6.2. Single Component Configuration

	152.7. Factory Component
	152.7.1. Factory Component Naming
	152.7.2. Factory Component Configuration

	152.8. Component Properties
	152.8.1. Reference Properties
	152.8.1.1. Target Property
	152.8.1.2. Minimum Cardinality Property

	152.9. Bean Property Types
	152.9.1. Bean Property Type Mapping
	152.9.2. Coercing Bean Property Type Values
	152.9.3. Standard Bean Property Types

	152.10. Providing Services
	152.10.1. @Service applied to bean class
	152.10.2. @Service applied to type use
	152.10.3. @Service applied to Producers
	152.10.4. @Service Type Restrictions
	152.10.5. Service Properties
	152.10.5.1. Container component service properties

	152.10.6. Service Scope
	152.10.7. Container Component Services
	152.10.8. Single Component Services
	152.10.9. Factory Component Services

	152.11. Component Property Injection Points
	152.11.1. Coordinator Support

	152.12. Reference Injection Points
	152.12.1. Reference injection point types
	152.12.2. Reference Service scope
	152.12.3. Bean Service Objects
	152.12.4. Reference Greediness
	152.12.5. Service Type
	152.12.6. Any Service Type
	152.12.7. Target Filter
	152.12.7.1. Bean Property Types as target filters

	152.12.8. Reference Names
	152.12.9. Static References
	152.12.10. Static Optional References
	152.12.11. Static Multi-cardinality References
	152.12.12. Default Minimum Cardinality
	152.12.13. Dynamic References

	152.13. Interacting with Service Events
	152.14. CDI Component Runtime
	152.14.1. Relationship to the OSGi Framework
	152.14.2. Injecting the Bundle Context
	152.14.3. Starting and Stopping CCR
	152.14.4. Logging Messages
	152.14.5. Bundle Activator Interaction
	152.14.6. Introspection
	152.14.7. Logger Support
	152.14.8. Disabling Components
	152.14.9. Container Component and Service Cycles

	152.15. Capabilities
	152.16. Relationship to CDI features
	152.16.1. Bean Descriptors
	152.16.2. Bean Discovery
	152.16.2.1. Build tool support

	152.16.3. Portable Extensions
	152.16.3.1. Portable Extension Services and Beans
	152.16.3.2. Embedded Portable Extension

	152.16.4. Bean Manager
	152.16.5. Decorators and Interceptors

	152.17. Security
	152.17.1. Service Permissions
	152.17.2. Required Admin Permission
	152.17.3. Using hasPermission
	152.17.4. Configuration Multi-Locations and Regions

	152.18. org.osgi.service.cdi
	152.18.1. Summary
	152.18.2. public class CDIConstants
	152.18.2.1. public static final String CDI_CAPABILITY_NAME = "osgi.cdi"
	152.18.2.2. public static final String CDI_COMPONENT_NAME = "$"
	152.18.2.3. public static final String CDI_CONTAINER_ID = "container.id"
	152.18.2.4. public static final String CDI_CONTAINER_ID_PROPERTY = "osgi.cdi.container.id"
	152.18.2.5. public static final String CDI_EXTENSION_PROPERTY = "osgi.cdi.extension"
	152.18.2.6. public static final String CDI_SPECIFICATION_VERSION = "1.0.0"
	152.18.2.7. public static final String REQUIREMENT_BEANS_ATTRIBUTE = "beans"
	152.18.2.8. public static final String REQUIREMENT_DESCRIPTOR_ATTRIBUTE = "descriptor"

	152.18.3. enum ComponentType
	152.18.3.1. CONTAINER
	152.18.3.2. SINGLE
	152.18.3.3. FACTORY
	152.18.3.4. public static ComponentType valueOf(String name)
	152.18.3.5. public static ComponentType[] values()

	152.18.4. enum ConfigurationPolicy
	152.18.4.1. OPTIONAL
	152.18.4.2. REQUIRED
	152.18.4.3. public static ConfigurationPolicy valueOf(String name)
	152.18.4.4. public static ConfigurationPolicy[] values()

	152.18.5. enum MaximumCardinality
	152.18.5.1. ONE
	152.18.5.2. MANY
	152.18.5.3. public static MaximumCardinality fromInt(int value)
	152.18.5.4. public int toInt()
	152.18.5.5. public static MaximumCardinality valueOf(String name)
	152.18.5.6. public static MaximumCardinality[] values()

	152.18.6. enum ReferencePolicy
	152.18.6.1. STATIC
	152.18.6.2. DYNAMIC
	152.18.6.3. public static ReferencePolicy valueOf(String name)
	152.18.6.4. public static ReferencePolicy[] values()

	152.18.7. enum ReferencePolicyOption
	152.18.7.1. GREEDY
	152.18.7.2. RELUCTANT
	152.18.7.3. public static ReferencePolicyOption valueOf(String name)
	152.18.7.4. public static ReferencePolicyOption[] values()

	152.18.8. enum ServiceScope
	152.18.8.1. SINGLETON
	152.18.8.2. BUNDLE
	152.18.8.3. PROTOTYPE
	152.18.8.4. public static ServiceScope valueOf(String name)
	152.18.8.5. public static ServiceScope[] values()

	152.19. org.osgi.service.cdi.annotations
	152.19.1. Summary
	152.19.2. @Bean
	152.19.3. @BeanPropertyType
	152.19.4. public static final class BeanPropertyType.Literal extends AnnotationLiteral<BeanPropertyType> implements BeanPropertyType
	152.19.4.1. public static final BeanPropertyType INSTANCE
	152.19.4.2. public Literal()

	152.19.5. @Beans
	152.19.5.1. Class<?>[] value default {}

	152.19.6. @ComponentProperties
	152.19.7. public static final class ComponentProperties.Literal extends AnnotationLiteral<ComponentProperties> implements ComponentProperties
	152.19.7.1. public static final ComponentProperties INSTANCE
	152.19.7.2. public Literal()

	152.19.8. @ComponentScoped
	152.19.9. public static final class ComponentScoped.Literal extends AnnotationLiteral<ComponentScoped> implements ComponentScoped
	152.19.9.1. public static final ComponentScoped INSTANCE
	152.19.9.2. public Literal()

	152.19.10. @FactoryComponent
	152.19.10.1. String value default "$"

	152.19.11. public static final class FactoryComponent.Literal extends AnnotationLiteral<FactoryComponent> implements FactoryComponent
	152.19.11.1. public static final FactoryComponent.Literal of(String pid)
	152.19.11.2. public String value()

	152.19.12. @MinimumCardinality
	152.19.12.1. int value default 1

	152.19.13. public static final class MinimumCardinality.Literal extends AnnotationLiteral<MinimumCardinality> implements MinimumCardinality
	152.19.13.1. public static final MinimumCardinality.Literal of(int value)
	152.19.13.2. public int value()

	152.19.14. @PID
	152.19.14.1. String value default "$"
	152.19.14.2. ConfigurationPolicy policy default OPTIONAL

	152.19.15. public static final class PID.Literal extends AnnotationLiteral<PID> implements PID
	152.19.15.1. public static final PID.Literal of(String pid, ConfigurationPolicy policy)
	152.19.15.2. public ConfigurationPolicy policy()
	152.19.15.3. public String value()

	152.19.16. @PIDs
	152.19.16.1. PID[] value

	152.19.17. public static final class PIDs.Literal extends AnnotationLiteral<PIDs> implements PIDs
	152.19.17.1. public static PIDs of(PID[] pids)
	152.19.17.2. public PID[] value()

	152.19.18. @PrototypeRequired
	152.19.19. public static final class PrototypeRequired.Literal extends AnnotationLiteral<PrototypeRequired> implements PrototypeRequired
	152.19.19.1. public static final PrototypeRequired INSTANCE
	152.19.19.2. public Literal()

	152.19.20. @Reference
	152.19.20.1. Class<?> value default Object.class
	152.19.20.2. String target default ""

	152.19.21. public static final class Reference.Any
	152.19.21.1. public Any()

	152.19.22. public static final class Reference.Literal extends AnnotationLiteral<Reference> implements Reference
	152.19.22.1. public static final Reference.Literal of(Class<?> service, String target)
	152.19.22.2. public String target()
	152.19.22.3. public Class<?> value()

	152.19.23. @Reluctant
	152.19.24. public static final class Reluctant.Literal extends AnnotationLiteral<Reluctant> implements Reluctant
	152.19.24.1. public static final Reluctant INSTANCE
	152.19.24.2. public Literal()

	152.19.25. @RequireCDIExtender
	152.19.25.1. String[] descriptor default "META-INF/beans.xml"
	152.19.25.2. Class<?>[] beans default {}

	152.19.26. @RequireCDIImplementation
	152.19.27. @Service
	152.19.27.1. Class<?>[] value default {}

	152.19.28. public static final class Service.Literal extends AnnotationLiteral<Service> implements Service
	152.19.28.1. public static final Service.Literal of(Class<?>[] interfaces)
	152.19.28.2. public Class<?>[] value()

	152.19.29. @ServiceInstance
	152.19.29.1. ServiceScope value default SINGLETON

	152.19.30. public static final class ServiceInstance.Literal extends AnnotationLiteral<ServiceInstance> implements ServiceInstance
	152.19.30.1. public static ServiceInstance.Literal of(ServiceScope type)
	152.19.30.2. public ServiceScope value()

	152.19.31. @SingleComponent
	152.19.32. public static final class SingleComponent.Literal extends AnnotationLiteral<SingleComponent> implements SingleComponent
	152.19.32.1. public static final SingleComponent INSTANCE
	152.19.32.2. public Literal()

	152.20. org.osgi.service.cdi.propertytypes
	152.20.1. Summary
	152.20.2. public class BeanPropertyException extends RuntimeException
	152.20.2.1. public BeanPropertyException(String message)
	152.20.2.2. public BeanPropertyException(String message, Throwable cause)

	152.20.3. @ExportedService
	152.20.3.1. Class<?>[] service_exported_interfaces
	152.20.3.2. String[] service_exported_configs default {}
	152.20.3.3. String[] service_exported_intents default {}
	152.20.3.4. String[] service_exported_intents_extra default {}
	152.20.3.5. String[] service_intents default {}

	152.20.4. @ServiceDescription
	152.20.4.1. String value

	152.20.5. @ServiceRanking
	152.20.5.1. int value

	152.20.6. @ServiceVendor
	152.20.6.1. String value

	152.21. org.osgi.service.cdi.reference
	152.21.1. Summary
	152.21.2. public interface BeanServiceObjects<S>
	152.21.2.1. public S getService()
	152.21.2.2. public ServiceReference<S> getServiceReference()
	152.21.2.3. public void ungetService(S service)

	152.21.3. public interface BindBeanServiceObjects<S>
	152.21.3.1. public BindBeanServiceObjects<S> adding(Consumer<BeanServiceObjects<S>> action)
	152.21.3.2. public void bind()
	152.21.3.3. public BindBeanServiceObjects<S> modified(Consumer<BeanServiceObjects<S>> action)
	152.21.3.4. public BindBeanServiceObjects<S> removed(Consumer<BeanServiceObjects<S>> action)

	152.21.4. public interface BindService<S>
	152.21.4.1. public BindService<S> adding(Consumer<S> action)
	152.21.4.2. public BindService<S> adding(BiConsumer<S, Map<String, Object>> action)
	152.21.4.3. public void bind()
	152.21.4.4. public BindService<S> modified(Consumer<S> action)
	152.21.4.5. public BindService<S> modified(BiConsumer<S, Map<String, Object>> action)
	152.21.4.6. public BindService<S> removed(Consumer<S> action)
	152.21.4.7. public BindService<S> removed(BiConsumer<S, Map<String, Object>> action)

	152.21.5. public interface BindServiceReference<S>
	152.21.5.1. public BindServiceReference<S> adding(Consumer<ServiceReference<S>> action)
	152.21.5.2. public BindServiceReference<S> adding(BiConsumer<ServiceReference<S>, S> action)
	152.21.5.3. public void bind()
	152.21.5.4. public BindServiceReference<S> modified(Consumer<ServiceReference<S>> action)
	152.21.5.5. public BindServiceReference<S> modified(BiConsumer<ServiceReference<S>, S> action)
	152.21.5.6. public BindServiceReference<S> removed(Consumer<ServiceReference<S>> action)
	152.21.5.7. public BindServiceReference<S> removed(BiConsumer<ServiceReference<S>, S> action)

	152.22. org.osgi.service.cdi.runtime
	152.22.1. Summary
	152.22.2. public interface CDIComponentRuntime
	152.22.2.1. public Collection<ContainerDTO> getContainerDTOs(Bundle... bundles)
	152.22.2.2. public ContainerTemplateDTO getContainerTemplateDTO(Bundle bundle)

	152.23. org.osgi.service.cdi.runtime.dto
	152.23.1. Summary
	152.23.2. public class ActivationDTO extends DTO
	152.23.2.1. public List<String> errors
	152.23.2.2. public ServiceReferenceDTO service
	152.23.2.3. public ActivationTemplateDTO template
	152.23.2.4. public ActivationDTO()

	152.23.3. public class ComponentDTO extends DTO
	152.23.3.1. public boolean enabled
	152.23.3.2. public List<ComponentInstanceDTO> instances
	152.23.3.3. public ComponentTemplateDTO template
	152.23.3.4. public ComponentDTO()

	152.23.4. public class ComponentInstanceDTO extends DTO
	152.23.4.1. public List<ActivationDTO> activations
	152.23.4.2. public List<ConfigurationDTO> configurations
	152.23.4.3. public Map<String, Object> properties
	152.23.4.4. public List<ReferenceDTO> references
	152.23.4.5. public ComponentInstanceDTO()

	152.23.5. public class ConfigurationDTO extends DTO
	152.23.5.1. public Map<String, Object> properties
	152.23.5.2. public ConfigurationTemplateDTO template
	152.23.5.3. public ConfigurationDTO()

	152.23.6. public class ContainerDTO extends DTO
	152.23.6.1. public BundleDTO bundle
	152.23.6.2. public long changeCount
	152.23.6.3. public List<ComponentDTO> components
	152.23.6.4. public List<String> errors
	152.23.6.5. public List<ExtensionDTO> extensions
	152.23.6.6. public ContainerTemplateDTO template
	152.23.6.7. public ContainerDTO()

	152.23.7. public class ExtensionDTO extends DTO
	152.23.7.1. public ServiceReferenceDTO service
	152.23.7.2. public ExtensionTemplateDTO template
	152.23.7.3. public ExtensionDTO()

	152.23.8. public class ReferenceDTO extends DTO
	152.23.8.1. public List<ServiceReferenceDTO> matches
	152.23.8.2. public int minimumCardinality
	152.23.8.3. public String targetFilter
	152.23.8.4. public ReferenceTemplateDTO template
	152.23.8.5. public ReferenceDTO()

	152.24. org.osgi.service.cdi.runtime.dto.template
	152.24.1. Summary
	152.24.2. public class ActivationTemplateDTO extends DTO
	152.24.2.1. public Map<String, Object> properties
	152.24.2.2. public ServiceScope scope
	152.24.2.3. public List<String> serviceClasses
	152.24.2.4. public ActivationTemplateDTO()

	152.24.3. public class ComponentTemplateDTO extends DTO
	152.24.3.1. public List<ActivationTemplateDTO> activations
	152.24.3.2. public List<String> beans
	152.24.3.3. public List<ConfigurationTemplateDTO> configurations
	152.24.3.4. public String name
	152.24.3.5. public Map<String, Object> properties
	152.24.3.6. public List<ReferenceTemplateDTO> references
	152.24.3.7. public ComponentType type
	152.24.3.8. public ComponentTemplateDTO()

	152.24.4. public class ConfigurationTemplateDTO extends DTO
	152.24.4.1. public MaximumCardinality maximumCardinality
	152.24.4.2. public String pid
	152.24.4.3. public ConfigurationPolicy policy
	152.24.4.4. public ConfigurationTemplateDTO()

	152.24.5. public class ContainerTemplateDTO extends DTO
	152.24.5.1. public List<ComponentTemplateDTO> components
	152.24.5.2. public List<ExtensionTemplateDTO> extensions
	152.24.5.3. public String id
	152.24.5.4. public ContainerTemplateDTO()

	152.24.6. public class ExtensionTemplateDTO extends DTO
	152.24.6.1. public String serviceFilter
	152.24.6.2. public ExtensionTemplateDTO()

	152.24.7. public class ReferenceTemplateDTO extends DTO
	152.24.7.1. public MaximumCardinality maximumCardinality
	152.24.7.2. public int minimumCardinality
	152.24.7.3. public String name
	152.24.7.4. public ReferencePolicy policy
	152.24.7.5. public ReferencePolicyOption policyOption
	152.24.7.6. public String serviceType
	152.24.7.7. public String targetFilter
	152.24.7.8. public ReferenceTemplateDTO()

	152.25. References

	Chapter 702. XML Parser Service Specification
	702.1. Introduction
	702.1.1. Essentials
	702.1.2. Entities
	702.1.3. Operations

	702.2. JAXP
	702.3. XML Parser service
	702.4. Properties
	702.5. Getting a Parser Factory
	702.6. Adapting a JAXP Parser to OSGi
	702.6.1. JAR Based Services
	702.6.2. XMLParserActivator
	702.6.3. Adapting an Existing JAXP Compatible Parser

	702.7. Usage of JAXP
	702.8. Security
	702.9. org.osgi.util.xml
	702.9.1. Summary
	702.9.2. public class XMLParserActivator implements BundleActivator, ServiceFactory<Object>
	702.9.2.1. public static final String DOMCLASSFILE = "/META-INF/services/javax.xml.parsers.DocumentBuilderFactory"
	702.9.2.2. public static final String DOMFACTORYNAME = "javax.xml.parsers.DocumentBuilderFactory"
	702.9.2.3. public static final String PARSER_NAMESPACEAWARE = "parser.namespaceAware"
	702.9.2.4. public static final String PARSER_VALIDATING = "parser.validating"
	702.9.2.5. public static final String SAXCLASSFILE = "/META-INF/services/javax.xml.parsers.SAXParserFactory"
	702.9.2.6. public static final String SAXFACTORYNAME = "javax.xml.parsers.SAXParserFactory"
	702.9.2.7. public XMLParserActivator()
	702.9.2.8. public Object getService(Bundle bundle, ServiceRegistration<Object> registration)
	702.9.2.9. public void setDOMProperties(DocumentBuilderFactory factory, Hashtable<String, Object> props)
	702.9.2.10. public void setSAXProperties(SAXParserFactory factory, Hashtable<String, Object> properties)
	702.9.2.11. public void start(BundleContext context) throws Exception
	702.9.2.12. public void stop(BundleContext context) throws Exception
	702.9.2.13. public void ungetService(Bundle bundle, ServiceRegistration<Object> registration, Object service)

	702.10. References

	Chapter 705. Promises Specification
	705.1. Introduction
	705.1.1. Essentials
	705.1.2. Entities

	705.2. Promise
	705.3. Deferred
	705.4. Callbacks
	705.4.1. Runnable
	705.4.2. Consumer
	705.4.3. Success and Failure

	705.5. Chaining Promises
	705.6. Monad
	705.7. Timing
	705.8. Functional Interfaces
	705.9. Utility Methods
	705.10. Security
	705.11. org.osgi.util.promise
	705.11.1. Summary
	705.11.2. public class Deferred<T>
	705.11.2.1. public Deferred()
	705.11.2.2. public void fail(Throwable failure)
	705.11.2.3. public Promise<T> getPromise()
	705.11.2.4. public void resolve(T value)
	705.11.2.5. public Promise<Void> resolveWith(Promise<? extends T> with)
	705.11.2.6. public String toString()

	705.11.3. public class FailedPromisesException extends RuntimeException
	705.11.3.1. public FailedPromisesException(Collection<Promise<?>> failed, Throwable cause)
	705.11.3.2. public Collection<Promise<?>> getFailedPromises()

	705.11.4. public interface Failure
	705.11.4.1. public void fail(Promise<?> resolved) throws Exception

	705.11.5. public interface Promise<T>
	705.11.5.1. public Promise<T> delay(long milliseconds)
	705.11.5.2. public Promise<T> fallbackTo(Promise<? extends T> fallback)
	705.11.5.3. public Promise<T> filter(Predicate<? super T> predicate)
	705.11.5.4. public Promise<R> flatMap(Function<? super T, Promise<? extends R>> mapper)
	705.11.5.5. public Throwable getFailure() throws InterruptedException
	705.11.5.6. public T getValue() throws InvocationTargetException, InterruptedException
	705.11.5.7. public boolean isDone()
	705.11.5.8. public Promise<R> map(Function<? super T, ? extends R> mapper)
	705.11.5.9. public Promise<T> onFailure(Consumer<? super Throwable> failure)
	705.11.5.10. public Promise<T> onResolve(Runnable callback)
	705.11.5.11. public Promise<T> onSuccess(Consumer<? super T> success)
	705.11.5.12. public Promise<T> recover(Function<Promise<?>, ? extends T> recovery)
	705.11.5.13. public Promise<T> recoverWith(Function<Promise<?>, Promise<? extends T>> recovery)
	705.11.5.14. public Promise<R> then(Success<? super T, ? extends R> success, Failure failure)
	705.11.5.15. public Promise<R> then(Success<? super T, ? extends R> success)
	705.11.5.16. public Promise<T> thenAccept(Consumer<? super T> consumer)
	705.11.5.17. public Promise<T> timeout(long milliseconds)

	705.11.6. public class PromiseFactory
	705.11.6.1. public PromiseFactory(Executor callbackExecutor)
	705.11.6.2. public PromiseFactory(Executor callbackExecutor, ScheduledExecutorService scheduledExecutor)
	705.11.6.3. public Promise<List<T>> all(Collection<Promise<S>> promises)
	705.11.6.4. public Deferred<T> deferred()
	705.11.6.5. public Executor executor()
	705.11.6.6. public Promise<T> failed(Throwable failure)
	705.11.6.7. public static Executor inlineExecutor()
	705.11.6.8. public Promise<T> resolved(T value)
	705.11.6.9. public ScheduledExecutorService scheduledExecutor()
	705.11.6.10. public Promise<T> submit(Callable<? extends T> task)

	705.11.7. public class Promises
	705.11.7.1. public static Promise<List<T>> all(Collection<Promise<S>> promises)
	705.11.7.2. public static Promise<List<T>> all(Promise<? extends T>... promises)
	705.11.7.3. public static Promise<T> failed(Throwable failure)
	705.11.7.4. public static Promise<T> resolved(T value)

	705.11.8. public interface Success<T, R>
	705.11.8.1. public Promise<R> call(Promise<T> resolved) throws Exception

	705.11.9. public class TimeoutException extends Exception
	705.11.9.1. public TimeoutException()

	705.12. org.osgi.util.function
	705.12.1. Summary
	705.12.2. public interface Consumer<T>
	705.12.2.1. public void accept(T t) throws Exception

	705.12.3. public interface Function<T, R>
	705.12.3.1. public R apply(T t) throws Exception

	705.12.4. public interface Predicate<T>
	705.12.4.1. public boolean test(T t) throws Exception

	705.13. References
	705.14. Changes

	Chapter 706. Push Stream Specification
	706.1. Introduction
	706.1.1. Essentials
	706.1.2. Entities

	706.2. Asynchronous Event Streams
	706.2.1. The Push Event
	706.2.2. The Push Event Source
	706.2.3. The Push Event Consumer
	706.2.4. Closing the Event Stream

	706.3. The Push Stream
	706.3.1. Simple Pipelines
	706.3.1.1. Mapping, Flat Mapping and Filtering
	706.3.1.1.1. Mapping
	706.3.1.1.2. Flat Mapping
	706.3.1.1.3. Filtering
	706.3.1.1.4. Asynchronous Mapping

	706.3.1.2. Stateless and Stateful Intermediate Operations
	706.3.1.3. Terminal Operations

	706.3.2. Buffering, Back pressure and Circuit Breakers
	706.3.2.1. Back pressure
	706.3.2.2. Buffering
	706.3.2.3. Buffering policies
	706.3.2.4. Building a Buffer or Push Stream
	706.3.2.5. Circuit Breakers

	706.3.3. Forking
	706.3.4. Coalescing and Windowing
	706.3.4.1. Coalescing
	706.3.4.2. Windowing

	706.3.5. Merging and Splitting
	706.3.5.1. Merging
	706.3.5.2. Splitting

	706.3.6. Time Limited Streams
	706.3.7. Closing Streams

	706.4. The Push Stream Provider
	706.4.1. Building Buffers
	706.4.2. Mapping between Java 8 Streams and Push Streams

	706.5. Simple Push Event Sources
	706.5.1. Optimizing Event Creation

	706.6. Security
	706.7. org.osgi.util.pushstream
	706.7.1. Summary
	706.7.2. public interface BufferBuilder<R, T, U extends BlockingQueue<PushEvent<? extends T>>>
	706.7.2.1. public R build()
	706.7.2.2. public BufferBuilder<R, T, U> withBuffer(U queue)
	706.7.2.3. public BufferBuilder<R, T, U> withExecutor(Executor executor)
	706.7.2.4. public BufferBuilder<R, T, U> withParallelism(int parallelism)
	706.7.2.5. public BufferBuilder<R, T, U> withPushbackPolicy(PushbackPolicy<T, U> pushbackPolicy)
	706.7.2.6. public BufferBuilder<R, T, U> withPushbackPolicy(PushbackPolicyOption pushbackPolicyOption, long time)
	706.7.2.7. public BufferBuilder<R, T, U> withQueuePolicy(QueuePolicy<T, U> queuePolicy)
	706.7.2.8. public BufferBuilder<R, T, U> withQueuePolicy(QueuePolicyOption queuePolicyOption)
	706.7.2.9. public BufferBuilder<R, T, U> withScheduler(ScheduledExecutorService scheduler)

	706.7.3. public interface PushbackPolicy<T, U extends BlockingQueue<PushEvent<? extends T>>>
	706.7.3.1. public long pushback(U queue) throws Exception

	706.7.4. enum PushbackPolicyOption
	706.7.4.1. FIXED
	706.7.4.2. ON_FULL_FIXED
	706.7.4.3. ON_FULL_EXPONENTIAL
	706.7.4.4. LINEAR
	706.7.4.5. public abstract PushbackPolicy<T, U> getPolicy(long value)
	706.7.4.6. public static PushbackPolicyOption valueOf(String name)
	706.7.4.7. public static PushbackPolicyOption[] values()

	706.7.5. public abstract class PushEvent<T>
	706.7.5.1. public static PushEvent<T> close()
	706.7.5.2. public static PushEvent<T> data(T payload)
	706.7.5.3. public static PushEvent<T> error(Throwable t)
	706.7.5.4. public T getData()
	706.7.5.5. public Throwable getFailure()
	706.7.5.6. public abstract PushEvent.EventType getType()
	706.7.5.7. public boolean isTerminal()
	706.7.5.8. public PushEvent<X> nodata()

	706.7.6. enum PushEvent.EventType
	706.7.6.1. DATA
	706.7.6.2. ERROR
	706.7.6.3. CLOSE
	706.7.6.4. public static PushEvent.EventType valueOf(String name)
	706.7.6.5. public static PushEvent.EventType[] values()

	706.7.7. public interface PushEventConsumer<T>
	706.7.7.1. public static final long ABORT = -1L
	706.7.7.2. public static final long CONTINUE = 0L
	706.7.7.3. public long accept(PushEvent<? extends T> event) throws Exception

	706.7.8. public interface PushEventSource<T>
	706.7.8.1. public AutoCloseable open(PushEventConsumer<? super T> aec) throws Exception

	706.7.9. public interface PushStream<T> extends AutoCloseable
	706.7.9.1. public PushStream<T> adjustBackPressure(LongUnaryOperator adjustment)
	706.7.9.2. public PushStream<T> adjustBackPressure(ToLongBiFunction<T, Long> adjustment)
	706.7.9.3. public Promise<Boolean> allMatch(Predicate<? super T> predicate)
	706.7.9.4. public Promise<Boolean> anyMatch(Predicate<? super T> predicate)
	706.7.9.5. public PushStream<R> asyncMap(int n, int delay, Function<? super T, Promise<? extends R>> mapper)
	706.7.9.6. public PushStream<T> buffer()
	706.7.9.7. public PushStreamBuilder<T, U> buildBuffer()
	706.7.9.8. public void close()
	706.7.9.9. public PushStream<R> coalesce(Function<? super T, Optional<R>> f)
	706.7.9.10. public PushStream<R> coalesce(int count, Function<Collection<T>, R> f)
	706.7.9.11. public PushStream<R> coalesce(IntSupplier count, Function<Collection<T>, R> f)
	706.7.9.12. public Promise<R> collect(Collector<? super T, A, R> collector)
	706.7.9.13. public Promise<Long> count()
	706.7.9.14. public PushStream<T> distinct()
	706.7.9.15. public PushStream<T> filter(Predicate<? super T> predicate)
	706.7.9.16. public Promise<Optional<T>> findAny()
	706.7.9.17. public Promise<Optional<T>> findFirst()
	706.7.9.18. public PushStream<R> flatMap(Function<? super T, ? extends PushStream<? extends R>> mapper)
	706.7.9.19. public Promise<Void> forEach(Consumer<? super T> action)
	706.7.9.20. public Promise<Long> forEachEvent(PushEventConsumer<? super T> action)
	706.7.9.21. public PushStream<T> fork(int n, int delay, Executor e)
	706.7.9.22. public PushStream<T> limit(long maxSize)
	706.7.9.23. public PushStream<T> limit(Duration maxTime)
	706.7.9.24. public PushStream<R> map(Function<? super T, ? extends R> mapper)
	706.7.9.25. public Promise<Optional<T>> max(Comparator<? super T> comparator)
	706.7.9.26. public PushStream<T> merge(PushEventSource<? extends T> source)
	706.7.9.27. public PushStream<T> merge(PushStream<? extends T> source)
	706.7.9.28. public Promise<Optional<T>> min(Comparator<? super T> comparator)
	706.7.9.29. public Promise<Boolean> noneMatch(Predicate<? super T> predicate)
	706.7.9.30. public PushStream<T> onClose(Runnable closeHandler)
	706.7.9.31. public PushStream<T> onError(Consumer<? super Throwable> closeHandler)
	706.7.9.32. public Promise<T> reduce(T identity, BinaryOperator<T> accumulator)
	706.7.9.33. public Promise<Optional<T>> reduce(BinaryOperator<T> accumulator)
	706.7.9.34. public Promise<U> reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)
	706.7.9.35. public PushStream<T> sequential()
	706.7.9.36. public PushStream<T> skip(long n)
	706.7.9.37. public PushStream<T> sorted()
	706.7.9.38. public PushStream<T> sorted(Comparator<? super T> comparator)
	706.7.9.39. public PushStream<T>[] split(Predicate<? super T>... predicates)
	706.7.9.40. public PushStream<T> timeout(Duration idleTime)
	706.7.9.41. public Promise<Object> toArray()
	706.7.9.42. public Promise<A> toArray(IntFunction<A> generator)
	706.7.9.43. public PushStream<R> window(Duration d, Function<Collection<T>, R> f)
	706.7.9.44. public PushStream<R> window(Duration d, Executor executor, Function<Collection<T>, R> f)
	706.7.9.45. public PushStream<R> window(Supplier<Duration> timeSupplier, IntSupplier maxEvents, BiFunction<Long, Collection<T>, R> f)
	706.7.9.46. public PushStream<R> window(Supplier<Duration> timeSupplier, IntSupplier maxEvents, Executor executor, BiFunction<Long, Collection<T>, R> f)

	706.7.10. public interface PushStreamBuilder<T, U extends BlockingQueue<PushEvent<? extends T>>> extends BufferBuilder<PushStream<T>, T, U>
	706.7.10.1. public PushStreamBuilder<T, U> unbuffered()
	706.7.10.2. public PushStreamBuilder<T, U> withBuffer(U queue)
	706.7.10.3. public PushStreamBuilder<T, U> withExecutor(Executor executor)
	706.7.10.4. public PushStreamBuilder<T, U> withParallelism(int parallelism)
	706.7.10.5. public PushStreamBuilder<T, U> withPushbackPolicy(PushbackPolicy<T, U> pushbackPolicy)
	706.7.10.6. public PushStreamBuilder<T, U> withPushbackPolicy(PushbackPolicyOption pushbackPolicyOption, long time)
	706.7.10.7. public PushStreamBuilder<T, U> withQueuePolicy(QueuePolicy<T, U> queuePolicy)
	706.7.10.8. public PushStreamBuilder<T, U> withQueuePolicy(QueuePolicyOption queuePolicyOption)
	706.7.10.9. public PushStreamBuilder<T, U> withScheduler(ScheduledExecutorService scheduler)

	706.7.11. public final class PushStreamProvider
	706.7.11.1. public PushStreamProvider()
	706.7.11.2. public BufferBuilder<PushEventConsumer<T>, T, U> buildBufferedConsumer(PushEventConsumer<T> delegate)
	706.7.11.3. public BufferBuilder<PushEventSource<T>, T, U> buildEventSourceFromStream(PushStream<T> stream)
	706.7.11.4. public BufferBuilder<SimplePushEventSource<T>, T, U> buildSimpleEventSource(Class<T> type)
	706.7.11.5. public PushStreamBuilder<T, U> buildStream(PushEventSource<T> eventSource)
	706.7.11.6. public PushEventConsumer<T> createBufferedConsumer(PushEventConsumer<T> delegate)
	706.7.11.7. public PushEventSource<T> createEventSourceFromStream(PushStream<T> stream)
	706.7.11.8. public SimplePushEventSource<T> createSimpleEventSource(Class<T> type)
	706.7.11.9. public PushStream<T> createStream(PushEventSource<T> eventSource)
	706.7.11.10. public PushStream<T> streamOf(Stream<T> items)
	706.7.11.11. public PushStream<T> streamOf(Executor executor, ScheduledExecutorService scheduler, Stream<T> items)

	706.7.12. public interface QueuePolicy<T, U extends BlockingQueue<PushEvent<? extends T>>>
	706.7.12.1. public void doOffer(U queue, PushEvent<? extends T> event) throws Exception

	706.7.13. enum QueuePolicyOption
	706.7.13.1. DISCARD_OLDEST
	706.7.13.2. BLOCK
	706.7.13.3. FAIL
	706.7.13.4. public abstract QueuePolicy<T, U> getPolicy()
	706.7.13.5. public static QueuePolicyOption valueOf(String name)
	706.7.13.6. public static QueuePolicyOption[] values()

	706.7.14. public interface SimplePushEventSource<T> extends PushEventSource<T>, AutoCloseable
	706.7.14.1. public void close()
	706.7.14.2. public Promise<Void> connectPromise()
	706.7.14.3. public void endOfStream()
	706.7.14.4. public void error(Throwable t)
	706.7.14.5. public boolean isConnected()
	706.7.14.6. public void publish(T t)

	706.8. References

	Chapter 707. Converter Specification
	707.1. Introduction
	707.2. Entities
	707.3. Standard Converter
	707.4. Conversions
	707.4.1. Generics
	707.4.2. Scalars
	707.4.2.1. Direct conversion between scalars
	707.4.2.2. Conversion to String
	707.4.2.3. Conversion from String
	707.4.2.4. Date and Calendar
	707.4.2.5. Enums
	707.4.2.6. Map.Entry

	707.4.3. Arrays and Collections
	707.4.3.1. Converting from a scalar
	707.4.3.2. Converting to a scalar
	707.4.3.3. Converting to an Array or Collection
	707.4.3.4. Converting to maps

	707.4.4. Maps, Interfaces, Java Beans, DTOs and Annotations
	707.4.4.1. Converting from a scalar
	707.4.4.2. Converting to a scalar
	707.4.4.3. Converting to an Array or Collection
	707.4.4.4. Converting to a map-like structure
	707.4.4.4.1. Key Mapping
	707.4.4.4.2. Converting to a Map
	707.4.4.4.3. Dictionary
	707.4.4.4.4. Interface
	707.4.4.4.4.1. Converting to an Interface
	707.4.4.4.4.2. Converting from an Interface

	707.4.4.4.5. Annotation
	707.4.4.4.5.1. Marker annotations

	707.4.4.4.6. Java Beans
	707.4.4.4.7. DTOs
	707.4.4.4.8. Types with getProperties()
	707.4.4.4.9. Specifying target types

	707.5. Repeated or Deferred Conversions
	707.6. Customizing converters
	707.6.1. Catch-all rules

	707.7. Conversion failures
	707.8. Security
	707.9. org.osgi.util.converter
	707.9.1. Summary
	707.9.2. public class ConversionException extends RuntimeException
	707.9.2.1. public ConversionException(String message)
	707.9.2.2. public ConversionException(String message, Throwable cause)

	707.9.3. public interface Converter
	707.9.3.1. public Converting convert(Object obj)
	707.9.3.2. public Functioning function()
	707.9.3.3. public ConverterBuilder newConverterBuilder()

	707.9.4. public interface ConverterBuilder
	707.9.4.1. public Converter build()
	707.9.4.2. public ConverterBuilder errorHandler(ConverterFunction func)
	707.9.4.3. public ConverterBuilder rule(Type type, ConverterFunction func)
	707.9.4.4. public ConverterBuilder rule(TargetRule rule)
	707.9.4.5. public ConverterBuilder rule(ConverterFunction func)

	707.9.5. public interface ConverterFunction
	707.9.5.1. public static final Object CANNOT_HANDLE
	707.9.5.2. public Object apply(Object obj, Type targetType) throws Exception

	707.9.6. public class Converters
	707.9.6.1. public static ConverterBuilder newConverterBuilder()
	707.9.6.2. public static Converter standardConverter()

	707.9.7. public interface Converting extends Specifying<Converting>
	707.9.7.1. public T to(Class<T> cls)
	707.9.7.2. public T to(Type type)
	707.9.7.3. public T to(TypeReference<T> ref)

	707.9.8. public interface Functioning extends Specifying<Functioning>
	707.9.8.1. public Function<Object, T> to(Class<T> cls)
	707.9.8.2. public Function<Object, T> to(Type type)
	707.9.8.3. public Function<Object, T> to(TypeReference<T> ref)

	707.9.9. public abstract class Rule<F, T> implements TargetRule
	707.9.9.1. public Rule(Function<F, T> func)
	707.9.9.2. public ConverterFunction getFunction()
	707.9.9.3. public Type getTargetType()

	707.9.10. public interface Specifying<T extends Specifying<T>>
	707.9.10.1. public T extends Specifying<T> defaultValue(Object defVal)
	707.9.10.2. public T extends Specifying<T> keysIgnoreCase()
	707.9.10.3. public T extends Specifying<T> sourceAs(Class<?> cls)
	707.9.10.4. public T extends Specifying<T> sourceAsBean()
	707.9.10.5. public T extends Specifying<T> sourceAsDTO()
	707.9.10.6. public T extends Specifying<T> targetAs(Class<?> cls)
	707.9.10.7. public T extends Specifying<T> targetAsBean()
	707.9.10.8. public T extends Specifying<T> targetAsDTO()
	707.9.10.9. public T extends Specifying<T> view()

	707.9.11. public interface TargetRule
	707.9.11.1. public ConverterFunction getFunction()
	707.9.11.2. public Type getTargetType()

	707.9.12. public class TypeReference<T>
	707.9.12.1. protected TypeReference()
	707.9.12.2. public Type getType()

	707.9.13. public class TypeRule<F, T> implements TargetRule
	707.9.13.1. public TypeRule(Type from, Type to, Function<F, T> func)
	707.9.13.2. public ConverterFunction getFunction()
	707.9.13.3. public Type getTargetType()

	707.10. References

